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The well-known two-dimensional problem of a plane acoustic wave scattering by a point
vortex is ill-posed because the vortex velocity field decays as r−1 at infinity. We show
that for problem to be well-posed, the velocity field must decay more rapidly than as
r−3/2. We propose a reformulation where the point vortex is screened by a vortical
mantle with the opposite total circulation such that the velocity field is proportional
to r−1 exp(−r2/L2). The vortex effective radius L is assumed long compared with the
acoustic wavelength λ. In the Born approximation, the scattered field is the solution to
the inhomogeneous Helmholtz equation with the Sommerfeld radiation condition that can
be represented as convolution of the source term with Green’s function. The asymptotic
evaluation as λ/L → 0 shows the analogy to plane-wave diffraction by a slit of width L. In
the Fraunhofer region r � L2/λ, the solution is an outgoing cylindrical wave that peaks
at small scattering angles θ = O(λ/L) and matches the expression with a singularity on
θ = 0 known from the case of the point vortex (Pitaevskii, Sov. Phys. JETP, vol. 8, 1959,
pp. 888–890) as θ � λ/L. In a part of the region of geometrical acoustics r � L2/λ

including the region r � L where the vortex velocity field is proportional to r−1, the
solution matches the second known expression (Sakov, Acoust. Phys., vol. 39, 1993,
pp. 280–282) that does not decay at infinity. The results are confirmed by numerical
integration.

Key words: aeroacoustics, wave scattering

1. Introduction

The problem of wave scattering by vortices has been extensively studied since the 1950s,
arising from various branches of physics. Lighthill (1953) studied sound generation
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and scattering by a turbulent flow in the framework of the linearised Euler equations.
Pitaevskii (1959) used the equivalent approach for sound scattering by a vortex filament
to calculate the phonon part of the mutual friction force between the normal fluid and the
superfluid components of helium II. Aharonov & Bohm (1959) discovered the significance
of electromagnetic potentials in quantum mechanics by solving the Schrödinger equation
for an electron beam scattering by a magnetic field whose vector potential was organised
like the vortex-filament velocity field. Howe (1975) developed a theory of aerodynamic
noise generated by a jet and theory of the flute. Golemshtok & Fabricant (1980) examined
sound scattering by the Rankine vortex including the resonant case for studying its
acoustic instability. Kopiev & Leontiev (1987) included it as an auxiliary case for
studying the acoustic instability of, and sound radiation by, a vortex ring. Coste, Lund
& Umeki (1999) considered the scattering of surface gravity waves by vertical vorticity
in shallow water governed by linearised shallow water equations. Smith (2002) studied
acoustic wave scattering by a superfluid vortex using the linearised Gross–Pitaevskii
equation, whereas Wei et al. (2017) investigated electromagnetic waves in a liquid using
Maxwell’s equations. In the framework of the Born approximation, which takes place
for weak vortices, the inhomogeneous wave equation governing the scattered field is
equivalent for equivalent incident waves and vortices of different nature if rewritten
in corresponding quantities. Thus, Berry et al. (1980) and Coste et al. (1999) showed
the analogy of the Aharonov–Bohm effect for surface water waves, whereas Reinschke,
Möhring & Obermeier (1997) showed the analogy between quantum-mechanical and
acoustic scattering. Lindsay (1948) and Salant (1969) developed the approach within the
framework of the geometrical (ray) acoustics, when the wavelength is assumed equal to
zero and trajectories of individual sound rays in the phase space are of interest. This
approach implied solving the Hamiltonian equations for the wave frequency dependent
on the position and the wave vector. Using this, Nazarenko (1994); Nazarenko, Zabusky
& Scheidegger (1995) discovered sound absorption by thin vortex filaments, meaning that
acoustic rays can collapse on to the vortex core without reflection.

In this paper we deal with acoustic waves in an inviscid ideal gas. For brevity, we use
the notation U instead of density ρ, pressure p, and velocity v in equations related to
any of them and denote the vortex field by Uvort, the incident acoustic field by U inc and
the scattered acoustic field by U scat. The scattered field represents the addition to the
superposition of the vortex and the incident field owing to their interaction, defined as
follows:

U = Uvort + U inc + U scat. (1.1)

There are many examples of scattering problems in aeroacoustics that have been
successfully solved in the Born approximation

|U scat| � |U inc|. (1.2)

For the case when the incident field is the uniform monochromatic plane acoustic wave

ρinc ∝ pinc ∝ exp(i(k · r − ωt))+ c.c., vinc ∝ k̂ρinc (1.3a,b)

of a small amplitude, Kambe & Oo (1981) and Howe (1983) solved the problem for the
vortex ring, Tanaka & Ishii (1982) for the vortex pair, Gromov, Ezerskii & Fabrikant
(1982) for the Kármán vortex street, Fabrikant (1983) for a general two-dimensional
zero-circulation flow, Klimov & Prozorovskii (1987) for Hill’s vortex, Colonius, Lele
& Moin (1994) for the Taylor vortex (numerically), Smith & Ford (2001) for a
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Sound scattering by a vortex

general three-dimensional flow and Naugolnykh (2013) for the Lamb–Chaplygin dipole.
In these cases, the Sommerfeld radiation condition (see Schot 1992) ensures that the
solution to the wave equation is unique (Sveshnikov, Bogolyubov & Kravtsov 2004,
§ VIII.6) and in the far field represents an outgoing wave. In the case of a two-dimensional
steady flow, this is a cylindrical wave

ρscat ∝ pscat ∝ exp(i(kr − ωt))√
kr

f (θ), vscat ∝ r̂ρscat. (1.4a,b)

Here t is time, r is the position vector, r and θ are polar coordinates, ω is the angular
frequency, k is the wave vector of the incident wave, r̂ = r/r, k̂ = k/k and c.c. is the
complex conjugate part, dropped hereafter. The solution (1.4) agrees with the conservation
of the total scattered energy flux (Landau & Lifshitz 1987, § 78)

Wscat(r) ∝
∫ π

−π

|vscat|2r dθ ∝
∫ π

−π

f 2(θ) dθ. (1.5)

Most of the cited papers, however, address one specific two-dimensional case such that
the incident field is (1.3), whereas the flow is an axisymmetric vortex,

ρvort = ρvort(r), pvort = pvort(r), vvort = Γ (r)
2πr

θ̂ , (1.6a–c)

for which the total circulation is non-zero and vorticity is localised within a region short
compared with the acoustic wavelength such that

Γ (r) → Γ∗ > 0 as r/r∗ → ∞, kr∗ � 1. (1.7)

Here θ̂ is the unit vector orthogonal to r̂; the position vector r is hereafter measured from
the vortex centre, whereas the scattering angle θ ∈ [−π;π] from the direction of incidence
k̂. The distributions (1.6) are assumed to obey the compressible Euler equations. We do
not distinguish between vortices with different Γ (r) as r/r∗ = O(1), such as the point
vortex, the Rankine vortex and the Lamb–Oseen vortex, as this does not affect the solution
in the Born approximation (Howe 1999). For the case (1.3), (1.6), (1.7) referred to as plane
wave, point vortex (PWPV), there are two radically different results as kr → ∞. Pitaevskii
(1959), Fetter (1964), Ferziger (1974), O’Shea (1975), Candel (1979), Fabrikant (1983),
Kopiev & Leontiev (1987) and Colonius et al. (1994) obtained a cylindrical wave (1.4)
with scattering amplitude

f (θ) ∝ cos θ cot
θ

2
, (1.8)

having a singularity in the direction θ = 0. Sakov (1993), Ford & Smith (1999), Howe
(1999) and Kopiev & Belyaev (2010) obtained a field that was regular but non-decaying at
infinity, so that

max
θ

|U scat| → const as kr → ∞. (1.9)

We will refer to the expressions corresponding to two previous equations as follows: the
former as expression (i), and the latter as expression (ii); exact equations will be written
out in § 5. Much earlier Aharonov & Bohm (1959) and Berry et al. (1980) obtained an
expression very similar to (ii), yet for a special case beyond the Born approximation. Coste
et al. (1999) provided an analogous solution for the case kr∗ � 1.
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By direct substitution into the governing inhomogeneous wave equation, one can ensure
that only expression (ii) is actually its solution, whereas expression (i) is not, because in the
leading-order approximation it obeys the homogeneous wave equation and so is definitely
incorrect. In addition, numerical (Candel 1979; Colonius et al. 1994; Berthet, Fauve &
Labbé 2003; Karabasov, Kopiev & Goloviznin 2009; Doronina & Zhdanova 2013; Iwatsu
& Tsuru 2013; Clair & Gabard 2015) and experimental (Berry et al. 1980; Horne 1983;
Labbe & Pinton 1998; Vivanco et al. 1999; Manneville et al. 2001) results for acoustic and
surface water waves strongly disproved expression (i) and were qualitatively comparable
to expression (ii) in cases corresponding to the Born approximation. Expression (ii) also
raises some doubts because it possesses an unlimited total scattered energy flux (1.5). A
regular solution having the form (1.4) is still unknown.

The problem with case PWPV is related to the fact recognised by Colonius et
al. (1994), Berthet & Lund (1995), Reinschke et al. (1997) and Belyaev & Kopiev
(2008), namely, that the respective scattering problem with the Sommerfeld radiation
condition is ill-posed. This is a consequence of the infinite range of the wave–vortex
interaction. More precisely, the source term in the wave equation decays proportionally
to |vvort| ∝ r−1 as r/r∗ → ∞, which is insufficient for this problem to be well posed.
To deal with the well-posed problem, one needs a proper condition that will act as
a regularisation. Enforcing the radiation condition despite the aforementioned led to
expression (i). Applying regularisations led to expression (ii). However, Belyaev & Kopiev
(2008) noticed that the applied regularisations were still incorrect. Indeed, all of them
used assumptions that were not actually fulfilled by expression (ii). Sakov (1993) dealt
with divergent integrals dependent on the method of integration. Ford & Smith (1999)
and Howe (1999) imposed the causality condition that the incident wavenumber had an
infinitely small positive imaginary part, k → k + i0, which was in fact the consequence
of the limiting absorption principle (Sveshnikov et al. 2004, § VIII.6) equivalent to the
radiation condition. Nevertheless, they still incorrectly assumed decaying at infinity (see
§ 5.4) in contrast to (1.9). Aharonov & Bohm (1959), Berry et al. (1980) and Coste et
al. (1999) assumed an outgoing wave plus additional terms owing to the incident wave
refraction by the flow, which was violated by expression (ii) at small scattering angles.
Thus, all known formulations seem to fail, and perhaps the problem of the plane acoustic
wave scattering by a vortex with non-zero total circulation is fundamentally ill-posed, even
beyond the Born approximation (Aharonov & Bohm 1959; Berry et al. 1980; Coste et al.
1999).

The ill-posed nature of the problem for case PWPV means that a uniform plane wave
(1.3) scattering by an axisymmetric vortex (1.6) with non-zero total circulation (1.7) is
ambiguous. The observed scattered field in a physical or numerical experiment will depend
on the actual incident field and flow and may be different for different implementations
(see discussion by Kopiev & Belyaev 2010). Some researchers who recognised that this
problem is ill-posed proposed changing the physical statement of the problem, precisely,
to confine the region of interaction, in order to make use of the radiation condition. Berthet
& Lund (1995) proposed two options: one, cut off the vortex velocity field by the factor
exp(−r/L), the other, cut off the incident wave by exp(−y2/L2), where y = r sin θ is the
Cartesian coordinate along the incident wavefront. For both cases they obtained regular
solutions having the form (1.4); however, in the limit L → ∞ corresponding to case PWPV
both were similar to the incorrect expression (i) rather than to (ii). Reinschke et al. (1997)
assumed the fluid to rest in the region r > L. Kopiev & Belyaev (2010) proposed replacing
the plane wave (1.3) with a cylindrical wave emitted by a point source at a finite distance
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from the vortex centre. They obtained expression (ii) in a limited region beyond the Born
approximation; however, it is not obvious whether their solution decomposed into a Fourier
series by angle θ was a purely outgoing wave (1.4) in the far field. As noted by Belyaev
& Kopiev (2008), the far-field expansion of the Bessel function can be used only when its
argument is much greater than its index, which is not the case for the infinite series. An
uncontroversial solution is still unknown.

The goal of this paper is the formulation and the solution in the Born approximation of
a well-posed scattering problem that can be considered a natural analogue to the problem
of a plane acoustic wave scattering by a point vortex, in a similar manner to that carried
out by Berthet & Lund (1995). In § 2 we outline the structure of the solution with the
specification of basic concepts, with particular attention to the meaning of ‘incident field’
and ‘scattered field’. In § 3 we examine the well-posedness of the scattering problem in
the Born approximation with the radiation condition for a general incident acoustic wave
and a general vortex. In § 4 we propose the appropriate formulation of the problem using
a new model for the vortex, present the way it can be implemented and define the validity
of the framework used. In § 5 we analyse the solution to the well-posed problem and its
relationship with expressions (i), (ii) and with the solution by Berthet & Lund (1995).
The solution obtained constitutes the main importance of the present work. In § 6 we give
the summary and discuss the sense of the work undertaken in the context of the original
question.

2. Structure of the total field

Let us consider the general scattering problem when a small-amplitude monochromatic
acoustic wave

U inc = U inc(r) e−iωt (2.1)

propagates through a steady flow

Uvort = Uvort(r) (2.2)

of an inviscid ideal gas. We move to the dimensionless variables

ρ̄ = ρ/ρ∞, p̄ = p/p∞, v̄ = v/c∞, t̄ = ωt, r̄ = kr, (2.3a–e)

where ρ∞, p∞, c∞ = √
γ p∞/ρ∞ are the unperturbed gas density, pressure and sound

speed, ω is the angular frequency, k = ω/c∞ is the wavenumber of the incident wave and
γ is the heat capacity ratio; the overlines are dropped hereafter. The Euler equations are

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.4a)

∂v

∂t
+ v · ∇v + 1

γ

∇p
ρ

= 0, (2.4b)

∂

∂t
p
ργ

+ v · ∇ p
ργ

= 0. (2.4c)

In addition to the incident wave amplitude, to apply the Born approximation (1.2) we
assume that the flow Mach numbers are also small, giving

a = max |vinc| � 1, (2.5a)

M = max |vvort| � 1. (2.5b)
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The formulation (2.1)–(2.5) suggests that the solution to equations (2.4) can be
decomposed into a two-parameter series by M and a. As soon as we neglect terms O(a2)

which are related to the self-convection of waves, and to the wave-induced remote recoil
forces (Bühler & McIntyre 2003), the complex conjugate part can be dropped, as in (2.1).
Then the solution depends on the parameter a and time t only as on the combination a e−it,
giving

U =
∞∑

i=0

1∑
j=0

Mi(a e−it) jU ij(r)+ h.o.t., (2.6)

where h.o.t. includes non-power terms that may appear at higher orders.
The time-independent part of (2.6) represents the flow field

Uvort =
∞∑

i=0

MiU i0(r). (2.7)

The solution at O(1) is the unperturbed fluid

ρ00 = p00 = 1, v00 = 0. (2.8a,b)

If the pressure and density fields are perturbed only by the flow, they consist of even powers
of the Mach number, such that

ρvort = 1 + M2ρ20(r)+ O(M4), pvort = 1 + M2p20(r)+ O(M4), (2.9a,b)

whereas for the velocity field the powers are odd as follows

vvort = Mv10(r)+ O(M3). (2.10)

In the leading-order approximation the flow is incompressible, as

∇ · v10 = 0. (2.11)

The time-dependent part of (2.6) represents the acoustic field

U inc + U scat = a e−it
∞∑

i=0

MiU i1(r)+ h.o.t. (2.12)

The incident field is the flow-independent part of (2.12)

U inc = aU01(r) e−it, (2.13)

whereas the scattered field constitutes the remainder

U scat = a e−it
∞∑

i=1

MiU i1(r)+ h.o.t. (2.14)

Thus, the sum of ‘pure’ components (2.7) + (2.13) represents the superposition of the
flow field and the incident acoustic field, and is given. The sum of ‘mixed’ components
(2.14) represents the product of their interaction, the scattered field, and needs to be
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Sound scattering by a vortex

determined. As long as the representation by a power series is uniformly valid, either
of the components satisfies the equations derived by the substitution of (2.6) into (2.4)

(∇2 + j2)ρij = qρij , (∇2 + j2)pij = qp
ij, ∇(∇ · vij)+ j2vij = qv

ij, (2.15a–c)

where qU
ij (r) are known functions resulting from the interaction between the lower-order

components, meaning those with the first index less than or equal to i and the second index
less than or equal to j. For the incident field (2.13), equations (2.15) are homogeneous. The
boundary conditions are specified for each component individually.

This means that we regard the flow and the incident wave as two interacting small
perturbations (vortical and acoustic mode, respectively), whereas the unperturbed fluid
(2.8) as the background state. The validity of this framework is ensured by the assumptions
(2.5). The similar approach was developed by Ford & Smith (1999), Bühler & McIntyre
(2003) and McIntyre (2019), who, in addition, assumed a � M. It is more consistent than
the commonly used framework (including in scattering problems beyond aeroacoustics)
when the acoustic wave is assumed a small perturbation against the background flow, i.e.

|U inc| � |Uvort|, (2.16)

and equations (2.4) are linearised with respect to Uvort. Indeed, the assumption (2.16)
breaks down in cases such as PWPV when vvort → 0 as r → ∞, whereas |vinc| = const.
This point is relevant for waves of different nature, e.g. near-inertial waves in geostrophic
flows (Balmforth, Smith & Young 1998; Smith 1999; Thomas, Smith & Bühler 2017),
waves in shallow-water rotating flows (Ford 1994; McIntyre 2009) and in stratified flows
(Plougonven & Zeitlin 2002). However, the relative magnitude of the flow field O(M)
and the incident acoustic field O(a) does not actually matter, because neither U10 nor
U01 depend on another via the source term in (2.15). Owing to this, on the one hand
the additional assumption a � M made by Ford & Smith (1999), Bühler & McIntyre
(2003) and McIntyre (2019) was redundant, and on the other hand the breakdown of the
assumption (2.16) did not lead to the breakdown of the solution.

The representation by a power series and, hence, equations (2.15) is uniformly valid as
long as

M|U i+1,1| � |U i1|. (2.17)

The Born approximation (1.2) assumes (2.17) for the leading-order scattered field, giving

M|U11| � |U01|. (2.18)

The presence of multiple spatial scales in (2.1) and (2.2) may cause |U i+1,1| � 1, which
may lead to the breakdown of (2.17) and non-power terms appearing at higher orders in
(2.14). For instance, Ford & Smith (1999) discovered higher-order terms O(Mia ln M) in
case PWPV, appearing as a consequence of the logarithmic behaviour of Green’s function
for equations (2.15) in the near limit. Meanwhile, the condition a|U i1| � |U i0|, similar to
(2.17), is not required, because U i1 and U i0 depend on time differently.

2.1. Definition of the incident and scattered wave
The separation of the total acoustic field (2.12) into incident and scattered components
is actually a non-trivial issue that may seem ambiguous, as highlighted in the review by
Sakov (1993). In a physical experiment, the measurable quantities are the amplitude A and
the phase ϕ of the total acoustic field (see Manneville et al. 2001; Berthet et al. 2003),
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rather than the amplitude and the phase of the incident or scattered field separately. For
simplicity, let us associate them to the density field by

ρinc + ρscat ≡ aA ei(ϕ−t), (2.19)

and decompose into a series by M, giving

A =
∞∑

i=0

MiAi(r)+ h.o.t., ϕ =
∞∑

i=0

Miϕi(r)+ h.o.t. (2.20a,b)

Comparing (2.19) and (2.20) with (2.12), we obtain the leading-order approximation

A0 = |ρ01|, ϕ0 = arg ρ01 (2.21a,b)

as well as the linear correction owing to the interaction with the flow

A1/A0 = Re (ρ11/ρ01) , ϕ1 = Im (ρ11/ρ01) . (2.22a,b)

In this paper, we define the incident field by (2.13) as the given acoustic field in the
absence of the mean flow M = 0, such that

|ρinc| = aA0, arg ρinc = ϕ0 − t, (2.23a,b)

and the scattered field by (2.14), in the same way as Ford & Smith (1999) and Howe (1999).
Meanwhile, as O’Shea (1975) showed for the case of an axisymmetric vortex (1.6)–(1.7),

the field (2.14) is the sum of two components

U scat = U rad + Udis, (2.24)

the radiation of sound

U rad = a e−it
∞∑

i=1

MiU r
i1(r)+ h.o.t., (2.25)

and the result of the incident-wave refraction by the flow that represents the wavefront
distortion

Udis = a e−it
∞∑

i=1

MiUd
i1(r)+ h.o.t. (2.26)

We represent the linearised amplitude change and the phase shift analogously to (2.24) as
A1 = Ar

1 + Ad
1, ϕ1 = ϕr

1 + ϕd
1 , where all the components are defined analogously to (2.22).

The distortion component Udis does not interfere with the incident field, thus

Ad
1 = 0. (2.27)

Owing to this, Aharonov & Bohm (1959), Berry et al. (1980), Sakov (1993), Coste et al.
(1999) and Kopiev & Belyaev (2010) included it in the incident field so that

U ′
inc = aU01(r) e−it + Udis. (2.28)

The field (2.28) satisfies the inhomogeneous equations (2.15) with the higher-order source
term O(M) (see Blokhintsev 1946; Howe 1975) and represents the wave (2.13) distorted,
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but with the same amplitude

|ρ′
inc| = aA0, arg ρ′

inc = ϕ0 − t + O(M). (2.29a,b)

The scattered field was accordingly identified with the radiation component as

U ′
scat = U rad. (2.30)

To summarise, existing works used two different meanings for each of the terms incident
wave and scattered wave, one terminology being given by (2.13) and (2.24) and another
by (2.28) and (2.30). The relative difference between the two meanings is of O(M) for the
incident wave and of O(1) for the scattered wave.

To remove the ambiguity, we require the conservation of the total scattered energy flux
(1.5) in the region where the wave–flow interaction is negligible. In § 5.3.5 we show for
the relevant case that it is fulfilled only when the scattered wave is defined by (2.24). This
makes the terminology (2.13), (2.24) used in this paper physically more reasonable than
(2.28), (2.30).

3. Well-posedness of the scattering problem

In the Born approximation (1.2) for the case (2.1), (2.2), the leading-order approximation
for the scattered field U11(r) is determined by solving the inhomogeneous Helmholtz
equation (2.15a)

∇2ρ11 + ρ11 = q11, (3.1)

with the source term (the index ‘ρ’ is dropped hereafter) simplified by taking (2.11) into
account, giving

q11 = −2
∂2(v10αv01β)

∂rα∂rβ
= −2∇ · (v10 · ∇v01), (3.2)

where the Greek index indicates the Cartesian component and summation over all the
values α and β is implied. The source (3.2) results from the incident field interaction with
the flow velocity field and represents Lighthill’s (Lighthill 1953) scattering quadrupoles
(Thomas 2017). The pressure and velocity fields are expressed through the density field by
the substitution of (2.6) into (2.4b,c)

p11 = γρ11, v11 = −i(∇ρ11 + v10 · ∇v01 + v01 · ∇v10). (3.3a,b)

Henceforth we consider the two-dimensional case, with a clear possible generalisation
to three dimensions. Let us impose the Sommerfeld radiation condition for equation (3.1)
assuming that there is a far field r � rF where the scattered field is an outgoing cylindrical
wave (1.4a):

∂ρ11

∂r
− iρ11 = o(r−1/2) as r/rF → ∞. (3.4)

The requirement

ρ11 = O(r−1/2) as r/rF → ∞, (3.5)

which is often appended, is excessive because it is fulfilled for any solution of the
homogeneous Helmholtz equation satisfying (3.4) (see Rellich 1943; Colonius et al. 1994).
The boundary-value problem (3.1), (3.4) is referred to as the radiation problem (RP).
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The condition (3.4) is natural in the case when the source (3.2) decays sufficiently
rapidly at large distances, as it eliminates waves ingoing from infinity. In this case the
solution to the RP is unique (Sveshnikov et al. 2004, § VIII.6) and represented as a
convolution of the source term with Green’s function for the Helmholtz equation,

ρ11 = − i
4

∫
R2

q11(r′)H(1)
0 (|r − r′|) d2r′, (3.6)

where H(1)
0 (r) is the Hankel function of the first kind. The RP is well-posed if the

integral in (3.6) converges absolutely and ill-posed otherwise, because a multiple integral
converges only if it converges absolutely (Belyaev & Kopiev 2008). Using (3.2) and the
asymptotics of the Hankel function

H(1)
0 (r) ∼

√
2
πr

exp(ir − iπ/4) as r → ∞, (3.7)

we come to the criterion for the well-posedness of the two-dimensional scattering problem
in the Born approximation with the radiation condition

|q11| = O(r−n), n > 3/2 as r/R → ∞, (3.8)

or, without loss of generality,

|v10| |v01| = O(r−n), n > 3/2 as r/R → ∞, (3.9)

where R is a suitable spatial scale. In the three-dimensional case we will have n > 2 instead
of n > 3/2 in (3.8), (3.9).

When |v01| = const, the condition (3.9) is reduced to

|v10| = O(r−n), n > 3/2 as r/R → ∞. (3.10)

The condition (3.10) is essentially different from the similar one obtained by Fabrikant
(1983) for the vorticity ∇ × v10 instead of the velocity v10. It follows that in case PWPV
and, more broadly speaking, in the case of a uniform plane wave (1.3) scattering by an
arbitrary flow with non-zero total circulation the RP is ill-posed. There is no contradiction
because the total kinetic energy of an unbounded incompressible flow with |v10| ∝ r−1 as
r/R → ∞ is

Evort ∝ 1
2

∫
R2

|v10|2 d2r ∝
∫ ∞ dr

r
= ∞, (3.11)

hence it cannot exist, as noted by Reinschke et al. (1997) and Gaifullin (2015, § III.1). In
an unbounded three-dimensional fluid, only vortical structures with zero total circulation
over any cross-section can emerge, such as the wake vortex behind an aeroplane with a
high-aspect-ratio wing, which consists of two vortex tubes with opposite circulation, or
the helicopter vortex ring. Examples for which the scattering problem is well-posed are
given in § 1. As vortices with fractional power decay are unknown in fluid mechanics, in
practice, condition (3.10) is equivalent to that of zero total circulation, i.e.

Γ → 0 as r/R → ∞, (3.12)

or, for a flow without singularities, that the total kinetic energy is finite.
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Sound scattering by a vortex

However, for the case of |v01| = const and a hypothetical vortex with |v10| ∝ r−3/2 as
r/R → ∞, the RP is ill-posed despite (3.12). There is no contradiction either because the
total energy flux of a uniform plane wave is

Winc(x) ∝
∫ ∞

−∞
|v01|2 dy ∝

∫ ∞

−∞
dy = ∞, (3.13)

hence it cannot exist. Here x, y are the Cartesian coordinates such that x is along the wave
vector. The natural acoustic field with a finite total energy flux, emitted by a localised
source in a two-dimensional fluid, is a cylindrical wave such as (1.4). In the case when
it is an incident field, |v01| ∝ r−1/2 as r/R → ∞, the condition (3.9) is reduced to
(3.12). This shows that the scattering problem is well-posed for any physically sensible
statement Evort < ∞, Winc < ∞. Meanwhile, there are unrealisable but still well-posed
problems when (3.9) is fulfilled despite one of Evort, Winc being infinite. Examples with
the exponential decay were proposed by Berthet & Lund (1995) (see § 1). However,
the statement for a cylindrical incident wave and a vortex with non-zero circulation
(1.6)–(1.7) proposed by Kopiev & Belyaev (2010) remains incorrect if considered in the
Born approximation because |v10||v01| ∝ r−3/2 as r/R → ∞.

4. Reformulation of the problem

Our purpose is the formulation of a well-posed RP for the case similar to case PWPV
but with the appropriately confined region of the wave–vortex interaction. This means
the specification of a source (3.2) that fulfills the condition (3.8). For compatibility with
most of the existing works, we focus on a uniform plane wave (1.3) scattering by an
axisymmetric vortex (1.6), similar to (1.7) within a limited region, but with a sufficiently
rapidly decaying velocity field (3.10).

4.1. Physics-based rationale
The appropriate flow can be generated in a real fluid as follows. Let an infinitely elongated
hollow solid circular cylinder of radius r∗ be placed in a viscous fluid at rest, and at the
moment t = 0 start to rotate around its axis with the constant angular velocity Γ∗/2πr2∗.
An unsteady axisymmetric vortex (1.6) arises owing to viscous friction. The leading-order
solution to this problem for large t in the outside region r > r∗ in the framework of
the compressible two-dimensional Navier–Stokes equations was obtained by Gadzhiev,
Gaifullin & Zubtsov (2020). In the case of low Mach numbers Γ∗/(r∗c∞) � 1, the
solution is reduced to one in an incompressible fluid. The flow is the difference between
the irrotational vortex and the Lamb–Oseen (1912) vortex outside (Gaifullin 2015, § III.1),
and a solid-body rotation inside. The circulation distribution is

Γ

Γ∗
∼
⎧⎨⎩(r/r∗)2, r/r∗ = O(1), r ≤ r∗

1, r/r∗ = O(1), r > r∗
exp(−r2/(4ν∞t)), r/

√
ν∞t = O(1)

as r∗/
√
ν∞t → 0, (4.1)

where ν∞ is kinematic viscosity of the unperturbed fluid. It can be considered as the
Rankine vortex with circulation Γ∗ screened by a vortical mantle with total circulation
−Γ∗ expanding in time.

To organise the scattering problem, let us remove the cylinder at a sufficiently distant
moment t = t0 when the vortex effective radius L = 2

√
ν∞t0 is long compared with the
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cylinder radius r∗, and let the uniform plane acoustic wave (1.3) start to propagate from
the region r � L. The acoustic wavelength λ = 2π/k is assumed much longer than r∗ and
much shorter than L. The Euler equations are valid as long as the viscous diffusion is
negligible (see also Lund & Rojas 1989) so that the flow is approximately steady, for times
t − t0 � r2∗/ν∞. A time-periodic acoustic field is established in the whole relevant region
r/rF = O(1) as soon as the incident wave has overcome it, for times t − t0 � rF/c∞. The
longer the cylinder rotates, the larger is the region r � L where (4.1) is reduced to the
Rankine vortex lying within (1.7), which is the case PWPV. In the intermediate region
r∗ < r � L, the scattering pattern exists against an irrotational velocity field induced by
the point vortex with intensity Γ∗.

4.1.1. Validity of the formulation
The physics-based rationale presented in § 4.1 uses the following assumptions: (i) the Mach
numbers are small; (ii) there is a time interval for which the acoustic field is time-periodic
in the relevant region wherein it reaches its far-field form (1.4); (iii) there is a region
covering the wavelength scale where the velocity field is as induced by a point vortex.
Condition (i) is ensured by (2.5). For condition (iii), we need

δ = kr∗ � 1, ε = 1/(kL) � 1. (4.2a,b)

For condition (ii), the incident wave has to overcome the region r/rF = O(1) long before
time-periodicity is destroyed, which might be possible owing to: (a) the viscous diffusion
of the vortex at times O(r2∗/ν∞); (b) the acoustic instability of the Rankine vortex at
O(r6∗c4∞/Γ 5∗ ) (see Kopiev & Leontiev (1983) and Kop’ev & Chernyshev (2000), § 3.2);
(c) the nonlinear self-convection of the wave at O(ω−1/a). Using the evaluation (5.9) we
need to assume the following relationships between dimensional spatial scales:

max (ν∞/c∞, Γ∗/c∞) � r∗ � λ� L � rF = O(L2/λ),

L2/λ� c∞(t − t0) � min
(

r6
∗c5

∞/Γ
5
∗ , r2

∗c∞/ν∞, λ/a
)
.

⎫⎬⎭ (4.3)

In terms of dimensionless variables, the requirement that rF/c∞ is much shorter than the
three temporal scales leads to additional restrictions for the small parameters (2.5), (4.2):

M5 � δε2, M � Re δε2, a � ε2, (4.4a–c)

where Re = Γ∗/ν∞. The first condition represents the restriction owing to instability, the
second diffusion and the third nonlinear convection.

To apply perturbation theory, we also require the Born approximation (2.18). Equation
(3.1) with the source (4.11), (4.10) suggests that the sufficient condition for its validity is
high-frequency scattering, meaning that the angular frequency of the incident wave is high
compared with the maximum angular velocity of the flow, i.e.

M/δ = Γ∗/(2πωr2
∗) � 1. (4.5)

The actual sufficient condition seems to be less rigorous than (4.5), though more rigorous
than (2.5b):

M � δ or M � 1, M /= δ/n + O(δ2), n ∈ Z. (4.6)

The latter restriction is related to fact that the Rankine vortex is able to emit sound
on its eigenfrequencies nM/δ, where M/δ is the dimensionless angular velocity in the
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Sound scattering by a vortex

region r < δ. The same is likely for the case of the vortex (4.10), as it is similar to the
Rankine vortex. When the angular frequency of the incident wave is close to one of the
eigenfrequencies, the resonant amplification makes the scattered field comparable to the
incident field (Sozou 1990; Ford & Smith 1999; Kopiev & Belyaev 2010).

4.2. Mathematical formulation
It is useful to redefine the dimensionless functions U ij(r) by replacing the maximum flow
Mach number M = Γ∗/(2πr∗c∞) in the decomposition (2.6) with the Mach number at the
acoustic wavelength scale r = 1 defined by

Mλ = Mδ = kΓ∗/(2πc∞). (4.7)

In the Born approximation the leading-order scattered field satisfies the equations
(3.1)–(3.3). The uniform plane incident wave (1.3a,b) that satisfies the linearised Euler
equations is rewritten as

ρ01 = exp(ik̂ · r), p01 = γ exp(ik̂ · r), v01 = k̂ exp(ik̂ · r), (4.8a–c)

whereas the axisymmetric vortex (1.6a–c) is rewritten as

ρ10 = 0, p10 = 0, v10 = Γ (r)
r

θ̂ , (4.9a–c)

where dimensionless circulation Γ̄ = Γ/Γ∗ (the overline is dropped hereafter) is defined
by (4.1) and rewritten using (4.2) as

Γ ∼
⎧⎨⎩
(r/δ)2, r/δ = O(1), r ≤ δ

1, r/δ = O(1), r > δ

e−ε2r2
, εr = O(1)

as δε → 0. (4.10)

The subsequent approximations are not of interest, as they do not contribute to equations
(3.1)–(3.3). The source (3.2), (4.8)–(4.9) is

q11 = −2ik̂ · ∇
(

ẑ · (r × k̂)
r2 Γ (r) exp(ik̂ · r)

)
, (4.11)

where ẑ = r̂ × θ̂ is the unit vector along vorticity.
On condition (4.2), in the region of interest r � 1, the scattered field (3.6) for the source

(4.11), (4.10) does not depend on δ in the leading-order approximation, i.e. the vorticity
distribution over the vortex core is unimportant (see § 1). This enables us to take δ = 0 as
soon as we move to the RP, so that (4.10) is reduced to

Γ = e−ε2r2
. (4.12)

The real part of the source (4.11), (4.12) for ε = 0.05 is presented in figure 3(a).
The RP for the source (4.11), (4.12) is the main point of the present work. The

exponential decay
Γ = O((εr)−∞) as εr → ∞ (4.13)

ensures the problem is well posed for ε > 0. The substitution of ε = 0 into (4.12) leads
to case PWPV with the point vortex Γ = 1, for which the problem is ill-posed. Our
goal is the leading-order solution as ε → 0 when there are two separate spatial scales
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visible in figure 3(a): the acoustic wavelength r = O(1) and the vortex effective radius
εr = O(1). This does not require matched asymptotic expansions, as the exact solution
(3.6) is known. The solution in the intermediate region r → ∞, εr → 0, where the vortex
is approximately irrotational so that

Γ → 1 as εr → 0, (4.14)

as in case PWPV, is of particular interest. The model Γ = exp(−εr) proposed by Berthet
& Lund (1995), which also satisfies (4.13) and (4.14), is appropriate as well but has no
clear physical background and seems to need more cumbersome calculations.

5. Leading-order solution as ε → 0

5.1. General representations

5.1.1. Representation using the Fourier transform
First, it is useful to derive an exact representation of the solution to the general well-posed
RP that does not contain non-elementary functions. Let us apply the two-dimensional
Fourier transform

ρ̂11(K) = 1
2π

∫
R2
ρ11(r) exp(−iK · r) d2r, q̂11(K) = 1

2π

∫
R2

q11(r) exp(−iK · r) d2r

(5.1a,b)

to the Helmholtz equation (3.1). Owing to the decay condition (3.5),

1
2π

∫
R2

∇2ρ11 exp(−iK · r) d2r = −K2ρ̂11. (5.2)

Equations (5.1a,b) and (5.2) give

(1 − K2)ρ̂11 = q̂11. (5.3)

We extract ρ̂11 and make the inverse Fourier transform, which gives

ρ11 = 1
2π

∫
C

q̂11(K)
1 − K2 exp(iK · r) d2K . (5.4)

The two-dimensional cycle C ⊂ C2 in (5.4) is the plane R2 deformed to bypass the
singular circle K = 1, which corresponds to eigensolutions of the Helmholtz operator,
appropriately to fulfil the radiation condition (3.4)

Re(K) · Im(K) < 0 for K ∈ C near K = 1, (5.5)

which is equivalent to the causality condition (see § 1). The representation (5.4) with C
observing the rule of bypass (5.5) and the representation (3.6) are equivalent and related
to each other by the convolution theorem.

5.1.2. Far-field representation
The source (4.11), (4.12) is localised within the flow region εr = O(1). Consequently,
in the region of fluid at rest εr → ∞ it is possible to use asymptotics (3.7) for Green’s
function in (3.6), because any of the primitive waves emitted from the important region
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Sound scattering by a vortex

εr′ = O(1) overcome the long distance |r − r′| � 1. The distance is expanded in a power
series by r′ as

|r − r′| = r − r̂ · r′ + (θ̂ · r′)2

2r
+ O

(
1
ε3r2

)
as εr → ∞. (5.6)

We need only keep the leading-order term of (5.6) in the denominator of (3.7), but the
complete expansion in the exponent.

The greatest possible simplification for the exponent of (3.7) is the linearisation of (5.6)
by r′, known as the Fraunhofer approximation. It is valid only in the region ε2r → ∞, the
farthest part of the region of fluid at rest. Substituting this into (3.6) and using (3.3b), we
obtain the outgoing cylindrical wave (1.4)

ρ11 ∼ exp(ir − iπ/4)√
r

f (θ), v11 ∼ r̂ρ11 as ε2r → ∞, (5.7a,b)

with the scattering amplitude

f = −i
√

π

2
q̂11(r̂), (5.8)

where q̂11 is the source Fourier transform defined by (5.1b). Its argument r̂ reflects the
direction of sound propagation in the far field. The solution (5.7a), (5.8) satisfies the
radiation condition (3.4) and in the leading-order approximation the Helmholtz equation
(3.1), which is homogeneous because of (4.13). This can also be derived from (5.4) by
using the multidimensional stationary-phase method (see Fedoryuk 1963).

In the region ε2r = O(1) we need to keep the quadratic term of (5.6) dependent on r,
which leads to the breakdown of (5.7). This defines the bound of the far field according to
(3.4) as

rF = ε−2. (5.9)

Equation (5.9) indicates that the near field r/rF = O(1), where the scattered field is
different from (5.7), is much longer than the flow region. This suggests a multiscale
scattering pattern, including in the region of fluid at rest εr → ∞.

5.2. Qualitative analysis
The Fourier transform of the source (4.11), integrated by parts, is reduced to the Fourier
transform of the longitudinal component of velocity (4.9c), with the argument shifted by
the wave vector k̂ of incident wave (4.8), giving

q̂11(K) = 1
π

K · k̂
∫

R2

ẑ · (r × k̂)
r2 Γ (r) exp(−i(K − k̂) · r) d2r. (5.10)

From the uncertainty principle, the Fourier transform (5.10) of the source (4.11),
(4.12) distributed within the region r = O(ε−1) is localised within the neighbourhood
of the incident wave vector |K − k̂| = O(ε). This leads to considerable amplification of
the scattered sound in the direction of incidence, because of the constructive interference
between primitive waves, meaning that the instantaneous phase difference k̂ · r is
neutralised by the path difference −K · r. In particular, the far-field solution (5.8) is
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0

1

ε2

ε

κ

μ

Figure 1. Asymptotic regions of the source Fourier transform q̂11(K) (filled circle) and the solution Fourier
transform ρ̂11(K) as ε → 0 presented in figure 3(b,d).

O(1)
Far field

(Fraunhofer region)

Bragg angle
Near field

(Fresnel region)

Geometrical acoustics region

ε

ε–2

ε–1

Figure 2. Asymptotic regions of the source q11(r) (filled circle) and the solution ρ11(r) as ε → 0 presented in
figure 3(a,c).

localised within, i.e. peaks at small scattering angles |r̂ − k̂| ∼ θ = O(ε). The Fourier
transform of the exact solution (5.4) peaks at the part of the neighbourhood |K − k̂| =
O(ε)with the incident wavenumber K = 1, where it is singular. This is the parabolic curve
localised within the region |κ − 1| = O(ε2), |μ| = O(ε), where κ = k̂ · K and μ = ẑ ·
(k̂ × K) are Cartesian components of K (see figure 1). Owing to the uncertainty principle,
the solution is distributed within the region x = O(ε−2), |y| = O(ε−1) oriented in the
forward direction, where x = k̂ · r = r cos θ and y = ẑ · (k̂ × r) = r sin θ are Cartesian
coordinates. This suggests an outgoing cylindrical wave (5.7) beyond, and a different
solution within, this region. Thus, in the case of a plane incident wave (4.8) the near field
holds the flow region r = O(ε−1) and the wake of length O(ε−2) behind it (see figure 2);
the remaining part degenerates into the far field, so that the bound (5.9) is constricted to

rF(θ) =
{
ε−2, θ/ε = O(1)
ε−1/θ, θ/ε → ∞,

(5.11)

maintained at small angles. Note that figure 2, as well as figure 6, implies a homomorphism
that maps the relationship ‘much less than’ to ‘less than’ and ‘similar to’ to ‘approximately
equal to’, so values of the same order are shown as identical. In particular, the regions
ε2r → ∞ and ε2r → 0 correspond to areas, while the region ε2r = O(1) excluding ε2r →
0 to a curve.

Overall, there is a profound analogy between the scattering pattern in the present
problem and the diffraction pattern in the problem of a plane wave short-wavelength
diffraction by a slit when the wavelength is of O(1) whereas the slit width is of O(ε−1).
A thorough description was provided by Tatarski (2016, § 2), Monin & Yaglom (2013,
§ 26) who considered the plane wave scattering by a limited volume of turbulence. Berthet
et al. (2003) noted this for the case close to case PWPV, yet with the vorticity localised
within a region long compared with the acoustic wavelength. The cause is the analogy
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between the representation (3.6) and two-dimensional Kirchhoff’s diffraction formula
(see Schot (1992) and Krylov (1989), S 3), both of which are based on the Helmholtz
equation (3.1), though a source is distributed for scattering by a flow and localised on a
one-dimensional surface for diffraction by an aperture. On the forward direction, where the
diffraction pattern is typically of interest, the far field ε2r → ∞ can be identified with the
Fraunhofer region, while the near field ε2r = O(1) with the Fresnel region. The angular
region θ/ε = O(1) is the same as that specified by Bragg’s law (Kambe & Oo 1981). The
subregion ε2r → 0 of the near field is accordingly interpreted as the region of geometrical
(ray) acoustics where the acoustic wavelength does not matter, i.e. the wave propagates as a
beam of rays. However, Nazarenko et al. (1995) noted that the Born approximation and the
geometrical acoustics approach developed by Lindsay (1948), Salant (1969), Nazarenko
(1994) and Nazarenko et al. (1995) for case PWPV have no common limit, which prevents
comparison with their results.

5.3. Solution for the case Γ = exp(−ε2r2)

The Fourier transform of the source (4.11), (4.12) is calculated with a relationship that can
be derived using the convolution theorem and was used by Candel (1979), who considered
case PWPV for the Lamb–Oseen vortex, namely,

1
2π

∫
R2

ẑ · (r × k̂)
r2 exp(−ε2r2) exp(−iα · r) d2r = −i

ẑ · (α × k̂)
α2 (1 − exp(−α2/4ε2)).

(5.12)

Substituting (5.12) into (5.10), (4.12) we obtain

q̂11(K) = −2i
K · k̂ ẑ · (K × k̂)

|K − k̂|2
(1 − exp(−|K − k̂|2/4ε2)). (5.13)

The imaginary parts of the source Fourier transform (5.13) and of the solution Fourier
transform (5.13)/(1 − K2) for ε = 0.05 are presented in figures 3(b) and 3(d), respectively
(compare with the scheme in figure 1).

The complete calculations carried out using the exact representation (5.4) with the
bypass rule (5.5) for the source Fourier transform (5.13) are presented in Appendix A.
All the plots throughout this paper are for the value ε = 0.05. The real part of the solution
obtained by numerical integration of the single integral (A1), (A4)–(A10) is presented in
figure 3(c) (compare with the scheme in figure 2). The leading-order analytical solution
is present in the far field ε2r → ∞, at large angles θ/ε → ∞ and in the region of
geometrical acoustics ε2r → 0. The condition r → ∞ is always assumed and is dropped
hereafter.

5.3.1. Far field ε2r → ∞
The scattering amplitude in the far field can be obtained by direct substitution of (5.13)
into (5.8) giving

f = f (i)(1 − exp(−|r̂ − k̂|2/4ε2)) ∼ f (i)(1 − exp(−θ2/4ε2)), (5.14)

where

f (i) = −
√

2π
r̂ · k̂ ẑ · (r̂ × k̂)

|r̂ − k̂|2
=
√

π

2
cos θ cot

θ

2
(5.15)

is exactly expression (i) with the singularity for case PWPV, |r̂ − k̂| = 2 sin(θ/2).
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Figure 3. The source Re(q11) (4.11) (a) and its Fourier transform Im(̂q11) (5.13) (b), the solution Re(ρ11) (A1),
(A4)–(A10) (c) and its Fourier transform Im(ρ̂11) (5.13)/(1 − K2) (d) for Γ (r) = exp(−ε2r2), ε = 0.05. The
ranges displayed are −0.2 < Re(q11) < 0.2, −ε−1 < Im(̂q11) < ε−1, −2.62 < Re(ρ11) < 2.62 and −2ε−1 <
Im(ρ̂11) < 2ε−1.

By the analogous method Berthet & Lund (1995) obtained the solution for the case
Γ = exp(−εr)

f = f (i)
|r̂ − k̂|2/ε2√

1 + |r̂ − k̂|2/ε2(1 +
√

1 + |r̂ − k̂|2/ε2)

, (5.16)

with the possible substitution |r̂ − k̂| → θ as in (5.14). However, there was no clear
definition of the far field ε2r → ∞ where (5.16) was valid. Its application to the region
that is actually the near field is incorrect and, in particular, leads to a violation of the
Helmholtz equation (3.1) in the flow region (see the explanation in § 5.4).

Both (5.14) and (5.16) are regular patterns that peak at small scattering angles so that

f = O(ε−1), |U11| = O(ε−1/
√

r) � 1 as θ/ε = O(1), (5.17a,b)

f = O(1), |U11| = O(1/
√

r) as θ = O(1), (5.18a,b)
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f

0 0.5π–0.5π π–π

0

ε–1

–ε–1

θ

Figure 4. The scattering amplitude in the far field: expression (i) (5.15) for Γ = 1 (black, dashed); the solution
(5.14) for Γ = exp(−ε2r2), ε = 0.05 (orange, solid); the solution (5.16) for Γ = exp(−εr), ε = 0.05 (dark
green, solid).

and match expression (i) at large angles (figure 4), i.e.

f ∼ f (i) as θ/ε → ∞. (5.19)

5.3.2. Region of geometrical acoustics ε2r → 0
The scattered field in the region of geometrical acoustics includes both the radiation
component and the distortion component defined in § 2.1, i.e.

U11 = U r
11 + Ud

11. (5.20)

We remember that in the far field only the radiation component is present, meaning that
Ud

11 → 0 as ε2r → ∞. We will use the fact that the amplitude and phase (2.21a,b) of a
uniform plane incident wave (4.8) are, respectively,

A0 = 1, ϕ0 = k̂ · r, (5.21a,b)

whereas the amplitude change and phase shift (2.22a,b) owing to scattering are given by

A1 = |ρ11| cos(arg ρ11 − k̂ · r), ϕ1 = |ρ11| sin(arg ρ11 − k̂ · r). (5.22a,b)

The radiation component is

ρr
11 ∼ −πi exp(ir(1 − θ2/2))

θ

2
cos θ cot

θ

2

[
sgn(θ)− erf

(
e−iπ/4√rθ√

2

)]
,

vr
11 ∼ r̂ρr

11.

⎫⎪⎬⎪⎭ (5.23)

Within the narrow parabolic region at small angles, it represents the non-decaying field
with

|U r
11| = O(1) as

√
rθ = O(1). (5.24)

At large angles, (5.23) as well as the far-field solution (5.14) is the outgoing cylindrical
wave matching expression (i):

ρr
11 ∼ exp(ir − iπ/4)√

r
f (i)(θ) as

√
rθ → ∞. (5.25)

The angular ranges of (5.14) and (5.23) are different, each being extrapolated to another
region will be narrow compared with its counterpart (see figure 6).

918 A46-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

35
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.355


D.A. Gadzhiev and A.M. Gaifullin

x

y

0

0

0.5ε–1π–0.5ε–1π ε–1π

ε–1

–ε–1

Figure 5. The wavefronts of the incident field defined by (4.8) x = −10π; 0; 10π; 20π (red, dashed) and by
(5.26), (5.27b), (5.28) x + Mλϕd

1 = πn, n ∈ Z (black, solid) in the region of geometrical acoustics ε2r → 0 for
Γ = exp(−ε2r2), ε = 0.05 and Mλ = 0.25.

The distortion component is

ρd
11 ∼ −i exp(ik̂ · r)

∫ r

−k̂∞
k̂ · v10(r′)k̂ · dr′

= πi eix
[

2T
(√

2εy, x/y
)

+ 1
2
(sgn( y)− erf(εy))

]
,

vd
11 ∼ k̂ρd

11, (5.26)

where the Owen T-function is defined by (A5). It represents a non-uniform plane wave
that does not interfere with the incident wave (4.8), giving

Ad
1 = 0, ϕd

1 = sgn( y)|ρd
11|, (5.27a,b)

as follows from (5.22a,b). In terms of the alternative definition (2.28), (2.30), the scattered
wave corresponds to (5.23), whereas the incident wave corresponds to (4.8a,c) +Mλ
(5.26). The latter is a non-uniform plane wave that can be rewritten using (5.21) as

ρ′
inc ∝ ρ01 + Mλρd

11 ∼ exp[i(k̂ · r + Mλϕd
1 (r))]. (5.28)

The wavefront of (5.28) is retarded in the half-plane y > 0, where sound propagates
upstream, and advanced in y < 0, where sound propagates downstream (figure 5).
According to the integral expression in (5.26), the phase shift (5.27b) is proportional to the
circulation of the vortex velocity along the straight line from the infinity inlet. Wavefront
distortion is localised within the flow region and in the wake behind it such that

|Ud
11| = O(1) as εrθ = O(1), (5.29)

and decays exponentially beyond. In the region of fluid at rest where Γ → 0, from (5.26)
we have

ρd
11 ∼ πi eixH(x)[sgn( y)− erf(εy)] as εr → ∞, (5.30)

where H(x) is the Heaviside step function, equal to 1 in the forward direction and 0 in
the backward direction. In the region εy → 0, which includes the irrotational flow region
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εr → 0 where Γ → 1,

ρd
11 ∼ πi exp(ir cos θ)[sgn(θ)− θ/π] as εy → 0. (5.31)

According to (5.31) the wavefront distortion owing to the velocity field decaying
proportional to r−1 as r → ∞ is finite, because the longitudinal velocity is proportional
to x−2 as x → ∞ (see McIntyre (2019), figure 2).

To summarise, the scattered field (5.23) + (5.26) beyond the flow region and the wake
is the outgoing cylindrical wave matching expression (i),

ρ11 ∼ exp(ir − iπ/4)√
r

f (i)(θ), v11 ∼ r̂ρ11 as εrθ → ∞. (5.32a,b)

This confirms the suggestion of §5.2 that this region is, in fact, the far field. As the
wake in (5.26) is wide compared with the parabolic region in (5.23) (see figure 6), in
the intermediate region the distortion component dominates such that

ρ11 ∼ ρd
11, v11 ∼ k̂ρ11 as εrθ = O(1). (5.33a,b)

However, only the radiation component contributes to the interference pattern, so that

|U11| = O(1), |A1| = O(1/
√

r) as εrθ = O(1). (5.34a,b)

Within the parabolic region

|U11| = O(1), |A1| = O(1) as
√

rθ = O(1). (5.35a,b)

The discontinuity in the direction θ = 0, which is present in (5.23) as well as in (5.26),
vanishes on summation.

The solution (5.23) + (5.31) is precisely expression (ii) for the case PWPV Γ = 1 that
does not decay anywhere. (The corresponding scattered field in terms of the definition
(2.30) does not decay only within the parabolic region

√
rθ = O(1).) It is valid in the

irrotational flow region εr → 0 where Γ → 1. Moreover, it persists in the region ε2x → 0,
εy → 0 including its backward as well as forward part, meaning that the scattered wave
does not feel the decay of the flow. Independence of the solution on ε indicates the region
of geometrical acoustics, since the wavelength remains the only spatial scale. Expression
(ii) was obtained in equivalent forms by Aharonov & Bohm (1959, (21) and (23)), Berry et
al. (1980, (14) and (A9)), Sakov (1993, (23)), Ford & Smith (1999, (5.7) and (5.11)–(5.12)),
Howe (1999, (6), (11), (12), (14) and (17)) and Kopiev & Belyaev (2010, (21), (24), (32)
and (34)), some of which were related to different variables and some contained misprints.

5.3.3. Near field ε2r = O(1)
The near-field solution at large angles, consistent with the foregoing is the outgoing
cylindrical wave matching expression (i), written

ρ11 ∼ exp(ir − iπ/4)√
r

f (i)(θ) as ε2r = O(1), θ/ε → ∞. (5.36)

The solution in the near field ε2r = O(1) at small angles θ/ε = O(1) is obtained only
as the single integral (A1), (A4)–(A10) and cannot be unambiguously divided into the
radiation and distortion components. Some researchers who used the terminology of
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r
O(1)

1a

1b2b
2a

ε–2

ε–1

ε

�—

Figure 6. Asymptotic regions of the source (filled circle) and the solution presented in figure 10 as ε → 0 in
terms of orders of quantities corresponding to table 1.

√
r|A1| = O(1)

√
r|A1| � 1

Far field: 1a 1b
|U11| � 1 |U11| = O(1/

√
r) |U11| = O(ε−1/

√
r)

|A1| = O(1/
√

r) |A1| = O(ε−1/
√

r)
| f | = O(1) | f | = O(ε−1)

Near field: 2a 2b
|U11| = O(1) |U11| = O(1) |U11| = O(1)

|A1| = O(1/
√

r) |A1| = O(1)
| f | = O(

√
r) | f | = O(

√
r)

Table 1. Orders of |U11|, |A1|, | f | in asymptotic regions shown in figure 6.

(2.28), (2.30) interpreted that the incident and scattered fields could not be separated from
each other. Here, the scattered field is rearranged from (5.23) + (5.26) in the region of
geometrical acoustics to qualitatively different (5.7a,b), (5.14), (5.15) in the far field. The
order of the amplitude is evidently

|U11| = O(1) as ε2r = O(1), θ/ε = O(1). (5.37)

5.3.4. Overall pattern
The evaluations in §§ 5.3.1–5.3.3 define four asymptotic regions with different orders of
|U11|, |A1|, which can be classified by two independent criteria (figure 6 and table 1). The
region of geometrical acoustics is included in the near field in this sense. The far field 1a
∪ 1b and the near field 2a ∪ 2b are exactly the regions predicted by the analysis of the
Fourier representation in § 5.2 (compare with figure 2). In addition, the far field and the
near field are exactly the regions where the amplitude of the scattered wave |U11| � 1 and
|U11| = O(1), respectively. Note that max |U11| = O(1), so that the Born approximation
remains uniformly valid as required.

The solution obtained is reduced to expressions (i) and (ii) for case PWPV Γ = 1 and an
analogue to the solution by Berthet & Lund (1995) for the case Γ = exp(−εr) in different
regions (table 2).

The real part of the numerical solution obtained using the exact representation (A1),
(A4)–(A10) is presented in figure 3(c). In order to visualise the near-field solution in a
similar manner to the far-field, it is useful to generalise the scattering amplitude to the
complex-valued function dependent on r by

ρ11 ≡ exp(ir − iπ/4)√
r

f (r). (5.38)

Scattering patterns | f (r, θ)| on various distances r = const within the region of fluid at
rest εr � 1 are presented in figures 7–9, including the leading-order solution as ε → 0
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Expression (i) Expression (ii) Solution by Berthet
& Lund (1995)

Equation (5.7), (5.49), (5.15) (5.23) + (5.31) (5.7), (5.16), (5.15)
Properties:
regularity − + +
decay at ∞ + − +
Case Γ = 1 Γ = 1 Γ = exp(−εr)
Well-posedness of

problem
ill-posed ill-posed well-posed

First obtained:
exactly Pitaevskii (1959) Sakov (1993)
analogous Aharonov & Bohm (1959) Berthet & Lund

(1995)
Corresponding

region
far field, large angles 1a geom. acoustics region

(near field 2a ∪ 2b,
‘inner’ part)

far field 1a ∪ 1b

Table 2. Known expressions that are included in the present solution in different regions (see figure 6).

| f |

0

θ

ε–1

Figure 7. Scattering patterns in the far field for Γ = exp(−ε2r2), ε = 0.05: the leading-order solution as
ε2r → ∞ (5.14) (black, dashed) and the numerical solution for ε2r = 0.5 (blue, solid) and ε2r = 1 (orange,
solid).

| f |

0

θ

ε–1

Figure 8. Scattering patterns in the region of geometrical acoustics for Γ = exp(−ε2r2), ε = 0.05: the
leading-order solution for εr → ∞, ε2r → 0 corresponding to (5.23) + (5.30) (dashed) and the numerical
solution (solid) for εr = 2, ε2r = 0.1 (dark green), εr = 4, ε2r = 0.2 (red).

determined in §§ 5.3.1 and 5.3.2 and the numerical solution. As f (r,−θ) = −f (r, θ),
only the upper half-plane 0 ≤ θ ≤ π is shown. Peaks at small angles and nulls in the
forward θ = 0, transverse θ = π/2 and backward θ = π directions are visible. Figure
9(a,c) shows that in practice the region r < 0.2ε−2 can be considered as the region of
geometrical acoustics, whereas the region r > 0.5ε−2 can be considered as the far field.
The oscillations appearing in the region of geometrical acoustics (figure 8) reflect the
interference of the radiation component (5.23) and the distortion component (5.26).

The real part of the total acoustic field ρ01 + Mλρ11 calculated using (4.8a) and (A1),
(A4)–(A10) for Mλ = 0.5 (for a clear illustration) is presented in figure 10 (compare
with the scheme in figure 6). The sharpest interference pattern |A1| = O(1) occurs in the
parabolic region 2b. The most considerable wavefront refraction is visible in the near field
2a ∪ 2b. In the region 2a the wavefronts are similar to those shown in figure 5 (adjusted
for the value of Mλ), while in the region 2b the gap is smoothed out. Similar behaviour can
be observed in a physical or numerical experiment if the vortex velocity field exists in a
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| f |

| f |

| f |

0

0

0

θ

θ

θ

ε–1

ε–1

ε–1

(b)

(a)

(c)

Figure 9. Scattering patterns for Γ = exp(−ε2r2), ε = 0.05: the leading-order solution in the far field (5.14)
(blue, solid), the leading-order solution in the region of geometrical acoustics corresponding to (5.23) + (5.30)
(red, solid), the composite solution corresponding to (5.39) (green, solid) and the numerical solution (black,
dashed) for ε2r = 0.2 (a); ε2r = 0.3 (b); ε2r = 0.5 (c).

0

0

x

y

0.2ε–2

2ε–1

–2ε–1

0.4ε–2 0.6ε–2

Figure 10. The total acoustic field Re(ρ01 + Mλρ11) given by (4.8a) + Mλ (A1), (A4)–(A10) for
Γ = exp(−ε2r2), ε = 0.05 and Mλ = 0.5.

limited region. Examples are water waves patterns corresponding to the cases of small
Mλ (Vivanco et al. 1999, figure 2a,b) and numerical patterns (Berthet & Coste 2003,
figures 6, 7). Compare it with results by Berry et al. (1980, figures 3, 4) for case PWPV
and by Coste et al. (1999, figures 2a, 3a) for a similar case in which the refraction was
considerable at arbitrarily large distances.

The structure of the solution allows us to compose a single expression that will be
uniformly valid in the far field ε2r → ∞, at large angles θ/ε → ∞ and in the region of
geometrical acoustics ε2r → 0. For this we use the technique analogous to the method of
multiplicative composition, which is commonly used to obtain a uniformly valid solution
from matched asymptotic expansions by taking the multiplication of the outer and inner
expansions divided by the intermediate approximation (Van Dyke 1964, § 5.10). Let us
regard the far-field solution (5.7a), (5.14), (5.15) as the outer expansion, the solution in the
region of geometrical acoustics (5.23) + (5.26) as the inner expansion and the solution at
large angles (5.36), (5.15) as the intermediate approximation. This is possible because in
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the region 1a the expansions match each other. The composite solution is

ρ11|ε2r→∞ρ11|ε2r→0

ρ11|θ/ε→∞
∼ πi(1 − exp(−θ2/4ε2))

×
{

exp(ir cos θ)
[

2T(
√

2εr sin θ, cot θ)+ 1
2
(sgn(θ)− erf(εr sin θ))

]
− exp(ir(1 − θ2/2))

θ

2
cos θ cot

θ

2

[
sgn(θ)− erf

(
e−iπ/4√rθ√

2

)]}
. (5.39)

The expression (5.39) looks more similar to the numerical solution than any of the known
leading-order solutions, including in the near field (figure 9b). Apart from the near field,
the only region where it leads to the relative error O(1) is the non-relevant neighbourhood
of the symmetry axis, where ρ11 ∝ θ whereas (5.39) is proportional to θ3.

5.3.5. Scattering and momentum-transfer cross-sections
Let us generalise the total scattering cross-section and momentum-transfer cross-section
(Pitaevskii 1959) by taking into account the direction of the scattered-wave propagation.
In the dimensionless form

σ(r) =
∫ π

−π

|v11|2v̂11 · r dθ, σ ∗(r) =
∫ π

−π

|v11|2(v̂11 − k̂) · r dθ, (5.40a,b)

where v̂11 = v11/|v11| is the scattered wave vector, v̂11 → r̂ as ε2r → ∞. In the region of
fluid at rest where the wave–vortex interaction is negligible, the scattered energy flux and
momentum transfer must be constant,

σ(r) → σ∞, σ ∗(r) → σ ∗
∞ as εr → ∞. (5.41a,b)

The far-field representation (5.7a,b) substituted into (5.40a,b) leads to

σ∞ =
∫ π

−π

f 2(θ) dθ, σ ∗
∞ =

∫ π

−π

f 2(θ)(1 − cos θ) dθ. (5.42a,b)

For the solution (5.14), the total scattering cross-section (5.42a) is

σ∞ → 4π

∫ ∞

0

(1 − exp(−θ2/4ε2))2

θ2 dθ = (4 − 2
√

2)π3/2ε−1. (5.43)

It is comparable to the size of the flow region, with most of the energy being emitted within
small angles θ/ε = O(1). The dimensional total scattering cross-section is O(M2δ2ε−1)

relative to the wavelength, this can be either longer or shorter as it is not limited by the
conditions (4.4a–c).

In the region of geometrical acoustics beyond the flow region, substituting (5.23) +
(5.30) into (5.40a) we obtain

σ → 2π2r
∫ ∞

0
[1 − erf(εrθ)]2dθ = (4 − 2

√
2)π3/2ε−1 as εr → ∞, ε2r → 0,

(5.44)

which is equal to the far-field value (5.43) as required by the conservation law (5.41a),
despite the radically different scattering pattern. Most of the emitted energy is related to
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the distortion component (5.30), as its transverse range is much greater than that of the
radiation component. Thus, the scattered field identified with the radiation component by
(2.30) violates (5.41a)

σ ′ → 2π2r
∫ ∞

0

[
1 − erf

(
e−iπ/4√rθ√

2

)]2

dθ ∝ √
r as εr → ∞, ε2r → 0. (5.45)

This is why, in this paper, we adhere to the terminology (2.13), (2.24) regarding the
distortion component as a part of the scattered field despite its non-contribution to the
interference pattern.

In the irrotational flow region, with (5.23) + (5.31) we have

σ ∼ r
∫ π

−π

|ρ11|2 cos θ dθ → 2π2r
∫ ∞

0
(1 − θ/π)2 cos θ dθ = 4πr as εr → 0. (5.46)

The momentum-transfer cross-section in the far field is equal to that in the near field
and comparable to the wavelength so that

σ ∗
∞ → π2/2, (5.47)

as the distortion component and small angles do not contribute (Fabrikant 1982). Owing
to this, Pitaevskii (1959) and Fetter (1964) obtained the correct value (5.47) based on the
incorrect expression (i) for case PWPV. The result (5.47) was used to calculate the mutual
friction force in superfluid helium.

5.4. For the case Γ = 1
In § 5.3 we have shown that expressions (i) and (ii) appearing in case PWPV Γ = 1
are included in the leading-order solution for the case Γ = exp(−ε2r2) as ε → 0 in the
different regions (table 2). Now we explain what happens when one assumes ε = 0 and
deals with the ill-posed RP using methods correct only for ε > 0 (as has been done in
works devoted to the case PWPV).

In the degenerate case ε = 0, the only characteristic spatial scale for the source and
hence for the scattered field is the acoustic wavelength O(1). The source Fourier transform
(5.10) for Γ = 1 is singular at the incident wave vector k̂

q̂11(K) = −2i
K · k̂ ẑ · (K × k̂)

|K − k̂|2
. (5.48)

(Generally, the source Fourier transform (5.10) and, hence, the scattering amplitude (5.8)
is regular on the incident direction r̂ = k̂ under the condition |v10| = O(r−n), n > 2 as
r/R → ∞, which is the more rigorous than (3.10) for the well-posedness of the RP in
the case of a uniform plane incident wave (4.8a–c). This suggests that in the case of
the vortex velocity field |v10| ∝ r−n for 3/2 < n ≤ 2 the usage of asymptotics (3.7) for
Green’s function is still not permitted, meaning that all the fluid must be considered as the
flow region.)

The substitution of (5.48) into the far-field representation (5.7), (5.8) leads to expression
(i), which is defined by (5.15)

f = f (i), (5.49)
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being singular on the line that represents the degenerated region θ/ε = O(1), so that

f (i) → ∞ as θ → 0. (5.50)

As Berthet & Lund (1995) noted, the singularity is the indeterminate form ∞ − ∞ (see
figure 4). Expression (i) satisfies the radiation condition (3.4) but violates the Helmholtz
equation (3.1), which is essentially inhomogeneous. In fact, the far-field representation
breaks down because the asymptotics (3.7) for Green’s function cannot be used in the flow
region (Sakov 1993), the contribution of the sources within the neighbourhood |r − r′| =
O(1) is not correctly taken into account, and the property of Green’s function to be the
fundamental solution to the equation is lost.

The substitution of (5.48) into the exact representation (5.4) with (5.5) leads to
expression (ii) defined by (5.23) + (5.31), which is non-decaying within the infinite region
that represents the region of geometrical acoustics extended unboundedly, i.e.

|U11| = O(1) as r → ∞. (5.51)

In the leading-order approximation, expression (ii) satisfies the inhomogeneous Helmholtz
equation (3.1) but violates the radiation condition (3.4), even if one includes only the
radiation component (5.23) into the scattered field. In fact, the exact representation (5.4)
breaks down because expression (ii) violates the decay condition (3.5) and hence the
equation (5.2). Other researchers using expression (ii) used different representations that
also violated the radiation condition (3.4).

To summarise, neither the far-field representation (5.7), (5.8) nor the exact
representation (5.4) is valid for case PWPV and neither expression (i) nor (ii) satisfies
(3.1) and (3.4). Nevertheless, expression (ii) has the advantage that it corresponds to the
region of geometrical acoustics including the region εr → 0 where Γ → 1, as for case
PWPV. In contrast, expression (i) corresponds to the far field where Γ → 0, which is
absent in case PWPV.

6. Conclusions

This work arose from the issue with the well-known problem of a uniform plane acoustic
wave scattering by a point vortex, which was recognised as ill-posed because of the
slowly decaying velocity field. In the framework of the Born approximation we showed
that a two-dimensional scattering problem with the Sommerfeld radiation condition is
well-posed if and only if the incident wave velocity field multiplied by the vortex velocity
field is o(r−3/2) as r → ∞. This is fulfilled for any realisable statement but not for the case
described previously. There is no contradiction: in unbounded space the kinetic energy of
a two-dimensional flow with non-zero total circulation as well as the energy flux of the
uniform plane wave is infinite so that neither of them can exist. This situation is specific
for the two-dimensional case, without a clear analogue in three dimensions (see Smith &
Ford 2001).

To obtain to a well-posed problem, we effectively constrict the flow induced by a point
vortex to the region r/L = O(1), where L was assumed long compared with the acoustic
wavelength λ. More precisely, we utilised the vortex that emerged when an elongated solid
circular cylinder of small radius compared with wavelength, rotated in a viscous fluid for
a long time. The velocity field of such vortex is proportional to r−1 exp(−r2/L2). This is
similar to a point vortex within the region r � L, where L ∝ √

t can be made arbitrarily
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large by increasing the rotation time t. The exponential decay as r/L → ∞ ensures the
well-posedness of the scattering problem.

For the case described, we obtained a leading-order solution as λ/L → 0 by evaluation
of exact integral representations and validated it by numerical integration. The solution
has no singularities, satisfies the radiation condition and possesses finite energy flux. In
addition, in different asymptotic regions it is reduced to expression (i) with a singularity
on θ = 0, and to expression (ii) which does not decay as r → ∞, both are known from
existing works on the case of a point vortex that nominally corresponds to L = ∞.

The overall scattering pattern (figures 2 and 6) is similar to the pattern of a plane wave
diffraction by a slit of width L. In the far field (the Fraunhofer region) r � L2/λ, the
acoustic field is a uniform plane incident wave plus an outgoing cylindrical scattered wave.
The scattering amplitude (5.14), (5.15) peaks at small scattering angles θ = O(λ/L), where
it increases by O(L/λ) (figures 4 and 7). At large angles θ � λ/L, it matches expression
(i). In the region of geometrical acoustics r � L2/λ, the acoustic field is a non-uniform
plane wave (5.26)–(5.28) (figure 5) plus the wave (5.23) which is non-decaying within
the narrow parabolic region θ = O(

√
λ/r), and outgoing cylindrical beyond. The energy

flux conservation in the region r � L unambiguously defines the component that provides
the refraction of the incident wave as the part of the scattered field. In the subregion
|x| � L2/λ, |y| � L that includes r � L where the vortex velocity field is proportional
to r−1, the scattered field matches expression (ii). The presence of the spatial scale L2/λ,
long compared with the largest spatial scale L present in the problem statement, specifies
the size of the domain that would have to be resolved in an experimental or numerical
study.

To summarise, in the region r � L where the flow is similar to that is induced by a
point vortex the solution is reduced to expression (ii). In the region r � L where the
fluid is at rest the scattering pattern is quite complex (figure 6) and includes the region
with expression (i) as well as the region with expression (ii) (table 2). Thus, the region
corresponding to expression (i) is completely absent, whereas the part of the region
corresponding to expression (ii) takes up all the space in the case of a point vortex. This
suggests we regard expression (ii) as in some sense relevant, whereas expression (i) is
regarded as irrelevant to the case of to point vortex.

The formulation considered in this paper is analogous to that with a vortex velocity
field proportional to r−1 exp(−r/L) proposed by Berthet & Lund (1995) and in addition
has a clear physics-based rationale. Berthet & Lund (1995) succeeded in obtaining the
far-field solution (5.16), (5.15), analogous to (5.14), (5.15). Following the strategy of the
present paper, one could obtain the corresponding solution in the region of geometrical
acoustics, which is expected to be analogous to (5.23) + (5.26) but perhaps would need
more cumbersome calculations.
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Sound scattering by a vortex

Appendix A. Derivation of the solution for the case Γ = exp(−ε2r2)

The leading-order solution to the RP with the source (4.11) for Γ = exp(−ε2r2) as ε → 0
is derived using the exact representation (5.4) with the bypass rule (5.5) for the source
Fourier transform (5.13). We follow the method developed by Ford & Smith (1999) and
Howe (1999) for case PWPV corresponding to ε = 0.

A.1. Exact representation through a single integral
The solution (5.4), (5.13) is represented as the sum of two terms

ρ11 = ρ
p
11 + ρc

11, (A1)

ρ
p
11 = − i

2π

∫
R2

K · k̂ ẑ · (K × k̂)

1 − K · k̂

(1 − exp(−|K − k̂|2/4ε2))

|K − k̂|2
exp(iK · r) d2K , (A2)

ρc
11 = − i

2π

∫
C

K · k̂ ẑ · (K × k̂)

1 − K · k̂

(1 − exp(−|K − k̂|2/4ε2))

1 − K2 exp(iK · r) d2K , (A3)

with the pole κ = 1 bypassed with the rule Im(κ) < 0, consistent with (5.5).
The integral (A2) is the inverse Fourier transform of the function q̂11(κ, μ)/2(1 − κ).

Under the bypass rule used, the transform of 1/2(1 − κ) is equal to −πi eixH(x)δ( y),
where H(x) is the Heaviside step function and δ( y) is the Dirac delta function. Applying
the convolution theorem and substituting (4.11) and (4.12) for q11(x, y), we obtain exactly

ρ
p
11 = − exp(ik̂ · r)

{
i
∫ r

−k̂∞
k̂ · v10(r′)k̂ · dr′ + k̂ · v10(r)

}
= eix

{
πi
[

2T(
√

2εy, x/y)+ 1
2
(sgn( y)− erf(εy))

]
+ y

x2 + y2 exp(−ε2(x2 + y2))

}
,

(A4)

where

T(ζ, a) = 1
2π

∫ a

0

exp(−ζ 2(1 + x′2)/2)
1 + x′2 dx′ (A5)

is the Owen T-function (Owen 1956, for its properties see Brychkov & Savischenko 2016).
The singularity in (A4) is owing to the point vortex.

In the expression (A3), we integrate with respect to μ passing the poles μ = ±√
1 − κ2

and choose the analytic branch of the function
√
κ2 − 1, consistent with (5.5). The solution

is represented as the Sommerfeld integral in terms of the variable ψ = ξ + iη defined by
κ = cosψ , i

√
κ2 − 1 = sinψ so that

ρc
11 = ρ

c,0
11 + ρ

c,1
11 , (A6)

ρ
c,0
11 = i

2π
sgn( y)

∫ ∞

−∞
κ

1 − κ
eiκx

(∫ ∞

−∞
μ

1 − κ2 − μ2 eiμ|y| dμ
)

dκ

= sgn( y)
2

∫ ∞

−∞
κ

1 − κ
exp(−

√
κ2 − 1|y| + iκx) dκ

= −sgn(θ)
2

∫
C

exp(ir cos(ψ − |θ |)) cosψ cot
ψ

2
dψ, (A7)
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0–π π–π/2 π/2

Figure 11. The integration contours for (A7) in the complex plane ψ for θ = π/6: the original contour C
(black, thick) and the SDP C0 (orange). Thin coloured curves are Re(E0(ψ)) = 0,±0.5,±1,±1.5; blue curves
correspond to negative values, green to zero and red to positive values. Dashed curves are Im(E0(ψ)) =
Im(E0(ψs,0)).

ρ
c,1
11 = − i

2π
sgn( y)

∫ ∞

−∞
κ

1 − κ
exp(−(κ − 1)2/4ε2)

× eiκx
(∫ ∞

−∞
μ

1 − κ2 − μ2 e−μ2/4ε2
eiμ|y| dμ

)
dκ

= ρ
c,1|+
11 + ρ

c,1|−
11 ,

ρ
c,1|±
11 = sgn( y)

2

∫ ∞

−∞
F±

κ

1 − κ
exp(∓

√
κ2 − 1|y| + iκx) dκ

= −sgn(θ)
2

∫
C

F± exp(ir cos(ψ ∓ |θ |)) cosψ cot
ψ

2
dψ, (A8)

F± = ∓1
2

exp((κ − 1)/2ε2)

[
1 + erf

(
−

√
κ2 − 1
2ε

± ε|y|
)]

= ∓1
2

exp(− sin2(ψ/2)/ε2)

[
1 + erf

(
i sinψ

2ε
± εr sin |θ |

)]
. (A9)

The integration contour C in (A7), (A8) consists of three straight lines

ψ = π + iη, −∞ < η ≤ 0; ψ = ξ, π ≥ ξ > 0; ψ = iη, 0 < η < ∞
(A10a–c)

and an infinitely small arc passing the pole ψ = 0 counter-clockwise (figures 11–12).
The exact representation (A1) and (A4)–(A10) is used to calculate the numerical

solution, especially in the near field where the analytical expression is unknown. The
important region for the integration is Im(ψ) = O(1) for (A7) and ψ = O(

√
ε) for (A8).

The contribution of the arc is equal to the residue of the integrand at ψ = 0 multiplied by
πi/2.

A.2. Leading-order solution as ε → 0, r → ∞
The expression (A4) as r → ∞ is reduced to (5.26) that constitutes the distortion
component in the region of geometrical acoustics ε2r → 0.

To calculate (A7) and (A8) as r → ∞, we use the stationary-phase method (Borovikov
1994): The contour C is deformed on to the steepest descent path (SDP) C∗ specified by
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–π π–π/2 π/20 –π π–π/2 π/20 –π π–π/2 π/20

–π π–π/2 π/20 –π π–π/2 π/20 –π π–π/2 π/20

(e)

(b)(a) (c)

(d ) ( f )

Figure 12. The integration contours for (A8) in the complex plane ψ for r = 0.5 and θ = π/6 (a–c), θ =
5π/6 (d–f ): the original contour C (black, thick) and the auxiliary SDPs Cn

1|+ (a, d), Cn
1|− (b,e), C f

1 (c, f )
(orange). Thin coloured curves are Re(E∗(ψ)) = nε−2, n = 0,±1,±2,±3; blue curves correspond to negative
values, green to zero, and red for positive values (A16a,b). Dashed and dash-dotted curves are Im(E∗(ψ)) =
Im(E∗(ψn

s,∗)) corresponding to the different Im(E∗(ψn
s,∗)).

the most highly oscillatory factor exp(E∗(ψ)) in the integrand of the term ρ
c,∗
11 . SDP is

defined as the contour that passes through the saddle point ψs,∗, such that

dE∗/dψ = 0 for ψ = ψs,∗, (A11)

in the direction in which

Im(E∗(ψ)) = Im(E∗(ψs,∗)), Re(E∗(ψ)) ≤ Re(E∗(ψs,∗)) for ψ ∈ C∗. (A12a,b)

In figures 11 and 12 saddle points are intersections of curves Im(E∗(ψ)) = Im(E∗(ψs,∗)).
As r → ∞, a high increment in E∗(ψ) for (A7) and (A8) ensures that only a
neighbourhood of the saddle point |ψ − ψs,∗| → 0 contributes to the integral along C∗.

In the case of the continuous deformation, the integral along C is equal to that
along C∗. In the case when the contour crosses the pole ψ = 0, the integral changes
by the respective residue of the integrand multiplied by 2πi. The deformation with
crossing the infinite-range zones where the integrand is growing unlimitedly is not
permitted. As the integrands are 2π-periodic, the complex space ψ is an isomorphism
of a cylinder rather than of a plane, so we distinguish between deformations in clockwise
and counter-clockwise directions.

A.2.1. Calculation of (A7)
For the term ρ

c,0
11 , the most highly oscillatory factor and the saddle points defined by (A11)

are
E0(ψ) = ir cos(ψ − |θ |); ψs,0 = |θ |, ψ ′

s,0 = |θ | − π. (A13a–c)

918 A46-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

35
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.355


D.A. Gadzhiev and A.M. Gaifullin

The SDP that can be obtained by a continuous deformation of C passes through ψs,0 and
is determined from (A12) by

ψ = |θ | + τ + i ln
1 − sin τ

cos τ
on C0, −π/2 < τ < π/2, (A14)

as shown in figure 11. Substituting (A14) into (A7) and using approximations ψ → |θ | +√
2e−iπ/4τ as τ → 0 and so on, we obtain

ρ
c,0
11 ∼ sgn(θ)√

2
exp(ir − iπ/4) cos θ

∫ ∞

−∞
e−rτ 2

cot
|θ | + √

2e−iπ/4τ

2
dτ

∼

⎧⎪⎪⎨⎪⎪⎩
−πi exp(ir(1 − θ2/2))

[
sgn(θ)− erf

(
e−iπ/4√rθ√

2

)]
as

√
rθ = O(1),√

π

2r
exp(ir − iπ/4) cos θ cot

θ

2
as θ = O(1).

(A15)

The multiplicative composition of the matched expansions in (A15), meaning their
multiplication divided by the intermediate approximation (see Van Dyke (1964), § 5.10),
yields the uniformly valid solution (5.23) that constitutes the radiation component in the
region of geometrical acoustics ε2r → 0.

Thus ρp
11 + ρ

c,0
11 is the solution (5.23) + (5.26) in the region of geometrical acoustics

ε2r → 0.

A.2.2. Calculation of (A8)
For the terms ρc,1|±

11 , the most highly oscillatory factor is difficult to define explicitly
because of the error function in (A9). For understanding the behaviour of the SDP, let us
consider two simplified cases when the error function is replaced with its approximation
in the near or far region, using the indices ‘n’ and ‘f ’, respectively.

In case n, the factor with the error function in (A9) is assumed constant. The most highly
oscillatory factor and the saddle points defined by (A11) are

En
1|±(ψ) = ir cos(ψ ∓ |θ |)− sin2(ψ/2)/ε2; ψn

s,1|± = − i
2

ln
2iε2re±i|θ | + 1
2iε2re∓i|θ | + 1

,

(A16a,b)

where ψn
s,1|+ as well as ψn

s,1|− include two saddle points separated by π, corresponding to
two different branches of the complex logarithm. At each of them,

En
1|±(ψ

n
s,1|±) = −(1 −

√
1 + 4iε2r cos θ − 4(ε2r)2)/2ε2 (A17)

and the inclination angle to x-axis is −(1/4)arccot[(1 − 4(ε2r)2)/(4ε2r cos θ)]. The SDP
that can be obtained by a permissible deformation of C passes through the saddle point
whose real part lies within 0 and ±π. Typical SDPs Cn

1|+ and Cn
1|−, antisymmetric to

each other with respect to origin, are shown in figure 12(a,b,d,e). Cn
1|+ approaches C0 as

ε2r → ∞ and the piecewise rectilinear contour ψ = π + iη, −∞ < η ≤ 0; ψ = ξ, π ≥
ξ ≥ −π; ψ = −π + iη, 0 < η < ∞ as ε2r → 0.
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In case f , the factor with the error function in (A9) is replaced with its asymptotics

1 + erf(φ) → − exp(−φ2)/(
√

πφ) as φ → ∞ unless − π/4 ≤ arg(φ) ≤ π/4,
(A18)

which is achieved along the contour C. The most highly oscillatory factor and the saddle
points defined by (A11) are equal for ρc,1|+

11 and ρc,1|−
11

E f
1 (ψ) = −ε2r2 sin2 θ + ir cos θ cosψ − sin4(ψ/2)/ε2;

ψ
f

s,1 = 0, ψ
f ′
s,1 = π, ψ

f ±
s,1 = ± arccos(1 + 2iε2r cos θ).

⎫⎬⎭ (A19)

Owing to the quartic term, the SDP is a piecewise smooth curve qualitatively different for
|θ | < π/2 and |θ | > π/2.

For |θ | < π/2, C f
1 passes through the points ψ f

s,1 (turning around it counter-clockwise),

ψ
f +
s,1 and ψ f −

s,1 (figure 12c). The part between ψ f +
s,1 and ψ f −

s,1 is given by (A14) for θ = 0.

Reaching ψ f +
s,1 and ψ f −

s,1 with the inclination angle −(1/2)arccot(−ε2r cos θ) to x-axis,

C f
1 turns by 90◦ to stay within the region where the integrand is decaying. At infinity, it

approaches C. The peak value of the integrand is reached at the point ψ f
s,1

Re(E f
1 (ψ

f
s,1)) = −ε2r2 sin2 θ, Re(E f

1 (ψ
f ±
s,1 )) = −ε2r2. (A20a,b)

The contour C f
1 approaches C as ε2r → 0 and unboundedly extends its C0-like part as

ε2r → ∞.
For |θ | > π/2, C f

1 consists of two parts with different values of Im(E f
1 (ψ)) (figure 12f )

attached to each other at a point close to π + iη, η � 1, where the integrand is negligible.
The part with Im(E f

1 (ψ)) = −r cos θ passes through the saddle point ψ f ′
s,1, whereas the

part with Im(E f
1 (ψ)) = r cos θ through the point ψ f +

s,1 . The peak value of the integrand is

reached at ψ f +
s,1 and defined by (A20b).

The real SDP C1|± is believed to be similar to Cn
1|± near the saddle point defined by

(A16b) and to C f
1 far from it. The integral along C1|± is equal to that along Cn

1|±, as

only the neighbourhood of the saddle point contributes. The behaviour of C f
1 specifies the

direction of the contour deformation, clockwise or counter-clockwise, that avoids crossing
the infinite-range zones where the integrand is growing unlimitedly. Comparison of figures
12(a,b) against 12(c) and of 12(d,e) against 12(f ) shows that C is deformed on to C1|+
continuously either for |θ | < π/2 and for |θ | > π/2, while on to C1|− crossing the pole
ψ = 0 for |θ | < π/2 and continuously for |θ | > π/2.

Now let us consider calculation of ρc,1
11 . First, (A8)–(A9) indicates that

ρ
c,1|−
11 ∼ −ρc,1|+

11 as εy → 0. (A21)

In addition, at the analytic branch of (A17) corresponding to the previously used SDP,

Re(En
1|±(ψ

n
s,1|±)) → −∞ as

{
θ/ε → ∞, ε2r = O(1) or ε2r → ∞,√

rθ → ∞, ε2r → 0.
(A22)

Under the condition (A22), the terms ρc,1|±
11 are exponentially decaying. To summarise

(A21) and (A22), we have

ρ
c,1
11 → 0 as ε2r → 0 or θ/ε → ∞. (A23)
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This proves that the solution (5.23) + (5.26) is valid in the region of geometrical acoustics
as well as at large angles in the near field, where it is reduced to (5.36).

In the far field ε2r → ∞, the important part of the SDP C1|+ approaches C0, whereas
the important part of C1|− the contour antisymmetric to C0 with respect to origin. We
follow the derivation of (A15) by taking (A9) at the saddle point ψ = ±|θ |. To ρc,1|−

11 , for
|θ | < π/2 we add the residue of the integrand at the pole ψ = 0 multiplied by 2πi, thus

ρ
c,1|+
11 ∼ −1

2 exp(−θ2/4ε2) [1 + erf (εr sin |θ |)] ρc,0
11 , (A24a)

ρ
c,1|−
11 ∼ −πi exp(ir cos θ)H(cos θ)

[
sgn(θ)− erf (εr sin θ)

]
− 1

2 exp(−θ2/4ε2) [1 − erf (εr sin |θ |)] ρc,0
11 as ε2r → ∞. (A24b)

The sum of (A24a) and (A24b) is

ρ
c,1
11 ∼ −πi exp(ir cos θ)H(cos θ)[sgn(θ)− erf (εr sin θ)]

− exp(−θ2/4ε2)ρ
c,0
11 as ε2r → ∞. (A25)

The first term in (A25) cancels out (5.26), while the sum of the second and (5.23) in the
leading-order approximation is equivalent to the far-field solution (5.7), (5.14), (5.15).
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