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Abstract
This paper presents an algorithm for simulating multiple equilibria in otherwise-linear dynamic models
with occasionally-binding constraints. Our algorithm extends the guess-and-verify approach of Guerrieri
and Iacoviello (2015) to detect and simulate multiple perfect foresight equilibria, and allows arbitrary
“news shocks” up to a finite horizon. When there are multiple equilibria, we show how to compute
expected paths using a “prior probabilities” approach and we provide an approach for running stochastic
simulations with switching between equilibria on the simulated path. A policy application studies a New
Keynesian model with a zero lower bound on nominal interest rates and multiple equilibria, including a
“bad” solution based on self-fulfilling pessimistic expectations. A price-level targeting rule does not always
eliminate the bad solution, but it shrinks the indeterminacy region substantially and improves stabilization
and welfare relative to more conventional interest rate rules or forward guidance.
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1. Introduction
Occasionally-binding constraints, such as borrowing limits and the lower bound on nominal
interest rates, introduce a stark non-linearity in economic models. As a result, standard solu-
tion methods for linear rational expectations models (Blanchard and Kahn, 1980; Binder and
Pesaran, 1997; Uhlig, 1999; Sims, 2002), which assume a time-invariant structure, must be
adapted to cope with such constraints. An important contribution to the literature was made by
Guerrieri and Iacoviello (2015). They show how otherwise-linear rational expectations models
with occasionally-binding constraints and many state variables can be solved using a guess and
verify method, and they also provide a toolkit (OccBin) that implements the solution algorithm
in the popular software package Dynare. When a solution exists, their algorithm finds one solu-
tion under perfect foresight and assuming zero anticipated future shocks. However, it is known
that models with occasionally-binding constraints may have multiple perfect foresight equilibria
(see Holden, 2023), and neglecting these additional solutions may have non-trivial quantitative or
policy implications.

In this paper, we therefore extend the Guerrieri and Iacoviello (2015) solution method so
that multiple perfect foresight equilibria can be detected and simulated. Using this approach, we
show how researchers can compute expected outcomes (such as welfare measures) when there
are multiple perfect foresight solutions, and we also show how to run stochastic simulations with
switching between equilibria on the simulated path. Our algorithm also extends the solution of
Guerrieri and Iacoviello (2015) to allow non-zero “news shocks” while preserving computational
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tractability.1 We demonstrate our approach using a running example (Fisherian model) and a
policy application that studies conventional versus unconventional interest rate rules in a New
Keynesian model with a zero lower bound and multiple equilibria.

The modern literature on occasionally-binding constraints began with Eggertsson and
Woodford (2003) and Jung et al. (2005), who study the benchmark New Keynesian model with a
zero lower bound on nominal interest rates, the former in a version of the model with a two-state
Markov process and the latter under perfect foresight. The papers most relevant to the current
paper are those which study perfect foresight solutions to models with occasionally-binding con-
straints, including the computational papers of Guerrieri and Iacoviello (2015), Holden (2016),
Boehl (2022), and the theory paper by Holden (2023). Most of these papers focus on dynamic
models which are linear aside from occasionally-binding constraints (as here), and only Holden
(2016, 2023) considers multiple equilibria.

The present paper makes two methodological contributions. First, relative to Guerrieri and
Iacoviello (2015), we extend their solution method (based on undetermined coefficients) to detect
and simulate multiple perfect foresight equilibria, and also to allow non-zero anticipated news,
such as “forward guidance” shocks. Our algorithm allows a much wider range of economic sce-
narios, as additional solutions and simulations paths are not neglected, while the addition of “news
shocks” means that announcements or news events can be studied. Second, as argued by Farmer
et al. (2015, 17), “a model with an indeterminate set of equilibria is an incomplete model.” The
incompleteness problem can be resolved by drawing a sunspot that picks an equilibrium (i.e. a
particular perfect foresight path). On the one hand, a unique realized equilibrium path is selected
and can be studied, but as a result one particular solution path is given precedence over others.We
attempt to speak to both views by providing an approach for computing expected paths that sum-
marize “average outcomes” given multiple solutions (an approach not used in Holden (2023)),
and we also show how to run stochastic simulations with switching between equilibria on the
simulated path in response to unanticipated shocks (here we use an extended path method).

Our paper also contributes to the literature by providing policy applications. First, in the
methodology section we include a simple “running example”, namely a Fisherian model with
multiple equilibria: both a high-inflation and low-inflation solution exist for the same initial
conditions. We use this simple example to illustrate our expected outcomes approach based on
“prior probabilities” and the extension to stochastic simulation with switching between multiple
equilibria. We also show how these approaches can be used for policy analysis.

Our main policy application studies a New Keynesian model with a zero lower bound on
nominal interest rates and multiple equilibria for some parameter values (Brendon et al. 2013).
Here we show that our algorithm replicates their finding of two perfect foresight equilibria: there
is a “good” solution for which the lower bound is not hit, and a “bad” solution based on self-
fulfilling pessimistic expectations, for which interest rates spend some time at the bound and
inflation and the output gap are strongly negative and persistent. Multiplicity occurs under a
conventional “growth-based” interest rate rule that includes an inflation target and a response
to the first-difference in the output gap – the “speed limit.” Such speed-limit policies are consid-
ered attractive by some policymakers and have some known stabilization advantages, including
robustness to output gap measurement error;2 however, by following such rules, policymakers
may inadvertently bring about indeterminacy. A natural question is then: would unconventional
monetary policy rules restore determinacy and stabilize the economy while retaining the potential
advantages of a speed limit?

We answer this question by studying two unconventional policies—price-level targeting and
forward guidance—which provide stimulus at the lower bound and may be useful to rule out (or
mitigate) multiplicity of equilibria based on past work. For forward guidance, we consider a large
number of announcements promising low interest rates and find that multiplicity generally pre-
vails and that the “good” and “bad” solutions have inflation and output gaps exacerbated relative
to a more conventional interest rate rule. By comparison, an interest rate rule that replaces the
inflation target with a price-level target shrinks but does not eliminate the indeterminacy region,
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and when both solutions exist the “bad” solution is often comparatively tame in terms of inflation
and output gap deviations.

These results shed new light on a conclusion in Holden (2023). In particular, while he shows
that Taylor-type rules with a price-level target and an output gap level target ensure uniqueness in
a range of New Keynesian models, our “speed limit” application shows that an interest rate rule
with a price-level response is not (in general) sufficient to ensure determinacy in New Keynesian
models with a zero lower bound on nominal interest rates. Furthermore, we find that a price-level
targeting rule outperforms the other interest rate rules we study in terms of social welfare.

The paper proceeds as follows. Section 2 outlines the solution method and describes how we
extend the benchmark algorithm to study multiple equilibria. Section 3 provides details of our
“prior probabilities” approach to simulating multiple equilibria, including expected outcomes and
the construction of stochastic simulations. Section 4 presents our policy application in a New
Keynesian model. Finally, Section 5 concludes.

2. Methodology
Consider a multivariate rational expectations model with perfect foresight. The model is linear
aside frommultiple possible regimes due to occasionally-binding constraints, and time is discrete:
t ∈N+. As in Guerrieri and Iacoviello (2015), we focus for exposition purposes on the case of a
single occasionally-binding constraint, so there are two regimes.3 The reference regime (slack) is
described by (1), and the alternative regime (bind) by (2):

B1xt = B2Etxt+1 + B3xt−1 + B4et + B5 (1)

B̃1xt = B̃2Etxt+1 + B̃3xt−1 + B̃4et + B̃5 (2)

where xt is an n× 1 vector of endogenous state and jump variables, Et is the conditional expec-
tations operator, and et is an m× 1 vector of exogenous “news shocks” whose values are known.
Note that serially correlated exogenous processes can be included in the vector xt .

MatricesBi, B̃i, i ∈ [5], contain themodel parameters. The Bi, B̃i, i ∈ {1, 2, 3}, are n× nmatrices,
B4, B̃4 are n×m matrices, and B5, B̃5 are n× 1 vectors of intercepts. As shown in Binder and
Pesaran (1997), the above formulation is quite general as it can accommodate multiple leads and
lags of the endogenous variables through an appropriate definition of xt .

The first variable x1,t is subject to a lower bound constraint in all periods:

x1,t =max{x1, x∗
1,t}, x∗

1,t := F

⎡
⎢⎢⎣

xt
Etxt+1

xt−1

⎤
⎥⎥⎦ +Get +H (3)

where x1 ∈R is the lower bound and x∗
1,t is the “shadow value” of the constrained variable. Here,

F is 1× 3n vector with f11 = 0; G is a 1×m vector; and H ∈R is a scalar.
The specification in (3) allows the constrained variable to depend on the news shocks and on

contemporaneous, past or future values of the endogenous variables; note that an upper bound
constraint can easily be accommodated.4 The vectors F,G,H are given by the equation that
describes the bounded variable when the constraint is slack; for example, with a lower bound
on nominal interest rates, this equation is typically a Taylor(-type) rule.

In typical applications, one of the intercept matrices may be zero, as DSGE models are often
log-linearized around a non-stochastic steady state (see Uhlig, 1999). Given mutually exclusive
regimes, we introduce an indicator variable 1{x∗

1,t>x1} that is equal to 1 if x
∗
1,t > x1 and 0 otherwise

(i.e. if x∗
1,t ≤ x1). Our model based on (1)–(3) is then

B1,txt = B2,tEtxt+1 + B3,txt−1 + B4,tet + B5,t , ∀t ≥ 1
Bi,t = 1{x∗

1,t>x1}Bi + (1− 1{x∗
1,t>x1})B̃i, ∀i ∈ [5]

(4)
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where x0 ∈R
n (given) and all news shocks e1, e2, . . . ∈R

m are known.
The information set at time t includes all current, past and future values of the endogenous and

exogenous variables; note that the indicator 1{x∗
1,t>x1} is endogenous. As in Guerrieri and Iacoviello

(2015) and Holden (2023), we assume the model returns to the reference regime forever after
some finite date T ≥ 1 (i.e. 1{x∗

1,t>x1} = 1 ∀t> T).5 Following Guerrieri and Iacoviello (2015), we
find (1{x∗

1,t>x1})
T
t=1 using a guess-verify method. That is, we guess a sequence of regimes and date

T, and accept the resulting time path (xt)t≥1 as a solution only if the guessed sequence of regimes
is verified by the shadow variable x∗

1,t .

2.1 Preliminaries

Definition 1. A perfect foresight solution to model (4) is a path xt = f (xt−1, (es)∞s=t) such that the
system in (4) holds for all t ≥ 1 given a known sequence of news shocks (et)∞t=1.

An alternative way of characterizing a solution is in terms of a set of matrices {�t , �t ,�t}∞t=1
that generalize the constant-coefficient decision rules of a linear rational expectations model:

xt =�txt−1 + �tet +�t (5)
where �t is an n× n matrix, �t is an n×m matrix, �t is an n× 1 vector, and the t subscript
indicates that the matrices are in general time-varying.

Following Guerrieri and Iacoviello (2015) and Kulish and Pagan (2017), the matrices�t , �t ,�t
are determined recursively using simple formulas. Our perfect foresight assumption implies that
the solution xt will generally depend on both current shocks et and anticipated future shocks
et+1, et+2, . . ., which enter the solution via the “intercept” matrix�t .
There are three key requirements for the application of our algorithm:

(i) Existence of a rational expectations solution at the reference regime (terminal solution).
(ii) A series of regularity conditions det [B1,t − B2,t�t+1] 	= 0 must hold for t = 1, . . . , T,

where T + 1 is a date from which the terminal solution applies in perpetuity.
(iii) The solution path xt must satisfy (4) and x1,t > x1 for all t> T (terminal condition).

Requirements (i)–(iii) also apply in Guerrieri and Iacoviello (2015). The terminal solution in
(i) can be found using standard methods, such as Blanchard and Kahn (1980), Binder and Pesaran
(1997), Sims (2002) or Dynare (Adjemian et al. 2011), which can check if the solution is unique.
Requirement (i) is necessary but not sufficient for existence of a solution; the regularity conditions
in (ii) must hold, and the perfect foresight path must satisfy the occasionally-binding constraint
and the terminal condition in (iii), as in Holden (2023).

We assume the Blanchard-Kahn conditions for uniqueness and stability are satisfied and that
the terminal solution is away from the lower bound for all t> T. Formally, we have:

Assumption 1. We assume det [B1 − B2 − B3] 	= 0, such that there exists a unique steady state
x= (B1 − B2 − B3)−1B5 at the reference regime. This steady state satisfies x1 > x1. �
Assumption 2. For any initial value, there is a unique stable terminal solution at the refer-
ence regime xt =�xt−1 +�, ∀t> T, where� = (B1 − B2�)−1(B2� + B5)= (In −�)x, and�=
(B1 − B2�)−1B3 has eigenvalues in the unit circle, so xt → x as t → ∞. �
Assumption 3. Agents know all future shocks (et)∞t=1, and et = 0m×1 for all t> T. �

Assumptions 1–3 are analogous to the assumptions in Holden (2023, Supp. Appendix).
Assumption 1 restricts attention to models with a unique steady state x at the reference regime
that does not violate the lower bound constraint. Assumption 2 ensures that the terminal solution
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at the reference regime converges to this steady state. Lastly, Assumption 3 states that agents have
perfect foresight and that news shocks “die out” after date T.

2.2 Solution algorithm
Recall that date t = 1 is the first period. Given perfect foresight, expectations coincide with future
values: Et[xt+1]= xt+1 for all t ≥ 1. The system to be solved is therefore:{

B1,txt = B2,txt+1 + B3,txt−1 + B4,tet + B5,t , 1≤ t ≤ T
B1xt = B2xt+1 + B3xt−1 + B5, ∀t> T

(6)

where Bi,t = 1{x∗
1,t>x1}Bi + (1− 1{x∗

1,t>x1})B̃i ∀i ∈ [5]; see (4).
By assumption, the reference regime holds for all t> T, and the terminal solution xt =�xt−1 +

� is away from the bound. Thus, agents can use backward induction from the terminal solution
xT+1 =�xT +� in period T, giving the following solution algorithm which uses a “guess and
verify” approach. Note that guesses on the indicator variable are denoted by 1t ∈ {0, 1} because
some guesses on the sequence of regimes may not be verified.

1. Pick a T ≥ 1 and a simulation length Ts > T. Guess a sequence (1t)Tt=1 of 0s and 1s, starting
with all 1s (slack in all periods) as an initial guess. Note: 1t = 1 for t> T.

2. Find the structural matrices (or “regimes”) implied by the guess:

Bi,t = 1tBi + (1− 1t)B̃i, i ∈ [5], in periods t = 1, . . . , Ts.

3. Compute (xt)Tst=1 and the shadow value of the bounded variable (x∗
1,t)

Ts
t=1 via

xt =
{
�txt−1 + �tet +�t for 1≤ t ≤ T
�xt−1 +� for t> T

, x∗
1,t = F

[
x′
t x′

t+1 x
′
t−1

]′ +Get +H

where, for t = 1, . . . , T and initial matrices�T+1 =�,�T+1 =� , �T+1 = 0n×m,
�t = (B1,t − B2,t�t+1)−1B3,t , �t = (B1,t − B2,t�t+1)−1B4,t

�t = (B1,t − B2,t�t+1)−1(B2,t(�t+1 + �t+1et+1)+ B5,t).
4. If x1,t =max{x1, x∗

1,t} for t = 1, . . . , T and x1,t > x1 ∀t> T, accept the guess and store the
solution (xt)Tst=1; else reject. Return to Step 1 and repeat for a new guess.

The above algorithm has two additions relative to Guerrieri and Iacoviello (2015). First, it
allows for multiple perfect foresight solutions. If a guessed structure is verified (Step 4), then
the resulting time path is accepted as a perfect foresight solution and is stored for later use,
along with any additional solutions found by repeating Steps 1–4 with new guesses. Second, the
algorithm permits the inclusion of “news shocks” up to a finite horizon, whereas the original
algorithm sets future shocks at zero. Conveniently, our solution has the same general form as in
Guerrieri and Iacoviello (2015) because the intercept matrix �t (Step 3) incorporates the news
shocks, and is determined by a recursive formula (it depends on its own future value). Hence, this
generalization—which can be used tomodel pre-announced policies or other news events—comes
at essentially zero computational cost.6

In Section 3 below, we present a method for performing model simulations when there are
multiple equilibria. As argued by Farmer et al. (2015, p. 17), “a model with an indeterminate set of
equilibria is an incomplete model” and will need to be closed by some means in order to simulate
or estimate the model.7 In general, a model with multiple equilibria may be closed either by using
some “selection criterion” to rule out all equilibria but one on some economic grounds (such as
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learnability), or by drawing an exogenous “sunspot” (a non-fundamental shock from outside the
model) that determines which equilibrium agents’ expectations coordinate on. In the absence of
a generic selection criterion, we take the latter sunspot approach. Note that this approach does
not contradict the perfect foresight assumption (which implies that risk is absent) because the
exogenous sunspot is not part of the solution path itself from date 1 onwards, but is only a means
of initially determining (at date 1) which of the perfect foresight solutions will “play out.”

We start out by formalizing our approach in which the solutions are treated as categorical and
a sunspot determines which perfect foresight path is realized (see Remark 1). We give the sunspot
a simple structure (uniform random variable) such that the probability that agents will coordi-
nate their expectations on a particular equilibrium can be interpreted in terms of “prior beliefs.”
Hence, if there were a bank run equilibrium and a no-run equilibrium, then the researcher may
assign a low probability to the “run equilibrium” if they view it as somewhat implausible. At the
other extreme, a researcher may take an agnostic approach by assigning equal probability to each
equilibrium—“flat priors”—and in this case the agents will have equal probability of coordinating
on any given equilibrium path.

With this simple structure in hand, we show how researchers or policymakers can compute
expected outcomes, such as average paths or expected welfare under the “veil of ignorance” (see
Section 3.2).8 As a result, this approach allows welfare evaluation to be conducted in the face of
multiple solutions, as well as allowing robustness analysis that checks sensitivity to changes in the
underlying probabilities. Both exercises may be useful to policymakers or researchers who would
like to summarize economic outcomes when there are multiple solutions which cannot be ruled
out a priori or assigned indisputable probabilities.

We also provide an extension for stochastic simulation in Section 3.3. We thereby generalize
the stochastic simulation approach in Guerrieri and Iacoviello (2015) to the more difficult case
of multiple equilibria and non-zero expected future shocks. In particular, we relax the perfect
foresight assumption by allowing unanticipated shocks after period 1 and solve the model using an
extended pathmethod with risk ignored by agents when they form expectations.9 Along such sim-
ulation paths, switching between different equilibria can occur and these switches can contribute
substantially to macroeconomic fluctuations.

2.3 Implementing the algorithm
Our “guess and verify” algorithm builds on Guerrieri and Iacoviello (2015) and uses the simple
idea that continuing the guess-verify procedure after one solution has been found may yield addi-
tional solutions to the linear complementarity problem.10 As in Guerrieri and Iacoviello (2015),
finding a solution requires inversions of the matrix (B1,t − B2,t�t+1) for t = 1, . . . , T, as in Step
3 of the Algorithm above. In cases of non-invertibility, our algorithm automatically abandons
the current guess and starts a new one so that computation time is not wasted. Our algorithm is
written in MATLAB and codes are available at the author’s GitHub page.11

An important issue when using guess-verify is how the guessed sequences of regimes, (1t)Tt=1,
are determined. We first try as an initial guess the case where the constraint is slack in all peri-
ods (see Step 1) and then guesses which involve a “single spell” at the lower bound (i.e. guesses
differ in the duration of the spell at the bound or the start date), followed by “double spells” at
the bound. We provide codes that enumerate the single and double spells for a given T and use
these as guesses in a sequential manner; we also provide a code covering cases of triple spells
at the bound.12 Note that if not all columns of the “guesses matrix” are filled, the remaining
columns are filled with random guesses of 0 s and 1 s. As an example of a model with multiple
spells at the bound, we study a multiplier-accelerator model with forward-looking expectations
in the Supplementary Appendix (final example); in this model, there are recurrent fluctuations in
GDP not driven by structural (news) shocks.13
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Figure 1. The two solutions when π0 > 0.

A second important issue is when to terminate the guess-verify procedure. As shown byHolden
(2023), if a squarematrixM of impulse responses of the bounded variable to the “news shocks” has
the property of being a P-matrix, there is a unique solution to the linear-complementarity problem
for all initial conditions. In this case, it makes sense to terminate the guess-verify procedure when
a solution is found (there can be only one). We therefore check if M is a P-matrix using our
algorithm, and if so, we terminate the search procedure immediately after finding a solution. Note
that matrixM is a P-matrix if and only if all its principal minors are positive; if not, there may be
multiple solutions or no solution.

It is generally computationally-intensive to check if a matrix M ∈R
T×T is a P-matrix, and

computation time increases sharply with the matrix dimension, T. In our algorithm, we rely on
the recursive test for P-matrices in Tsatsomeros and Li (2000), for which the time complexity is
exponential inT with base 2; however, to avoid running the test at times when this is not necessary,
we have also built some pre-checks into our algorithm.14

2.4 Fisherian example
Following Holden (2023, Example 2) suppose that for all t ≥ 1 our model consists of a Taylor-type
rule subject to a zero lower bound and the Fisher equation:

it =max{0, r + φπt −ψπt−1} (7)

it = r + Etπt+1 (8)

where φ −ψ > 1, ψ > 0, π0 ∈R and r> 0 is a fixed real interest rate. To simplify presentation,
we set φ = 2. The results are not specific to this case.

There are two solutions to the model (7)–(8). The first solution is away from the bound in all
periods and given by πt =ωπt−1, it = r +ωπt for all t ≥ 1, where ω= 1− √

1−ψ ∈ (0, 1). This
solution is stable (inflation converges to 0 and nominal rates to r), does not violate the lower bound
in period 1 if r + φπ1 −ψπ0 ≥ 0 and is away from the bound for all t> 1 if r + φπt −ψπt−1 > 0;
hence this solution exists for π0 ≥ − r

ω2 .15 The second solution has the constraint binding only
in period 1, i.e. i1 = 0 and πt =ωπt−1, it = r +ω2πt−1 for all t> 1. Note that i1 = 0 implies that
π2 = −r by (8), so π1 = −r/ω and πt =ωπt−1 =ωt−2(− r) for all t> 1 (deflation). The con-
straint binds in period 1 provided r + φπ1 −ψπ0 ≤ 0 and is escaped thereafter if r + φπt −
ψπt−1 > 0 for all t> 1, so we again require π0 ≥ − r

ω2 .16 Hence, for π0 ≥ − r
ω2 both solutions

exist, and for π0 <− r
ω2 there is no solution.
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Our Algorithm finds both these solutions (see Supplementary Appendix, Section 2). The two
solutions are plotted in Figure 1, along with the shadow interest rate i∗t in both cases. Note that
Solution 1 has a positive shadow rate in all periods (which coincides with the actual interest rate);
hence this solution is verified. By comparison, Solution 2 hits the bound in period 1 and has a
negative shadow rate in this period (so the constraint binds); hence this solution is also verified.
If we assign values to all the parameters (as in our codes), then numerical analysis using our algo-
rithm indicates that the matrix M of impulse responses is not a P-matrix; note that this makes
sense given the results above: we saw that there are multiple solutions (if initial inflation π0 is high
enough) or no solution (if π0 is too low).

3. Simulating multiple equilibria
As argued by Holden (2023), multiple equilibria are a robust feature of otherwise-linear models
with occasionally-binding constraints. Therefore, it is important that solution algorithms do not
neglect multiplicity. In this section we provide our approach to simulating multiple equilibria; we
therefore assume throughout this section that there are multiple solutions.

3.1 Determining an equilibrium path
Suppose K ≥ 2 perfect foresight solutions are found using our Algorithm. To resolve the inde-
terminacy problem (incompleteness), we consider a “sunspot” approach rather than trying to
“purge” solutions based on a selection criterion. We assume the researcher or policymaker has
some “prior probabilities” p1, . . . , pK ∈ [0, 1],

∑K
k=1 pk = 1, over the different perfect foresight

solutions, where pk is the probability that agents will coordinate expectations on equilibrium k at
date 1 (the first period in which expectations are formed).

The simple first step is to draw a sunspot at date 1 that represents this coordination and will
thereby ensure that a particular solution (i.e. perfect foresight path) is realized. We index the
K perfect foresight solutions by (xkt )∞t=1 for k= 1, . . . ,K, and let u1 ∼ U(0,1) be a sunspot that is
drawn from the uniform distribution on the interval (0, 1) at date t = 1. Given all this, we have the
following rule for determining which equilibrium is realized given the sunspot u1, which is anal-
ogous to how the values of categorical random variables, such as realizations of K-state Markov
processes or outcomes of rolling a die, are determined.

Remark 1. Suppose there are K ≥ 2 perfect foresight solutions. Given probabilities p1, . . . , pK and
a random draw u1 ∼ U(0,1), the realized perfect foresight path at date 1 is

(xt)∞t=1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x1t )∞t=1 if u1 ∈ (0, p1]
(x2t )∞t=1 if u1 ∈ (p1, p1 + p2]
...

(xKt )∞t=1 if u1 > p1 + . . .+ pK−1

(9)

i.e. for u1 ∈ (
∑k∗−1

k=0 pk,
∑k∗

k=0 pk], where k∗ ∈ {1, . . . ,K} and p0 := 0, the unique (realized) perfect
foresight solution is (xt)∞t=1 = (xk∗

t )∞t=1.

Remark 1 simply gives a way to choose a realized perfect foresight path when there are multi-
ple candidates. It applies to any finite set of perfect foresight solutions and is flexible due to the
free specification of probabilities. For instance, if the researcher thinks some solution(s) some-
what “unrealistic” they may attach low probability to those solution paths. On the other hand, a
perfectly agnostic researcher would use “flat priors” pk = 1/K for all k.
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As noted, our Algorithm stores all (found) perfect foresight solutions. Given some specified
probabilities p1, . . . , pK , Remark 1 will then choose one solution as the realized equilibrium, akin
to a lottery among perfect foresight paths (we give an example in Section 3.3). With this addition,
our algorithm can be used to automate equilibrium determination (to some extent) while taking
account of prior beliefs and their economic implications.17

Further, we will show that combining Remark 1 with some additional timing assumptions
allows the computation of expected outcomes as a probability-weighted average of perfect fore-
sight paths, such that expected welfare or other outcomes may be evaluated under the “veil of
ignorance” – i.e. before the sunspot is realized. We do this in the next section.

3.2 Expected outcomes
Suppose now that before expectations are formed in period 1, there is some initial state, period
0, in which the initial conditions x0, (et)∞t=1 are known, but the sunspot u1 and thus the expec-
tations x1, x2, . . . , are not. To motivate this, note that if the sunspot u1 were determined at date
0, multiplicity could not arise since expectations would already have coordinated on a particu-
lar equilibrium. Viewed this way, the sunspot u1 coordinates agents’ expectations on a particular
equilibrium in period 1 and so “stands in” for some psychological process or “animal spirits” that
are extraneous to the economy.18 By contrast, the news shocks (et)∞t=1 are structural and we take
them as a predetermined aspect of the economic environment.

Thus, we think of date 0 as an initial position that is subject to the “veil of ignorance” in that the
expectations of agents—an aspect of their behavior—are unknown and not pinned down. Given
this view, an expected path can be defined as follows.

Definition 2. An expected path is a linear combination of perfect foresight solutions in which the
weights are the probabilities of each solution, p1, . . . , pK.

Based on Definition 2, the expected path of the vector of endogenous variables xt is:

(E0[x1], E0[x2], . . . E0[xs], . . . ) (10)

where the expected values are

E0[xt] :=
K∑

k=1

pkxkt (11)

i.e. a linear combination of the date-t points of the perfect foresight solutions 1, . . . ,K.
Similarly, one may compute expected welfare, for example, based on a quadratic loss function

or some other approximation to a social welfare function. IfWk ∈R is the welfare associated with
solution k, then analogous to (11) the expected welfare is

E0[W] :=
K∑

k=1

pkWk. (12)

It should be emphasized that expressions such as (11) and (12) also provide a basis for robustness-
type analysis in the sense that the impact of different “prior beliefs” can easily be studied and best
and worst-case scenarios identified. We now give a simple example.

Example 1. Consider again the Fisherian model with two solutions (Figure 1). A policymaker
assigns probabilities p1 to Solution 1 (slack) and p2 = 1− p1 to Solution 2 (bind), and has an ad
hoc loss function that penalizes squared deviations from a zero inflation target:

L=
∞∑
t=1

βt−1π2
t .
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Figure 2. Expected loss E0[L] as p1 is increased for various π0 (left panel) and the expected loss due to the zero lower bound
E0[L]− L1 as π0 is increased (right panel). The initial values in the left panel satisfy πh0 >π

m
0 >π

∗
0 >π

l
0, where π

∗
0 is the

positive initial inflation that makes the loss under Solution 1, L1(π0), equal to the loss L2 under Solution 2.

By (12), the expected loss is E0[L]= p1L1 + p2L2, where L1 = ∑∞
t=1 β

t−1(π1
t )2 = ω2

1−βω2π
2
0 , L2 =∑∞

t=1 β
t−1(π2

t )2 = (r/ω)2
1−βω2 , and π1

t , π2
t are the inflation solutions at date t. Hence,

E0[L]= p1ω2π2
0 + (1− p1)(r/ω)2

1− βω2

which is linear in p1 and quadratic in the initial inflation π0.
In Figure 2 (left panel), we plot the expected loss as the probability of Solution 1, p1, is increased

from 0 to 1; we do this for several values of π0 > 0, including the initial inflation π∗
0 = r/ω2 for which

the losses are equal, i.e. L1 = L2.19 For inflation rates above π∗
0 , the expected loss increases with p1,

since inflation declines geometrically from its initial value π0 under the “good”solution (see Figure 1).
Going in the other direction, reducing initial inflation below π∗

0 makes inflation under Solution 1
“closer”to the zero inflation target, so loss L2 is higher. For Solution 2, where the constraint binds
in period 1, the loss L2 is independent of the initial inflation π0, as is clear from Figure 1 (and the
equation above).

Figure 2 (right panel) plots the expected loss relative to Solution 1, E0[L]− L1, which can be
interpreted as the extra loss attributable to the lower bound friction, whichmakes Solution 2 (binding
constraint) a possible equilibrium path. The expected loss attributed to the lower bound falls as initial
inflation is increased, since this raises the Solution 1 loss L1 by more than it raises the expected loss
E0[L]. Increasing the probability of Solution 1 “flattens”the relationship between E0[L]− L1 and π0
since the expected loss given the lower bound, E0[L1], gets closer to L1 the higher the probability
attached to Solution 1 (right panel).

The above exercise can be motivated by thinking of an asset like central bank digital currency
that could potentially eliminate the lower bound. From a policy perspective, we would like to know
ex ante whether it is worth providing such a currency (at some cost); this will depend partly on the
expected benefit of eliminating the lower bound on nominal rates, shown in the right panel. While
this is a simple example, the results are suggestive of the policy and robustness-type analysis possible
using our expected outcomes approach.

3.3 Stochastic simulations
Lastly, we consider stochastic simulations with switching between multiple equilibria. For such
simulations, we assume that the agents think they know all future shocks but are mistaken; as
result, they have imperfect foresight and ignore risk, such that their expectations are not strictly
rational, in contrast to the perfect foresight solutions studied thus far.
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We use this approach to construct stochastic simulations in which agents form expectations
under certainty equivalence. Both Dynare (Adjemian et al. 2011) and OccBin (Guerrieri and
Iacoviello, 2015) have built-in options for such simulations using an extended pathmethod, which
is widely used, for example, at policy institutions such as central banks.20 While the extended path
approach is typically applied to occasionally-binding constraint models with a unique solution (or
assuming uniqueness), we provide an approach that allows simulations with multiple equilibria,
which should speak to a wide audience.

Our approach draws on Remark 1, but it uses that approach to determine an equilibrium in
every period t in which the model is simulated; note that this is necessary because while the
entire solution path is known as of date 1 under perfect foresight, this is not true here since the
actual (realized) path will generally differ from the one that agents expected. Hence, equilibrium
determination (via a sunspot) arises every period in response to the new (unanticipated) initial
conditions xt−1, et with which agents are confronted.

To make this concrete, suppose that the shock vector et is drawn from some distribution. Then
given et , xt−1 and agents’ beliefs about future shocks, we can find the solution(s) for these initial
conditions using our Algorithm, and one can be selected by a sunspot (akin to Remark 1). The
same procedure is then repeated in period t + 1, given xt , et+1 and the agents’ expected future
shocks. Provided a solution exists for all simulated t, we can construct a stochastic simulation
path of desired length as follows.

1. Choose some systematic rule for assigning probabilities to different equilibria at each date,
e.g. the “flat priors” approach, pk = 1

no. of equilibria for each solution k.21

2. Given x0, e1 and expected shocks ea2, . . . , e
a
T , use the Algorithm to find the solution paths

(xkt )Tt=1 for k= 1, . . . ,K1, whereK1 is the number of solutions at date 1. Using the approach
in Remark 1, select one of these solutions, (xk

∗
1
t )Tt=1, where k

∗
1 ∈ {1, . . . ,K1}. Set x1 = xk

∗
1
1

(our first simulated point) and move to period 2.
3. Draw vector e2 from some distribution. Given x1, e2 and expected shocks ea3, . . . , e

a
T+1, use

the Algorithm to find the solution paths (xkt )
T+1
t=2 for k= 1, . . . ,K2, where K2 is the number

of solutions in period 2. Use the approach in Remark 1 to select one of these solutions,
(xk

∗
2
t )T+1

t=2 , where k
∗
2 ∈ {1, . . . ,K2}. Set x2 = xk

∗
2
2 (second simulated point).

4. Repeat in periods 3, 4 etc. to get a simulation path of the desired length, say (xt)T
∗

t=1.

We now show stochastic simulation in action using our running example (Fisherian model).

Example 2 (Ex. 1 cont’d). We continue the Fisherian example (Section 2.4 and Example 1) but
we add a shock et ∈R in the Taylor-type rule, so it =max{0, r + φπt −ψπt−1 + et} as in Holden
(2023, Section 2.3). We set parameter values: r = 0.01, φ = 2, ψ = 0.93, π0 = 0.02, along with date-
1 anticipated shocks e1 = ea2 = −0.001. The probability of choosing Solution 1 (away from the zero
bound) is set at p1 = 0.95, so there is a 5% probability of choosing the Solution 2 that hits the bound.
At dates t> 1 we solve for it , πt conditional on the inherited state πt−1 and fresh draws for the
monetary policy shocks et , et+1 which are drawn from a normal distribution with a mean of zero
and a standard deviation σe (see Figure 3).

We found two solutions in all simulated periods; these are versions of the “high”and the
“low”inflation solutions in Figure 1. To resolve the indeterminacy of two solutions, at each date t
we drew a sunspot ut ∼ U(0,1) that selects either Solution 1 (away from bound) or Solution 2 (hits
bound) in period t. Given our assumption that p1 = 0.95, Solution 1 (Solution 2) is selected at date t
if and only if ut ∈ (0, 0.95] (ut > 0.95); see Remark 1.

In the upper panel of Figure 3, the standard deviation of the policy shock is very small to isolate
the impact of the sunspot, i.e. switching between the two equilibria. Of five simulations, three hit the
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Figure 3. Five stochastic simulations: p1 = 0.95 and initial values π0 = 0.02, e1, e2 = −0.001.

zero lower bound in some period (see dashed lines), giving strong deflation (cf. Figure 1), in contrast
to the solution paths that always remain away from the bound.

In the lower panel, the shock variance is large enough to make each individual stochastic simula-
tion path discernible, but the main variations in inflation and interest rates come from switching
between equilibria rather than from disturbances to the policy rule. Note that due to switching
between equilibria, the average simulated values of inflation and nominal rates, in a long simulation,
may differ somewhat from those at the terminal solution steady-state.

4. Policy application
We now consider an application to policy rules with multiple equilibria for some parameters.
We make use of several concepts discussed so far (sunspots, expected outcomes, M matrix) and
implementation details are discussed in the Supplementary Appendix. Since we restrict attention
to perfect foresight solutions, we do not use stochastic simulation (Section 3.3).22

4.1 A New Keynesianmodel
We consider the New Keynesian model studied in Brendon et al. (2013). Besides the zero lower
bound, the only other departure from the benchmark model is a policy response to the change in
the output gap, similar to the “speed limit” policies considered by Walsh (2003):

it =max{i, i∗t } (13)

i∗t = ρii∗t−1 + (1− ρi)(θππt + θy(yt − yt−1)) (14)

yt = Etyt+1 − 1
σ
(it − Etπt+1)+ et (15)
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Figure 4. Multiple equilibria in the Brendon et al., model: e1 = 0.01 and i∗0 = y0 = ρi = 0.

πt = βEtπt+1 + κyt (16)

where θπ > 1, β ∈ (0, 1), θy, κ , σ > 0, ρi ∈ [0, 1), i= β − 1 and all values of et are known.
We start by setting parameters at β = 0.99, σ = 1, ρi = 0 (no interest rate smoothing) and κ =

(1−0.85)(1−0.85β)
0.85 (2+ σ ) as in Brendon et al. (2013); additionally, we set θπ = 1.5 and θy = 1.6 to

initially replicate the exercise in Holden (2023, Appendix E). Starting at steady state, we consider a
1% demand shock at date 1 (i.e. e1 = 0.01, et = 0 for t> 1) and search for solutions to model (13)–
(16) using our algorithm. We found two perfect foresight solutions as expected and the solutions
match the ones reported by Holden (see Figure 4).

There are two perfect foresight solutions in Figure 4: one where the lower bound is never hit
and inflation and the output gap rise only marginally above their steady-state values; and a second
solution where interest rates are at the lower bound in the first two periods and there is strong and
persistent deflation and large negative output gaps (Figure 4, all panels). This “bad” solution is
clearly inferior in terms of stabilization of inflation and output gaps and arises due to pessimistic
self-fulfilling expectations: if agents expect low inflation, then the rise in the real rate lowers the
output gap and inflation, validating the expectations.

Having a growth-based interest rate rule—for which the shadow rate responds to inflation and
the change in the output gap—is important for the multiplicity result, as there is a unique perfect
foresight solution if the shadow rate follows a Taylor rule with a response to the output gap in levels
(Holden, 2023, Section 4.3). In addition, multiplicity occurs only when the response to the change
in the output gap—or “speed limit”—is strong enough, as is clear from Figure 5 below. Such speed
limit policies have been studied in the literature, with encouraging results from both theoretical
and practical perspectives (Walsh, 2003; Orphanides, 2003; Yetman, 2006) and some empirical
works suggest that central bank behavior is consistent with a speed limit rule (e.g. Mehra, 2002).23

Given the potential negative consequences of the interest rate rule (14) in this model, we con-
sider some alternative policy rules, to see if they can restore uniqueness by eliminating the “bad”
solution. Before doing so, we first confirm that multiplicity is a robust feature of this model by
studying the properties of theM-matrix (discussed in Section 2.3 above).

In Figure 5, we show some parameter regions for which the M matrix of impulse responses is
a P matrix and is not a P matrix. Recall that if the M matrix is a P-matrix, then there is a unique
solution for all initial conditions. We set T = 16 and plot the regions for which theM matrix is a
P-matrix (determinacy region, white), and is not a P-matrix (black region). We consider different
combinations of the response coefficients θπ , θy in the interest rate rule and in each panel we
vary the inverse elasticity of intertemporal substitution, σ .

Figure 5 shows there is a unique solution if the response to the change in the output gap, θy, is
not too strong relative to the inflation response θπ (see the white regions). In the first panel, which
uses the baseline value of σ = 1, we see that M is a P-matrix only if the response to the change
in the output gap is smaller than the response coefficient on inflation. Note that the parameter
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Figure 5. Regions in whichM is not a P-matrix (black) when T = 16 (Case: ρi = 0).

Figure 6. Regions in whichM is not a P-matrix (black) for T = 16 and various ρi .

combination used in Figure 4 (θπ = 1.5, θy = 1.6), where we see two solutions, lies in the black
region as expected. In fact, Brendon et al. (2013, Proposition 1) show that the model (13)–(16) has
multiple perfect foresight equilibria if and only if θy >σθπ , and Figure 5 is consistent with this
conclusion.

In summary, multiplicity is a robust outcome and this raises the question of whether alternative
monetary policies could restore uniqueness by eliminating the bad solution. We investigate this
below while retaining the “speed limit” aspect of the policy rule, which may have theoretical and
practical advantages as argued by Walsh (2003) and others. We start with interest rate smoothing
before turning to unconventional monetary policy rules.

4.2 Interest rate smoothing
Wefirst ask whether policymakers could achieve a better outcome by smoothing the shadow inter-
est rate in (14) by setting ρi ∈ (0, 1). We started out by checking the regions where the M matrix
is a P-matrix for T = 16, similar to Figure 5 but with three ρi values and σ = 1.

The P-matrix regions in Figure 6 indicate that the determinacy region expands once the interest
rate smoothing parameter ρi is large enough. For ρi = 0.8, the parameter combination θπ = 1.5,
θy = 1.6 is now in the determinacy region (white), so there is a unique solution at these parameter
values (plotted in Figure 7 below). However, indeterminacy remains if the response to the speed
limit is strong enough (Figure 6, right) and as noted by Holden (2023, Appendix E), the P-matrix
regions under interest rate smoothing tend to those in the model without any smoothing as T
is increased, such that multiplicity remains a widespread problem and there are both “good” and
“bad” equilibria.24

In Figure 7, we present a numerical simulation. We set θπ = 1.5, θy = 1.6 and e1 = 0.01 as in
the baseline simulation in Figure 4; the only difference is that the interest rate smoothing parame-
ter is set at either ρi = 0.40 (weak smoothing) or a high value ρi = 0.80 (strong smoothing). With
moderate interest rate smoothing (ρi = 0.40) there are two solutions and the “bad” solution is

https://doi.org/10.1017/S1365100525000021 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100525000021


Macroeconomic Dynamics 15

Figure 7. Perfect foresight solutions with interest rate smoothing when e1 = 0.01, i∗0 = y0 = 0, σ = 1 and θπ = 1.5, θy = 1.6:
two different values of ρi (ρi = 0.4, solid; ρi = 0.8, dashed).

exacerbated relative to Figure 4: inflation and the output gap fall by around 5 times as much ini-
tially and interest rates spend 7 periods at the lower bound, rather than 2. Intuitively, it is easier
to induce a lengthy spell at the lower bound when the shadow rate is persistent, provided ρi is not
large enough to eliminate the bad solution. In the case of ρi = 0.8, there is a unique solution that
is away from the bound in all periods (dashed gray line)—though as Figure 6 shows, uniqueness
is not a general result.

For the parameters θπ = 1.5, θy = 1.6, the determinacy result seems to hold for smoothing of
around ρi = 0.8 or higher.25 Some intuition can be gained by scaling θπ , θy in Eq. (14) by 1

1−ρi
and letting ρi → 1. In this case, the shadow interest rate tends to i∗t = θππt + θyyt , which is
consistent with any rule of the form i∗t = constant + θπpt + θyyt , where pt = πt + pt−1 is the log
price level. The latter is a price-level targeting rule without a speed limit term. Given that Holden
(2023, Appendix E) finds that a levels rule restores determinacy, it is intuitive that sufficiently high
values of ρi lead to the same conclusion.

In short, interest rate smoothing does not, in general, prevent the occurrence of multiple equi-
libria, and when the “bad” solution is present we see that a smoothing rule worsens destabilization
of inflation and the output gap somewhat. At the same time, however, we saw that highly inertial
interest rate rules may eliminate the bad solution.

4.3 Forward guidance
Since interest rate smoothing is not a robust solution to indeterminacy and destabilization, we
now consider forward guidance. We are motivated here by the observation that forward guidance
promises an extended period of expansionary monetary policy, such that self-fulfilling pessimistic
expectations of inflation and the output gap—as under the “bad” solution—might not be rational.
This unconventional policy is not studied by Holden (2023).

To model forward guidance, we consider expansionary “news shocks” to the shadow interest
rate, such that (14) becomes

i∗t = ρii∗t−1 + (1− ρi)(θππt + θy(yt − yt−1))+ eFGt (17)

where eFGt ≤ 0 is a forward guidance “news shock” and eFG1 = 0.
We assume that eFGt < 0 only in periods when forward guidance is in place. Our question is

whether such a policy eliminates the “bad” solution or better stabilizes inflation and the output
gap. Table 1 records the percentage of initial conditions (out of 800) for which both a “good” and
“bad” solution exist at different forward guidance horizons; here, different initial conditions refers
to varying the size of the news shocks eFGt within a range and we consider 800 such variations
(i.e. cases) for each forward guidance horizon; see the Table 1 notes. By forward guidance horizon
we mean the number of periods in which there are “expansionary” news shocks eFGt < 0 and we
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Table 1.Determinacy at various forward guidance horizons (800 cases,
ρi = 0)

FG Horizon Unique Indeterminacy Time at Bound (Max,Min)

Period 2 only 0% 100% Mean: 2 periods (2,2)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Periods 2–3 0% 100% Mean: 3 periods (3,3)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Periods 2–4 0% 100% Mean: 4 periods (4,4)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Periods 2–5 0% 100% Mean: 5 periods (5,5)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Periods 2–6 0% 100% Mean: 3.6 periods (6,1)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note: Forward guidance is modeled via news shocks eFGt = −0.01−
Uniform(0, 0.01) which start in period 2 and last to the stated date. Each row:
800 cases of different news shocks.

consider only consecutive periods of such shocks. All other parameters and initial conditions are
kept fixed at the baseline values used in Figure 4.

The results in Table 1 show that forward guidance is not effective in eliminating indeterminacy.
Up to a 5-period forward guidance horizon (rows 1–5), all 800 sets of news shocks led to multiple
solutions (i.e. 100% of cases).26 If the forward guidance horizon is 5 periods, the length of spells
at the zero lower bound is no longer the same across all 800 cases of news shocks (see Table 1,
final column) and there can be multiple spells at the lower bound (see Figure 8, bottom right
for an example); however, neither a longer horizon nor interest rate smoothing seem to alter the
conclusion of widespread multiplicity.

Figure 8 shows that the “good” solutions under forward guidance have inflation and output
“overstimulated” (upper panel), while the “bad” solutions have very poor stabilization relative to
the original policy given by the solid black line ("Baseline," lower panel). Importantly, stabilization
under the “bad” solutions is worse when forward guidance is present and stabilization of inflation
and the output gap deteriorates as forward guidance becomesmore aggressive (i.e. when it delivers
a similar “dose” for a larger number of periods). Hence, while some previous works suggest that
forward guidance could be stabilizing at the zero lower bound (e.g. Eggertsson et al. 2021), our
results point in the opposite direction.

4.4 Price-level targeting
Lastly, we consider price-level targeting. A key motivation is work showing that price-level target-
ing interest rate rules can mitigate or resolve indeterminacy in New Keynesian models (Giannoni,
2014; Holden, 2023). We ask whether a response to the price level is sufficient to restore deter-
minacy when retaining the “speed limit” term in the interest rate rule. We retain the speed limit
because policymakers may find such policies attractive (Walsh, 2003), but inadvertently bring
about multiplicity (Figures 4–8); this is a problem we want to solve.

Accordingly, we assume the shadow interest rate under price-level targeting is

i∗t = ρii∗t−1 + (1− ρi)
(
θppt + θy(yt − yt−1)

)
(18)

where θp > 0 and pt := πt + pt−1 is the log price level.
Differently from the rule in Holden (2023, Appendix E), the shadow interest rate still responds

to the change in output gap. We now consider implications for determinacy.
Figure 9 plots the regions in whichM is a P-matrix, again for T = 16 as in Figure 5. The indeter-

minacy region shrinks substantially, but we see that indeterminacy is not ruled out when a strong
response to the “speed limit” is combined with a relatively weak response to the price level (black
regions). Thus, only a sufficiently strong interest rate response to the price level—a large enough
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Figure 8. "Good" and “bad” solutions with forward guidance: e1 = 0.01, i∗0 = y0 = 0, θπ = 1.5, θy = 1.6, ρi = 0, σ = 1.
Forward guidance news shocks eFGt = −0.015 for 2 periods (FG1), 4 periods (FG2), 5 periods (FG3). Start: t= 2 and eFG1 = 0
in all cases. Baseline: no FG.

Figure 9. Regions in which M is not a P-matrix (black): price-level targeting when T = 16. Note that θp is the response
coefficient on the log price level and ρi = 0.

θp in (18)—ensures determinacy. Intuitively, this says that a long-lasting, aggressive expansion-
ary policy to restore the price level to target is sufficient to rule out the “bad” equilibrium based
on pessimistic expectations. Perfect foresight simulations suggest that the “good solution” under
price-level targeting (with the nominal rate away from the bound) has good performance in terms
of stabilization, and allowing interest rate smoothing in the rule reinforces this conclusion (see
Supplementary Appendix, Section 3.4).

Interestingly, if the reaction to the price level θp is small enough for both solutions to exist, then
a very weak response to the price level works well from a stabilization perspective. In this case,
the “bad” solution under price-level targeting looks somewhat “better” than with the inflation
targeting, interest rate smoothing or forward guidance rules (see Figure 10). We see that inflation
and the output gap drop far less initially (i.e. in period 1), and these variables and interest rates
then oscillate around the “good” solution, but within quite a narrow range and deviations “die out”
quite quickly. It should be noted, however, that not all “bad” solutions under price-level targeting
are “tamer” than for the original rule.27

https://doi.org/10.1017/S1365100525000021 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100525000021


18 Michael Hatcher

Table 2.Welfare losses and policy rules: good
and bad solutions (λ= 0.1)

Policy Rule Loss L1 (good) Loss L2 (bad)

IT1 1 7,256
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IT2 0.7 171,600
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FG1 31.1 12,508
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FG2 107.7 37,654
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PLT1 0.3 -
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PLT2 3.5 384.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note: IT1 is the baseline case in Figure 4. IT2 adds
interest rate smoothingwith ρi = 0.4 (Figure 7). FG1 and
FG2 shown and described in Figure 8. PLT1 (PLT2) sets
θp = 1.5 (θp = 0.015, see Figure 10). Reported losses are
computed as the ratio of the loss relative to the ‘good’
loss L1 for rule IT1.

Notably, our conclusions on price-level targeting are less positive than in Holden (2023), where
analytical and numerical results are used to show that a price-level targeting rule ensures deter-
minacy in a range of New Keynesian models. What our results highlight is that the assumption of
a response to the level of the output gap, rather than its first-difference, is crucial. In the present
model, where the “speed limit” yt − yt−1 enters the interest rate rule, determinacy is not guaran-
teed but instead requires a sufficiently strong response to the price level relative to the response to
the speed limit, as shown in Figure 9. A particular example of multiplicity when the response to
the price level is “too weak” can be seen in Figure 10.

4.5 Welfare analysis
Finally, we consider some welfare implications of multiplicity, an issue not considered in Holden
(2023).Wemake use here of the “expected outcomes” approach in Section 3.2. In the abovemodel,
the microfounded social loss function has the form:

L=
∞∑
t=1

βt−1(π2
t + λy2t ) (19)

where λ> 0 is the relative weight on output gap variations.28
As we have seen, there are two perfect foresight solutions for some parameter values. In

Table 2, we report the losses under each policy rule based on (19), for both the “good” solution
(Solution 1) and the “bad” solution (Solution 2, when it exists), i.e.

Lk =
∞∑
t=1

βt−1(π2
k,t + λy2k,t), k ∈ {1, 2} (20)

where k= 1 denotes the good solution and k= 2 denotes the bad solution.

For each type of policy rule we consider two parameterizations and other parameters and initial
conditions are set at their baseline values as in the exercises in Figures 4, 7, 8, 10. We see that the
price-level targeting rule PLT1 (θp = 1.5) gives the lowest loss among the rules shown and restores
determinacy (penultimate row); it also outperforms an interest rate smoothing rule with ρi = 0.8
(Figure 7) or higher.29 Even when the price level response is very small (θp = 0.015, Figure 10)—
such that multiple solutions arise—the loss under the good solution is much smaller than under
the forward guidance rules (at 3.5 times the loss under the baseline “good solution”), while the bad

https://doi.org/10.1017/S1365100525000021 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100525000021


Macroeconomic Dynamics 19

Figure 10. “Good” and “bad” solutions under price-level targeting for e1 = 0.01, i∗0 = y0 = 0 and a “weak” response to the
price level θp = 0.015 when σ = 1, θy = 1.6 and ρi = 0.

solution imposes a relatively small welfare loss compared to the alternatives. These main conclu-
sions are not sensitive to the relative weight λ on output gap deviations in the loss function (which
is set at 0.1 in Table 2).30

We now consider expected social welfare losses in the above model. To do so, we follow the
“expected outcomes” approach of Section 3.2 that computes a weighted average in which the
weights are the probabilities that expectations will coordinate on each solution. The latter can
be viewed as an expected outcome from some initial position or state (period 0) in which it is not
yet known which perfect foresight solution agents’ expectations will coordinate on. Therefore, we
can think of this welfare exercise as an assessment made by policymakers (or researchers) who are
viewing the economy from under the “veil of ignorance.”

We stick with the same policy rule (and parameter values) as in Table 2. Given (20) and a
probability p1 of Solution 1, the expected loss under a given rule is

E0[L]= p1L1 + (1− p1)L2 (21)

where L1 = L2 in the case of rules for which there is a unique solution.
In Figure 11, we plot the expected welfare losses under each rule.While the price-level targeting

rule PLT1 (θp = 1.5) performs best as expected, there is no clear ranking among the other rules
because the expected losses are sensitive to the probability p1 of Solution 1 (both panels). The
“weak response” price-level targeting rule PLT2 (θp = 0.015) is ranked second for all values of p1
up to approx. 0.9998 (right panel), but is then outperformed by the inflation targeting rules IT1 (no
smoothing), and as the probability p1 approaches 1, the inflation targeting rule IT2 (smoothing,
ρi = 0.4) outperforms both the PLT2 rule and IT1, though this requires that the bad solution is a
near-zero probability event.

Overall, the performance of price-level targeting is quite robust compared to the other poli-
cies for which losses are very sensitive to the probability that agents coordinate expectations on
the “good” solution, 1. If the “bad equilibria” have non-trivial probability, price-level targeting
looks highly attractive; however, if the such equilibria are considered extremely unlikely, then the
potential benefits of price-level targeting look smaller and might not be convincing to policymak-
ers. Thus, we see the potential value of assessing robustness of expected welfare to the probability
of the good solution, as in Figure 11.

Finally, a word of caution is in order. It should be noted that since the “good” and “bad” solu-
tions differ under each policy rule, the probabilities of each solution could also differ in these
cases; for example, the “tame” bad solution under price-level targeting with θp = 0.015 (Figure 10)
might be considered more plausible than the highly destabilizing bad solution under inflation tar-
geting with moderate interest rate smoothing (Figure 7, ρi = 0.4). If so, then an analysis like that
in Figure 11 is still useful, but with the caveat that the expected welfare losses under each rule
should be computed conditional on the different probabilities of each solution that the researcher
or policymaker has in mind.31
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Figure 11. Expectedwelfare losses as the probability of Solution 1, p1, is varied. The different interest rate rules are the same
ones as in Table 2. The left panel uses a log scale.

5. Conclusion
In this paper we have extended the guess-verify algorithm in Guerrieri and Iacoviello (2015) to
detect and simulate multiple perfect foresight equilibria of otherwise-linear dynamic models with
news shocks. We showed how to compute expected paths in models with multiple equilibria using
a “prior probabilities” approach, and also how to run stochastic simulations in which there is
switching between equilibria on the simulated path.

We illustrated our algorithm—and the above extensions—using a simple Fisherian model with
“high” and “low” inflation solutions for a range of initial values.We also presented a policy applica-
tion based on a New Keynesian model with a zero lower bound, a policy response to the change in
the output gap (or “speed limit”) rather than its level, and multiple equilibria for some parameter
values. One of these equilibria is a “bad” solution for which self-fulfilling pessimistic expectations
drive down inflation and the output gap, and interest rates spend some time at the lower bound.
Multiplicity arises for a wide range of parameter values with an inflation targeting rule, and rules
with interest rate smoothing or forward guidance do not provide robust solutions to multiplicity
and existence of a bad solution.

However, replacing an inflation target in the interest rate rule with a price-level target shrinks
the indeterminacy region substantially. Our results suggest a simple rule-of-thumb: a strong
enough response of interest rates to the price level avoids indeterminacy by eliminating the
bad solution. Further, a price-level targeting rule is quite robust: when the “bad solution” does
exist, it is not highly deflationary as under the other policies provided the price level response is
small enough. Price-level targeting also performs well against the alternatives in terms of welfare,
including a measure of expected welfare under the veil of ignorance.

The above results highlight some uses of our algorithm, such as policy analysis and simulation,
and suggest some interesting avenues for future research.
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Notes
1 In particular, news shocks enter via a solution matrix of “intercepts” which, conveniently, is recursive.
2 See, for example, the papers by Walsh (2003) and Orphanides (2003) and the references therein.
3 We discuss multiple occasionally-binding constraints in Section 6 of the Supplementary Appendix.
4 For example, with a simple borrowing constraint bt =min{b̄, b∗

t }, we have −bt =max{−b̄,−b∗
t }, so we can replace bt with

−x1,t , where x1,t =max{x1, x∗
1,t}, with x1 = −b̄ and x∗

1,t = −b∗
t .

5 For models with the constraint binding at steady-state, see Section 5 of the Supplementary Appendix.
6 The solution matrices �t , �t ,�t are derived for exogenous structural change in Hatcher (2022) and differ slightly relative
to those in the backward-forward algorithm of Kulish and Pagan (2017); in Guerrieri and Iacoviello (2015) all future news is
zero. For further details, see the Supplementary Appendix, Section 4.
7 Farmer et al. (2015) attribute the incompleteness argument to McCallum (1983). A recent re-statement of the point (in the
context of dynamic lower-bound models) is given by Ascari and Mavroeidis (2022, p. 1).
8 Our interpretation of “veil of ignorance” is in the spirit of Rawls’ “original position.” In particular, outcomes are viewed by
policymakers or researchers at some initial date before the start of calendar time.
9 Adjemian and Juillard (2013) provide a stochastic extended path approach that takes risk into account; however, this
approach is computationally intensive for DSGE models with many shocks.
10 As our algorithm uses guess-verify, it can find a finite number of solutions, but not infinitely many.
11 If the invertibility conditions are not satisfied, computing a pseudo-inverse, as in Chen et al. (2012), would arbitrarily
select a solution path. We do not follow this approach. Codes at: https://github.com/MCHatcher.
12 Our code enumerates triple spells that end in a spell of length l, and allows users to run a loop over l.
13 13. Further, we find some solutions with multiple spells at the bound in our policy application in Section 4; see, in
particular, Figure 8 (bottom right, forward guidance) and Figure 4 in the Supplementary Appendix.
14 E.g.M is a P-matrix ifM +M′ is positive definite, and is not if any diagonal entry is non-positive.
15 Here, we use φω−ψ =ω2 and r + φπt −ψπt−1 > 0 for all t> 1 when π0 ≥ − r

ω2
(since ω ∈ (0, 1)).

16 16. Note that when i1 = 0 (as under Solution 2) we have it = r +ω2πt−1 = [1− (ω)t−1]r> 0 for all t> 1.
17 We say “automate. . .(to some extent)” as researchers may find it beneficial to first view the solution paths and then assign
probabilities. We return to this point below when discussing stochastic simulation.
18 For an interpretation of sunspots in terms of animal spirits, see e.g. Farmer and Guo (1994).
19 In general, there are two initial inflation rates that make the losses L1 (slack) and L2 (bind) equal: π∗

0 = ± r
ω2

. However,
we confine our attention to positive initial inflation in this example.
20 Occbin allows users to find a perfect foresight solution from date 1 onwards under the assumption of zero future shocks,
giving an initial solution x1. The process is then repeated in period 2 (and later periods) but with shocks et drawn at each t; this
is implemented via the “stoch simul” option in Dynare. An application that uses an extended path approach (in a non-linear
setting) is Christiano et al. (2015, Section IV.D).
21 In general, assigning probabilities in stochastic simulations is not easy as the number (and nature) of equilibria is not
known a priori. Researchers may either “find solutions, then assign probabilities” or follow simple rules such as “flat priors”
or “assign low (or high) probability to solutions where the bound is hit.”
22 See https://github.com/MCHatcher/OBC-multiple-equilibria for the replication codes and other files.
23 Walsh (2003) and Yetman (2006) highlight some theoretical advantages of speed-limit policies in New Keynesian mod-
els, while Orphanides (2003) emphasizes that real-time measurement error is substantial for the output gap in levels but is
somewhat smaller for the first-difference of the output gap (as in rule (14)).
24 Intuitively, persistence in the shadow interest rate makes it harder to induce short-lived spells at the lower bound, but
increasing T amounts to a relaxation of this requirement by allowing longer spells.
25 The computational burden of checking whether M is a P-matrix for very large T means that our results are suggestive
rather than conclusive. As a sanity check, we also studied some individual perfect foresight simulations for uniqueness (with
affirmative results) for values of T up to 100 and several ρi ≥ 0.8.
26 Note that “Unique: 0%, Indeterminacy: 100%” refers to the percentage of outcomes for 800 particular sets of initial
conditions which differ only in terms of the magnitude of the forward guidance news shocks.
27 For several additional examples, see Section 3.4 of the Supplementary Appendix. For instance, for θp = 0.2 there are mul-
tiple solutions, and the “bad” solution has worse destabilization than under the original rule. The relative welfare loss comes
out at L2 = 17, 593—cf. Table 2 below—while the “good” loss is L1 = 1.2.
28 See Walsh (2017, Ch. 8) for a derivation and Vestin (2006) for an application. The target output gap is zero when fiscal
policy offsets steady-state distortions. The weight λ depends e.g. on κ , but the elasticity of substitution of differentiated goods
can be set to increase or decrease λ while holding everything else fixed.
29 If Rule IT2 instead had ρi = 0.8, there is a unique solution (see Figure 7) but the loss L1 is larger than under PLT1 at
around 0.6. Higher ρi do not seem to change the conclusion that the loss is larger.
30 We set a relatively small value for λ because typical parameter values imply a rather low weight on output gap variations
in the loss function, as is standard in the New Keynesian literature.
31 In particular, the expected loss in (21) would be computed for each policy at different probabilities p1.

https://doi.org/10.1017/S1365100525000021 Published online by Cambridge University Press

https://github.com/MCHatcher
https://github.com/MCHatcher/OBC-multiple-equilibria
https://doi.org/10.1017/S1365100525000021


22 Michael Hatcher

References
Adjemian, S., H. Bastani, M. Juillard, F. Mihoubi, G. Perendia, M. Ratto and S. Villemot. (2011). Dynare: Reference manual,

version 4.
Adjemian, S. and M. Juillard. (2013). Stochastic extended path approach. Unpublished manuscript, 25.
Ascari, G. and S. Mavroeidis. (2022) The unbearable lightness of equilibria in a low interest rate environment. Journal of

Monetary Economics 127, 1–17.
Binder, M. and M. H. Pesaran. (1997) Multivariate linear rational expectations models: characterization of the nature of the

solutions and their fully recursive computation. Econometric Theory 13(6), 877–888.
Blanchard, O. J. and C. M. Kahn. (1980) The solution of linear difference models under rational expectations. Econometrica

48(5), 1305–1311.
Boehl, G. (2022) Efficient solution and computation of models with occasionally binding constraints. Journal of Economic

Dynamics and Control 143, 104523.
Brendon, C., M. Paustian and A. Yates. (2013) The pitfalls of speed-limit interest rate rules at the zero lower bound.Working

Paper No. 473. Bank of England.
Chen, H., V. Cúrdia and A. Ferrero. (2012) The macroeconomic effects of large-scale asset purchase programmes. The

Economic Journal 122(564), F289–F315.
Christiano, L. J., M. S. Eichenbaum andM. Trabandt. (2015) Understanding the great recession. American Economic Journal:

Macroeconomics 7(1), 110–167.
Eggertsson, G. B., S. K. Egiev, A. Lin, J. Platzer and L. Riva. (2021) A toolkit for solving models with a lower bound on interest

rates of stochastic duration. Review of Economic Dynamics 41, 121–173.
Eggertsson, G. and M. Woodford. (2003) The zero bound on interest rates and optimal monetary policy. Brookings Papers on

Economic Activity 2003(1), 139–211.
Farmer, R. E. and J.-T. Guo. (1994) Real business cycles and the animal spirits hypothesis. Journal of Economic Theory 63(1),

42–72.
Farmer, R. E., V. Khramov and G. Nicolò. (2015) Solving and estimating indeterminate dsge models. Journal of Economic

Dynamics and Control 54, 17–36.
Giannoni, M. P. (2014) Optimal interest-rate rules and inflation stabilization versus price-level stabilization. Journal of

Economic Dynamics and Control 41, 110–129.
Guerrieri, L. and M. Iacoviello. (2015) Occbin: a toolkit for solving dynamic models with occasionally binding constraints

easily. Journal of Monetary Economics 70, 22–38.
Hatcher, M. (2022) Solving linear rational expectations models in the presence of structural change: some extensions. Journal

of Economic Dynamics and Control 138, 104359.
Holden, T. D. (2016) Computation of solutions to dynamic models with occasionally binding constraints. EconStor Working

Paper. ZBW. Available at https://www.econstor.eu/handle/10419/144569.
Holden, T. D. (2023) Existence and uniqueness of solutions to dynamic models with occasionally binding constraints. The

Review of Economics and Statistics 105(6), 1481–1499.
Jung, T., Y. Teranishi and T. Watanabe. (2005) Optimal monetary policy at the zero-interest-rate bound. Journal of Money,

Credit, and Banking 37(5), 813–835.
Kulish, M. and A. Pagan. (2017) Estimation and solution of models with expectations and structural changes. Journal of

Applied Econometrics 32(2), 255–274.
McCallum, B. T. (1983) On non-uniqueness in rational expectations models: An attempt at perspective. Journal of Monetary

Economics 11(2), 139–168.
Mehra, Y. P. (2002) Level and growth policy rules and actual fed policy since 1979. Journal of Economics and Business 54(6),

575–594.
Orphanides, A. (2003) The quest for prosperity without inflation. Journal of Monetary Economics 50(3), 633–663.
Sims, C. A. (2002) Solving linear rational expectations models. Computational Economics 20(1-2), 1–20.
Tsatsomeros, M. J. and L. Li. (2000) A recursive test for p-matrices. BIT Numerical Mathematics 40(2), 410–414.
Uhlig, H. (1999) A toolkit for analyzing nonlinear dynamic stochastic models easily. In Marimon, R. and Scott, A.

(eds.), Computational Methods for the Study of Dynamic Economies. Oxford, UK: Oxford University Press.
Vestin, D. (2006) Price-level versus inflation targeting. Journal of Monetary Economics 53(7), 1361–1376.
Walsh, C. E. (2003) Speed limit policies: the output gap and optimal monetary policy. American Economic Review 93(1),

265–278.
Walsh, C. E. (2017).Monetary Theory and Policy, 4th Edn. Cambridge, MA: The MIT Press.
Yetman, J. (2006) Are speed limit policies robust? Journal of Macroeconomics 28(4), 665–679.

Cite this article: Hatcher M (2025). “Simulating multiple equilibria in rational expectations models with
occasionally-binding constraints: An algorithm and a policy application.” Macroeconomic Dynamics 29(e73), 1–22.
https://doi.org/10.1017/S1365100525000021

https://doi.org/10.1017/S1365100525000021 Published online by Cambridge University Press

https://www.econstor.eu/handle/10419/144569
https://doi.org/10.1017/S1365100525000021
https://doi.org/10.1017/S1365100525000021

	
	Introduction
	Methodology
	Preliminaries
	Solution algorithm
	Implementing the algorithm
	Fisherian example

	Simulating multiple equilibria
	Determining an equilibrium path
	Expected outcomes
	Stochastic simulations

	Policy application
	A New Keynesian model
	Interest rate smoothing
	Forward guidance
	Price-level targeting
	Welfare analysis

	Conclusion


