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This study investigates the problem of a semi-infinite hydraulic fracture that
propagates steadily in a permeable formation. The fracturing fluid rheology is assumed
to follow a power-law behaviour, while the leak-off is modelled by Carter’s model.
A non-singular formulation is employed to effectively analyse the problem and
to construct a numerical solution. The problem under consideration features three
limiting analytic solutions that are associated with dominance of either toughness,
leak-off or viscosity. Transitions between all the limiting cases are analysed and the
boundaries of applicability of all these limiting solutions are quantified. These bounds
allow us to determine the regions in the parametric space, in which these limiting
solutions can be used. The problem of a semi-infinite fracture, which is considered
in this study, provides the solution for the tip region of a hydraulic fracture and can
be used in hydraulic fracturing simulators to facilitate solving the moving fracture
boundary problem. To cater for such applications, for which rapid evaluation of the
solution is necessary, the last part of this paper constructs an approximate closed form
solution for the problem and evaluates its accuracy against the numerical solution
inside the parametric space.

Key words: boundary layers, geophysical and geological flows, non-Newtonian flows

1. Introduction
Hydraulic fracturing is a process in which a fluid is injected into a rock formation

to create tensile fractures, which aim to increase the conductivity of the rock. This
technique is primarily used to stimulate oil and gas wells in the petroleum industry
(Economides & Nolte 2000), but is also used for other applications, such as extracting
geothermal energy (Legarth, Huenges & Zimmermann 2005). Hydraulic fractures also
occur in nature as magma-filled dykes (Spence & Turcotte 1985; Spence, Sharp &
Turcotte 1987; Lister 1990; Roper & Lister 2007) and fluid-filled cracks in glacier
beds (Tsai & Rice 2010).

The problem of a semi-infinite hydraulic fracture provides crucial information
about the behaviour of a hydraulic fracture in the tip region (Peirce & Detournay
2008; Garagash, Detournay & Adachi 2011), where the latter governs dynamics of
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the fracture front and therefore affects the global fracture behaviour. Early studies
of the tip region problem (Desroches et al. 1994; Lenoach 1995) obtained analytic
solutions for the limiting cases, such as when either the viscosity or the leak-off
dominates the solution. It was shown that such solutions may dominate over the
classical linear elastic fracture mechanics square root solution even at relatively short
distances from the tip, see also the review paper of Detournay (2016). The effect
of fluid lag in impermeable rocks was studied in Garagash & Detournay (2000),
Detournay & Garagash (2003), where the fluid lag or cavity is the region near
the tip that is not occupied by the fracturing fluid. The solution for Newtonian
fluids without fluid lag and with leak-off was obtained numerically and analysed in
Garagash et al. (2011). Later, a new approach to solve the semi-infinite hydraulic
fracture problem was introduced in Dontsov & Peirce (2015b), where the so-called
non-singular formulation of the problem is employed. This formulation made it
possible to significantly reduce complexity of the problem and to obtain a numerical
solution in a more efficient manner. In particular, the non-singular formulation was
used in Dontsov & Peirce (2015b) to revisit the problem of a semi-infinite hydraulic
fracture with leak-off, no fluid lag and Newtonian fluid rheology. In addition to
obtaining a more efficient numerical solution, the approach led to the construction
of a closed form approximate solution for the problem, which accurately captures
all the features of the solution. In view of these approximate solutions, it is also
worth mentioning the study by Linkov (2015), in which a switch between three
monomial approximations for the solution was suggested for the two particular
cases of no leak-off and no toughness. The non-singular formulation approach was
later applied to study the propagation of buoyancy-driven hydraulic fractures with
solidification (Dontsov 2016b) and to study the effect of turbulent fluid flow on
the near-tip behaviour of hydraulic fractures (Dontsov 2016c). Gomez (2016) used
the non-singular formulation for the semi-infinite hydraulic fracture driven by a
fluid with a power-law rheology and leak-off to produce numerical solutions. Direct
application of the procedure developed in Dontsov & Peirce (2015b) did not yield an
approximation with an error that was uniformly small over the full range of values
of the power-law exponent. However, this paper addresses this issue successfully.

Apart from gaining a better understanding of the phenomenon, the hydraulic
fracture solution for the tip region has other applications. Firstly, it can be used as a
propagation condition in numerical simulators for hydraulic fracturing, which allows
one to obtain an accurate solution even on a relatively coarse mesh. In Peirce &
Detournay (2008), just one of the limiting (or single-process) solutions was used as
a propagation condition for a planar hydraulic fracturing simulator. The two-process
asymptotic solution that captures the multiscale effects of fracture toughness and
fluid viscosity was used for planar fractures in (Peirce 2015), in the context of the
two-dimensional extended finite element method (XFEM) modelling of hydraulic
fractures in (Gordeliy & Peirce 2013), and for pseudo-three-dimensional hydraulic
fractures in Dontsov & Peirce (2015a). Interpolation of the numerical solution for the
tip problem was used in the above studies to incorporate the multiscale tip asymptotics
into the hydraulic fracturing simulators. The three-process asymptotic solution, which
accounts for toughness, viscosity and leak-off (that was first obtained in Garagash
et al. (2011)) requires two-dimensional interpolation and its implementation into a
hydraulic fracturing simulator significantly impacts the overall performance of the
algorithm. Nevertheless, it was implemented for the case of a radially symmetric
hydraulic fracture in Madyarova (2003) since only one tip element was required. The
development of a closed form solution for the three-process tip asymptotic solution
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212 E. V. Dontsov and O. Kresse

in Dontsov & Peirce (2015b) opened new possibilities for implementing the hydraulic
fracture tip solution into hydraulic fracturing simulators due to its ability to provide
the solution rapidly. In particular, the three-process approximate asymptotic solution
was implemented for a planar hydraulic fracture in Dontsov & Peirce (2017) and
for multiple planar hydraulic fractures in Dontsov & Peirce (2016). In addition to
being used as a propagation condition, the closed form approximate solution for the
three-process semi-infinite fracture was used to construct approximate solutions for
finite fracture geometries, such as for a radial hydraulic fracture (Dontsov 2016a) and
for a plane strain fracture (Dontsov 2017). These solutions also provide rapid results
and can be used to effectively address optimization or inverse problems, to provide
benchmark solutions for numerical simulators, or as initial conditions for the latter.

The goal of this paper is to generalize the results obtained in Garagash et al. (2011)
and Dontsov & Peirce (2015b) to the case of a power-law fluid rheology. Motivation
for this study comes from the fact that many hydraulic fracturing fluids obey a
power-law behaviour rather than the linear behaviour that corresponds to a Newtonian
fluid. From practical point of view, the power-law exponent n typically varies from
0 to 1. However, we also extend the analysis to n> 1 in this study for completeness.
One of the challenges that is addressed in this paper is the development of a closed
form approximate solution for the tip region problem, which can then be further used
in various hydraulic fracturing simulators and to construct approximate solutions for
finite fracture geometries. The paper is organized as follows. Section 2 introduces the
mathematical model for the problem. Section 3 describes the non-singular formulation,
which is used to construct the numerical solution. Afterwards, § 4 summarizes the
limiting or, so-called vertex, solutions for the problem. Section 5 presents results of
the numerical calculations in the whole parametric space and indicates applicability
regions of the limiting solutions. Section 6 describes the analysis of bounds of
applicability of the vertex solutions by considering transitions between the limiting
solutions. Section 7 develops an approximate solution for the problem and tests it
against the numerical solution. Finally, § 8 revisits assumptions of the model and
provides some estimates that can be utilized to ensure that the model is not used
beyond its domain of applicability.

2. Mathematical model

We consider the problem of a semi-infinite fluid-driven fracture propagating with
a constant velocity V in a permeable elastic rock under condition of plane strain.
The analysis is carried out on the basis of the following assumptions: (i) fracture
propagates according to the linear elastic fracture mechanics (LEFM, see Rice 1968);
(ii) the flow of incompressible power-law fluid in the crack can be modelled by the
lubrication theory (Batchelor 1967; Ben-Naceur 1989); (iii) the fluid loss velocity is
given by Carter’s leak-off model (Carter 1957); (iv) the fluid front coincides with the
fracture tip, i.e. there is no fluid lag (Detournay & Garagash 2003).

In addition to the fracture tip velocity, V , the material parameters that characterize
the problem are

E′ =
E

1− ν2
, K ′ = 4

√
2
π

KIc, C′ = 2Cl, M′ =
2n+1(2n+ 1)n

nn
K, (2.1a−d)

where E denotes the Young’s modulus, ν is the Poisson’s ratio, KIc is the rock fracture
toughness, Cl is Carter’s leak-off coefficient, K is the consistency index and n is the
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FIGURE 1. (Colour online) (a) Schematics of a semi-infinite hydraulic fracture model. (b)
The triangular parametric space, see Garagash et al. (2011) for a similar representation
for the case of Newtonian fluids. The solid lines inside the triangle schematically indicate
trajectories of the solution in the parametric space for different values of leak-off.

power-law exponent. Note that the power-law rheology corresponds to the situation
when the shear stress τ and the shear rate γ̇ for the fluid are related though the
relation τ =Kγ̇ n

To address the problem, we introduce the coordinate x, such that the origin is
moving with the constant velocity V and is always located at the fracture tip. In this
case, the positive x values correspond to the distance from a point inside the fracture
to the tip, as shown in figure 1(a). Within the given moving coordinate system, the
fracture width is denoted by w(x), the net pressure (which is equal to the difference
between the fluid pressure pf and the far-field stress σ0) by p(x), the fluid flux by
q(x) and fluid loss velocity by g(x). The system of governing equations that describes
the crack propagation is briefly outlined below.

Elasticity equation. The elastic relation between p(x) and w(x) is expressed by the
singular integral equation (Hills et al. 1996)

p(x)=
E′

4π

∫
∞

0

∂w
∂s

ds
x− s

. (2.2)

Poiseuille law. According to the lubrication theory, the equation that governs the
flow of a power-law fluid within the fracture is given by (Ben-Naceur 1989)

q|q|n−1
=

w2n+1

M′
∂p
∂x
. (2.3)

Leak-off law. The fluid loss velocity g(x) for a steadily propagating crack, which
accounts for both fracture faces, is given by (Carter 1957)

g(x)=C′
√

V
x
. (2.4)

Fluid mass balance. By assuming an incompressible fracturing fluid, the local
fluid mass balance, that is integrated over the crack width, can be expressed by the
continuity equation

V
∂w
∂x
−
∂q
∂x
+ g= 0. (2.5)

Integration of this expression with respect to x and the use of (2.4) yields the global
volume balance

q= Vw+ 2C′V1/2x1/2. (2.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

85
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.856


214 E. V. Dontsov and O. Kresse

The combination of (2.3) and (2.6) leads to the Reynolds lubrication equation

(Vw+ 2C′V1/2x1/2)n =
w2n+1

M′
∂p
∂x
, (2.7)

which accounts for the fact that the pressure gradient is always positive for the
problem under consideration.

Propagation criterion. The propagation condition imposes the asymptotic form of w
at the tip, which is given by the LEFM solution as (Rice 1968)

w=
K ′

E′
x1/2, x→ 0. (2.8)

The propagation condition is complemented by zero flux condition q=0 at the fracture
tip x= 0.

3. Non-singular formulation of the problem
To develop a computationally efficient numerical solution, we utilize the non-

singular formulation, which was developed in Dontsov & Peirce (2015b) for
Newtonian fluids. To construct the non-singular formulation, the elasticity equation
(2.2) can be inverted (see Garagash & Detournay 2000) and integrated by parts to
yield

w=
K ′

E′
x1/2
−

4
πE′

∫
∞

0
F(x, s)

dp
ds

ds, F(x, s)= (s− x) ln
∣∣∣∣x1/2
+ s1/2

x1/2 − s1/2

∣∣∣∣−2x1/2s1/2, (3.1)

where E′ is the plane strain elastic modulus and K ′ is the scaled mode I fracture
toughness of the material, as defined in (2.1).

By following the approach in Dontsov & Peirce (2015b), the pressure gradient is
eliminated by combining the lubrication equation (2.7) and the elasticity equation (3.1),
in which case the result can be rewritten in terms of a non-singular equation as

w̃(x̃)= 1+
8
π

∫
∞

0
G
(

s̃
x̃

)
s̃1−n

w̃(s̃)1+n

(
1+

χ

w̃(s̃)

)n

ds̃, G(t)=
1− t2

t
log
∣∣∣∣1+ t
1− t

∣∣∣∣+ 2,

(3.2a,b)

where the scaled quantities are defined as follows

w̃=
E′w

K ′x1/2
, χ =

2C′E′

V1/2K ′
,

x̃= (x/lkm)
1/2, s̃= (s/lkm)

1/2, lkm =

(
K ′n+2

E′1+nM′Vn

)2/(2−n)

.

 (3.3)

The kernel in the integral equation (3.2) is non-singular (0 < G(t) 6 4) and is
identically the same as for the Newtonian fluid case (Dontsov & Peirce 2015b).
The scaled fracture opening w̃ is always greater than unity, as can be clearly seen
from (3.2). As a result, the only singular term in (3.2) is s̃1−n. However, this is a
weak integrable singularity, which can be addressed by combining this term with the
differential. It is important to note that the power-law exponent arises in both the
governing equation (3.2) and in the scaling (3.3), and all the relations reduce to that
for Newtonian fluids for n= 1.
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4. Vertex solutions

It is instructive to outline the vertex solutions written in terms of the scaling (3.3)
and their relation to (3.2). The toughness solution w̃k corresponds to the situation of
negligible viscosity and leak-off, which can be obtained by setting M′→ 0, C′ = 0,
so that the whole integral term in (3.2) can be neglected. The leak-off limit of the
solution w̃m̃ occurs for small toughness and large leak-off, i.e. K ′ = 0, C′→∞. The
latter situation can be realized in (3.2) by neglecting the unity in front of the integral
and letting χ � 1. Finally, the viscous limit of the solution w̃m can be obtained by
neglecting both the toughness and leak-off (K ′ = 0, C′ = 0), in which case χ = 0 and
the unity in front of the integral term in (3.2) should be neglected. To determine such
solutions for the leak-off and viscosity limits, one needs to consider solution in the
form w̃= β x̃δ and use the relation

G(α)=
8
π

∫
∞

0

G(t)
tα

dt=
16

α(2− α)
tan
(π

2
α
)
, −1<α < 1, (4.1)

to obtain

w̃k = 1, w̃m̃ = βm̃χ
n/(2(1+n))x̃(2−n)/(2(1+n)), w̃m = βmx̃(2−n)/(2+n), (4.2a−c)

where the constants βm̃ and βm are given respectively by

βm̃ =

[
64(1+ n)2

3n(4+ n)
tan
(

3πn
4(1+ n)

)]1/(2(1+n))

, βm =

[
2(2+ n)2

n
tan
(

πn
2+ n

)]1/(2+n)

.

(4.3a,b)
Note that βm = βm̃ =

√
4π for n= 0 and the unscaled expressions for (4.2) are

wk =
K ′

E′
x1/2, wm̃ = βm̃

[
(2C′)nVn/2M′

E′

]1/(2(1+n))

x(4+n)/4(1+n),

wm = βm

(
VnM′

E′

)1/(2+n)

x2/(2+n).

 (4.4)

It is interesting to observe that for wm = wm̃ ∝ x for n→ 0. At the same time, wm ∝

x1/2 and wm̃ ∝ x1/2 for n→ 2. Note that for the latter case βm→∞ and βm̃→∞,
which is not physical. This happens because the viscous dissipation integrated over
the tip region becomes singular, therefore there must be a fluid lag to prevent the
singularity. Situations with n≈ 2 are beyond the scope of this study and are left for
future investigations, especially since n6 1 in typical practical applications. Note that
the limiting solutions (4.4) were obtained earlier in Desroches et al. (1994), Lenoach
(1995).

5. Solution inside mm̃k parametric space

Figure 1(b) shows the triangular parametric space mm̃k, which is a schematic
representation of the parametric space of the solutions, see e.g. Garagash et al.
(2011) for a similar representation for Newtonian fluids. Each vertex corresponds
to one of the limiting solutions (4.3), and the global solution transitions from one
vertex to another with increasing distance from the fracture tip. In order to obtain
the solution inside the parametric space, this section presents the numerical solution
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FIGURE 2. (Colour online) Numerical solution for the normalized fracture width versus x̃
and χ for n= {0, 0.5, 1, 1.5}, (a–d) respectively. Red, blue and green regions respectively
indicate the applicability of the toughness (k), viscous (m) and leak-off (m̃) vertex
solutions defined in (4.2a-c).

of the integral equation (3.2). As for the Newtonian fluid case (Dontsov & Peirce
2015b), the non-singular formulation allows us to use standard numerical techniques
to obtain accurate numerical solution. In particular, the integral in (3.2) is discretized
using Simpson’s rule and the resulting system of nonlinear algebraic equations is
solved iteratively using Newton’s method. Further details of the numerical scheme
are omitted for brevity.

To illustrate the behaviour of the solution for different values of n, figure 2 plots
the variation of the normalized fracture width w̃ (calculated numerically from (3.2))
versus x̃ and χ for n= {0, 0.5, 1, 1.5}. Coloured zones indicate applicability zones of
the vertex solutions (4.2), where the red coloured region corresponds to the toughness
solution (indicated by the k symbol), the blue coloured region stands for the viscous
solution (indicated by the m symbol) while the green coloured region shows the leak-
off solution (indicated by the m̃ symbol). The applicability regions are defined as
the zones in which the relative difference between the numerical solution and the
corresponding vertex solution does not exceed 1 %, i.e.

w̃− w̃i

w̃
= ε, i= k,m, m̃, (5.1)
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FIGURE 3. (Colour online) Numerical solution for the normalized fracture width versus
x̃ for n= {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 175} and χ = 0 (a), χ = 102 (b). Red, blue and
green dashed lines respectively indicate the toughness (k), viscous (m) and leak-off (m̃)
vertex solutions defined in (4.2).

where ε = 0.01, w̃ is the numerical solution and w̃i is one of the vertex solutions
(4.2a-c). Black solid lines in figure 2 indicate the boundaries of the vertex solution
applicability zones. There is no leak-off limit for n= 0, which is consistent with the
governing equation (3.2), since it does not depend on χ in this case. Note that w̃m≡

w̃m̃ for n= 0, in which case the mm̃k triangular parametric space collapses to the mk
edge. The leak-off zone appears for n> 0 and increases in size with respect to x̃ and
moves towards smaller values of x̃ with the rise of n. It is also interesting to observe
the widening of the transition regions, which occurs in the normalized coordinate
space (x̃, χ). Also note that the limiting solutions (4.2) correspond to planes on a
logarithmic scale in figure 2 so that the red, the blue and the green regions are planar.
Therefore, geometrically, the solution transitions gradually from one plane to another
and the transitions occur in the vicinity of plane intersections.

To illustrate spatial variation of the solution, figure 3(a) plots the normalized
fracture width w̃ versus spatial coordinate x̃ for χ = 0 and n= {0, 0.25, 0.5, 0.75, 1,
1.25, 1.5, 175}. Figure 3(b) shows similar solution but for larger leak-off χ = 102.
Dashed red, green and blue lines indicate respectively the toughness, leak-off and
viscous vertex solutions (4.2). Note that to reduce overlapping of multiple curves, all
the vertex solutions are plotted at fixed spatial locations rather than their respective
applicability regions. One can observe from the figure 3 that solutions transition
from the toughness limiting solution to the viscous limiting solution for χ = 0, and
from toughness, to leak-off, and then to viscous solutions for χ = 102. Transition
regions become wider and the solution becomes ‘flatter’ for n approaching 2, which
is consistent with the results shown in figure 2.

6. Transition regions
6.1. Scaling of the transitions

There are three relevant transitions that determine the asymptotic bounds: the km
transition, the km̃ transition and the m̃m transition. The km transition describes the
transition of the solution from the toughness (k) solution to the viscous (m) solution.
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Similarly, the km̃ and m̃m transitions capture the evolution from k to m̃ and m̃ to
m vertex solutions. Here the notation is such that the first letter corresponds to the
vertex solution that applies closer to the fracture tip and the second letter represents
the vertex solution that works further away from the fracture tip.

The km transition occurs in the limit of no leak-off and is governed by

w̃(x̃)= 1+
8
π

∫
∞

0
G
(

s̃
x̃

)
s̃1−n

w̃(s̃)1+n
ds̃, (6.1)

which is obtained from (3.2) by setting χ = 0. Equation (6.1) has no independent
parameters, in which case the km transition is determined solely by the spatial
coordinate

x̃km = x̃=
[

E′1+nVnM′

K ′n+2

]1/(2−n)

x1/2
=

(
x

lkm

)1/2

, (6.2)

see figure 2(d).
The km̃ transition occurs for large values of leak-off, i.e. χ� 1, in which case (3.2)

can be reduced to

w̃(x̃km̃)= 1+
8
π

∫
∞

0
G
(

s̃km̃

x̃km̃

)
s̃1−n

km̃

w̃(s̃km̃)1+2n
ds̃km̃, x̃km̃ = χ

n/(2−n)x̃, s̃km̃ = χ
n/(2−n)s̃,

(6.3a−c)
where an additional scaling is performed to eliminate the explicit dependence on χ .
As a result, the parameter that describes the km̃ transition is

x̃km̃ = χ
n/(2−n)x̃=

[
(2C′)nE′1+2nVn/2M′

K ′2n+2

]1/(2−n)

x1/2
=

(
x

lkm̃

)1/2

, (6.4)

which defines the transition length scale lkm̃. Figure 2(d) indicates lines in the
parametric space that correspond to fixed values of the parameter x̃km̃.

To reduce the governing equation (3.2) to the m̃m transition, it is necessary to
disregard the contribution of the fracture toughness to the solution. This can be
achieved by neglecting the constant term (which is equal to one) that appears outside
of the integral, in which case equation (3.2) can be written as

w̃m̃m(x̃m̃m)=
8
π

∫
∞

0
G
(

s̃m̃m

x̃m̃m

)
s̃1−n

m̃m

w̃m̃m(s̃m̃m)1+n

(
1+

1
w̃m̃m(s̃m̃m)

)n

ds̃m̃m,

w̃m̃m = χ
−1w̃, x̃mm̃ = χ

−((2+n)/(2−n))x̃, s̃mm̃ = χ
−((2+n)/(2−n))s̃,

 (6.5)

where an additional scaling is used for both the width and the spatial coordinate to
remove the explicit dependence on the parameter χ . The parameter that describes the
m̃m transition is then

x̃mm̃ = χ
−((2+n)/(2−n))x̃=

[
V1+3n/2M′

(2C′)2+nE′

]1/(2−n)

x1/2
=

(
x

lmm̃

)1/2

, (6.6)

which can also be used as the definition of the length scale lmm̃. Lines that correspond
to constant values of the parameter x̃mm̃ are indicated in figure 2(d).
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FIGURE 4. Boundaries of the km, km̃ and mm̃ transitions versus n. Quantities with the
superscripts ‘(1)’ and ‘(2)’ correspond to the beginning and end of the transitions. Dashed
lines represent the curves that are calculated based on the fitting (6.7).

6.2. Numerical calculation of the bounds
Each transition region can be characterized by two numbers which indicate the
beginning (denoted by x̃(1)) and the end (denoted by x̃(2)) of the transition. In this
study, these numbers are determined by the requirement that the difference between
the numerical solution and the corresponding vertex solution is equal to 1 % (5.1),
which is consistent with the black lines shown in figure 2. Figure 4 shows variation
of the numerically computed boundaries of all three transition zones km, km̃, and mm̃
versus n. Note that the abscissa axis is (2 − n) log10 x̃, which accounts the singular
behaviour at n = 2. To have an ability to reconstruct the boundaries of applicability
of the vertex solutions (such as shown in figure 2) for any n, the data points are
fitted to the second degree polynomial (indicated by dashed lines in figure 4)

log10 x̃= (2− n)−1(p1n2
+ p2n+ p3), (6.7)

where the multiplier 2− n captures the singular behaviour near n= 2. The coefficients
p1, p2, and p3 for each transition are summarized in the table 1. Equation (6.7), the
data in table 1, and the scaling relations (6.2), (6.4) and (6.6) can be used to
reconstruct zones of applicability of the vertex solution inside the whole parametric
space (the black lines shown in figure 2(d)) for any value of n.

6.3. Calculation of the bounds from asymptotic expansions
It is also possible to calculate bounds of applicability of the vertex solutions using
an alternative technique that involves asymptotic expansions. The procedure is similar
to that for Newtonian fluids, see (Garagash et al. 2011), but requires overcoming
complexities that are associated with the power-law rheology. As a result, only a brief
outline of the procedure is presented, while cumbersome mathematical calculations
and lengthy expressions for the higher-order terms are omitted.

The vertex solutions (4.2) represent the leading behaviour of the solution near the
corresponding vertices. Asymptotic analysis of the governing equations (2.2), (2.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

85
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.856


220 E. V. Dontsov and O. Kresse

–4

–3

–2

–1

0

1

2

3

4

5

–10 –5 5 10 150
–4

–3

–2

–1

0

1

2

3

4

5

–10 –5 5 10 150

k m k m

FIGURE 5. (Colour online) Validity regions of the vertex solutions that are calculated
using asymptotic expansions (6.8) and (6.9) (blue solid, dashed and dotted lines) for
different values of the power-law exponent n. The black dashed lines indicate the bounds
calculated using the equation and values in table 1.

p1 p2 p3

x̃(1)km −0.5573 0.7325 −3.2740

x̃(2)km −0.2406 −0.4881 0.8664

x̃(1)km̃ −0.5381 0.7178 −3.2789

x̃(2)km̃ −0.1631 −0.8897 0.8805

x̃(1)mm̃ −0.6022 −3.0899 −3.0350

x̃(2)mm̃ −0.8736 3.5510 0.9412

TABLE 1. Coefficients of the second degree polynomial (6.7) that is used to approximate
boundaries of the transitions.

and (2.8) or simply (3.2) can be used to calculate the respective second terms in the
expansions, i.e.

w̃(x̃, χ)≈ w̃i(x̃, χ)+ w̃i,2(x̃, χ), i= k,m, m̃, (6.8)

where w̃i represents the vertex solution and w̃i,2 is the second term in the expansion.
The bounds for each vertex are then defined similarly to (5.1) via the relations

w̃i,2(x̃, χ)
w̃i(x̃, χ)

= ε, i= k,m, m̃, (6.9)

where ε= 0.01 is taken in the calculations. Figure 5 plots zones of applicability of the
vertex solutions that are calculated using the asymptotic expansion (blue solid, dashed
and dotted lines) for different values of n, as well as the zones of applicability that
are evaluated using (6.7) and the results in table 1 for n= 1 (back dashed lines). As
expected, both approaches give nearly identical results.
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Despite the approach with the asymptotic expansion is more rigorous, it is less
practical. The reason for this lies in the fact that some of the coefficients in the
expansion can only be computed numerically. This was also the case for Newtonian
fluids, see the related discussion in Garagash et al. (2011). The unknown coefficients
can be computed once for Newtonian fluids, while for power-law fluids they become
functions of n. These functions can be computed numerically and then approximated
or interpolated. In this situation, however, the method loses its primary advantage of
being independent of the numerical solution, so that one may use the direct numerical
computation of the applicability bounds, as presented in section 6.2.

7. Approximate solution
Despite the fact that the numerical solution for the given problem of a semi-infinite

hydraulic fracture can always be obtained, there are situations when rapid evaluation
of the solution is necessary. As shown for the Newtonian fluid case, such a rapid
solution can be used as a propagation condition in a hydraulic fracturing simulator
for a planar or multiple planar fractures (Dontsov & Peirce 2016, 2017), and to
construct rapid solutions for plane strain and radial hydraulic fracture geometries
(Dontsov 2016a, 2017).

To develop an approximate solution for a semi-infinite hydraulic fracture driven by
a power-law fluid, assume that w̃∝ x̃δ̃1 and (w̃+ χ)∝ x̃δ̃2 , in which case the integral
equation (3.2) can be differentiated and simplified to

dw̃
dx̃
= [C1(δ̃1)−C3(δ̃1)]

x̃1−n

w̃(x̃)1+n
+C2(δ̃1, δ̃2)

x̃1−n

w̃(x̃)1+n

(
1+

χ

w̃(x̃)

)n

, w̃(0)= 1, (7.1)

where δ̃1= (x̃/w̃) dw̃/dx̃ and δ̃2= (x̃/(w̃+ χ)) dw̃/dx̃. Here the coefficients C1, C2 and
C3 are calculated as

C1(δ̃1)=C3(δ̃1)= C(2− n− (1+ n)δ̃1), (7.2a)
C2(δ̃1, δ̃2)= C(2− n− (1+ 2n)δ̃1 + nδ̃2), (7.2b)

where

C(γ )=−
8
π

∫
∞

0
G′(t)tγ dt=

16γ
1− γ 2

tan
(π

2
(1− γ )

)
. (7.3)

The multiplier C1 captures the ‘viscous’ term (C2≡C3 for χ = 0 since δ̃2= δ̃1), while
C2 and C3 account for the ‘leak-off’ term. If one uses accurate expressions for δ̃1

and δ̃2, then C1 ≡ C3, which greatly simplifies the governing equation (7.1). At the
same time, for the purpose of constructing the approximate solution, it is beneficial
to use constant values for the parameters C1, C2 and C3. To ensure that the solution
of ordinary differential equation (7.1) precisely captures the limiting solutions (4.2),
one can use the following constant approximations for the parameters C1, C2 and C3

C1 = C(δm)= δmβ
2+n
m , C2 =C3 = C(δm̃)= δm̃β

2(1+n)
m̃ , δm =

2− n
2+ n

, δm̃ =
2− n

2(1+ n)
,

(7.4a−d)
where βm and βm̃ are defined in (4.3a,b). To develop a more accurate approximation,
it is useful to consider a more general case, in which the whole differential
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equation (7.1) (with constant approximations for C1, C2 and C3 defined in (7.4))
is multiplied by δ̃θ1 (where θ is a small parameter), which leads to(

x̃
w̃

dw̃
dx̃

)θ dw̃
dx̃
=
[
δ1+θ

m β2+n
m − δ1+θ

m̃ β
2(1+n)
m̃

] x̃1−n

w̃(x̃)1+n
+ δ1+θ

m̃ β
2(1+n)
m̃

x̃1−n

w̃(x̃)1+n

(
1+

χ

w̃(x̃)

)n

.

(7.5)

Here the definition of δ̃1 is used for the left-hand side of the equation, while δ̃1 =

δm for the viscous term and δ̃1 = δm̃ for the leak-off terms on the right-hand side of
the equation, which ensures that the modified differential equation still captures the
vertex solutions precisely for any value of the parameter θ . With the use of the initial
condition w̃(0)= 1, the differential equation (7.5) can be integrated to obtain∫ w̃

1

{
δ1+θ

m β2+n
m + δ1+θ

m̃ β
2(1+n)
m̃

[(
1+

χ

w̄

)n
− 1
]}−(1/(1+θ))

w̄(1+n−θ)/(1+θ) dw̄

=
1+ θ
2− n

x̃(2−n)/(1+θ). (7.6)

The integral in (7.6) can be calculated analytically for χ = 0 and χ � 1. This result
can be used to construct the approximation, which reduces (7.6) to

x̃(2−n)/(1+θ)
= δ̃1(w̃, χ) w̃(2+n)/(1+θ)

{
δ1+θ

m β2+n
m + δ1+θ

m̃ β
2(1+n)
m̃

[(
1+

χ

w̃

)n
− 1
]}−(1/(1+θ))

,

(7.7)
where the parameter δ̃1 is determined from the relation δ̃1= (x̃/w̃)dw̃/dx̃ (since w̃∝ x̃δ̃1)
as

δ̃1(w̃, χ) =
δm̃δmVm̃Vm

[
β(2+n)/n

m V (1+θ)/n
m̃ +

χ

w̃
β
(2(1+n))/n
m̃ V (1+θ)/n

m

]
δm̃Vm̃β

(2+n)/n
m V (1+θ)/n

m̃ + δmVm
χ

w̃
β
(2(1+n))/n
m̃ V (1+θ)/n

m

,

Vm = 1− w̃−((2+n)/(1+θ)),

Vm̃ = 1− w̃−((2+2n)/(1+θ)).

}
(7.8)

To find the optimal values of θ that produce the most accurate approximation, the
maximum error between the numerical solution (for given values of n and χ ) and the
approximation is first plotted against θ , see figure 6(a). Such plots always have a local
minimum, which corresponds to the optimal value of θ = θopt. Figure 6(b) shows the
calculated optimal values of θopt versus n for χ ={0, 1, 102, 103

}. Clearly, the variation
of θopt versus χ is small. As a result, it is possible to use χ = 0 data to determine
θopt(n). By fitting the χ = 0 data to a second degree polynomial, the expression for
the parameter θ becomes

θ = θopt(n)= 0.0452 n2
− 0.1780 n+ 0.1753. (7.9)

Finally, the approximate solution w̃(x̃, χ,n) for any 06n61.9 is implicitly determined
by equations (7.7) and (7.8), where the values of βm, βm̃, δm, and δm̃ are given in (4.3)
and (7.4), while the parameter θ is specified in (7.9).

It is interesting to observe that the equations (7.7) and (7.8) reduce to much simpler
expressions for the km and km̃ transitions. In particular, there is no leak-off for the
km transition (i.e. χ = 0), so that δ̃1(w̃, χ)= δmVm and the solution becomes

w̃km =

[
1+

(
β2+n

m x̃2−n
)1/(1+θ)

](1+θ)/(2+n)
, χ = 0. (7.10)
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FIGURE 6. (a) Maximum error of the approximate solution versus parameter θ for the
case n= 0 (results do not depend on χ for n= 0). (b) Optimal values of θ versus n for
different values of the leak-off parameter χ .

For the km̃ transition, on the other hand, there is large leak-off (i.e. χ� 1), in which
case δ̃1(w̃, χ)= δm̃Vm̃ and the solution is

w̃km̃ =

[
1+

(
β

2(1+n)
m̃ χ nx̃2−n

)1/(1+θ)
](1+θ)/(2(1+n))

, χ� 1. (7.11)

As can be seen from (7.10) and (7.11), the solution evolves from the k vertex to either
m or m̃ vertex as the scaled distance x̃ increases, see (4.2) for the vertex solutions. The
unscaled solutions can be easily obtained by using the scaling relations in (3.3).

To quantify the error of the approximate solution, figure 7 shows the relative error
between the numerical solution of (3.2) and the approximation versus x̃ and χ for
n={0, 0.5, 1, 1.5}. It can be clearly seen that the error is concentrated in the transition
regions, and reaches its maximum at the intersection of the three transition regions.
Figure 8 shows variation of the maximum error versus n, where the maximum error is
computed over the range of x̃ and χ that captures all the transitions. The largest error
of approximately 1 % is observed for n in the range between 0.1 and 0.25. The error
then decreases for larger values of n and for n = 0. These results demonstrate that
the developed approximate solution is able to accurately and uniformly approximate
the solution for a semi-infinite hydraulic fracture with leak-off that is driven by
a power-law fluid. The approximation is given implicitly by a relatively simple
expression (7.7), which permits one to obtain the solution rapidly. This is especially
important for hydraulic fracturing simulators that utilize the tip asymptotic solution
for the propagation condition, see e.g. Peirce & Detournay (2008), Peirce (2015),
Dontsov & Peirce (2017).

8. Assumptions and validity of the model
The mathematical model for the semi-infinite hydraulic fracture, outlined in § 2,

relies on a series of assumptions that lead to a relatively simple problem formulation.
The aim of this section is to revisit some of these assumptions and to analyse
regions of validity of the developed solution. Readers should be warned that some
typical parameters are used to justify the assumptions. At the same time, there can
be situations, in which the model assumptions will not hold. Therefore, readers are
strongly encouraged to double check validity of the model for their particular problem
parameters before using the results of this paper.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

85
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.856


224 E. V. Dontsov and O. Kresse

–2
–15 –10 –5 0

–2

–1

0

1

2

3

–5
–6

–4
–3
–2

–10

–15
–2.5

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

–5

0

5

–1
0
1
2

5 10 15

–1

0

1

2

3

4

–2
–15 –10 –5 0 5 10 15

–1

0

1

2

3

4

–2
–15 –10 –5 0 5 10 15

–1

0

1

2

3

4

–2
–15 –10 –5 0 5 10 15

–1

0

1

2

3

4

(a) (b)

(c) (d )

FIGURE 7. (Colour online) Relative difference between the numerical solution and
the approximate solution for the normalized fracture width versus x̃ and χ for n =
{0, 0.5, 1, 1.5}, (a–d) respectively.

8.1. Fracture process zone

One of the assumptions of the model arises in using the linear elastic fracture
mechanics (LEFM) for the fracture propagation criterion. By doing this, it is implicitly
assumed that the size of the plastic zone around the crack tip is much smaller than
the distances at which the solution is computed, i.e. x� xp. The size of the plastic
zone can be estimated as

xp =
K2

Ic

T2
, (8.1)

where KIc is the fracture toughness and T is the tensile strength of the formation. For
instance, for fracture toughness KIc = 1 MPa m1/2 and tensile strength T = 20 MPa,
the size of the process zone becomes of the order of a few millimetres. Typical tip
element size, however, is of the order of one metre or a fraction of a metre. Therefore,
the use of LEFM is justified for these parameters.
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FIGURE 8. Maximum relative error of the approximate solution versus n.

8.2. Fluid lag
The model assumes no fluid lag, which is a cavity between the fluid front and the
crack front. To estimate the length of the lag size, we need to have p=−σ0, where
σ0 is the compressive stress at the location of the fracture (Detournay & Garagash
2003). The net pressure can be estimated by integrating the lubrication equation (2.7),
so that the fluid lag λ can be estimated form the equation

p(λ)=−
∫
∞

λ

(Vw+ 2C′V1/2x1/2)n
M′

w2n+1
dx=−σ0, (8.2)

where p(∞)= 0 is used in calculations, which is valid for n> 0. Equation (8.2) can
be rewritten in the dimensionless form using (3.3) as∫

∞

λ̃

(
1+

χ

w̃

)n 1
w̃n+1x̃n

dx̃= σ̃0, (8.3)

where the normalized lag and stress are given respectively by

λ̃=

(
λ

lkm

)1/2

, σ̃0 =
σ0

2

(
K ′2n

M′VnE′n+1

)1/(2−n)

=
σ0l1/2

km

2K ′
. (8.4a,b)

Vertex solutions can be substituted into (8.3) to estimate the size of the fluid lag.
The toughness limiting solution should not be influenced by the presence of a fluid
lag, therefore we need to consider only the viscous and leak-off vertex solutions. By
substituting the viscous and the leak-off limiting solutions into (8.3), the lag size can
be estimated as

λ̃m =

[
2+ n

2nβn+1
m σ̃0

](2+n)/2n

, λ̃m̃ =

[
2(1+ n)χ n/(2(1+n))

3nβ2n+1
m̃ σ̃0

](2(1+n))/3n

, (8.5a,b)

where χ = 0 and χ� 1 are used to simplify the integrand respectively for the viscous
and leak-off solutions.
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It is instructive to compare the estimates (8.5) with calculations in Garagash &
Detournay (2000), where similar problem for Newtonian fluid (n = 1) and no leak-
off (χ = 0) is considered together with fluid lag. Solution in Garagash & Detournay
(2000) is given in terms of the dimensionless lag Λ = 8λ̃2σ̃ 3

0 and the dimensionless
toughness κ = (2σ̃0)

1/2. Solution (8.5) corresponds to the case κ = 0 in Garagash &
Detournay (2000). For the latter case, the dimensionless lag is calculated as Λ= 0.36
and this is the largest value of the normalized lag since Λ decreases with κ . The first
equation in (8.5), on the other hand, predicts much smaller fluid lag of Λ = 0.028,
but the scaling is captured precisely. This demonstrates that the estimates (8.5) can
substantially underestimate the value of the fluid lag, while, at the same time, they
properly capture scaling with respect to problem parameters. As a result, they still
can be used, but at least O(10) safety factor needs to be applied.

To estimate the size of the fluid lag, let us consider E = 20 GPa, ν = 0.2,
KIc = 1 MPa m1/2, K = 0.1 Pa s, n = 1, V = 1 m s−1, C′ = 10−5 m s−11/2 and
σ0 = 20 MPa. The estimates in (8.5) predict the fluid lag of almost 2 mm and under
1 mm respectively. Given the ‘safety factor’ of the order of 10, the expected lag
size is a few centimetres long, which is still much smaller than the typical element
size of one metre. The fluid lag is very sensitive to the value of n and decreases by
nearly two orders of magnitude if n is reduced to 0.7 (all other parameters are kept
the same). However, for this result to be valid, one should also check validity of the
power-law model for approximating the fluid rheology at the shear rates that occur
in the vicinity of the fluid lag.

8.3. Time dependence
One of the assumptions of the model is that the fracture propagates steadily with the
velocity V . In practical applications, however, the fracture front velocity evolves in
time, i.e. V = V(t). To estimate velocity rates, at which the model is still applicable,
note that the time derivative term ∂w/∂t is neglected in (2.5). If velocity changes
slowly, then this term should be small, i.e.

∂w
∂t
� V

∂w
∂x
. (8.6)

The velocity rate can be estimated for each regime of propagation by substituting the
vertex solutions into (8.6). The toughness solution does not depend on the velocity
and hence automatically satisfies (8.6) for any time dependence of the velocity. Note
that quasi-static elasticity is used, in which case dynamic effects are still considered
negligible. Substitution of the viscous solution into (8.6) gives

∂wm

∂V
dV
dt
=

n
2+ n

wm

V
dV
dt
� V

∂wm

∂x
=

2
2+ n

Vwm

x
⇒

dV
dt
�

2
n

V2

x
. (8.7)

Substitution of the leak-off solution into (8.6) gives

∂wm̃

∂V
dV
dt
=

n
4(1+ n)

wm̃

V
dV
dt
�V

∂wm̃

∂x
=

4+ n
2(1+ n)

Vwm̃

x
⇒

dV
dt
�

2(4+ n)
n

V2

x
. (8.8)

Results in (8.7) and (8.8) demonstrate that the fracture velocity difference that is
calculated over time it takes the fracture to propagate the distance x should be much
smaller than the velocity itself. There is also an explicit dependence on n, which
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shows that more rapid changes in the velocity are allowed for smaller n. The time
dependence can be completely ignored for perfectly plastic fluids with n= 0.

If one considers a radial fracture, then the radius varies with time as R ∝ tα,
where α=O(1) changes based on the regime of propagation, e.g. Madyarova (2003),
Dontsov (2016a). If we then take n=O(1) and neglect all coefficients that are O(1),
then (8.7) and (8.8) translate into

R
t2
�

R2

xt2
⇒

x
R
� 1. (8.9)

Here x is the size of the tip element, for which the asymptotic solution would be
used. Equation (8.9) demonstrates that the condition (8.6) is automatically satisfied
for radial fractures since many elements are typically used per fracture radius. Similar
considerations can be applied to fractures with different geometry, such as plane strain
fractures.

If a fracture encounters a layer boundary, then it can accelerate or decelerate
rapidly. However, the current model does not capture fracture shape change due to
the presence of spatial variation of properties and therefore is not directly applicable
within a vicinity of a layer boundary.

8.4. Fluid leak-off
Carter’s model is used in this study and it assumes one-dimensional leak-off normal
to the fracture surface. This is an assumption that is generally valid for long fractures,
for which the diffusion length scale is much smaller than the fracture size. In terms
of semi-infinite hydraulic fractures, the work (Kovalyshen & Detournay 2013) studies
the semi-infinite hydraulic fracture in a poroelastic medium and considers fully
three-dimensional leak-off. As indicated there, one should consider a competition
between the crack front and the diffusion front. The characteristic parameter for such
a competition is the ratio between the diffusion length scale and the fracture size, i.e.

√
ct

x
=

√
c

Vx
� 1, ⇒ xd =

c
V
, x� xd, (8.10)

where c is the diffusion coefficient for the poroelastic problem. Similar to the plastic
zone size, there is a diffusion zone size xd, which should be much smaller than
the distance to the fracture tip for the model to apply. The value of the diffusion
coefficient may vary significantly from one formation to another. By considering the
case c=O(10−3) m2 s−1 and V = 0.1 m s−1, the diffusion length scale becomes of the
order of a centimetre and therefore Carter’s model can be used for such parameters
provided that the typical element size is one metre.

9. Summary
This paper investigates the problem of a semi-infinite hydraulic fracture that is

driven by a power-law fluid in a permeable medium. In particular, the goal of this
paper is to develop a numerical solution for the problem and to construct an accurate
approximation that allows us to evaluate the solution rapidly. To develop an efficient
numerical solution, the governing equations are first reduced to a single integral
equation with a non-singular kernel, which greatly simplifies the original problem that
involves a singularity. The solution features three limiting regimes of propagation that
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are associated with dominance of either toughness, viscosity or leak-off. Numerical
solutions for different values of the fluid rheology exponent n are obtained and
applicability regions of the limiting solutions are analysed. In addition to calculating
the bounds of applicability numerically, they are also calculated by estimating the
contribution of the higher-order term relative to the leading behaviour. One peculiar
feature of the problem is that the parametric space degenerates for perfectly plastic
fluids n = 0 since the viscosity and leak-off dominated limiting solutions coincide
for this case and there is no influence of leak-off on the solution. An additional
outcome of this paper is the development of an accurate approximation that allows
us to rapidly evaluate the solution inside the whole parametric space. This solution
is thoroughly tested against the numerical solution, which showed that the maximum
error of approximately 1 % occurs for small values of the power-law exponent n, i.e.
0.1 . n . 0.25. This error drops rapidly for larger values of n. Since the problem
of a semi-infinite hydraulic fracture describes the tip region of a hydraulic fracture,
the developed approximate solution can be used for rapid evaluation of the near-tip
solution, which in turn can be used as a propagation condition in hydraulic fracturing
simulators.
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