
J. Fluid Mech. (2019), vol. 860, pp. 5–39. c© Cambridge University Press 2018
doi:10.1017/jfm.2018.865

5

Temporal stability analysis of jets of
lobed geometry

Benshuai Lyu1,† and Ann P. Dowling1

1Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

(Received 29 March 2018; revised 2 September 2018; accepted 19 October 2018;
first published online 5 December 2018)

A two-dimensional temporal incompressible stability analysis is performed for
lobed jets. The jet base flow is assumed to be parallel and of a vortex-sheet
type. The eigenfunctions of this simplified stability problem are expanded using the
eigenfunctions of a round jet. The original problem is then formulated as an innovative
matrix eigenvalue problem, which can be solved in a very robust and efficient manner.
The results show that the lobed geometry changes both the convection velocity and
temporal growth rate of the instability waves. However, different modes are affected
differently. In particular, mode 0 is not sensitive to the geometry changes, whereas
modes of higher orders can be changed significantly. The changes become more
pronounced as the number of lobes N and the penetration ratio ε increase. Moreover,
the lobed geometry can cause a previously degenerate eigenvalue (λn = λ−n) to
become non-degenerate (λn 6= λ−n) and lead to opposite changes to the stability
characteristics of the corresponding symmetric (n) and antisymmetric (−n) modes. It
is also shown that each eigenmode changes its shape in response to the lobes of the
vortex sheet, and the degeneracy of an eigenvalue occurs when the vortex sheet has
more symmetric planes than the corresponding mode shape (including both symmetric
and antisymmetric planes). The new approach developed in this paper can be used to
study the stability characteristics of jets of other arbitrary geometries in a robust and
efficient manner.

Key words: instability, jets, shear layers

1. Introduction

Aircraft noise reduction is an urgent issue nowadays. Among the many sources of
noise of an aircraft, jet noise is still a significant contributor. This is especially true
when an aircraft is taking off. While the exact role played by jet instabilities in noise
generation is still open to some debate for subsonic jets, recent studies (Cavalieri et al.
2014; Lyu & Dowling 2016; Piantanida et al. 2016; Lyu, Dowling & Naqavi 2017)
have shown that installed jet noise is dominated by the scattering of jet instability
waves by the trailing edge of aircraft wings or flaps. To suppress or reduce installed
jet noise, one can examine the possibility of controlling these instability waves. Since
instability waves are closely related to jet mean flows, one such an approach is to
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6 B. Lyu and A. P. Dowling

modify jet mean flows to become less axisymmetric. The feasibility of this approach,
however, hinges on the hope that the instability waves can be somehow suppressed
by using a less-axisymmetric jet mean flow. This raises the question of examining
the stability characteristics of jets of general non-axisymmetric geometries.

Though jet instability is among the most heavily studied areas in fluid mechanics
(Morris 2010), the research on the characteristics of the instability waves of
non-axisymmetric jets is rather limited. Some of the early attempts include those
on elliptic and rectangular jets. These include some analytical (Crighton 1973),
numerical (Morris 1988; Tam & Thies 1993; Baty & Morris 1995) and some
relevant experimental studies focusing on the turbulence, mixing and acoustics of
non-axisymmetric jets (Tam & Zaman 2000; Li et al. 2001, 2002; Hu et al. 2002;
Li et al. 2002; Zaman, Wang & Georgiadis 2003; Miao et al. 2015). The analytical
work of Crighton (1973) showed that separable solutions can be obtained for elliptic
jets. The instability waves aligned with the major and minor axes exhibit different
behaviours. Not surprisingly, the instability waves of rectangular jets share similar
characteristics (Tam & Thies 1993). Analytical works normally assumed the mean
flow to be of a vortex sheet type to allow mathematical derivations to proceed. For
more realistic jet mean flows, numerical methods had to be adopted. For example,
Morris (1988) numerically solved the eigenvalue problem in the elliptic cylindrical
coordinates for the realistic mean flow in the initial mixing region of a jet. It was
found that all modes, no matter whether even or odd about the major axis, have
similar spatial growth rates.

Both elliptic and rectangular jets have two symmetric axes (or planes). From the
noise reduction point of view, however, it is desirable to promote instability waves
of higher-order azimuthal modes. First, this is preferable to suppress isolated jet
noise. Because it has been shown that sound sources of lower-order modes are more
efficient at low frequencies for subsonic isolated jets owing to the so-called radial
compactness (Michalke 1970; Mankbadi & Liu 1984; Cavalieri et al. 2013). Second,
this is beneficial to reduce installed jet noise. It is known that high-order instability
modes decay faster with radial distance than those of low orders, Hence, when they
are scattered into sound by a sharp edge placed nearby, faster decay implies weaker
sound generation owing to the scattering of weaker instability waves.

Instability waves of high-order azimuthal modes may be expected to be promoted by
jet mean flows with more azimuthal periodic structures, such as lobe jets. One of the
simple lobed profiles can be described as σ =a(1+ ε cos Nθ), where σ is the radius of
the lobed profile, a the mean radius, N the number of lobes and ε the penetration ratio
quantifying how large the lobes are. The open literature on the stability of lobed jets
is, however, very sparse (Morris 2010). In a study performed by Kopiev et al. (2004)
on supersonic jet noise, a spatial stability analysis was undertaken to examine the
effects of weak corrugation on the instability characteristics of a parallel vortex sheet
with supersonic flow speed. A leading-order asymptotic correction to the complex
wavenumber α for the round jet when ε→ 0 was obtained. The results showed that at
low St, where St is the Strouhal number based on the jet exit velocity U and a, a small
ε may lead to a O(ε) change to the spatial growth rate if the azimuthal mode number
n is less than the number of lobes N. More interestingly, it was shown that if the sum
of the two positive mode numbers is equal to N, the changes to the values of their
α have opposite tendencies. The asymptotic solution shown in this study, however,
relies on numerically solving transcendental equations and is therefore non-trivial to
compute. In addition, because the correction is restricted to O(ε) or O(ε2) only when
ε→ 0, it remains to be seen to what extent the corrugation can change the stability
characteristics at a finite or large ε.
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Temporal stability analysis of jets of lobed geometry 7

Of close relevance to the lobed jets are some recent studies on the stability
characteristics of chevron jets (Lajús Jr, Cavalieri & Deschamps 2015; Sinha et al.
2016). This is because the mean flow profiles of chevrons jets are very similar to those
of lobed jets. The work of Lajús Jr et al. (2015) was based on numerically solving
the compressible Rayleigh equation for an azimuthally periodic base flow. This study
explored the effects of azimuthal variations of the shear layer thickness and flow
radius of the mean flow on the stability characteristics. Two types of base flow were
used. The first was fitted based on a Mach 0.9 chevron jet and the second on a
Mach 0.4 micro-jet. For the chevron case, the results showed that the variation of
shear-layer thickness has opposite effect to that of the radius. The combination of
the two, however, results in a larger reduction of the spatial growth rates. It was
concluded that chevron is more effective in controlling jet noise. The last section of
this paper showed the effects of the number of lobes. The preliminary results showed
that the number of lobes is not very important to the mode 0 instability wave, which
will be seen to be consistent with the results obtained in this paper.

In the study of Sinha et al. (2016), a viscous spatial linear stability analysis was
performed numerically using the parabolized stability equation (PSE) approach. The
solutions to the parallel-flow stability equations were obtained first to initiate the
PSE. The linear stability theory (LST) results showed that the serrations reduce the
spatial growth rate of the most unstable eigenmodes of the jet, but their phase speeds
are similar. For example, the serrations appeared to reduce the spatial growth rate
and increase the convection velocity of the mode 0 instability wave. These effects
are found to be in accord with the findings to be shown in the rest of this paper.
The PSE results were compared with the proper orthogonal decomposition (POD)
modes of the near-field pressure obtained experimentally. Favourable agreement was
achieved. Similar agreement was obtained to the results from a further investigation
using a large eddy simulation (LES) database. It was concluded that the coherent
hydrodynamic pressure fluctuations of jets from both round and serrated nozzles agree
reasonably with the instability modes of turbulent mean flows.

Given the sparse analytical work on the stability of lobed jets and that the majority
of studies on this are numerically based, it is desirable to perform some analytical
studies, hoping to unveil more of the physics of lobed jets’ instability waves, such as
the effects of varying N and ε on the instability waves of different mode numbers, and
provide more insight into understanding the jet physics. In the following section, we
present such an analysis within the temporal stability analysis framework, proposing
an innovative analytical method of studying how a general non-axisymmetric jet mean
flow changes the behaviour of instability waves. More importantly, the method does
not involve solving transcendental equations and would work for finite or even large
values of ε. The method can also be used to study a wide range of other problems
in an efficient and robust manner.

2. Temporal stability analysis for non-axisymmetric jets
2.1. The governing equation for non-axisymmetric vortex-sheet flows

Following the routine procedure of stability analysis, we decompose the flow into base
and fluctuation parts. Note that the time-average mean flow is often taken as the base
flow, and hence in this paper we use the mean flow and base flow interchangeably.
We start with the incompressible Navier–Stokes equations since installed jet noise is
relevant primarily at low Mach numbers. At this stage, we write equations in a vector
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8 B. Lyu and A. P. Dowling

form to avoid the introduction of coordinate systems. The momentum equation can be
written as

Dv

Dt
=−

1
ρ
∇p+ ν∇2v, (2.1)

where t denotes time, v denotes the fluid velocity, ρ denotes the flow density, p
denotes the pressure and ν denotes the dynamic viscosity. We assume that base flow
is steady, with flow density, velocity and pressure to be ρ, U and p̄, respectively, and
that the base flow satisfies

DU
Dt
=−

1
ρ
∇p̄+ ν∇2U. (2.2)

The total flow field is given by the sum of the base flow and the small perturbation.
After substituting the total flow into (2.1) and ignoring second-order quantities, we
have the following linearized equation:

∂v′

∂t
+U · ∇v′ + v′ · ∇U=−

1
ρ
∇p′ + ν∇2v′, (2.3)

where the prime symbols denote the corresponding fluctuation quantities. When the
Reynolds number is high, we expect that the viscous term plays a negligible role.
Hence the term ν∇2v′ can be neglected, i.e.

∂v′

∂t
+U · ∇v′ + v′ · ∇U=−

1
ρ
∇p′. (2.4)

Equation (2.4), together with the incompressible continuity equation

∇ · v′ = 0, (2.5)

governs the small-amplitude inviscid perturbations over a steady base flow.
The perturbation field is generally rotational for general shear base flows. Therefore,

it cannot be described using a potential function. However, for parallel flows of
a vortex-sheet type, the base flows inside and outside the vortex sheet are both
irrotational. Hence, the perturbation should also be irrotational. This suggests the
existence of a potential function ψ for the velocity perturbations, i.e.

v′ =∇ψ, (2.6)

on either side of the vortex sheet. The function ψ will be discontinuous across the
shear layer. From the (2.5), one can see that the velocity potential satisfies the Laplace
equation, i.e.

∇
2ψ = 0. (2.7)

The pressure perturbation is effectively decoupled from the velocity potential and can
be easily obtained from (2.4).

The vortex-sheet simplification was used extensively in stability analysis, in
large due to the fact that an analytical dispersion relation can be generally found
(Batchelor & Gill 1962; Crighton 1973; Kawahara et al. 2003). From these dispersion
relation, one can gain more insight than numerical simulations can offer. In
addition, the vortex-sheet simplification is often permissible, particularly for analysing
low-frequency instability waves. Though a realistic jet mean flow spreads slowly
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Temporal stability analysis of jets of lobed geometry 9

and has an increasingly thick mixing layer towards downstream, the vortex-sheet
simplification should serve as a good approximation to the realistic flow close to the
jet nozzle. Therefore, in this paper we assume the base flow to be parallel and of a
vortex-sheet type.

Since the velocity potentials exist for the vortex-sheet problem, we let ψ+ and ψ−
denote the potentials outside and inside of the vortex sheet, respectively, i.e.

v′
±
=∇ψ±, (2.8)

where v′
+ and v′

− denote the velocity perturbations outside and inside the vortex
sheet, respectively. Considering the parallel-flow assumption, we now introduce the
cylindrical coordinates σ , φ and z, as shown in figure 1. In this coordinate frame, the
velocity potentials ψ±(σ , φ, z, t) satisfy the following Laplace equation:

∇
2ψ±(σ , φ, z, t)= 0. (2.9)

Note that we have not yet restricted the profiles of the vortex sheet. It therefore can
be of arbitrary geometry, such as rectangular, elliptic or lobed. One can therefore
let a general function R(φ) denote the radius of the vortex sheet at polar angle φ.
Consequently, the profile of the vortex sheet can be specified as

F(σ , φ)= σ −R(φ)= 0. (2.10)

2.2. The eigenvalue problem
Without losing generality, one may assume

ψ± =

∞∑
m=−∞

AmE±m(σ , φ)e
iαze−iωt, (2.11)

where Am are complex constants, α and ω are the streamwise wavenumber and
frequency, respectively. The functions E±m(σ , φ) are linearly independent of each
other and each pair of them at a given m satisfies both the governing equations and
appropriate boundary conditions. The functions E+m(σ , φ) and E−m(σ , φ) are therefore
defined in the two-dimensional regions outside (σ >R(φ)) and inside (σ 6R(φ)) the
vortex-sheet profile, respectively, as shown in figure 2.

We choose to normalize the functions E−m(σ , φ) such that for any integer m

1
2π

∫ 2π

0
E−m(a, φ)E

−

m
∗
(a, φ) dφ = 1, (2.12)

where a, as defined in § 1 and shown in figure 2, is the mean radius of the vortex
sheet, which is defined by

a=
1

2π

∫ 2π

0
R(φ) dφ. (2.13)

We cannot normalize E+m(σ , φ) according to (2.12), because E−m(σ , φ) and E+m(σ , φ)
are not independent. In fact, either the dynamic or the kinematic boundary condition
is sufficient to determine E+m(σ , φ) from a given E−m(σ , φ). Therefore, E+m(σ , φ) has
to be determined such that for the same mode number m, the functions E+m(σ , φ)
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10 B. Lyu and A. P. Dowling

Parallel vortex sheet

z

ß

ƒ

FIGURE 1. The cylindrical coordinate system: the z axis is parallel to the vortex sheet, the
origin is at the centre of the lobed profile and φ denotes the anticlockwise angle between
the radial axis and the horizontal dashed line.

Decaying towards inifinity

  Finite 
at centre

Kinematic and dynamic boundary 
conditions across the vortex sheet

ß = a

ß → ∞

FIGURE 2. (Colour online) Schematic illustration of the boundary conditions of the
stability problem of a parallel lobed vortex sheet.

and E−m(σ , φ) satisfy the boundary conditions. One should note that E−m(a, φ) are not
properly defined within some ranges of φ (because E−m(σ , φ) is defined for σ 6R(φ)
and a > R(φ) in some ranges of φ, see figure 2 for example). However, they can
be naturally defined using analytical continuation, which will become clear at a later
stage. Hence, the normalization defined by (2.12) is valid.

Substituting E±m(σ , φ) into (2.9) yields the governing equation[
∂2

∂φ2
+ σ

∂

∂σ

(
σ
∂

∂σ

)
− α2σ 2

]
E±m(σ , φ)= 0. (2.14)

Equation (2.14) is to be solved subject to appropriate boundary conditions. These are a
finite value of E−m(0, φ), a decay behaviour for E+m(σ , φ) as σ→∞, and the kinematic
and dynamic boundary conditions across the vortex sheet (Batchelor & Gill 1962;
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Temporal stability analysis of jets of lobed geometry 11

Crighton 1973). Because all the function pairs E±m(σ , φ) satisfy both (2.14) and their
relevant boundary conditions, they are referred to as the eigenfunctions of this system.
The functions {E±m(σ , φ)} should form a complete set of basis for the Hilbert space
determined by (2.14) and appropriate boundary conditions. The aim of the next section
is to calculate these eigenfunctions analytically (without discretizing (2.14) and then
solving it numerically).

2.3. The calculation of eigenfunctions
Due to the coupling of σ and φ of the boundary conditions, E±m(σ ,φ) are not generally
expected to be of a separable form. However, in the case of a cylindrical vortex sheet
(round jet), the eigenfunctions E±m(σ , φ) are known to be separable. Before proceeding
to the case of more general vortex sheets, it is instructive to review the characteristics
of E±m(σ , φ) for a cylindrical vortex sheet.

2.3.1. The solution for a cylindrical vortex sheet
For the cylindrical vortex-sheet flow, the solutions were derived by Batchelor & Gill

(1962) and we review them to introduce the notation and, more importantly, these
solutions form the basis for analysing more complicated geometries in the following
section. The potentials ψ± are known to be able to be expanded as

ψ± =

∞∑
n=−∞

Ψ ±n (σ )e
inφeiαze−iωt, (2.15)

where the functions Ψ ±n (σ ) satisfy the modified Bessel equation

σ 2 d2Ψ ±n

dσ 2
+ σ

dΨ ±n
dσ
− (α2σ 2

+ n2)Ψ ±n = 0. (2.16)

Considering the boundary condition at the centre of the mean flow and at infinity, one
can show that

Ψ −n (σ )=C−n
1

In(αa)
In(ασ),

Ψ +n (σ )=C+n
1

Kn(αa)
Kn(ασ),

 (2.17)

where C−n and C+n are arbitrary complex constants and In and Kn are the modified
Bessel functions of the first and second kinds, respectively.

Applying the kinematic and dynamic boundary condition on the vortex sheet, one
obtains

(ω− αU)
∂Ψ +n

∂σ
=ω

∂Ψ −n

∂σ
, (2.18a)

ωΨ +n = (ω− αU)Ψ −n , (2.18b)

where use is made of the fact that the function set {einφ
} is orthogonal. For a non-

trivial pair of solutions to exist (C−n C+n 6= 0), equations (2.18a) and (2.18b) can be
rearranged to yield the dispersion relation(

αU
ω
− 1
)2

=
I′n(αa)Kn(αa)
In(αa)K ′n(αa)

. (2.19)
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12 B. Lyu and A. P. Dowling

In this special case, one can verify that the eigenfunctions, E+n (σ , φ) and E−n (σ , φ),
take the separable form of

E−n (σ , φ)=
1

In(αa)
In(ασ)einφ,

E+n (σ , φ)=
(

1−
αU
ω

)
1

Kn(αa)
Kn(ασ)einφ,

 (2.20)

where (1− αU/ω) is obtained from (2.19). Here, E±n (σ , φ) take these simple forms
because the boundary condition involves no coupling between σ and φ (separable),
and therefore these separable solutions are just the eigenfunction of the mathematical
problem.

2.3.2. The solution for a vortex sheet of arbitrary geometry
For the case of a non-axisymmetric vortex sheet, the perturbations outside and

inside the vortex sheet still remain determined by the Laplace equation. However,
the boundary condition is now more complicated. If we were to find an orthogonal
coordinate system in which the vortex-sheet profile can be represented by one of the
constant coordinate axes, we may be able to find a separable solution. For elliptic
profiles, such a coordinate system exists and eigenfunctions of separable form can be
obtained (Crighton 1973). However, it seems rather unlikely to find such a coordinate
system for a general profile.

However, in light of the completeness of the orthogonal function set {einφ
}, we are

still able to write the solutions inside and outside the vortex sheet as

ψ− =

∞∑
−∞

C−n
1

In(αa)
In(ασ)einφeiαze−iωt,

ψ+ =

∞∑
−∞

C+n
1

Kn(αa)
Kn(ασ)einφeiαze−iωt,

 (2.21)

respectively. We must emphasize here that neither the solution In(ασ)einφ/In(αa) nor
that Kn(ασ)einφ/Kn(αa) is the eigenfunction for this problem, since they do not satisfy
the boundary conditions on the vortex sheet (although they satisfy (2.14)). However,
since they form a complete set, a suitable combination of these separable solutions
which satisfies the boundary conditions will be the eigenfunction that we aim to
obtain in this section. There may be multiple such combinations, corresponding to
eigenfunctions of different orders. For a more compact presentation of the rest of the
derivation, let

C̄−n =C−n
1

In(αa)
, (2.22)

C̄+n =C+n
1

Kn(αa)
. (2.23)

Hence, equation (2.21) becomes

ψ− =

∞∑
−∞

C̄−n In(ασ)einφeiαze−iωt,

ψ+ =

∞∑
−∞

C̄+n Kn(ασ)einφeiαze−iωt.

 (2.24)
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N = 5

0.5 1.0

(a) (b)

FIGURE 3. (Colour online) (a) The weakly lobed profiles when ε=0.1. (b) Strongly lobed
profiles when ε = 0.2.

Equation (2.24) needs to satisfy both the kinematic and dynamic boundary
conditions on the vortex sheet, i.e. when σ = R(φ). The two boundary conditions
can be shown to be (see more details in appendix A),

(ω− αU)∇ψ+ · n=ω∇ψ− · n, (2.25a)
ωψ+ = (ω− αU)ψ−, (2.25b)

where n denotes the unit vector normal to the surface of the vortex sheet.

3. Analysis for lobed vortex sheets

In general, R can be an arbitrary function of φ. Since we are mostly concerning
with the stability of lobed jets, which have a number of identical lobes, it follows
that the function R is a periodic function of φ. This suggests that R can be readily
expanded using Fourier series. As a starting point, we restrict our attention to the
simplest case mentioned in § 1, in which case R is given by

R(φ)= a(1+ ε cos Nφ). (3.1)

For weakly lobed nozzles, ε � 1, whereas ε ∼ 0.2 represents a strongly lobed
profile. Figure 3(a) shows some relatively weakly lobed profiles when ε = 0.1, while
figure 3(b) shows some strongly lobed profiles when ε = 0.2. In either case, we
see that ε is a small quantity, and this suggests that the Taylor expansion of a
well-behaved function around ε = 0 should converge sufficiently quickly. For more
general lobed profiles, function cos Nφ can be replaced by a sum over m of terms
with φ dependence cos mNφ and sin mNφ. When R is given by (3.1), we see that

n=
∇F
|∇F |

, (3.2)

and
∇F = eσ + eφ

a
σ
εN sin Nφ, (3.3)
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14 B. Lyu and A. P. Dowling

where eσ and eφ denote the unit vectors in the radial and azimuthal directions,
respectively. Substituting (2.24), (3.1) and (3.2) into (2.25a) and (2.25b) yields(

1−
αU
ω

)( ∞∑
n=−∞

C̄+n K ′n(αa(1+ ε cos Nφ))einφ

+
εN sin Nφ

αa(1+ ε cos Nφ)2

∞∑
n=−∞

C̄+n (in)Kn(αa(1+ ε cos Nφ))einφ

)

=

(
∞∑

n=−∞

C̄−n I′n(αa(1+ ε cos Nφ))einφ

+
εN sin Nφ

αa(1+ ε cos Nφ)2

∞∑
n=−∞

C̄−n (in)In(αa(1+ ε cos Nφ))einφ

)
,

∞∑
n=−∞

C̄+n Kn(αa(1+ ε cos Nφ))einφ
=

(
1−

αU
ω

) ∞∑
n=−∞

C̄−n In(αa(1+ ε cos Nφ))einφ.


(3.4)

3.1. Weakly lobed profile
For weakly lobed profile, ε� 1, therefore we may expand both left- and right-hand
sides of (3.4) around ε = 0 and keep only the first order without causing too much
error. In doing so, the first-order equations can be obtained and, after collecting the
terms of the same einφ , written as

∞∑
n=−∞

[
C̄+n K ′n(αa)+ C̄+n−N

(
K ′′n−N(αa)

αa
2
+Kn−N(αa)

(n−N)N
2αa

)
ε

+C+n+N

(
K ′′n+N(αa)

αa
2
−Kn+N(αa)

(n+N)N
2αa

)
ε

]
einφ

=

(
1

1− αU
ω

) ∞∑
n=−∞

[
C̄−n I′n(αa)+ C̄−n−N

(
I′′n−N(αa)

αa
2
+ In−N(αa)

(n−N)N
2αa

)
ε

+ C̄−n+N

(
I′′n+N(αa)

αa
2
− In+N(αa)

(n+N)N
2αa

)
ε

]
einφ,

∞∑
n=−∞

(
C̄+n Kn(αa)+ C̄+n−NK ′n−N(αa)

αa
2
ε + C̄+n+NK ′n+N(αa)

αa
2
ε
)

einφ

=

(
1−

αU
ω

) ∞∑
n=−∞

(
C̄−n In(αa)+ C̄−n−NI′n−N(αa)

αa
2
ε + C̄−n+NI′n+N(αa)

αa
2
ε
)

einφ.


(3.5)

The above equations can be written in a more compact matrix form, from which the
effects of lobed jets can be seen more clearly. Let K (αa) denote the diagonal matrix

K (αa)= diag(. . .K−1(αa),K0(αa), K1(αa) . . .), (3.6)
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Temporal stability analysis of jets of lobed geometry 15

and let K c(αa) and K s(αa) be

K c(αa)=


. . . . . .

. . .K−N−1(αa) . . .KN−1(αa) . . . . . . . . .
. . . . . .K−N(αa) . . . . . .KN(αa) . . . . . .

. . . . . . . . .K−N+1(αa) . . . . . . . . .KN+1(αa) . . .
. . . . . . . . . . . . . . . . . . . . . . . .

 , (3.7)

and

K s(αa)=


. . . . . .

. . .K−N−1(αa)(−N − 1) . . .−KN−1(αa)(N − 1) . . . . . . . . .
. . . . . .K−N(αa)(−N) . . . . . .−KN(αa)N . . . . . .

. . . . . . . . .K−N+1(αa)(−N + 1) . . . . . . . . .−KN+1(αa)(N + 1) . . .
. . . . . . . . . . . . . . . . . . . . . . . .

 . (3.8)

Clearly, each element of the matrices K (αa), K c(αa) and K s(αa) is a function of αa
and, consequently, these matrices are essentially function matrices with an argument
αa. We can therefore define the nth derivative of a matrix to be the matrix formed
by the nth derivative of each element function. For example, the first derivative of
K c(αa) is

K ′c(αa)=


. . . . . .

. . .K ′
−N−1(αa) . . .K ′N−1(αa) . . . . . . . . .

. . . . . .K ′
−N(αa) . . . . . .K ′N(αa) . . . . . .

. . . . . . . . .K ′
−N+1(αa) . . . . . . . . .K ′N+1(αa) . . .

. . . . . . . . . . . . . . . . . . . . . . . .

 . (3.9)

If one replaces the modified Bessel function of the second kind Kn(αa), in matrices
K (αa), K c(αa) and K s(αa), with function In(αa), the matrices I(αa), Ic(αa) and I s(αa)
can be similarly defined. Upon defining the vector

C̄± =
[
. . . , C̄±

−n, . . . , C̄±0 , . . . , C̄±n , . . .
]T
, (3.10)

where [ ]T denotes the transpose of matrix [ ], equation (3.5) can be readily written
as (

1−
αU
ω

) [
K ′(αa)+ ε

(
K ′′c(αa)

αa
2
+ K s(αa)

N
2αa

)]
C̄+

=

[
I ′(αa)+ ε

(
I ′′c(αa)

αa
2
+ I s(αa)

N
2αa

)]
C̄−,[

K (αa)+ εK ′c(αa)
αa
2

]
C̄+ =

(
1−

αU
ω

) [
I(αa)+ εI ′c(αa)

αa
2

]
C̄−.


(3.11)

Equation (3.11) represents the dispersion relation for the considered lobed jet
to the first-order accuracy. It is worth noting that both K (αa) and I(αa) are
diagonal matrices. Therefore, in the case of ε = 0, i.e. the axisymmetric vortex
sheet, equation (3.11) represents a set of decoupled dispersion relation equations.
Consequently, stability analysis can be performed for each mode individually and the
results are identical to those obtained by Batchelor & Gill (1962), as shown above.
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16 B. Lyu and A. P. Dowling

When ε 6= 0, the equations governing the dispersion relations are coupled equations,
hence the equations must be solved together.

Before proceeding to solve these equations, it is informative to examine how
lobed vortex-sheet profiles affect the characteristic matrices. First, one can see
that the coupling only occurs between modes n, n − N and n + N. Had we
included higher-order terms (ε2, ε3, . . .), the coupling would involve modes n ± kN
(k = 0, ±1, ±2, . . .). This shows that the lobed profile affects the instability waves
by modulating them with its own periodicity. Second, the modulating effects occur
in two ways: modifying the radial length scales and changing the normal directions
of vortex sheet. The effects of modifying the radial length scales are represented
by the K (i)

c (αa) and I (i)c (αa) matrices (i here denotes the ith derivative). Take the
strongly-lobed profile of N = 2, as shown in figure 3(b), as an example. At such a
large value of ε, the lobe profile resembles that of an elliptic vortex sheet. Hence,
the radial length scales of the major and the minor axes are different. It is known
that this causes different behaviour for instability waves orientated with different axes
(Crighton 1973). In the dynamic boundary conditions shown in (3.11), the K ′c(αa)
and I ′c(αa) terms account for the different length scales (to the first-order accuracy)
and ensure pressure is continuous across the vortex sheet. The K s(αa) and I s(αa)
matrices, on the other hand, account for changing of the restrictions on the normal
perturbation velocities across the vortex sheet. Equation (2.25a) shows that it is the
normal (to the vortex sheet) perturbation velocities that have to satisfy the jump
condition. From (3.3) it is evident that the use of lobed nozzles can significantly
change the local normal directions of the vortex sheet and, hence, the instability
characteristics. In addition, it is clear from (3.3) that the normal direction changes
more pronouncedly as N increases.

To solve (3.11), we write the two matrix equations in a more compact form as(
1−

αU
ω

)
K kC̄

+

= IkC̄
−

, (3.12a)

K dC̄+ =
(

1−
αU
ω

)
IdC̄−. (3.12b)

The definitions of K k, Ik, K d and Ik should be obvious when compared with (3.11),
and from now on we omit the argument αa of relevant matrices for brevity.
Equations (3.12a) and (3.12b) are in terms of C̄±, it is necessary to obtain an
equation in terms of C± (C± is the column vector with elements C±n rather than C̄±n ).
This is because C±n are the coefficients in front of normalized functions and, hence,
represent the proper amplitudes of their corresponding eigenfunctions. On the other
hand, C̄±n denote the non-normalized coefficients, hence their values would depend
on the amplitudes of their eigenfunctions. For example, because the value of In(αa)
at a fixed αa decreases exponentially as n increases, C̄−n would have to increase
exponentially as n increases in order to ensure a physically meaningful result is
obtained. This is clearly not suitable for any numerical evaluations at a later stage.
Therefore, it is essential to rewrite the above two equations in terms of C±. It is
straightforward to show C+ = K C̄+ and C− = IC̄−. Since both I and K are diagonal
matrices, it is trivial to calculate their inverse matrices I−1 and K−1. Equations (3.12a)
and (3.12b) can be easily changed to(

1−
αU
ω

)
K̃ kC+ = ĨkC−, (3.13a)
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Temporal stability analysis of jets of lobed geometry 17

K̃ dC+ =
(

1−
αU
ω

)
ĨdC−, (3.13b)

where K̃ k = K kK−1, K̃ d = K dK−1, Ĩk = IkI−1, Ĩd = IdI−1. These tilde matrices can be
calculated quickly since both I−1 and K−1 are diagonal.

From (3.13b), we see that

C+ =
(

1−
αU
ω

)
K̃
−1
d ĨdC−. (3.14)

Substituting (3.14) into (3.13a), we have(
1−

αU
ω

)2

K̃ kK̃
−1
d ĨdC− = ĨkC−. (3.15)

Upon multiplying Ĩ
−1
k on both sides of (3.15) and defining A= Ĩ

−1
k K̃ kK̃

−1
d Ĩd, we obtain

the following eigenvalue problem

AC− = λC−, (3.16)

where

λ=

(
1−

αU
ω

)−2

. (3.17)

The matrix A is of an infinite dimension. To calculate its eigenvalues in practical cases,
we may drop all the modes higher than M (and less than −M). Though we expect
results to become inaccurate for large modes close to M, it may yield satisfactory
results for relatively low-order modes when M is taken to be adequately large. These
low-order modes are of our primary interest in this study, since high-order modes
vanish sufficiently quickly according to experimental results (Tinney & Jordan 2008).
In addition, the vortex-sheet assumption would fail for high-order modes anyway. By
truncating high-order terms, we obtain a matrix of (2M + 1) × (2M + 1), and there
are 2M + 1 eigenvalues (degenerate eigenvalues are counted more than once) and
their corresponding eigenvectors. For each obtained eigenvector C−, we can obtain
the corresponding C+ easily from (3.14). The fact that the non-zero eigenvector C−
satisfies (3.16) entails that the non-trivial velocity potential ψ−, determined by C−,
and the corresponding ψ+, determined by C+, satisfy both the kinematic and dynamic
boundary conditions on the vortex sheet. Therefore, each eigenvector represents an
eigenfunction of the lobed problem, i.e.

E−n (σ , φ)=
∞∑

n=−∞

C−n
1

In(αa)
In(ασ)einφ,

E+n (σ , φ)=
∞∑

n=−∞

C+n
1

Kn(αa)
Kn(ασ)einφ.

 (3.18)

One can readily verify that, when C− is normalized such that (C−)∗TC−= 1 and C+ is
obtained from the dynamic boundary conditions shown in (3.14), both E−n (σ , φ) and
E+n (σ , φ) are normalized as described in § 2.2.
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18 B. Lyu and A. P. Dowling

3.2. The mode labelling strategy
When ε= 0, there is a well-defined mode number for each mode. For example, mode
n can be defined as the eigenvector

C− =
[
. . . 0, . . . , 0, . . . ,C−n = 1, . . .

]T
. (3.19)

When ε 6= 0, however, the eigenvector does not posses this simple property. Instead,
the resulting eigenvector has other non-vanishing elements in addition to C−n . We need
to develop an unambiguous strategy to label the eigenmodes.

We can show that the eigenvector C− can be always defined as either symmetric or
antisymmetric (with respect to the element of index 0). This is due to the rotationally
symmetric property possessed by the matrix A, and for brevity we have placed detailed
derivation in appendix B.

Based on this property, we define an eigenvector to have a mode number n if it is
symmetric and

‖C− −G‖ =

√√√√ M∑
j=−M

(|C−j | −Gj)2 (3.20)

yields a minimum value when n varies from −M to M and

G= [. . . , g−n =
√

2/2, . . . , 0, . . . , gn =
√

2/2, . . .]T, (3.21)

where gn is the element of the gauge vector G. For antisymmetric eigenvectors we
label it as −n in a similar manner. For n= 0, it is trivial to label its mode number
and it can be shown that it is a symmetric vector. By labelling the eigenvectors in this
way, equation (3.18) implies that all nonnegative eigenfunctions are even functions of
φ and negative ones odd.

In the following analysis, the mode number for the obtained eigenfunction is
designated according to the above conventions. Then for each mode n, we can
calculate its corresponding eigenvalue λn at a given value of αa. The complex
frequency ω can be directly obtained from λn according to (3.17). This complex
number determines both the growth rate and the convection velocity of its
corresponding instability wave. Therefore, by varying the values of ε and N, one
can easily examine how different lobed geometry changes both the growth rate and
convection velocity of instability waves of different mode numbers.

3.3. Strongly lobed nozzle
For strongly lobed nozzles, e.g. ε∼ 0.2, it is necessary to include high-order terms εn.
Luckily this is not a difficult extension, and all the aforementioned procedures used
to solve the eigenvalue problem remain the same. It suffices to find the high-order
coefficient matrices and add them into (3.11), i.e.

K k = K ′(αa)+ ε
(

K ′′c(αa)
αa
2
+ K s(αa)

N
2αa

)
+ ε2(· · ·)+ · · · ,

Ik = I ′(αa)+ ε
(

I ′′c(αa)
αa
2
+ I s(αa)

N
2αa

)
+ ε2(· · ·)+ · · · ,

K d = K (αa)+ εK ′c(αa)
αa
2
+ ε2(· · ·)+ · · · ,

Id = I(αa)+ εI ′c(αa)
αa
2
+ ε2(· · ·)+ · · · .


(3.22)
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FIGURE 4. (Colour online) The convergence of the temporal growth rate and convection
velocity for the mode 1 instability wave when N=2 and ε= 0.1: (a) the order of accuracy
is fixed at ε10 while M varies from 2 to 8; (b) M is fixed to be 20 while the order of
accuracy varies from ε2 to ε7.

It is worth noting that incorporating higher-order terms does not invalidate the
matrix A being rotationally symmetric, hence all the previous conclusions about its
eigenvectors still remain valid. Owing to the nature of higher-order modified Bessel
functions, expanding them around αa results in a slow convergence when ε is large.
Therefore, the number of high-order terms needed increases quickly as ε increases.
It also increases when we increase the value of M. However, this problem can be
overcome by expanding properly scaled modified Bessel functions. Since in this
study we only need a relatively small M, and the extension of incorporating more
higher-order terms can be promptly automated using computer programming, it is
not strictly necessary to expand the scaled modified Bessel functions instead. For
example, a MATLAB code has been developed that can automatically incorporate
as many orders of terms as needed. Owing to its analytical nature, the computation
is very fast. For example, a comprehensive eigenvalue analysis of order 10 with
M = 20 takes less than 50 ms. All the results shown in the following sections are
obtained by incorporating higher-order terms to the order of 10 (ε10) and with M= 20.
A convergence analysis, to be shown in § 4.1, shows that this is much more than
necessary.

4. Validation and results
As mentioned in the preceding section, both the temporal growth rate and

convection velocity of the instability waves can be readily obtained from (3.17).
In this section, we present the rich results obtained from this procedure.

4.1. Convergence analysis
We first examine the convergence characteristics of this new method when the order
of accuracy m (εm) and M change. To separate the effects of m and M, we can fix M
and vary the values of m and then vice versa. For brevity, we choose to present the
convection velocity and temporal growth rate of mode 1 instability wave and fix the
number of lobes N = 2.

We first show the results for a relatively small penetration ratio, i.e. ε = 0.1. The
results are shown in figure 4. For a compact presentation, we define a complex
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FIGURE 5. (Colour online) The convergence of the temporal growth rate and convection
velocity for the mode 1 instability wave when N=2 and ε= 0.2: (a) the order of accuracy
is fixed at ε10 while M varies from 2 to 8; (b) M is fixed to be 20 while the order of
accuracy varies from ε2 to ε7.

number Uc ≡ ω/α. Therefore, the real part of Uc denotes the convection velocity
while the imaginary part represents the temporal growth rate. Figure 4 shows the real
and imaginary parts of Uc.

Figure 4(a) shows the results when m= 10 and M varies from 2 to 8. One can see
that both the growth rates and convection velocities are hardly distinguishable. This
shows that, for a small value of ε ≈ 0.1, M = 2 is essentially sufficient, at least for
the mode number 1. Of course, we would need a slightly larger value of M if we
were to consider higher-order modes. However, this increase in M is likely to be on
a small scale, because we are only interested in low-order modes as only those are
physically relevant in experiments. Figure 4(b) shows the results when M is fixed at
20 and m varies from 2 to 7. Similar to figure 4(a), the lines are nearly on top of
each other. This shows that for ε ≈ 0.1, a second-order accuracy is sufficient for a
good convergence.

As mentioned in § 3.3, owing to the nature of the modified Bessel functions, the
number of high-order εn terms needed increases quickly as ε increases. To show that
M=20 and m=10 is also sufficient for a large value of ε, we present the convergence
characteristics of this analysis when ε = 0.2 in figure 5.

Figure 5(a) shows the results when m = 10 and M varies from 2 to 8. We can
see that there is an observable difference between the convection velocities calculated
using M= 2 and M= 4. However, there is little change between the results for M= 4
and M= 8. This shows that for strongly lobed geometry at ε≈ 0.2, M must be at least
4. On the other hand, it is interesting to see that the temporal growth rate is much
less sensitive to the change in M than the convection velocity. Figure 5(b) similarly
shows the results for a fixed number M = 20 and a varying m. The observation is
similar to figure 5(a), and it shows that for ε ≈ 0.2, a high-order accuracy up to ε4

or ε6 is recommended. In summary, the results in this section show that M= 20 and
n= 10 can ensure that the obtained eigensolutions are well converged.

4.2. Validation
Section 4.1 merely shows that M = 20 and n = 10 are sufficient for a good
convergence. A converged solution, however, does not always imply a correct one.
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Consequently, before presenting any results, it is necessary to validate this new
analysis framework. Luckily, it is very straightforward to do so. Since the entire
analysis is devoted to calculating the eigenfunctions that satisfy both the kinematic
and dynamic boundary conditions on the vortex sheet, we can examine the obtained
eigenfunctions to ensure that they do indeed satisfy the two boundary conditions.
More precisely, we can show that for each pair of eigenfunctions obtained above, we
have, on the vortex sheet,

(1− αU/ω)∇E+m(σ , φ) · n=∇E−m(σ , φ) · n, (4.1a)
1/(1− αU/ω)E+m(σ , φ)= E−m(σ , φ). (4.1b)

The obtained eigensolution will automatically satisfy the Laplace equation both inside
and outside the vortex sheet, because we have chosen to expand the eigensolution
using a set of basis functions that are already the solutions to the Laplace equation.
Therefore, it is sufficient to validate the method by only verifying that the boundary
conditions are met. In the rest of this paper, we refer to both sides of (4.1a) and
(4.1b) as the normalized normal perturbation velocity and pressure, respectively. One
can first evaluate both sides of the above two equations on the vortex sheet (similar
to (3.4)) and plot them together. If the results are accurate, the normalized normal
perturbation velocity and pressure would collapse. Since the eigenvector of mode n
(n> 0) is symmetric, if it is also real, then it is effortless to show that the imaginary
parts of E−n (σ , φ) are strictly zero. Similarly, the real parts of E−

−n(σ , φ) also vanish
when the eigenvector of mode −n is real. For the results shown in this paper, all the
eigenvectors are real. Therefore, for mode n (n > 0), it suffices to plot only the real
parts of (4.1a) and (4.1b). Likewise, for mode −n (n> 0), one only needs to plot the
imaginary parts. For the sake of brevity, we only show the results for modes −2 and
2. All other modes of interest have similar level of agreement. The results are shown
in figure 6.

Figure 6 shows how the boundary conditions are satisfied by the eigenfunctions of
modes ±2. These results are obtained with αa= 1 and ε = 0.1. Figures 6(a) and 6(b)
show the matches of the left- and right-hand sides of (4.1b) and (4.1a), respectively,
when the number of lobes is N=1. From figure 3(a), one can see that when N=1, the
lobed profile is not very significantly different from the axisymmetric one. The single
lobe merely causes a displacement of the profile centre of the circular vortex sheet.
Therefore, one expects that the dynamics of instability waves shall remain largely
unchanged. Figure 6(a,b) indeed confirms this. Modes 2 and −2 resemble those of
an axisymmetric vortex sheet in every aspect. When N increases to 2, the effects of
lobes are more pronounced, as shown in figure 6(c,d). In particular, the symmetric
(with respect to φ = 0) eigenfunction shown in figure 6(d) starts to deviate from the
normal −cos 2φ function, with its peak somewhat flattened. The mode −2, on the
other hand, remains largely similar to sin 2φ. When N increases to 3, both modes
2 and −2 respond to the change of vortex-sheet geometry and change their shapes
significantly.

It is, however, worth noting that, for N = 1 and N = 2, the eigenvalues λ2 6= λ−2.
Therefore, both E−2 (σ , φ) and E−−2(σ , φ) have a standing wave pattern with respect
to φ and they cannot be combined to produce a travelling wave. However, for N =
3 we find that λ2 = λ−2. Therefore, a travelling-wave pattern can be obtained. The
important observation is that, for all the six figures, exceptionally good matches of
the pressure and normal velocity across the layer of vortex sheet are achieved. The
excellent agreement seen from figure 6 shows that the analytical framework developed
in this section works exceptionally well, at least for the low-order modes such as those
we have just shown.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

86
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.865


22 B. Lyu and A. P. Dowling

RHS mode 2
LHS mode 2
RHS mode –2
LHS mode –2

2

1

0

-1

-2

N
or

m
al

iz
ed

 p
re

ss
ur

e

N
or

m
al

iz
ed

 n
or

m
al

 v
el

oc
ity

0 1 2 3 4 5 6 0 1 2 3 4 5 6

6

4

2

0

-2

-4

-6

2

1

0

-1

-2

N
or

m
al

iz
ed

 p
re

ss
ur

e

N
or

m
al

iz
ed

 n
or

m
al

 v
el

oc
ity

0 1 2 3 4 5 6 0 1 2 3 4 5 6

6

4

2

0

-2

-4

-6

2

1

0

-1

-2

N
or

m
al

iz
ed

 p
re

ss
ur

e

N
or

m
al

iz
ed

 n
or

m
al

 v
el

oc
ity

0 1 2 3 4 5 6 0 1 2 3 4 5 6

6

4

2

0

-2

-4

-6

Azimuthal angle ƒ Azimuthal angle ƒ

(a) (b)

(c) (d)

(e) (f)

FIGURE 6. (Colour online) The match validation of the dynamic (a,c,e) and kinematic
(b,d, f ) boundary conditions for the eigenfunctions of modes ±2 when the number of lobes
N are different: (a,b) N = 1; (c,d) N = 2; (e, f ) N = 3. The normalized wavenumber is
αa= 1 and the lobed profile has a penetration ratio ε = 0.1.

4.3. The effects of lobed profiles on the convection velocity and growth rate of
instability waves

Having validated the analytical framework, we are now in a position to examine the
effects of lobed profiles on the convection velocity and growth rate of instability
waves. In the rest of this section, we plot both quantities versus the normalized
frequency αa, for lobed profiles of different geometry.

We start from showing results for mode 0. These are shown in figure 7. Figure 7(a)
shows the convection velocity and growth rate for a single-lobe profile. To facilitate
a direct comparison with the results of a cylindrical vortex sheet, both quantities
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FIGURE 7. (Colour online) The convection velocity and growth rate of the mode 0 jet
instability waves for vortex sheets of different lobed geometry: (a) N = 1; (b) N = 2; (c)
N = 3; (d) N = 5.

are plotted when ε = 0 first. As can be seen, when the frequency αa increases,
the normalized convection velocity (Re Uc/U) decreases from unity to around 0.5,
whereas the normalized growth rate (Im Uc/U) increases from 0 to the same limit
value. However, it shows that a single lobe does not cause any observable changes
to the characteristics of mode 0 at all frequencies, no matter what value of ε is
used. The same conclusion can be reached for N = 2, which is shown in figure 7(b).
Increasing the number of lobes to 3, however, starts to cause a slightly larger
convection velocity and a marginally lower growth rate. These results are shown
in figure 7(c), from which we see that the changes are only observable at high
frequencies. However, they become more pronounced when the penetration ratio ε
increases. The increase of the convection velocity and the reduction of the temporal
growth rate, caused by lobed vortex-sheet profiles, are more evident when the number
of lobes is increased to 5. As shown in figure 7(d), at high frequencies (αa > 1.5),
a large penetration ratio results in an effective rise of the convection velocity and a
less effective drop of the growth rate. However, one should note that although these
changes are observable, they are not in any way significant.

The fact that serrations increase the convection velocity and reduce growth rates of
mode 0 is in accord with the findings of Lajús Jr et al. (2015) and Sinha et al. (2016).
However, it should be noted that in the work of Sinha et al. (2016), there also exists
a low-frequency band where the spatial convection velocity is slightly reduced. Such
a difference might be caused by the difference between temporal and spatial analysis,
the difference in jet mean flow profiles or the difference in the shear layer thickness.
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FIGURE 8. (Colour online) The convection velocity and growth rate of the mode 1 jet
instability waves for vortex sheets of different lobed geometry: (a) N = 1; (b) N = 2;
(c) N = 3 (d) N = 5.

Figure 7 shows that instability waves of mode 0 are not very sensitive to either
the number of lobes or the penetration ratio. Figure 8, however, shows a different
story for mode 1. The eigenfunctions corresponding to mode 1 are even functions
of φ. Figure 8(a) still indicates that a single lobe does not noticeably change the
characteristics of the mode 1 instability waves. This is somewhat expected. Because,
as we observed before, one single lobe merely causes a displacement of the profile’s
geometrical centre. Therefore, the physics should more or less stay the same as that of
an axisymmetric vortex sheet. This is consistent with the results shown in figure 8(a).
However, figure 8(b) shows that the use of two lobes leads to a pronounced increase
of the convection velocity, and a slight decrease of the temporal growth rate. In
contrast to those shown in figure 7, the increase of the convection velocity is more
marked at low frequencies. Similarly, increasing ε results in a stronger rise of the
convection velocity. It is very interesting to note that the rise of the convection
velocity is nearly linear with respect to ε. The decrease of the temporal growth rate,
however, is most notable in the intermediate frequency range, and the maximum
decrease is very small. Figure 8(c) shows the results for N = 3. Compared with
figure 8(b), the effects of lobes on both the convection velocity and the growth rate
appear to be more effective. The most pronounced change, however, occurs when N
increases to 5, as shown in figure 8(d). Again, these results are consistent with the
findings of Sinha et al. (2016). The dependence of both the convection velocity and
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FIGURE 9. (Colour online) The convection velocity and growth rate of the mode −1 jet
instability waves for vortex sheets of different lobed geometry: (a) N = 1; (b) N = 2;
(c) N = 3; (d) N = 5.

the temporal growth rate on ε appears to linear. However, the relative change of the
former is significantly larger than that of the latter.

Figure 9 presents the results for the mode −1. The eigenfunctions are odd functions
of φ. Still, figure 9(a) does not show observable changes when ε increases. However,
zooming in this figure, one can see that the convection velocity is weakly increasing
as ε increases, and this is opposite to that observed in figure 8(a). This different
behaviour is because λ1 is no longer identical to λ−1. Therefore, the odd and even
eigenfunctions are now independent of each other and they change in opposite
ways as ε increases. If figures 9(a) and 8(a) are too similar to each other to make
this trend clear, figure 9(b) makes it much more evident. The number of lobes
is now two, and the lobed profile is approximately elliptic. Instead of obtaining
higher convection velocities, increasing ε from 0 now results in increasingly smaller
convection velocities. The temporal growth rate, on the other hand, starts to drop at
low frequencies (αa < 0.5), but gradually changes to increase at high frequencies,
although both are on a small scale. The different eigenvalues of modes ±1, hence
distinctive characteristics of instability waves of modes ±1, are consistent with the
analytical results obtained by Crighton (1973) for elliptic vortex sheets and also agree
with the findings in the spatial stability analysis carried out by Kopiev et al. (2004)
(because the mode number 1 is a half of the number of lobes N = 2). Figure 9(c,d)
shows the results for N = 3 and N = 5, respectively. One can easily verify that they
are identical to those shown in figure 8(c,d). This is because, for both N = 3 and
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FIGURE 10. (Colour online) The convection velocity and growth rate of the mode 2 jet
instability waves for vortex sheets of different lobed geometry: (a) N = 1; (b) N = 2;
(c) N = 3; (d) N = 5.

N = 5, the eigenvalues λn remain identical to λ−n. As discussed in § 4.2, this also
implies that azimuthally travelling waves can exist, in contrast to the case of λn 6= λ−n,
where only azimuthally standing waves are allowed.

Figure 10 shows results for the instability waves of mode 2. Figure 10(a) is for
N = 1. We expect little change caused by one single lobe, and this is demonstrated
clearly by the figure. The results for N = 2 are shown in figure 10(b). The mode
2 instability waves have increasingly lower convection velocities when ε increases.
However, the changes are very small. The changes of the temporal growth rate
are nearly unobservable. However, using three lobes can still effectively reduce the
convection velocity while marginally altering the temporal growth rate of the mode
2 instability waves. Like all the results we have reported, the use of five lobes is
the most effective way of increasing the convection velocity and decreasing the
temporal growth rate. Figure 11 shows the results for the mode −2 instability waves.
Figure 11(a) exhibits expected behaviour for a lobed profile of N = 1. Figure 11(b)
shows a very slight increase of the convection velocity and no change to the temporal
growth rate. We emphasize again that this is due to λn 6= λ−n. Figures 11(c) and 11(d)
are identical to figures 10(c) and 10(d) respectively because of identical eigenvalues.

In summary, the stability characteristics of base flows of a lobed vortex-sheet type
are different from those of axisymmetric ones. The differences consist of changes
to both the convection velocity and the temporal growth rate of instability waves.
The changes become more pronounced as the number of lobes N and the penetration
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FIGURE 11. (Colour online) The convection velocity and growth rate of the mode −2
jet instability waves for vortex sheets of different lobed geometry: (a) N = 1; (b) N = 2;
(c) N = 3; (d) N = 5.

ratio ε increase. However, instability waves with different mode numbers are affected
differently by the lobed geometry. In particular, little change occurs for mode 0, no
matter how large both N and ε are. On the other hand, an evident alteration of the
characteristics of jet instability waves with large mode numbers occurs when N > 1.
For N=3 and N=5, azimuthally even and odd instability waves demonstrate the same
characteristics. However, for N= 2 and N= 1, even and odd instability waves of lobed
jets exhibit two different types of behaviour, with one having favourable effects on
installed jet noise reduction and the other having adverse. Therefore, for the sake of
suppressing instability waves, or achieving installed jet noise reduction, it is desired to
use a lobed profile of large N, such as N = 5, with a large penetration ratio. Because
this results in a larger reduction of the temporal growth rates, and hence may lead to
weaker instability waves.

Note that the results discussed above are obtained from a temporal analysis, from
which the results of a spatial analysis may be recovered from Gaster’s transformation
(Gaster 1962). Gaster’s transformation provides a straightforward way to connect
the temporal and spatial stability analyses. One of the key assumptions used in
Gaster’s transformation is that both the spatial and temporal growth rates have to
be small, and under this assumption Gaster showed that, to the first-order accuracy,
the temporal angular frequency, Re(ω), rather than the convection velocity Re(ω)/α,
is the same as the spatial angular frequency, and the temporal growth rate is equal
to the product of the spatial growth rate and the temporal group velocity. With the
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temporal results available, we can therefore obtain the spatial growth rate by using
Gaster’s transformation, provided the aforementioned assumption is not violated. Care
must be taken for the spatial convection velocity as the Re(ω) being identical does
not imply the same thing for Re(ω)/Re(α) (see the spatial convection velocity of a
round vortex sheet given by Michalke (1970) for example), in which case high-order
terms need to be incorporated to improve accuracy.

However, the aim of this study is to investigate the effects of lobes on the growth
rates of jet instability waves so as to examine the feasibility of controlling installed
jet noise using lobed jets, and these effects are unlikely to be significantly different
between the temporal or spatial frameworks. For example, if the lobed geometry
slightly reduces the temporal growth rate, we would expect similar behavior for the
spatial growth rate. Therefore, in this paper, we focus on the temporal results only.
Also note that previous studies mainly focused on chevron jets, and we do not expect
their results to be identical to the stability results for the special type of lobed base
flow used in this study.

4.4. The change to mode shapes
We have studied the effects of lobed geometries on the convection velocity and
temporal growth rate of jet instability waves. In this section, we show their effects
on the mode shapes. In the rest of this section, we present the contour plot of the
pressure field corresponding to each eigenmode. The pressure is normalized such that
it is equal to the right-hand side of (4.1b) inside the vortex sheet. We choose to
shown the pressure fields for modes 0, −1 and 2, respectively. When doing so, we
fix ε = 0.15 but let N vary between 1, 2, 3 and 5, respectively. For each mode at
each value of N, we show the pressure distribution at a low frequency αa≈ 0.25 and
then at a high frequency αa≈ 2.5. These results are shown from figures 12 to 17. In
each figure, the lobed profile is represented by a thick solid black line.

Figure 12 shows the pressure distributions for mode 0 at αa ≈ 0.25. Figure 12(a)
is for N = 1. We have mentioned that when N = 1 the lobed profile is more or less
the same as a displaced circle and, hence, its stability characteristics should be nearly
the same as a round jet. Figure 12(a) proves this by showing a nearly axisymmetric
pressure distribution. The pressure inside the vortex sheet is nearly uniform. This is
because the frequency is very low and the modified Bessel function of the first kind
approaches to a constant value for a small argument. The pressure outside gradually
decays to zero as the distance to the centre of the vortex sheet increases. Note how
the pressure is matched continuously across the vortex sheet: another indication for a
well-converged eigensolution. Figure 12(b) shows the result for N= 2. In this case the
lobed profile resembles an ellipse. The effect of the geometry change is to stretch the
pressure field inside the vortex sheet to have a distribution similar to the shape of the
vortex sheet itself. The pressure outside gradually becomes axisymmetric and decays
to zero at a large distance. The behaviours for N=3 and 5, as shown in figure 12(c,d),
respectively, are very similar to N = 2.

Figure 13 shows the pressure fields for mode 0 at a high frequency αa ≈ 2.5. A
striking difference is the much smaller size of contour regions in each sub-figure.
This is due to the fact that the pressure decays more quickly outside the vortex sheet
at high frequencies. This is in accord with the fact that installed jet noise is only
significant at low frequencies. Figure 13(a) again shows the result for N = 1. One
difference from figure 12(a) is that the pressure variation inside the vortex sheet
is clear at this high frequency, which is what we would expect. When N = 2, the
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FIGURE 12. (Colour online) The shapes of mode 0 for some strongly lobed geometries
when ε= 0.15 at a low frequency of αa≈ 0.25: (a) N= 1; (b) N= 2; (c) N= 3; (d) N= 5.
The thick black solid lines show the lobed vortex sheets.

lobed geometry has the same stretching effects as those shown in figure 12(b), but
with a more marked pressure variation. The same tendencies can be seen from
figure 12(c,d). The relatively insignificant change to the shape of the mode 0
instability wave, as shown in figures 12 and 13, is consistent with the fact that
both the convection velocity and temporal growth rate remain roughly the same as
those for an axisymmetric jet.

Figure 14 shows the results for mode −1 at αa≈ 0.25. From § 3.2, we know that
for negative mode numbers the pressure distribution is antisymmetric with respect
to φ = 0. This is reflected in figure 14. Figure 14(a) very much resembles to that
of an axisymmetric jet. When N = 2, the pressure field still largely resembles that
in figure 14(a). A clear change in mode shape occurs when N = 3, as shown in
figure 14(c). We can see that a three-lobe profile causes the two lobes of the pressure
field to tilt towards two lobes of the vortex sheet. This signifies a potentially large
change in the convection velocity and temporal growth rate. The mode shape at N= 5
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FIGURE 13. (Colour online) The shapes of mode 0 for some strongly lobed geometries
when ε= 0.15 at a high frequency of αa≈ 2.5: (a) N= 1; (b) N= 2; (c) N= 3; (d) N= 5.
The thick black solid lines show the lobed vortex sheets.

shows similar characteristics to that at N = 3. Moreover, there are some small and
local changes in response to the appearance of local geometry corrugations. We wish
to point out, however, that although changes are observed, the mode shapes are still
bearing the signature of conventional sin φ behaviour, suggesting the appropriateness
of our earlier mode labelling strategy.

Figure 15 is similar to figure 14 in almost every aspect, apart from the smaller size
of the contour regions owing to the quicker decay of the instability waves outside the
vortex sheet at high frequencies. We therefore omit a repetitive description. Instead,
we try to understand the behaviour of non-identical eigenvalues, as discussed in § 4.3,
from the perspective of mode shapes.

We have observed that for N=1 and N=2, the eigenvalue λ−1 is not degenerate any
more, and consequently, only standing modes are allowed, whereas travelling modes
(in the azimuthal direction, similar to a behaviour of ei(mφ−ωt)) are allowed for N =
3 and 5. To understand the difference we can compare figures 15(b) and 15(c). We
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FIGURE 14. (Colour online) The shapes of mode −1 for some strongly lobed geometries
when ε= 0.15 at a low frequency of αa≈ 0.25: (a) N= 1; (b) N= 2; (c) N= 3; (d) N= 5.
The thick black solid lines show the lobed vortex sheets.

conclude that, if an eigenvalue is not degenerate, then each of the symmetric plane of
the lobe profile must also be a symmetric (or antisymmetric) plane of the eigenmode.
For example, in figure 15(b), the lobed profile has two symmetric planes, namely the
horizontal and vertical planes, each of which is also a symmetric or antisymmetric
plane of the pressure field. This is consistent with the fact that λ1 is not degenerate.
On the other hand, in figure 15(c), the lobed profile has three symmetric planes, but
only one of them is the antisymmetric plane of the pressure field. Hence, λ−1 must be
degenerate. Figure 15(d) is very similar to figure 15(c). For an axisymmetric jet, the
vortex sheet profile has infinitely many symmetric planes, however only two of them
are the symmetric and antisymmetric planes of mode −1 pressure field. Therefore, λ−1

is degenerate for a round jet. Note that the vortex sheet profile in figure 15(a) is close
to a displaced circle, but is not strictly one. It has a slight eccentricity and, therefore,
has a non-degenerate eigenvalue.
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FIGURE 15. (Colour online) The shapes of mode −1 for some strongly lobed geometries
when ε= 0.15 at a high frequency of αa≈ 2.5: (a) N= 1; (b) N= 2; (c) N= 3; (d) N= 5.
The thick black solid lines show the lobed vortex sheets.

The connection between the degeneracy and the mode shape can be understood
as follows. Take figure 15(c) as an example. We mentioned that only one of three
symmetric planes, which are angled by 120◦ from each other, is the antisymmetric
plane of the pressure field. Now we can rotate the pressure field by 120◦, then the
resulting pressure field must also be an eigensolution of the stability problem, with
the same eigenvalue. Therefore, the corresponding eigenvalue must be degenerate. The
combination of the eigenvectors corresponding to the same eigenvalue creates infinitely
many eigensolutions, and two of them are those obtained by rotating figure 15(c) by
120◦ and 240◦, respectively.

We expect that the non-degeneracy is likely to occur when the mode number n is
equal to ±N/2, ±N, etc. This is because, for mode n, the pressure field normally has
2|n| lobes, and the symmetric and antisymmetric planes of such a mode can be aligned
with all the symmetric planes of the vortex sheet profile. Comparing with the figures
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FIGURE 16. (Colour online) The shapes of mode 2 for some strongly lobed geometries
when ε= 0.15 at a low frequency of αa≈ 0.25: (a) N= 1; (b) N= 2; (c) N= 3; (d) N= 5.
The thick black solid lines show the lobed vortex sheets.

shown in § 4.3, we find that this is indeed the case. For example, we see λ−1 6= λ1
when N = 2 and λ−2 6= λ2 when N = 2.

Figure 16 shows the distributions of the pressure field for mode 2 at the low
frequency αa ≈ 0.25. Figure 16(a) shows its similarity to that for an axisymmetric
vortex sheet while figure 16(b) for an elliptic vortex sheet. Note how the earlier
conclusion about non-degeneracy remains valid in figure 16(b–d). Figure 17 shows
qualitatively similar results at a higher frequency so we avoid an unnecessary
repetition.

5. Conclusion
In the hope of suppressing installed jet noise, an analytical study of the stability

characteristics of lobed jets of a vortex sheet type has been performed. It has
been shown that the lobed geometry changes both the convection velocity and the
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FIGURE 17. (Colour online) The shapes of mode 2 for some strongly lobed geometries
when ε= 0.15 at a high frequency of αa≈ 2.5: (a) N= 1; (b) N= 2; (c) N= 3; (d) N= 5.
The thick black solid lines show the lobed vortex sheets.

temporal growth rate of the instability waves. The effects are more pronounced as the
number of lobes N and the penetration ratio ε increase. However, instability waves of
different mode numbers are affected differently by the lobes. For instance, the mode
0 is particularly insensitive to the geometry changes. Higher modes are more likely
to be changed significantly when both N and ε are sufficiently large. An interesting
finding is that when N = 1 and N = 2 different behaviour occurs between the even
and odd instability waves of certain orders, i.e. the corresponding eigenvalue becomes
non-degenerate. We have shown that a necessary condition for a non-degenerate
eigenvalue to exist is that each symmetric plane of the lobed vortex sheet must also
be a symmetric or antisymmetric plane of the corresponding mode shape. This is
likely to occur when the mode number n is ±N/2, ±N and so on. It is concluded
that in order to suppress instability waves for the sake of reducing installed jet noise,
a large N, such as N = 5, and a large ε are desirable.
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The insensitiveness of the mode 0 instability waves to the lobed geometry implies
that using lobed geometry hardly helps in reducing the installed jet noise due to the
scattering of the mode 0 jet instability waves. The reduction of the total installed jet
noise would be somewhat limited. If the modes 0 and 1 (including both modes +1
and −1) instability waves are of equal strength, one would expect an observable sound
reduction up to 3 dB (in the ideal case). It is, however, worth noting that the current
analysis is based on a parallel vortex sheet assumption. In realistic jets, the jet mean
flow is expected to gradually become axisymmetric downstream the jet exit owing to
strong jet mixing. To what extent this smoothing of the lobed geometry would affect
the jet stability, hence installed jet noise, requires further examination. This constitutes
part of our future work.
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Appendix A. The kinematic and dynamic boundary conditions
The two equations shown in (2.24), together with the kinematic and dynamic

boundary conditions on the vortex sheet, need to be combined to obtain the dispersion
relation. The kinematic and dynamic boundary conditions can be obtained as follows.
As defined above, the vortex sheet profile is given by F(σ , φ)= σ −R(φ)= 0. One
can assume that the perturbed profile can be described by the function

Fp(σ , φ, z, t)=F(σ , φ)− η′(φ, z, t)= 0, (A 1)

where η′(φ, z, t) denotes a small-amplitude perturbation of the radius of the vortex-
sheet profile. The kinematic boundary condition states that, on the perturbed vortex
sheet,

DFp(σ , φ, z, t)
Dt

= 0. (A 2)

Substituting the velocity on both sides of the vortex sheet to (A 2) and linearizing
around the unperturbed vortex sheet yields

∂η′

∂t
+U

∂η′

∂z
−∇ψ− · ∇F = 0,

∂η′

∂t
−∇ψ+ · ∇F = 0.

 (A 3)

After invoking the harmonic time and z dependence (eiαze−iωt) and eliminating η′, one
can show that (A 3) reduces to

(ω− αU)∇ψ+ · n=ω∇ψ− · n, (A 4)

where n denotes the unit vector perpendicular to the vortex-sheet profile, which can
be readily shown to be ∇F/|∇F |. The dynamic boundary condition requires pressure
continuity across the vortex sheet. From the linearized momentum equation, i.e. (2.4),
one can readily show that

p′ =−ρ
(
∂

∂t
+Uz

∂

∂z

)
ψ, (A 5)
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where Uz can be either U and 0 depending on which side of the vortex sheet is
considered. Hence, substituting the velocity potentials on both sides of the vortex sheet
yields that on the unperturbed vortex sheet (after linearizing around the unperturbed
vortex sheet)

ωψ+ = (ω− αU)ψ−. (A 6)

Appendix B. The properties on rotationally symmetric matrices

Since the eigenvector C− of the matrix A fully determines the eigenfunction
E−n (σ , φ), it is important to examine the properties of A and its eigenvectors. In order
to do this, we need to define the rotation of any vector C as CR, such that

(CR)n =C−n, (B 1)

where (CR)n denotes the nth the element of the rotation vector CR and Cn is the nth
element of C. Note here the index of the vector C ranges from −M to M. Similarly,
we can define the rotation of any matrix B as

(BR)ij = B(−i)(−j), (B 2)

where (BR)ij denotes the element of BR at the ith row and the jth column, and Bij
are the indexed elements of matrix B. If a vector C is equal to its rotation, we
define it as symmetric. If, on the other hand, C=−CR, we define it as antisymmetric.
Similarly, if a matrix B is equal to its rotation, we define it as rotationally symmetric.
Anti-rotational symmetry follows a self-explanatory definition. One can now show
that (BC)R = BRCR, because

((BC)R)i =
M∑

j=−M

B(−i)jCj =

M∑
j=−M

B(−i)(−j)C−j = (B
RCR)i, (B 3)

where i can be any number between −M to M. Replacing the vector C in the above
equations with a matrix B2 does not invalidate the formula, i.e. (BB2)

R
= BRBR

2 also
holds. Therefore, if both B and B2 are rationally symmetric matrices, then the product
of them is also rotationally symmetric. This is because

(BB2)
R
= BRBR

2 = BB2. (B 4)

We now prove that the inverse of a rotationally symmetric matrix, if exists, is also
rotationally symmetric. First, because it is assumed that the inverse of the rotationally
symmetric B exists, we denote its column vectors by Di (i=−M · · ·M), i.e.

B−1
= [D−M · · ·D0 · · ·DM]. (B 5)

Then according to the definition of the inverse matrix, one has

[BD−M · · · BD0 · · · BDM] = [I−M · · · I0 · · · IM], (B 6)

where Ii is the ith column of the identity matrix. Now for any positive number i, one
has

BDi = Ii. (B 7)
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If taking the rotation of both sides of (B 7), one obtains

BDR
i = I−i, (B 8)

where use is made of the fact that IR
i = I−i and B is equal to its own rotation.

Comparing (B 8) with the −i column of (B 6), we have DR
i = D−i. This is because

B is invertible, its has a full rank and the solution of (B 8) is unique. We have now
proved that B−1 is indeed a rationally symmetric matrix.

Examining the definitions of all the relevant I and K matrices, it is trivial to show
that they are all rotationally symmetric. Based on the two conclusions discussed above,
because the matrix A can be written as

A= Ĩ
−1
k K̃ kK̃

−1
d Ĩd, (B 9)

it can be easily shown that A is rotationally symmetric. One important property
that follows is that if a vector C− is one of the eigenvectors of A, so is C−R.
This follows naturally after taking the rotation of both sides of the eigenvalue
equation AC− = λC−. One consequence of this property is that if an eigenvalue
λn of matrix A has no multiplicity, its eigenvector C− must be either symmetric
or antisymmetric. The second important property is that, for each multiple-folded
eigenvalue λn, we can always construct both a symmetric (e.g. C− + C−R) and an
antisymmetric (e.g. C− − C−R) eigenvector. These properties are essential when we
try to assign an order to each obtained eigenvector in appendix C.

Appendix C. The mode labelling strategy
It is not difficult to show that, when ε = 0, A is diagonal and its eigenvalues

(diagonal elements) are

λn =
K ′n(αa)In(αa)
Kn(αa)I′n(αa)

(C 1)

and their corresponding normalized eigenvectors are

C− = [. . . , 0, . . . , 0, . . . , 1, . . .]T, (C 2)

where 1 appears at the position of C−n . The well-known results for the cylindrical
vortex-sheet flow are recovered. When ε increases gradually, we expect that the
eigenvector gradually changes to

C− = [. . . , a−n, . . . , a0, . . . , 1− an, . . .]
T, (C 3)

where an are complex numbers and |an| � 1. We may use this dominant-component
property of C− to label the order of the eigenfunctions. That is, the eigenfunction
determined by the eigenvector

C− = [. . . ,C−
−n, . . . ,C−0 , . . . ,C−n , . . .]

T (C 4)

has an mode number n, if

‖C− −G‖ =

√√√√ M∑
j=−M

(|C−j | −Gj)2 (C 5)
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yields a minimum value when

G= [. . . , 0, . . . , 0, . . . , gn = 1, . . .]T, (C 6)

where gn is the element of the vector G.
This strategy, however, hinges on the assumption that there is only one dominant

component in the eigenvector C−. However, this is not always possible. For example,
when ε 6= 0, λn and λ−n do not necessarily have to be same any more. As we
discussed above, the eigenvector must be either symmetric or antisymmetric. Since
both symmetric and antisymmetric eigenvectors have two dominant components at
n and −n respectively (λn 6= λ−n, therefore one cannot perform a linear combination
of the two corresponding eigenvectors), it is hard to determine whether this mode
should be called mode n or −n.

To overcome this problem, we force each eigenvector to be either symmetric or
antisymmetric. This is always possible, because, as we proved earlier, the eigenvector
C− must be either symmetric or antisymmetric if λn 6= λ−n. And if λn = λ−n(n > 0),
we can always make use the second property of the eigenvectors and redefine one of
the two corresponding eigenvectors to be symmetric and the other antisymmetric. In
doing so, no matter whether λn and λ−n are equal or not, each eigenvector would have
two dominant components. Now for the symmetric eignvectors if ||C− − G|| obtains
its minimum when

G= [. . . , g−n =
√

2/2, . . . , 0, . . . , gn =
√

2/2, . . .]T, (C 7)

we label the eigenvector as mode n. For antisymmetric eigenvectors we label it as −n
in a similar manner. For n = 0, it is trivial to label its mode number, and because
we require C−0 6= 0, it can be shown that the eigenvector must be symmetric. By
labelling the eigenvectors in this way, from (3.18), this means that all nonnegative
eigenfunctions are even functions of φ and negative ones odd.
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