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In Part 1 of this work, we have derived a dynamical system describing the approach
to a finite-time singularity of the Navier–Stokes equations. We now supplement this
system with an equation describing the process of vortex reconnection at the apex of
a pyramid, neglecting core deformation during the reconnection process. On this basis,
we compute the maximum vorticity ωmax as a function of vortex Reynolds number RΓ
in the range 20006RΓ 6 3400, and deduce a compatible behaviour ωmax∼ω0 exp[1+
220(log[RΓ /2000])2] as RΓ →∞. This may be described as a physical (although not
strictly mathematical) singularity, for all RΓ & 4000.
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1. Introduction

In Part 1 of this work (Moffatt & Kimura 2019, hereafter MK19), we have derived
a dynamical system governing the evolution of two initially circular vortices of radius
R and circulations ±Γ . The vortices are symmetrically located on planes x=±z tanα,
and are assumed to have Gaussian cores of initial radial scale δ0. The Navier–Stokes
equations are non-dimensionalised in terms of length-scale R and time-scale R2/Γ .
The ‘tipping points’ are the points of closest approach of the vortices, and it turns out
that the key variables are the separation 2s(τ ) of the tipping points, and the curvature
κ(τ) and evolving radial scale δ(τ ) at either tipping point, where τ = (Γ /R2)t is
dimensionless time. It is assumed that

δ(0)� s(0)� 1, (1.1)
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and that the vortex Reynolds number RΓ = Γ /ν is large (where ν is the usual
kinematic viscosity of the fluid). The dynamical system derived in MK19 (equations
(6.9a–c)) is then

ds
dτ
=−

κ cos α
4π

[
log
( s
δ

)
+ β1

]
,

dκ
dτ
=
κ cos α sin α

4πs2
,

dδ2

dτ
= ε −

κ cos α
4πs

δ2,

(1.2a−c)
where ε ≡ R−1

Γ � 1, and the parameter β1 takes the value β1 = 0.4417 for the
assumed Gaussian vortex core structures. It was argued that the rate of strain in the
neighbourhood of either tipping point is such as to turn the planes always towards
angle α=π/4, and that this constant value may therefore be adopted. Equations (1.2)
may then be integrated with initial conditions

s(0)= s0, κ(0)= κ0 = 1, δ(0)= δ0. (1.3a−c)

In the present paper, we shall, by way of illustration, adopt the initial values

s0 = 0.1, κ0 = 1, δ0 = 0.01. (1.4a−c)

This choice allows reasonable resolution of the behaviour near the critical time τ = τc

when consideration of vortex reconnection becomes essential. (Other values compatible
with (1.1) may be similarly treated, as done in MK19, where the case s(0) = 0.05,
δ(0) = 10−5, κ(0) = 1, ε = 10−20 is described. In all cases, it is found that, when
ε � 1, solutions of (1.2) become singular at a finite time τc that depends on s(0),
and that δ/s and κs approach asymptotic values as τ→ τc near to the values

√
2 and

0.943367 predicted by the asymptotic similarity solution obtained in § 10 of MK19.)
Figure 1 shows the evolution of these variables from the initial conditions (1.4) with
the choice ε= 1/3000, up to the critical time τ = τc≈ 0.25452. Figure 1(b) shows the
corresponding variation of κ(τ)s(τ ) and δ(τ )/s(τ ), which rise in tandem to limiting
values 1.4208 and 0.9456 respectively at τ = τc. It is clear that when δ(τ )/s(τ ) rises
to about 0.2 and greater, the Biot–Savart law on which the first two equations of (1.2)
are based requires modification to take account of interdiffusion of the two vortices,
and associated vortex reconnection. It is the purpose of this follow-up paper to take
due account of this effect, and to determine the resulting behaviour as the Reynolds
number RΓ increases.

2. The process of pyramid reconnection

The ‘pyramid-reconnection’ process, as anticipated in MK19, is represented
schematically by the sketch of figure 2. As δ/s increases to O(1) it is necessary
to take account of the process of viscous vortex reconnection on the symmetry plane
x= 0. This leads to a stripping away of some of the y-component of vorticity at the
tipping points in each half-space x < 0 and x > 0. Thus, the initial circulation −Γ
in the vortex V1 centred on the curve C1 in the half-space x < 0 branches into two
circulations: ‘surviving circulation’ −Γs(τ ) (blue, solid) and ‘reconnected circulation’
−Γr(τ ) (red, dashed), with Γs(τ )+ Γr(τ )= Γ (and similarly of course for the vortex
V2 in x> 0). The arrows in figure 2 indicate the compatible directions of vorticity ω
in the surviving and reconnected domains. The reconnected circulation is oriented so
that it falls away from the interaction region; this presumably exerts a mild braking
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FIGURE 1. Evolution governed by (1.2) with initial conditions (1.4) and with ε= 1/3000;
(a) the three curves as labelled fall to zero at τ = τc≈ 0.25452; (b) the curves of κ(τ)s(τ )
(dashed) and δ(τ )/s(τ ) (solid) rise to limiting values 1.4208 and 0.9456 respectively (blue,
dashed) at τ = τc (red dotted); (c) s(τ ) and δ(τ ), showing how both fall to zero at τ = τc;
(d) very near τc, where s(τ )2 and δ(τ )2 decrease linearly at constant ratio in the limit
τ→ τc.
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FIGURE 2. Sketch indicating the nature of the pyramid-reconnection process: the sense
of the surviving vortex filaments (solid blue, with associated flux Γs(τ ) and direction as
indicated by the arrows) is such that they propagate upwards under their mutual interaction
towards the apex of the prism, where they reconnect; the reconnected vortex filaments
(dashed red, with associated flux Γr(τ )) propagate downwards on the complementary faces
of the prism away from the apex.

effect on the continuing progress of the surviving circulation towards the incipient
singularity. Here, in exploratory vein, we shall neglect this braking effect, which
could, however, be included in an improved model.
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These branching and falling-away processes are essentially the same as the
‘bridging’ and ‘stripping’ processes envisaged by Melander & Hussain (1989) and
Hussain & Duraisami (2011). The processes have been recently described in similar
terms by Kerr (2018), through DNS computations on vortex reconnection for a trefoil
vortex and for the more conventional situation of perturbed anti-parallel vortices. For
the latter case, Kerr describes an ‘exchange of circulations’, similar to the viscous
destruction of surviving circulation and its replacement by reconnected circulation,
a process that we now analyse. We note that Hussain & Duraisami (2011) describe
vortex reconnection at vortex Reynolds numbers up to 7000; the principal vortices
remain coherent both before and after reconnection, and they observe that ‘viscous
reconnection is never complete, leaving behind a part of the initial tubes as threads,
which then undergo successive reconnections’. Flattening of the primary viscous core
cross-sections is not apparent in this study, but flattening does occur in the interaction
of the bridging threads after reconnection. We cannot capture these ‘detritus effects’ in
our analytical model, which is primarily concerned with the build-up to reconnection
and to the time when the stretched vorticity is maximal.

The rate of decrease of the surviving circulation Γs(τ ) results from viscous diffusion
across the plane x= 0, and is given in dimensionless form by

dΓs

dτ
=

d
dτ

∮
C−

v · dx= ε
∮

C−

∇
2v · dx, (2.1)

where C− is the closed circuit consisting of the z-axis (x= y= 0) and the semicircle
at infinity in the half-plane y = 0, x < 0. (Note that when ε = 0 this equation is
an expression of Kelvin’s circulation theorem for the stationary circuit C−; when
ε > 0, we need merely include the term ε∇2v, from the Navier–Stokes equation.) It is
evidently only the contribution from the z-axis here that is non-zero, and this gives

dΓs

dτ
= ε

∫
∞

−∞

(
∂2vz

∂x2
+
∂2vz

∂z2

)∣∣∣∣
x=0

dz= ε
∫
∞

−∞

∂2vz

∂x2

∣∣∣∣
x=0

dz, (2.2)

(the second term integrating to zero because ∂vz/∂z= 0 at z=±∞).
Now neglecting the core deformation, the vorticity field on the plane y= 0 at time τ

is that of two vortices of Gaussian structure, with the single component

ωy(x, z, τ )=
Γs(τ )

4πδ2

(
exp

[
−
(x+ s)2 + z2

4δ2

]
− exp

[
−
(x− s)2 + z2

4δ2

])
, (2.3)

as sketched in figure 3(a) for s = 1, δ = 0.9456. The corresponding z-component of
velocity is

vz(x, z, τ ) =
Γs(τ )

2π

{
x+ s

(x+ s)2 + z2

(
1− exp

[
−
(x+ s)2 + z2

4δ2

])
−

x− s
(x− s)2 + z2

(
1− exp

[
−
(x− s)2 + z2

4δ2

])}
, (2.4)

(figure 3(b), for s= 1, 2, 3, 4 and fixed δ = 0.9456), from which we may calculate

∂2vz

∂x2

∣∣∣∣
x=0

= −
s5Γs(τ )[(s6

+ 2s4z2
− 6z4δ2

− 24z2δ2
+ s2z4

− 4s2z2δ2
+ 8s2δ4) exp[−(s2

+ z2)/4δ2
]]

2π(s2 + z2)3δ2

−
2sΓs(τ )(3z2

− s2)

π(s2 + z2)3
. (2.5)
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Finite-time singularity
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FIGURE 3. (a) The vorticity ωy(x, 0, τ )/Γs(τ ) given by (2.3), at a time τ at which s= 1,
δ/s = 0.9456 (the limiting value stated above); the position of the vortex centres is
indicated by the two red dots; (b) the velocity vz(x, 0, τ )/Γs(τ ) given by (2.4) for s= 1
(solid), 2 (green, dashed, 3 (blue, dotted) and 4 (red, dot-dashed).

Here, the second term is just what survives in the ‘point-vortex’ limit δ → 0, and
it integrates to zero over the range z ∈ (−∞,∞). On this integration, the first term
contributes the result ∫

∞

−∞

∂2vz

∂x2

∣∣∣∣
x=0

dz=−
sΓs(τ )

2
√

πδ3
exp[−s2/4δ2

], (2.6)

and it follows from (2.2) that

dΓs

dτ
=−ε

sΓs(τ )

2
√

πδ3
exp[−s2/4δ2

]. (2.7)

The above neglect of core deformation calls for comment. There is evidence
from DNS, such as in the recent investigations of Kerr (2018) and McKeown et al.
(2018) and in earlier studies, that there is a flattening of the vortex cores during the
interaction process when δ/s increases to O(1). We have argued in MK19 that this
flattening should decrease with increasing Reynolds number, on the grounds that the
vortices are then spinning so rapidly that they experience an effectively axisymmetric
strain near the tipping points. Nevertheless, the curvature of the vortices at the
tipping points may affect this conclusion, a possibility that calls for further analysis.
A modest degree of core flattening could easily be taken into account through simple
modification of the vorticity structure (2.3) assumed above; this would change the
details of the above calculation, but is unlikely to modify the result (2.7) in any
fundamental way. We therefore adopt this result as it stands. It is important to note
that this result is firmly based on (2.1), which itself is a direct consequence of the
Navier–Stokes equation.

During the very short reconnection phase, we thus need to replace Γ by Γs(τ )
in calculating the instantaneous velocity, rate of stretching, and rate of change of
curvature at the tipping points. This simply means that, defining γ (τ)≡Γs(τ )/Γ , we
have to replace (1.2) by

ds
dτ
=−

γ κ cos α
4π

[
log
( s
δ

)
+ β1

]
,

dκ
dτ
=
γ κ cos α sin α

4πs2
,

dδ2

dτ
= ε −

γ κ cos α
4πs

δ2,

(2.8a−c)
which, from (2.7), must now be coupled with

dγ
dτ
=−ε

sγ
2
√

πδ3
exp[−s2/4δ2

]. (2.9)
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FIGURE 4. Evolution governed by (2.8) with ε = 1/2000: (a) δ(τ )2 (black) which
appears to fall to zero at τ = τc ≈ 9.12455, but does not quite reach zero, as shown by
the expanded curve of 103δ(τ )2 (blue); γ (τ)/100 (green) decreases to about 0.0002 at
τ ≈ τc then falls rapidly to very near zero; (b) the corresponding variation of vorticity
amplification ω(τ)/ω(0) in the neighbourhood of τc, where it reaches a maximum of
approximately 3.7.

We may now integrate this 4th-order dynamical system with the initial conditions (1.4),
together with γ (0)= 1.

3. Integration of the system (2.8), (2.9)

We have integrated this system, using Mathematica with 56-point precision, with
a view to determining the variation of ω(τ) ≡ γ (τ)/δ(τ )2; this is a measure of the
maximum vorticity at the centre of the surviving vortex core. The function ω(τ)/ω(0)
then represents the amplification of vorticity. There are two competing effects here: δ2

decreases, at least initially, towards zero, but γ also decreases due to the reconnection
process.

Figure 4(a) shows results for ε = 1/2000, i.e. RΓ = 2000. This shows that δ2

increases initially due to viscous diffusion, but then vortex stretching dominates,
causing a decrease to very near (but not quite) zero; in fact, δ2 reaches a minimum
of 2.67412× 10−8 at τ = τc ≈ 9.12455, and then for τ & τc, increases almost linearly
due to viscous diffusion. The variation of γ (τ)/100 is shown, the factor 1/100 being
introduced to make the variation more visible; γ decreases from 1 to about 0.02 as τ
approaches τc, and then drops very rapidly to zero, indicating rapid completion of the
reconnection process. Figure 4(b) shows the corresponding variation of ω(τ)/ω(0),
which first increases due to the decrease of δ2, but reaches a modest maximum
of 3.711. Thus, there is certainly no singularity for this value of RΓ .

Figure 5 shows corresponding results with ε = 1/3000. Again, δ2 increases initially
but then decreases to near zero at τ = τc ≈ 1.9391619710016794917768, but still just
fails to reach zero; in fact, δ2 evaluates to 2.7278×10−24 at τ = τc! γ (τ) has decreased
to ∼0.05 at τ = 1.93 and drops to 0.000451 at τ = τc. Now, ω(τ)/ω(0) (figure 5b)
shows a very sharp peak just before τ = τc where, in fact, ω(τc)/ω(0) evaluates to
2.425× 1016, a huge increase caused by vortex stretching, but still not a singularity.

Consider now the situation when ε = 1/4000 (i.e. RΓ = 4000). Here, Mathematica
stalls at τ = τc≈ 0.91757656474648. The reason is that now δ2 falls so close to zero
that (2.9) runs into an apparent singularity. Figure 6(a) shows δ2(τ ) and γ (τ)/5000
(again the factor 1/5000 is included to make the comparison clear), showing that,
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FIGURE 5. Same as figure 4, but with ε = 1/3000.
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FIGURE 6. Evolution for ε = 1/4000, and for 0 < τ < τc ≈ 0.917576564746480 . . .
(marked by red dotted line); (a) δ2(τ ) and γ (τ) both appear to fall to zero at τ = τc;
(b) zoom of 1012δ2(τ ) very near τc; (c,d) ω(τ)/ω(0) and ω(0)/ω(τ) near τc, as well as
can be resolved; (e, f ) other relevant variables near τc, as well as can be resolved.
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ε τc δ2
min γ (τc)

1/2000 9.12478705 2.67412× 10−8 0.000677
1/2250 5.64196432008 8.34641× 10−11 0.000602
1/2500 3.71518168478948 3.69041× 10−14 0.000542
1/2750 2.60587589889538 1.37078× 10−18 0.000501
1/3000 1.9391619710016794917768 2.72780× 10−24 0.000451
1/3050 1.83975957787485971515631271 1.34992× 10−25 0.000444
1/3100 1.748954708554952698937886817 5.85955× 10−27 0.000437
1/3200 1.5896543686535978867264670724 7.41570× 10−30 0.000423
1/3300 1.4552611229433966364089007674807 5.49450× 10−33 0.000410
1/3400 1.341068010282669618710465713447975557 2.37870× 10−36 0.000399

TABLE 1. Dependence of the minimum attained by δ2(τ ); as ε decreases the time τc at
which this minimum is attained has to be determined with ever increasing accuracy as
indicated by the number of decimal points.

while δ2 seems to go to zero at the apparent singularity time τ = τc (marked by the
dotted line), γ is still finite; figure 6(b) shows δ2 expanded by a factor 1012 in the
immediate neighbourhood of τ = τc (0.91757656474639 < τ < 0.91757656474655);
δ(τc)

2 is certainly extremely small if not exactly zero. Figure 6(c) shows (over the
same exceedingly small range of τ ) that ω(τ)/ω(0) increases to a very large value
near τc; but is this really infinite? Figure 6(d) shows the inverse function ω(0)/ω(τ),
which does indeed appear to be zero at this point as far as this computation can
determine.

4. Asymptotic behaviour for small ε

A necessary condition for a finite-time singularity of vorticity ω(τ) ≡ γ (τ)/δ(τ )2

is obviously that δ(τ )2 should decrease to exactly zero at some finite time. In order
to further investigate this possibility, we consider the ε-dependence of δ(τ )2min as
ε decreases towards zero from 1/2000. For each ε, we first locate the time τc at
which dδ2/dτ (= ε − (γ κ cos α/4πs)δ2) is zero, and then evaluate the corresponding
minimum value of δ(τ )2; this requires a very sharp refinement process to accurately
identify the time τc at which this minimum actually occurs.

The results are shown in table 1 and in the corresponding plot of log log δ−2
|max as

a function of log ε−1 (figure 8a). The straight line fit provides the relationship

log log δ−2
|max ∼ 3 log ε−1

− 20.03, (4.1)

or equivalently
δ2
|min ∼ exp [−53(RΓ /3000)3]. (4.2)

This does indeed indicate an extremely rapid decrease of δ2
|min as RΓ = ε−1 increases

beyond about 3000, as shown in figure 8(c); for example, when RΓ = 4000, it gives
δ2
|min= 2.75× 10−55, which appears to be zero in figure 6; but in fact the asymptotic

relation (4.2), if valid as ε→ 0, indicates that for any ε > 0, δ2
|min does not vanish,

and we do not therefore have a strict mathematical singularity.
The behaviour of δ/s near τc is not well resolved in figure 6( f ), despite the extreme

expansion of scale in this region. Figure 7 shows the situation for two larger values of
ε(1/2500 and 1/3000), which are more easily resolvable; these show that δ/s actually
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FIGURE 7. Behaviour of δ(τ ), s(τ ) and the ratio δ(τ )/s(τ ) during the very small time
interval when γ (τ) (shown in green) decreases rapidly to near zero; (a,c) ε = 1/2500;
the abscissa runs from 3.71518149 to 3.7151818 and γ (3.72)= 3.21945× 10−8; (b,d) ε=
1/3000; the abscissa runs from 1.93916197100149 to 1.93916197100182 and γ (1.194)=
6.05673× 10−13. In both cases, γ (τ) falls to an extremely low value, but not exactly zero;
the remnant weak vorticity expands solely under the action of viscous diffusion.

increases during the very short time interval when γ decreases rapidly to very near
zero. This increase is, however, bounded: it rises to near 2 in both cases, and remains
at this level in the subsequent purely viscous diffusion of the remnant vorticity; γ is
not exactly zero for τ > τc, as indicated in the figure caption.

Although we do not have a strict mathematical singularity, we may nevertheless
seek to determine the maximum vorticity attained, as a function of ε. Computed values
are shown in table 2, and plotted in figure 8(b) together with the closely fitting curve

log [ωmax/ω0] ∼ 1+ 220(log [1/ε] − 7.6)2, (4.3)

or equivalently
ωmax/ω0 ∼ exp [1+ 220(log[RΓ /2000])2]. (4.4)

Actually this formula underestimates the values computed for RΓ & 3200, and should
be regarded as a lower bound on ωmax/ω0 for larger values of RΓ . The dependence
(4.4), shown in figure 8, shows a rapid increase for RΓ & 3200; and if we assume that
this trend continues for larger RΓ , then for RΓ = 4000 it gives ωmax/ω0 ∼ 2 × 1046,
and for RΓ = 5000 it gives ωmax/ω0 ∼ 4.5× 1080! We should note, however, that this
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FIGURE 8. (a) Plot of the data of table 1, fitted by the straight line (4.1); (b) same for
the data of table 2, fitted by the quadratic curve (4.3); (c,d) inferred dependence of δ2

min
and ωmax/ω0 on vortex Reynolds number RΓ .

ε τm ωmax/ω0 γ (τm)

1/2000 9.12456266 3.711 0.00139
1/2250 5.64196352000 1057 0.00125
1/2500 3.71518168440194 2.151× 106 0.00112
1/2750 2.605875898895364555 5.266× 1010 0.00101
1/3000 1.9391619710016794917425 2.425× 1016 0.000930
1/3050 1.8397595778748597151545 4.820× 1017 0.000910
1/3100 1.748954708554952698937812055 1.092× 1019 0.000889
1/3200 1.589654368653597886726466973 8.363× 1021 0.000871
1/3300 1.455261122943396636408900767405 1.095× 1025 0.000843
1/3400 1.341068010282669618710465713447942 2.454× 1028 0.000800

TABLE 2. Dependence of the maximum attained by ω(τ)/ω(0); the time τm at which this
maximum is attained is slightly less than τc, and γ (τm) is correspondingly slightly greater
than γ (τc).

peak of vorticity occurs when a large fraction of the original circulation has already
reconnected (for example, γ (τm) = 0.008 when RΓ = 3400 (table 2)); it is just the
residual surviving vorticity that is apparently so intensely stretched.

5. Conclusion

We initially thought that the failure of Mathematica to resolve the behaviour of the
system (2.8), (2.9) for ε=1/4000 and smaller was an indication of a singularity at the
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Finite-time singularity

time τc at which the program stalled. However, computation of the dependence of δ2
min

on decreasing ε has revealed a smooth, although extremely sharp, cutoff in the range
of ε in the interval (1/3000, 1/4000), such that, inevitably, there is a point beyond
which Mathematica interprets δ2

min as zero. Our inference, however, is that δ2
min is non-

zero for any ε > 0, although so small for ε . 1/4000 that the core cross-sectional
scale δ is less than the intermolecular scale below which the continuum hypothesis
(on which the Navier–Stokes equation is based) is no longer justifiable. Moreover, the
maximum vorticity amplification, attained just before this minimum of δ2 is reached,
is so large that we may reasonably describe this as a physical, if not a mathematical,
singularity. The situation is reminiscent of the free-surface cusp singularity described
by Jeong & Moffatt (1992), again physical rather that mathematical, in which the
radius of curvature at the ‘cusp’ is O(10−42) times the input scale of the problem. The
input scale of the present problem is the radius R of the two vortices at time τ = 0,
so that if for example R= 10−1 m, then even at RΓ = 2750, the figures of table 1 give
δ ∼ 10−10 m, and we are down at the scale of the hydrogen atom. This is therefore
quite evidently a physical singularity. In the light of this behaviour, the question ‘can
there be a finite-time singularity of the Navier–Stokes equations?’ is to some extent
academic; but it continues to provide a legitimate academic challenge nonetheless!

Two physical processes have been ignored in the foregoing analysis: (i) deformation
of the vortex cores during the reconnection process; and (ii) the possible braking
effect exerted by the strands of reconnected vorticity on the continuing reconnection
process. These processes may limit the growth of vorticity (Hussain & Duraisami
2011); the fact that a singularity is averted even when they are ignored provides
compelling evidence that, for the pyramid geometry considered here, a strict
finite-time mathematical singularity does not occur, no matter how large the vortex
Reynolds number may be.
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