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KINGMAN’S MODEL WITH RANDOM MUTATION PROBABILITIES:
CONVERGENCE AND CONDENSATION I
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Abstract

For a one-locus haploid infinite population with discrete generations, the celebrated
model of Kingman describes the evolution of fitness distributions under the competition
of selection and mutation, with a constant mutation probability. This paper generalises
Kingman’s model by using independent and identically distributed random mutation
probabilities, to reflect the influence of a random environment. The weak convergence
of fitness distributions to the globally stable equilibrium is proved. Condensation occurs
when almost surely a positive proportion of the population travels to and condenses at the
largest fitness value. Condensation may occur when selection is favoured over mutation.
A criterion for the occurrence of condensation is given.
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1. Motivation and background

Various biological forces interact with each other and jointly drive the evolution of popu-
lations. One important competing pair consists of selection and mutation. As early as 1937,
Haldane [14] put forward the concept of mutation–selection balance. The mathematical foun-
dation of this subject was established by Crow and Kimura [7], Ewens [11], and Kingman [20].
For more details on this topic, we refer to Bürger [5, 6].

A simple setting is to consider a one-locus haploid infinite population with discrete gen-
erations under selection and mutation. The locus is assumed to have infinitely many possible
alleles, which have continuous effects on a quantitative type. The continuum-of-alleles mod-
els were introduced by Crow and Kimura [7] and Kimura [17] and are used frequently in
quantitative genetics.

Kingman [18] suggested that the tendency that most mutations are deleterious could be
explained by the assumption of the independence of the gene before and after mutation. The
paper [19], which proposed Kingman’s famous one-locus model, described this feature in terms
of a ‘house of cards’; that is, a mutation destroys the biochemical house of cards built up by
evolution. In the one-locus model, a population is characterised by its type distribution, which
is a probability measure on [0,1], and any x ∈ [0, 1] is a type value. In Kingman’s setting, an
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312 L. YUAN

individual with a larger type value is fitter, which means more productive. So the type value
can also be referred to as a fitness value. Kingman’s model can be seen as the limit of a
finite-population model; see [13].

Bürger [4] generalised the selection mechanism by allowing the gene after mutation to
depend on that before and proved convergence in total variation. The genetic variation of the
equilibrium distribution was computed and discussed. In [22] the author of the present paper
proposed a more general selection mechanism which can model general macroscopic epista-
sis, with the other settings the same as in Kingman’s model. This model was applied to the
modelling of the Lenski experiment (see [12] for a description of the experiment).

There also exist models on the balance of selection and mutation in the setting of continuous
generations. Bürger [3] provided an exact mathematical analysis of Kimura’s continuum-of-
alleles model, focusing on the equilibrium genetic variation. Steinsaltz et al. [21] proposed a
multi-locus model using a differential equation to study the ageing effect. Later on, recom-
bination was incorporated into the model [10]. The model of Betz et al. [2] generalised a
continuous-time version of Kingman’s model and other models arising from physics.

However, to the best of the author’s knowledge, Kingman’s model has never been gener-
alised to a random version. In this paper we will assume that the mutation probabilities of all
generations form an independent and identically distributed (i.i.d.) sequence. Biologically, we
think of a stable random environment such that the mutation probabilities vary with time but
are independently sampled from the same distribution.

In Kingman’s model, condensation occurs if a certain positive proportion of the population
travels to and condenses at the largest fitness value. This is due to the dominance of selection
over mutation. In the random model proposed in this paper, we also consider the convergence of
(random) fitness distributions to the equilibrium and the condensation phenomenon. Moreover,
Kingman’s model has been revisited recently in terms of the travelling wave of mass to the
largest fitness value [8]. The random model provides another example for consideration in this
direction.

2. Models

2.1. Kingman’s model with time-varying mutation probabilities

Consider a haploid population of infinite size and discrete generations under the competi-
tion of selection and mutation. We use a sequence of probability measures (Pn)= (Pn)n≥0 on
[0,1] to describe the distribution of fitness values in the nth generation. We can assume, more
generally, that the probability measures are supported on a finite interval, not necessarily [0,1].
But since only fitness ratios will be relevant (see [19] or [22] for a more explicit explanation),
we adopt the setting of [0,1], which was used by Kingman [19], and which is equivalent to
general finite supports.

Individuals in the nth generation are children of the (n− 1)th generation. First of all, the
fitness distribution of children is initially Pn−1 (an exact copy from the parents). Then selection
takes effect, updating the fitness distribution from Pn−1 to the size-biased distribution

xPn−1(dx)∫
yPn−1(dy)

.

Here and henceforth, we use
∫

to denote
∫ 1

0 . Basically, the new population is re-sampled
from the existing population by using their fitness as a selective criterion. Next, each indi-
vidual mutates independently with the same mutation probability, which we denote by bn,
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taking values in [0, 1). Each mutant has fitness value sampled independently from a common
mutant distribution, which we denote by Q, a probability measure on [0,1]. Then the resulting
distribution is the distribution of the nth generation:

Pn(dx)= (1− bn)
xPn−1(dx)∫
yPn−1(dy)

+ bnQ(dx). (1)

The reason we exclude the case that bn equals 1 is that in this situation we have Pn =Q; that is,
we have completely lost the accumulated evolutionary changes. This is not interesting either
biologically or mathematically.

Expanding (1), we can also obtain

Pn(dx)=
(

n−1∏
l=0

1− bl+1∫
yPl(dy)

)
xnP0(dx)+

n∑
j=1

⎛
⎝n−1∏

l=j

1− bl+1∫
yPl(dy)

⎞
⎠ bjmn−jQ

n−j(dx), (2)

where

Qk(dx) := xkQ(dx)∫
ykQ(dy)

, mk :=
∫

xkQ(dx), ∀k≥ 0.

In particular, if Q= δ0, the Dirac measure on {0}, then Qk = δ0 for any k≥ 0.
When all the bn are equal to the same number b ∈ [0, 1), this is the model introduced by

Kingman [19]. In the general setting we allow the mutation probabilities to be different. We
call it Kingman’s model with time-varying mutation probabilities, or the general model for
short. We introduce a few more pieces of notation. Let M be the space of (nonnegative) Borel
measures on [0,1] and M1 the subspace of M consisting of probability measures. Let M, M1 be

endowed with the topology of weak convergence. We use
d−→ to denote weak convergence.

We say a sequence of measures (un) converges in total variation to a measure u, and write

un
TV−→ u, if the total variation, defined as supB |un(B)− u(B)| where the supremum is taken

over all Borel sets, converges to 0.
For any u ∈M1, define

Su := sup{x:u[x, 1] > 0}. (3)

We interpret Su as the largest fitness value in a population of distribution u. Define h := SP0 .
It is not difficult to see that SPn =max{SP0 , SQ} for any n≥ 1. Since we are interested in
asymptotics, it is thus without loss of generality to assume that h≥ SQ. Therefore SQ ≤ h≤ 1.

Note that the general model has parameters (bn)n≥1, Q, P0, h. Kingman’s model shares the
same parameters, but with the bn all equal to b. We call (Pn) the forward sequence or just the
sequence. Although h is determined by P0, we still consider h as a parameter, as it will become
clear later that for Kingman’s model and the random model considered in this paper, the limit
of (Pn) depends on P0 only through h. This is the property of so-called global stability.

2.2. Convergence and condensation in Kingman’s model

Kingman [19] proved the convergence of (Pn) when all mutation probabilities are equal, i.e.
bn = b for all n≥ 1.

Theorem 1. (Kingman’s theorem, [19].) 1. If
∫ Q(dx)

1−x/h ≥ b−1, then (Pn) converges in total
variation to

K(dx)= bθbQ(dx)

θb − (1− b)x
,
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with θb, as a function of b, being the unique solution of∫
bθbQ(dx)

θb − (1− b)x
= 1. (4)

2. If
∫ Q(dx)

1−x/h < b−1, then (Pn) converges weakly to

K(dx)= bQ(dx)

1− x/h
+
(

1−
∫

bQ(dy)

1− y/h

)
δh(dx).

Note that K is uniquely determined by b, Q, h, but not the choice of P0. In this sense K is a
globally stable equilibrium. For simplicity, for any measure, say μ, its mass on a point x is
denoted by μ(x) instead of μ({x}). Then we say there is condensation at h in Kingman’s model
if Q(h)= 0 but K(h) > 0. We call K(h) the condensate size if Q(h)= 0. In Case 1 above, there
is no condensation. The condition ∫

Q(dx)

1− x/h
≥ b−1

is satisfied only if b is big and/or Q is fit (i.e., having more mass on larger values). It means
mutation is stronger than selection, so that the limit does not depend on P0 at all.

In Case 2, the condition ∫
Q(dx)

1− x/h
< b−1

implies Q(h)= 0, but we have that K(h) > 0. So there is condensation. In contrast to the first
case, selection is favoured over mutation, so that the limit depends on P0 through h. If P0(h)= 0
(implying SPn = h and Pn(h)= 0 for any n), a certain amount of mass

K(h)=
(

1−
∫

bQ(dy)

1− y/h

)

travels to the largest fitness value h, by the force of selection.
Next we introduce the random model, which is the main object of study in this paper.

2.3. Kingman’s model with random mutation probabilities

Let (βn)n≥0 be an i.i.d. sequence of random variables in the common probability space
(�,F , P), taking values in [0,1) with common distribution L ∈M1 supported on [0,1).
Kingman’s model with random mutation probabilities or simply the random model is defined
by the following dynamical system:

Pn(dx)= (1− βn)
xPn−1(dx)∫
yPn−1(dy)

+ βnQ(dx), n≥ 1. (5)

The random model has parameters (βn), Q, P0, h. It is a randomisation of Kingman’s model,
as we can set each βn to equal b with probability 1.

We are interested in the convergence of (Pn) to the equilibrium and the phenomenon of
condensation. Since we are dealing with random probability measures, i.e., random elements
of M1, let us recall the definition of weak convergence in this context. Random (probability)
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measures (μn) supported on [0,1] converge weakly to a limit μ if and only if for any continuous
function f on [0,1] we have ∫

f (x)μn(dx)
d−→
∫

f (x)μ(dx).

We refer to [16] for a reference on random measures. The definition of weak convergence
for random measures stated in the follow-up paper [23] is incorrect. But this does not affect
anything there as the weak convergence results are all proved in this paper.

As the sequence (Pn) is completely determined by (βn), Q, P0, and h, the only randomness
arises from (βn). In the terminology of statistical physics, the weak limit of (Pn) is an annealed
limit, which is obtained given the law of (βn). A quenched limit, which is obtained by condi-
tioning on (βn), does not exist unless P0 =Q= δ0. A simple reason for nonexistence is that Pn

contains βnQ, which fluctuates persistently as (βn) is i.i.d. However in Section 4.3 we will see
that it is possible to obtain a quenched limit if the evolution is seen backwards.

For the particular case that Q= δ0, we have

Pn(dx)= (1− βn)
xnP0(dx)∫
ynP0(dy)

+ βnδ0(dx).

From this, it is easily deduced that the sequence (Pn) converges weakly to the random element
(1− β)δh + βδ0, where β is a random variable with law L, the common law of all the βn. So
we assume from now on that Q �= δ0.

3. Main results

3.1. Weak convergence

Recall that the sequence (Pn) in the random model has parameters (βn), Q, P0, and h, with
h= SP0 . Then (Pn) converges weakly to a globally stable equilibrium, in the sense that the limit
depends on P0 only through h. Recall that β is a random variable with law L, the common law
of the βn.

Theorem 2. For the random model (5), the sequence (Pn) converges weakly to a random prob-
ability measure, denoted by I, whose distribution depends on L, Q, h but not on the choice
of P0.

Remark 1. In [23, p. 872], it is written that the distribution of I depends on β, Q, h. This
statement is true in the sense that the distribution of I depends on β via its distribution. Here
we make it clearer by replacing β by L.

Remark 2. If we start with P0 = δh (recall that h ∈ [SQ, 1]), then all the Pn are supported
on [0, SQ]∪ {h}, which implies that the limit I is supported on the same set [0, SQ]∪ {h}.
Moreover, we have either I(h) > 0 almost surely (a.s.) or I(h)= 0 a.s. (a justification is pro-
vided in Remark 12 in Section 4.4). In the latter case, I is supported only on [0, SQ], and
(the distribution of) I does not depend on h (see Theorem 3). Therefore, although we say h is
a parameter of I, this should be understood in the sense that I is the weak limit of (Pn) with
h= SP0 . The limit I is introduced in Section 4.3, but the proof of weak convergence is deferred
to a later stage, as it uses other main results, such as the condensation criterion for the random
model.
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3.2. Condensation criterion

The fact that either I(h) > 0 a.s. or I(h)= 0 a.s. allows us to give the precise definition of
condensation, in line with that for Kingman’s model, as follows.

Definition 1. For the random model, we say there is condensation at the largest fitness value h
if Q assigns zero mass at h (i.e., Q(h)= 0) but the limiting measure I assigns positive mass at
h (i.e., I(h) > 0, a.s.).

Next we give the condensation criterion. If h= SQ, we write IQ for I and KQ for K.

Theorem 3. (Condensation criterion.) If there is no condensation at h, then I d= IQ. The
condensation criterion for I at h is as follows:

1. If h= SQ, then there is no condensation at h if

E

[
ln

SQ(1− β)∫
yIQ(dy)

]
< 0. (6)

2. If h > SQ, then there is no condensation at h if and only if

E

[
ln

h(1− β)∫
yIQ(dy)

]
≤ 0. (7)

Here

E

[
ln

1− β∫
yIQ(dy)

]

is well defined, takes values in [−∞,− ln
∫

yQ(dy)], and depends only on the marginal
distributions of β and IQ.

Remark 3. In fact, if there is no condensation at h, then I, IQ are the same random probability
measure, based on the definition of I introduced at the end of Section 4.3. But since here we

do not have the definition yet, we write the weaker statement I d= IQ.

Remark 4. As the distribution of IQ is determined by Q and L (the distribution of β),

E

[
ln

1− β∫
yIQ(dy)

]

depends only on Q and L. By Remark 13 in Section 4.4, we can only have

E

[
ln

SQ(1− β)∫
yIQ(dy)

]
≤ 0.

For the occurrence of condensation in the case where h= SQ, the fact that we cannot say
anything when

E

[
ln

SQ(1− β)∫
yIQ(dy)

]
= 0

can be better understood in Kingman’s model, which is a special random model. In this model,

E

[
ln

SQ(1− β)∫
yIQ(dy)

]
= 0
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becomes

ln
SQ(1− b)∫

yKQ(dy)
= 0.

By some simple computations using Theorem 1, the above display is equivalent to∫
Q(dx)

1− x/SQ
≤ b−1.

But it covers cases with and without condensation. For full details see Appendix A, where the
case h > SQ is also analysed.

We give some intuition for why Theorem 3 holds. Consider the unnormalised variant of the
dynamical system that is given by

Pn(dx)= (1− βn)xPn−1(dx)+ βn

(∫
yPn−1(dy)

)
Q(dx) (8)

with P0 = P0. By induction, it can be shown that

Pn = Pn

n−1∏
i=0

∫
xPi(dx) ∀n≥ 0. (9)

We can roughly think of the growth of Pn as contributed by two parts, the initial P0 and the
subsequently arriving distributions Q. If the initial distribution is supported on [0, SQ], by
Theorem 2, Pi converges weakly to IQ as i→∞. Then the part of Pn contributed by the Qs
grows at rate gr (Q) :=E[ ln

∫
xIQ] (see (9)). In comparison, the largest fitness value h in P0

can be assigned the growth rate gr (h) :=E[ ln h(1− β)] (due to the term (1− βn)xPn−1(dx) in
(8)). Then it is clear that the occurrence of condensation is determined by the comparison of
gr (h) and gr (Q). However, it is subtle when gr (h)= gr (Q): there is no condensation if h > SQ,
and it is undetermined if h= SQ.

In the follow-up paper [23], we provide a matrix representation for IQ, so the condensation
criterion can be written neatly (see [23, Corollary 2, p. 877]). Moreover, using matrix analysis,
we can compare the fitness of equilibria from different models (see [23, Section 3.3-(3), pp.
878–879]). The challenging problem of finding a necessary and sufficient condition for the
occurrence of condensation in the case h= SQ has not been dealt with anywhere and still
remains open.

3.3. Invariant measure

We introduce the notion of invariant measure, which includes the limit I. We will use
invariant measures heavily in the proofs.

Definition 2. (Invariant measure.) A random probability measure ν is invariant if it is
supported on [0,1] and satisfies

ν(dx)
d= (1− β)

xν(dx)∫
yν(dy)

+ βQ(dx), (10)

where β is independent of ν. Clearly I is an invariant measure, since it is the weak limit of
(Pn) defined by (5).
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Theorem 4. (Compoundness of invariant measures.) For any invariant measure ν, there exists
a regular conditional distribution of ν on Sν . Moreover, conditional on Sν ,

(ν|Sν)
d= I, a.s.,

where I is the random probability measure introduced in Theorem 2 with parameters L, Q,
h= Sν and satisfies P(SI = Sν |Sν)= 1, a.s.

Remark 5. Remark 2 says that if there is no condensation at h, then I is supported on [0, SQ].

Since I is an invariant measure, the above theorem implies that I d= IQ. This assertion has
been stated in Theorem 3.

Using the notion of invariant measures, we can solve a distributional equation in the
following example. For a survey on distributional equations, we refer to Aldous and
Bandyopadhyay [1].

Example 1. Consider a particular case: Q is supported only on {c} for some c ∈ (0, 1), and
h ∈ (c, 1). Let ν be an invariant measure supported on {c} ∪ {h}. Then ν can be written as
ν = Xδc + (1− X)δh, where X is a random variable taking values in [0,1] and satisfies

Xδc + (1− X)δh
d= (1− β)

cXδc + h(1− X)δh

cX + h(1− X)
+ βδc,

with β independent of X. The above display is equivalent to

X
d= c+ (hβ − c)(1− X)

c+ (h− c)(1− X)
.

We are interested in a necessary and sufficient condition for the above equation to have a
solution X with 0≤ X < 1 a.s. (i.e., ν(h) > 0 a.s.). By Theorem 4, this is equivalent to saying
that there is condensation at h. By Theorem 3, the necessary and sufficient condition is simply
E[ ln (h(1− β)/c)] > 0. Moreover, as such ν is unique (in distribution), the solution X is also
unique (in distribution).

The rest of the paper is organised as follows. Sections 4.1 and 4.2 provide necessary prepa-
rations. Sections 4.3 and 4.4 analyse the finite backward sequence, which is the main tool used
in this paper. Section 4.5 proves Theorem 3. Section 4.4 analyses the invariant measures, and
the results obtained there will be used in Section 4.7 to prove the weak convergence in Theorem
2. Section 4.8 is dedicated to the proof of Theorem 4.

4. Proofs

4.1. Relations between measures

We introduce the following notation to describe relations between measures:

1. For measures u, v ∈M, we say u is a component of v on [0,a] (resp. [0,a)), and we write
u≤a v (resp. ≤a−), if

u(A)≤ v(A) for any measurable set A⊂ [0, a] (resp. [0, a)).

For random measures μ, ν ∈M, we write μ≤d
a ν if there exists a coupling (μ′, ν′) with

μ′, ν′ ∈M such that

μ′ ≤a ν′ a.s. and μ′ d=μ, ν′ d= ν. (11)

The relation μ≤d
a− ν is defined in a similar way.
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2. For measures (un) and u in M, we introduce the notation

un ≤a
TV−→ u,

which means that un ≤a un+1 for any n, and un converges in total variation to u. We

define similarly ≤a−
TV−→ .

3. For real-valued random variables ξ, η, we write the well-known stochastic ordering as
ξ 
 η, which holds if

P(ξ ≤ x)≥ P(η≤ x) ∀ x ∈R.

4. For any u ∈M1, let the distribution function of u be

Du(x) := u([0, x]) ∀x ∈ [0, 1].

For any u, v ∈M1, we use the same notation 
 for the stochastic ordering and write
u
 v if Du(x)≥Dv(x) for any x ∈ [0, 1]. This definition is natural, as ξ 
 η is equivalent
to u
 v, if u is the distribution of ξ and v is the distribution of η.

Remark 6. We make a comment about the relationship between ≤a− and 
 . For two prob-
ability measures u, v ∈M1, assume that Su = Sv = a; then u≤a− v implies that v
 u. But the
converse is not true.

Remark 7. If we use the notation ≤a, ≤a−, ≤a
TV−→, ≤a−

TV−→, 
 to describe the relations
between random measures, it should be understood that they hold in the almost sure sense,
or even in the pointwise sense (i.e., for every ω ∈�), if possible.

Similarly, if we use ≤, <, ≥, >, =, �= to compare random variables, they should be
understood in the almost sure sense or in the pointwise sense.

4.2. Three sequences

To study the asymptotic behaviour of (Pn), we also introduce (P′n), (P′′n) so that the three
forward sequences correspond respectively to

((βn), Q, P0, h), ((βn), Q′, P′0, h′), ((βn), Q′′, P′′0, h′′).

The parameters of (P′n) and (P′′n) will be specified when they are used. The two sequences will
converge weakly when they are used, and (Pn) will be compared to them (or to one of them) to
show that (Pn) also converges weakly. The first place where this technique is used is in Section
4.4.

Using (2), we write
Pn(dx)=Mn(dx)+Wn(dx) (12)

with

Mn(dx)=
(

n−1∏
l=0

1− βl+1∫
yPl(dy)

)
xnP0(dx)

and

Wn(dx)=
n∑

j=1

⎛
⎝n−1∏

l=j

1− βl+1∫
yPl(dy)

⎞
⎠ bjmn−jQ

n−j(dx).

Therefore Mn is the contribution to Pn made by P0, while Wn is the contribution by the Qs.
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Similarly we introduce
P′n(dx)=M′

n(dx)+W ′n(dx), (13)

P′′n(dx)=M′′
n(dx)+W ′′n (dx) (14)

with M′
n,W ′n,M′′

n,W ′′n defined correspondingly.

4.3. Introducing the finite backward sequences

4.3.1. The general model. We introduce the finite backward sequence (Pn
j )= (Pn

j )0≤j≤n for the
general model which has parameters n, (bj)1≤j≤n, Q, Pn

n, h with SPn
n
= h:

Pn
j (dx)= (1− bj+1)

xPn
j+1(dx)∫

yPn
j+1(dy)

+ bj+1Q(dx) ∀ 0≤ j≤ n− 1. (15)

Here h,Q are from the general model and Pn
n can be any measure in M1 satisfying SPn

n
= h. The

(bj)1≤j≤n are the first n mutation probabilities in the general model. Here we use the index j to
indicate that we are dealing with a finite backward sequence.

The sequence is backward in the sense that we use bn to generate Pn
n−1 from Pn

n, use bn−1 to
generate Pn

n−2 from Pn
n−1, etc. That is, the (bj) are used backwards and the (Pn

j ) are generated
backwards. The advantage in taking the backward approach is that (Pn

j ) converges as n tends
to infinity, in contrast to the forward sequence.

Lemma 1. In the general model, for the finite backward sequence with Pn
n = δh, Pn

j converges
in total variation to a limit, denoted by Gj = Gj,h, as n goes to infinity with j fixed, such that

Gj−1(dx)= (1− bj)
xGj(dx)∫
yGj(dy)

+ bjQ(dx), j≥ 1. (16)

As a consequence, G0:[0, 1)∞→M1 is a measurable function, with Gj = G0(bj+1, bj+2,···)
supported on [0, SQ]∪ {h} for any j≥ 0.

Remark 8. We write Gj,h when h has to be specified for clarity. Otherwise we write Gj. This
kind of abbreviation applies to other terms which will appear later.

Remark 9. Note that, by (16), the Gj(h) are either all zero or all strictly positive.

Proof. We prove a stronger version below:

For any j, Pn
j ≤h−

TV−→ Gj, as n→∞. (17)

It suffices to show that
Pn

j ≤h− Pn+1
j , (18)

as the Pn
j are all supported on [0, SQ]∪ {h}.

First of all, Pn
n = δh ≤h− Pn+1

n . Assume that for some 1≤ j≤ n we have Pn
j ≤h− Pn+1

j . By
definition

Pn
j−1(dx)= (1− bj)

xPn
j (dx)∫

yPn
j (dy)

+ bjQ(dx), Pn+1
j−1 (dx)= (1− bj)

xPn+1
j (dx)∫

yPn+1
j (dy)

+ bjQ(dx). (19)

Since Pn
j ≤h− Pn+1

j (and hence Pn+1
j 
 Pn

j ; see Remark 6), we have∫
yPn+1

j (dy)≤
∫

yPn
j (dy),
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and thus
x∫

yPn
j (dy)

≤ x∫
yPn+1

j (dy)
∀x ∈ [0, 1].

From Pn
j ≤h− Pn+1

j and (19), we get Pn
j−1 ≤h− Pn+1

j−1 . Induction shows that

Pn
j ≤h− Pn+1

j for any 0≤ j≤ n, n≥ 0. (20)

This completes the proof. �
The monotonicity analysis in the above proof will be used many times in this paper, as it

applies to both backward and forward sequences. An immediate application is the following:
we can compare (Gj) and (G′j )= (Gj,h′ ) for SQ ≤ h < h′ ≤ 1 with the same (bj), Q.

Corollary 1. Let (Gj) and (G′j ) be the above sequences. Then we have

G′j ≤h− Gj, Gj(h)≤ G′j (h′), ∀j≥ 0. (21)

Moreover, we have the exact equalities in the above display for any h ∈ [SQ, h′] if and only if
G′0(h′)= 0. In this case (Gj) and (G′j ) are all supported on [0, SQ], and are both equal to

(Gj,SQ

)
.

Proof. Let (Pn
j ) be the sequence in Lemma 1. Let

(
Pn

j,h′
)

be the variant of (Pn
j ) with Pn

n = δh′ .
By following the same monotonicity analysis as in the proof of (18), we obtain

Pn
j,h′ ≤h− Pn

j , Pn
j (h)≤ Pn

j,h′ (h
′), ∀0≤ j≤ n.

By Lemma 1, Pn
j,h′

TV−→ G′j and Pn
j

TV−→ Gj as n→∞. Thus we obtain (21).

Now let us prove the if-and-only-if statement. If G′0(h′)= 0, then by (21), G0(h)= 0. Using
Remark 9, G′j (h′)= 0, Gj(h)= 0 for any j, and so (21) holds with equalities. For the other
direction, if G′0(h′) > 0, then again by Remark 9, G′j (h′) > 0 for any j. Using (21), it holds that

∫
yG′j (dy) >

∫
yGj(dy) ∀j. (22)

Similarly to (19),

Gj−1(dx)= (1− bj)
xGj(dx)∫
yGj(dy)

+ bjQ(dx), G′j−1(dx)= (1− bj)
xG′j (dx)∫
yG′j (dy)

+ bjQ(dx).

As (22) implies that
1− bj∫
yGj(dy)

>
1− bj∫
yG′j (dy)

,

and again using (21), we obtain G′j−1 ≤h− Gj−1, but they are not equal on [0,h). Since they are
probability measures, we have Gj−1(h) < G′j−1(h′) for any j. This completes the proof.

If (21) holds with equalities, (Gj)= (Gj
′) are all supported on [0, SQ]. To show that they are

equal to (Gj,SQ), we only have to take h= SQ and apply the equalities in (21). �
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4.3.2. The random model. The goal of this paper is the random model, which is a randomised
general model. Since (Gj) has parameters (bj+1, bj+2, · · · ) and Q, h, we can define

Ij = Ij,h := G0(βj+1, βj+2, · · · ).

Therefore Ij is the quenched limit of the finite backward sequences in the random model with
Pn

n = δh. Thanks to Lemma 1, we have the following result.

Corollary 2. The sequence (Ij)= (Ij)j≥0 is stationary ergodic and satisfies

Ij−1(dx)= (1− βj)
xIj(dx)∫
yIj(dy)

+ βjQ(dx), j≥ 1. (23)

Remark 10. The equality (23) holds in the pointwise sense. In other words, given any realisa-
tion of (βj) (or equivalently, conditioning on (βj)), the equality holds for any j as in the general
model. In the sequel, when we present results regarding (Ij), then conditioning on (βj) should
be understood as in the pointwise sense. Sometimes we omit to state either of the two phrases
when the context is clear.

The proof of Corollary 2 requires the following result, which is proved in [15, Lemma 9.5].

Lemma 2. Let (S, S ) and (S′, S ′) be measurable spaces. Let (αj) ∈ S∞ be a stationary
ergodic sequence of random variables. Let f :S∞→ S′ be a measurable function. Then(
f (αj, αj+1, · · · )

)
is also stationary ergodic.

Proof of Corollary 2. Since (βj) is i.i.d., it is stationary ergodic. As G0 is a measurable
function from [0, 1)∞ to M1, we apply Lemma 2 to obtain that (Ij)= (G0(βj+1, βj+2, · · · )) is
also stationary ergodic. The recursive equation (23) is inherited from (16). �

Since (Ij) is stationary ergodic, all of the Ij have the same distribution. We define
I := I0 = I0,h, which is the weak limit appearing in Theorem 2. The reason we drop the index
is to distinguish this from the backward context, when it is appropriate to do so. The term IQ

used in Theorem 3 is in fact I0,SQ .
We comment further on the importance of finite backward sequences. Let (Pn) be a forward

sequence and (Pn
j ) the finite backward sequence with Pn

n = P0, both in the random model with
the same (βj) and Q. Since (βj) is i.i.d., we have

(P0, P1, · · · , Pn)
d= (Pn

n, Pn
n−1, · · · , Pn

0). (24)

So showing the weak convergence of (Pn)n≥0 is equivalent to showing that of (Pn
0)n≥0. But

investigating the finite backward sequences, via the general model, appears to be more conve-
nient. In general a dynamical system is easier to handle if we take a backward point of view;
see Diaconis and Freedman [9].

4.4. Finer analysis of the finite backward sequences

4.4.1. The general model. We consider (Pn
j ) with Pn

n = δh, as in Lemma 1. Developing (15),
we obtain

Pn
0(dx)=

(
n∏

l=1

1− bl∫
yPn

l (dy)

)
xnPn

n(dx)+
n−1∑
j=0

⎛
⎝ j∏

l=1

1− bl∫
yPn

l (dy)

⎞
⎠ bj+1mjQ

j(dx) (25)

=
(

n∏
l=1

h(1− bl)∫
yPn

l (dy)

)
δh(dx)+

n−1∑
j=0

⎛
⎝ j∏

l=1

1− bl∫
yPn

l (dy)

⎞
⎠ bj+1mjQ

j(dx). (26)

We refer to (2) for the expansion of the forward sequence (Pn).
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Proposition 1. Let (Pn
j ) be the finite backward sequence in the general model with Pn

n = δh.
Then for the sequence (Gj), we have

G0(dx)=G0δh(dx)+
∞∑

j=0

j∏
l=1

(1− bl)∫
yGl(dy)

bj+1mjQ
j(dx), (27)

where the second term on the right side of (26) converges to that of (27),

n−1∑
j=0

⎛
⎝ j∏

l=1

1− bl∫
yPn

l (dy)

⎞
⎠ bj+1mjQ

j(dx)≤SQ−
TV−→

∞∑
j=0

j∏
l=1

(1− bl)∫
yGl(dy)

bj+1mjQ
j(dx), (28)

and the term G0 =G0,h satisfies the following assertions:

n∏
l=1

h(1− bl)∫
yPn

l (dy)
decreases in n and converges to G0; (29)

G0 = 1−
∞∑

j=0

j∏
l=1

(1− bl)∫
yGl(dy)

bj+1mj ∈ [0, 1]; (30)

G0 = G0(h) if Q(h)= 0; (31)∫ ( y

h

)n Gn(dy)
n∏

l=1

h(1− bl)∫
yGl(dy)

decreases in n and converges to G0, if G0 > 0. (32)

Moreover, if we define Gj for Gj similarly to G0 for G0, we have

Gj−1 =Gj
h(1− bj)∫

yGj(dy)
∀j≥ 1. (33)

As a consequence, the Gj are either all 0 or all strictly positive.

Proof. By (17),
∫

yPn
l (dy) increases in n and converges to

∫
yGl(dy) as n→∞. Then, using

(26), we obtain (28). Integrating on both sides of (26), we use (28) to deduce that

n∏
l=1

h(1− bl)∫
yPn

l (dy)
= 1−

∫ n−1∑
j=0

⎛
⎝ j∏

l=1

1− bl∫
yPn

l (dy)

⎞
⎠ bj+1mjQ

j(dx)

decreases in n and converges to the limit

1−
∫ ∞∑

j=0

⎛
⎝ j∏

l=1

1− bl∫
yGl(dy)

⎞
⎠ bj+1mjQ

j(dx)=: G0.

So (27), (29), and (30) are proved.
From (27) we observe (31). To show (32), we develop (16) as follows:

G0(dx)=
(

n∏
l=1

1− bl∫
yGl(dy)

)
xnGn(dx)+

n−1∑
j=0

⎛
⎝ j∏

l=1

1− bl∫
yGl(dy)

⎞
⎠ bj+1mjQ

j(dx)

=
(∫ ( y

h

)n Gn(dy)
n∏

l=1

h(1− bl)∫
yGl(dy)

)
xnGn(dx)∫
ynGn(dy)

+
n−1∑
j=0

⎛
⎝ j∏

l=1

1− bl∫
yGl(dy)

⎞
⎠ bj+1mjQ

j(dx).
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Combining the above display with (27) and (28), we obtain (32), and also that

xnGn(dx)∫
ynGn(dy)

converges weakly to δh. Finally, combining (16) and (27) leads to (33). �
Remark 11. The proposition implies that (Pn

0) with Pn
n = δh in the random model converges

in total variation to I = I0, pointwise. Then by (24), (Pn) in the random model with P0 = δh

converges weakly to I. Therefore Theorem 2 is proved for the particular case with P0 = δh. As
will become clear later (in Section 4.7), a complete proof has to deal with different kinds of
P0. The proof here with P0 = δh is the simplest case.

4.4.2. The random model. When carrying over the results of Proposition 1 to the random
model, we change the symbol G to I, analogously to the change from G to I. For instance,
we set Ij =G0(βj+1, βj+2, · · · ) for any j≥ 0. Then we have the following corollary.

Corollary 3. The process (Ij)= (Ij)j≥0 is stationary ergodic. Moreover, P({Ij = 0, ∀j})=
P(I0 = 0) ∈ {0, 1}.
Remark 12. If Q(h) > 0, then it must be that h= SQ and I(h)= I0(h) > 0 a.s. If Q(h)= 0,

then I(h)= I0(h)= I0. So applying Corollary (3), either I(h) > 0 a.s., or I(h)= 0 a.s.

Proof. By Proposition 1, G0 =G0(b1, b2, · · · ) is a measurable function from [0, 1)∞ to
[0,1]. As (βj) is i.i.d., we obtain that (Ij)= (G0(βj+1, βj+2, · · · )) is stationary ergodic, thanks
to Lemma 2.

By (33), for any k, {Ik = 0} = {Ij = 0, ∀j}. Note that {Ij = 0, ∀j} is an invariant set in the
sigma-algebra generated by (Ij). By ergodicity of (Ij), P({Ij = 0, ∀j})= P(I0 = 0) ∈ {0, 1}. �

The following result provides a tool for finding out more about I and Q. Let I = I0,h

and IQ = I0,SQ . To summarise, I, I, IQ, IQ are identical in value to I0,h, I0,h, I0,SQ , I0,SQ ,
respectively.

Corollary 4. The following statements about E
[
ln 1−β∫

yI(dy)

]
hold:

1. E

[
ln 1−β∫

yI(dy)

]
is well defined, takes values in [−∞,− ln

∫
yQ(dy)], and depends only

on the marginal distributions of β and I.

2. If Q(h)= 0, then

E

[
ln

h(1− β)∫
yI(dy)

]
≤ 0.

3. If I(h) > 0 a.s. and Q(h)= 0, then

E

[
ln

h(1− β)∫
yI(dy)

]
= 0.

4. If h= SQ and Q(SQ) > 0, then

E

[
ln

SQ(1− β)∫
yI(dy)

]
< 0 and I = 0, a.s.

Remark 13. If h= SQ, we can only have

E

[
SQ(1− β)∫

yI(dy)

]
=E

[
SQ(1− β)∫

yIQ(dy)

]
≤ 0.
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Proof. Part 1: By (27), G0 is a convex combination of probability measures
{δh, Q, Q1, Q2, · · · }. As Qj 
Qj+1 
 δh for any j≥ 0, we have, in the pointwise sense,

Q
 I = I0 
 δh. (34)

Then

ln
∫

yQ(dy)≤E

[
ln
∫

yI(dy)

]
≤ ln h.

So E
[
ln
∫

yI(dy)
]

is a finite term. Consequently,

E

[
ln

1− β∫
yI(dy)

]
=E

[
ln (1− β)− ln

∫
yI(dy)

]

=E [ln (1− β)]−E

[
ln
∫

yI(dy)

]
∈
[
−∞,− ln

∫
yQ(dy)

]
.

We observe that the above display depends only on the marginal distributions of β and I.
Part 2: Let (Pn

j ) be the finite backward sequence in the random model with Pn
n = δh. By

assumption, Q(h)= 0. Adapting (26) to the random model and taking the expectation of the
mass on h, we obtain

1≥E[Pn
0(h)]=E

[(
n∏

l=1

h(1− βl)∫
yPn

l (dy)

)]
≥ exp

(
n∑

l=1

E

[
ln

h(1− βl)∫
yPn

l (dy)

])
,

where the second inequality is due to Jensen’s inequality. By (17),

E

[
ln

h(1− βl)∫
yPn

l (dy)

]
increases in n and converges to E

[
ln

h(1− βl)∫
yIl(dy)

]
=E

[
ln

h(1− β)∫
yI(dy)

]
.

Combining the above two displays, it must be that

E

[
ln

h(1− β)∫
yI(dy)

]
≤ 0.

Part 3: Lemma 1 implies that there exists a measurable function T:[0, 1)∞ �→ (0,∞) such
that for any j,

h(1− bj)∫
yGj(dy)

= T(bj, bj+1, · · · ).

By Lemma 2, (
h(1− βj)∫

yIj(dy)

)
is stationary ergodic.

By (32) and the fact that I(h)= I0(h)= I0 > 0 a.s. (because Q(h)= 0 by assumption), we have

lim
n→∞ (I0)1/n = lim

n→∞ exp

(
1

n
ln
∫ ( y

h

)n In(dy)+ 1

n

n∑
l=1

ln
h(1− βl)∫

yIl(dy)

)
a.s.= 1. (35)

As (Ij) is stationary ergodic,
∫ ( y

h

)n In(dy) ∈ [In, 1] converges weakly to I0, which is strictly
positive. Then [

1

n
ln In, 0

]
� 1

n
ln
∫ ( y

h

)n In(dy)
d−→ 0, n→∞.

https://doi.org/10.1017/apr.2021.33 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.33


326 L. YUAN

Moreover, since
(

h(1−βj)∫
yIj(dy)

)
is stationary ergodic, we have

1

n

n∑
l=1

ln
h(1− βl)∫

yIl(dy)
a.s.−→E

[
ln

h(1− β)∫
yI(dy)

]
, n→∞.

The above three displays yield

1= exp

(
E

[
ln

h(1− β)∫
yI(dy)

])
or equivalently E

[
ln

h(1− β)∫
yI(dy)

]
= 0.

Part 4: We show by contradiction that I = I0 = 0 a.s. Adapting (26) to the random model,
we have

Pn
0(dx)=

(
n∏

l=1

SQ(1− βl)∫
yPn

l (dy)

)
δSQ(dx)+

n−1∑
j=0

⎛
⎝ j∏

l=1

1− βl∫
yPn

l (dy)

⎞
⎠ βj+1mjQ

j(dx).

If I0 > 0 a.s., we consider the mass on SQ in the above display. Note that mjQj(SQ)= Sj
QQ(SQ).

By (29) we obtain

1≥ Pn
0(SQ)≥Q(SQ)

n−1∑
j=0

⎛
⎝ j∏

l=1

SQ(1− βl)∫
yPn

l (dy)

⎞
⎠ βj+1 ≥Q(SQ)

n−1∑
j=0

I0βj+1
d−→∞.

This is a contradiction. So I0 = 0 a.s. Note that by (34), I(SQ)= I0(SQ)≥Q(SQ) > 0. Then we

get E
[
ln h(1−β)∫

yI(dy)

]
< 0 using (35) and the arguments thereafter. �

4.5. Proof of Theorem 3

Proof of Theorem 3. The statement about E

[
ln h(1−β)∫

yIQ(dy)

]
concerns just a subcase of

Corollary 4–1. So this is proved.
If there is no condensation at h, then by Corollary 1, I = I0,h = I0,SQ = IQ, so of course

I d= IQ.
The first assertion in the condensation criterion holds by Corollary 4–3. We consider the

second one. If there is condensation at h, then I0,SQ �= I0,h. By Corollary 1, I0,h ≤SQ− I0,SQ

and I0,SQ(SQ)≤ I0,h(h), which together with Corollary 4–3 implies that

E

[
ln

h(1− β)∫
yI0,SQ (dy)

]
>E

[
ln

h(1− β)∫
yI0,h(dy)

]
= 0.

The above inequality is strict because I0,SQ �= I0,h.
If there is no condensation at h, then by Corollary 1, I0,h = I0,SQ . Using Corollary 4-2, we

have

E

[
ln

h(1− β)∫
yI0,SQ(dy)

]
=E

[
ln

h(1− β)∫
yI0,h(dy)

]
≤ 0.
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4.6. Some properties of invariant measures

In this section, we prove some results concerning invariant measures. However, we leave
the proof of Theorem 4 to the end. Invariant measures will play important roles in the proof of
Theorem 2.

Lemma 3. For any invariant measure ν,

E

[
ln

1− β∫
yν(dy)

]

is well defined, takes values in [−∞,− ln
∫

yQ(dy)], and depends only on the marginal
distributions of β and ν.

Proof. By the definition of invariant measure,

E

[∫
yν(dy)

]
= (1−E[β])E

[∫
y2ν(dy)∫
yν(dy)

]
+E[β]

∫
yQ(dy)

≥ (1−E[β])E

[∫
yν(dy)

]
+E[β]

∫
yQ(dy),

where the inequality is due to the fact that
∫

y2ν(dy)≥ (
∫

yν(dy))2. Then we obtain∫
yQ(dy)≤E

[∫
yν(dy)

]
≤ 1.

Proceeding similarly as in the proof of Corollary 4–1, we conclude that this lemma holds. �
Corollary 5. IQ is the unique (in distribution) invariant measure supported on [0, SQ].

Proof. Let ν be any invariant measure on [0, SQ]. We show that ν
d= IQ. Note that Sν = SQ,

a.s. Let (Pn) and (P′n) be two forward sequences as in Section 4.2 with

Q=Q′, h= h′ = SQ, P0
d= ν, P′0 = δSQ ,

and with P0 independent of (βn). The two sequences differ only in the starting measures (satis-

fying P0 ≤SQ− P′0), with other parameters identical. Since ν is invariant, Pn
d= ν for any n≥ 0.

Using the notation Mn,M′
n,Wn,W ′n from Section 4.2, and by a monotonicity analysis as in

the proof of Lemma 1, we obtain, in the pointwise sense,∫
Mn(dx)≤

∫
M′

n(dx), W ′n ≤SQ Wn. (36)

If IQ = 0 a.s., by (29) in Proposition 1 and (24),∫
M′

n(dx)
d−→ IQ

a.s.= 0.

Remark 11 says that P′n(=W ′n +M′
n)

d→ IQ. So

W ′n
d−→IQ.
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Thus, applying (36) and the fact that IQ = 0 a.s., we obtain∫
Mn(dx)

d−→ 0, Wn
d−→IQ.

Consequently,

Pn(=Wn +Mn)
d−→ IQ.

Since ν
d= Pn for any n, we have ν

d= IQ.
If IQ > 0 a.s., then by Corollary 4–4, Q(SQ)= 0 and IQ(SQ)= IQ > 0 a.s. Then by Corollary

4–3, we have

E

[
ln

SQ(1− β)∫
yIQ(dy)

]
= 0. (37)

Again using a monotonicity analysis, in a pointwise sense, we have

P′n ≤SQ− Pn, Pn(SQ)≤ P′n(SQ). (38)

As P′n
d→ IQ, and Pn

d= ν for all n, the above display implies that

IQ ≤d
SQ− ν, ν(SQ)
 IQ = IQ(SQ).

Assume that ν is not equal to IQ in distribution; then by the above display and (37),

E

[
ln

SQ(1− β)∫
yν(dy)

]
> 0.

The inequality implies that for ε > 0 small enough, we have

E

[
ln

(SQ − ε)(1− β)∫
yν(dy)

]
> 0.

As Sν = SQ a.s. and P0
d= ν, ∫ (

x

SQ − ε

)n

P0(dx)
d→∞

as n→∞. Again using the decomposition (12) in Section 4.2, we get

1=E

[∫
P0(dx)

]
≥E

[∫
Mn(dx)

]

=E

[
exp

(
ln
∫ (

x

SQ − ε

)n

P0(dx)+
n−1∑
l=0

ln
(SQ − ε)(1− βl+1)∫

yPn
l (dy)

)]

≥E

[
exp

(
n−1∑
l=0

ln
(SQ − ε)(1− βl+1)∫

yPn
l (dy)

)]
≥ exp

(
nE

[
(SQ − ε)(1− β)∫

yν(dy)

])
n→∞−→ ∞,

where the third inequality is due to Jensen’s inequality. So this is a contradiction, which means
that ν is equal in distribution to IQ. �
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4.7. Proof of Theorem 2

Case 1. P0 = δh.
Proof of Theorem 2, Case 1. This is shown in Remark 11. �
Case 2. I0,h = 0 a.s.
Proof of Theorem 2, Case 2. Let (Pn)n≥0, (P′n)n≥0 be two forward sequences as in Section

4.2 with
Q=Q′, h= h′, P′0 = δh.

So the two sequences differ only in the starting measures (satisfying P0 ≤h− P′0), with
other parameters identical. Next it suffices to follow the same procedure as in the proof of
Corollary 5 for the case IQ = 0 a.s. The proof is omitted. �

Case 3. I0,h > 0 a.s. and P0(h) > 0.
For Case 3, we first restate a result from [22, p. 10]. The statement in [22] considers only

h= 1, but it is easily generalised to any h. Recall the distribution function Du for u ∈M1,
introduced in Section 4.1.

Lemma 4. Let u1, u2 ∈M1 be any probability measures satisfying Su1 = Su2 = h and
u1 ≤h− u2. If for some ε > 0 there exists a ∈ (0, h) such that Du1 (a)+ ε≤Du2 (a), then∫

yu1(dy)≥ c(a, ε)
∫

yu2(dy),

where

c(a, ε)= 1

1− ε(h− a)
> 1.

Proof of Theorem 2, Case 3. Let (Pn), (P′n) be the two forward sequences in the proof of
Case 2. Similarly to (38), conditionally on (βn), we have

P′n ≤h− Pn, Pn(h)≤ P′n(h), (39)

implying ∫
yP′j(dy)≥

∫
yPj(dy) ∀j≥ 0.

For any ε > 0, a ∈ (0, h), let

κn := #{n:DP′j (a)+ ε≤DPj(a), 0≤ j≤ n}.
Note that by Proposition 1–4, Q(h)= 0. So using (12) and (13) in Section 4.2, we have

P′n(h)=
n−1∏
l=0

h(1− βl+1)∫
yP′l(dy)

, Pn(h)=
(

n−1∏
l=0

h(1− βl+1)∫
yPl(dy)

)
P0(h).

Then by Lemma 4, we have
n∏

l=0

∫
yP′l(dy)≥ c(a, ε)κn

n∏
l=0

∫
yPl(dy).

Therefore,

P′n(h)≤ 1

c(a, ε)κn

(
n−1∏
l=0

h(1− βl+1)∫
yPl(dy)

)
= Pn(h)

c(a, ε)κn P0(h)
≤ 1

c(a, ε)κn P0(h)
.
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But (29) of Proposition 1 and (24) imply that P′n(h) converges weakly to I0,h, which is by
assumption non-zero a.s. Thus limn→∞ κn <∞ a.s. As a, ε are arbitrary numbers and by

Case 1 of this theorem P′n
d−→ I0,h, we use (39) to conclude that Pn also converges weakly

to I0,h. �
Case 4. I0,h > 0 a.s. and P0(h)= 0.
Proof of Theorem 2, Case 4. The idea is to use a tripling argument similarly as in the proof

of Theorem 5 in [22]. For any u ∈M1 and any a ∈ [0, 1], define

ua = u[0,a) + u([a, 1])δa, a < h,

where u[0,a) is the restriction of u on [0, a).
We distinguish between h > SQ and h= SQ. For the former, let (Pn), (P′n), (P′′n) be three

forward sequences as in Section 4.2 with

SQ < h′′ < h= h′; Q′ =Q, Q′′ =Qh′′ =Q; P′0 = δh, P′′0 = Ph′′
0 .

So the three sequences differ in the starting measures, including the largest fitness values, but
have the same Q and (βn). Since P′0(h′)= δh(h)= 1 and 0 < P′′0(h′′)≤ 1, we use Case 1 for (P′n)
and Cases 2–3 for (P′′n) to obtain that

P′n
d−→ I0,h, P′′n

d−→ I0,h′′ . (40)

Applying the monotonicity analysis, we find that the following holds in the pointwise sense:

P′n ≤h− Pn ≤h′′− P′′n . (41)

Letting h′′ → h and using Corollary 1, we have that conditionally on (βj), I0,h′′ converges
weakly to a limit in M1, denoted by ν. So ν is a (pointwise) weak limit of I0,h′′ as h′′ → h. We
prove next that ν = I0,h.

Since I0,h > 0 a.s. and h > SQ, by Theorem 3,

E

[
ln

h(1− β)∫
yI0,SQ (dy)

]
> 0.

Then for h′′ close enough to h, we also have

E

[
ln

h′′(1− β)∫
yI0,SQ (dy)

]
> 0.

The above display implies that there is condensation at h′′, thanks to Theorem 3. Together with
Corollary 4–3, this gives us

E

[
ln

h′′(1− β)∫
yI0,h′′ (dy)

]
= 0, I0,h′′ > 0, a.s. (42)

Since I0,h′′ is an invariant measure, the limit ν is still an invariant measure. By (42) and
Corollary 1, the pointwise convergence of I0,h′′ to ν as h′′ → h implies

E

[
ln

h(1− β)∫
yν(dy)

]
= 0, ν(h) > 0, a.s. (43)
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Using Corollary 1 again, in the pointwise sense we have

I0,h ≤h′′− I0,h′′ , I0,h′′ (h
′′)≤ I0,h(h),

implying that in the pointwise sense (since ν is a pointwise weak limit of I0,h′′)

I0,h ≤h− ν, ν(h)≤ I0,h. (44)

On the other hand, by assumption I0,h > 0 a.s., so using Corollary 4–3, we have

E

[
ln

h(1− β)∫
yI0,h(dy)

]
= 0.

The above display together with (43) and (44) implies that

ν = I0,h pointwise. (45)

Therefore we have proved that I0,h′′ converges pointwise to the weak limit I0,h as h′′ → h.

Now, taking into account (40), for any continuous function f we have∫
f (x)P′′n(dx)

d−→
∫

f (x)I0,h′′ (dx)

pointwise−−−−−→
h′′→h

∫
f (x)I0,h(dx)

d←−
∫

f (x)P′n(dx). (46)

Note that using (41), for any bounded continuous increasing function g we have∫
g(x)P′′n(dx)


∫
g(x)Pn(dx)


∫
g(x)P′n(dx).

Together with (46), this yields∫
g(x)Pn(dx)

d−→
∫

g(x)I0,h(dx).

Since, by (41), P′n ≤h− Pn pointwise for any n, the above display implies that Pn converges
weakly to I0,h, which is the same as the weak limit of (P′n).

If h= SQ, we follow the same procedure, except that to prove (45) we require
Corollary 5. �

4.8. Proof of Theorem 4

First we prove two lemmas. Recall the definition of Su for u ∈M1.

Lemma 5. S(·) is a continuous (hence measurable) function on M1 with the topology of the
weak convergence.

Proof. Assume that a sequence (un) converges weakly to u. If Sun does not converge to
Su, then there exists a subsequence (unk ) such that Sunk

converges to a limit a with a < Su or
a > Su. Without loss of generality, assume a < Su. We take a positive and continuous function
f supported on (

a+ Su

2
, Su

]
,
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and then
∫

f (x)u(dx) > 0. But
∫

f (x)unk (dx) converges to 0. This contradicts the weak
convergence, which completes the proof. �

The next lemma generalises Corollary 5.

Lemma 6. For any invariant measure ν with Sν = h a.s., we have ν
d= I.

Proof. Let (Pn) be the forward sequence in the random model with P0
d= ν and P0 inde-

pendent of (βn). By Theorem 2, conditionally on P0, Pn converges in distribution to the same

random measure I. Then, unconditionally, Pn
d= ν converges in distribution to I, implying

ν
d= I. �
Proof of Theorem 4. Let ν be any invariant measure. By (10), Sν ∈ [SQ, 1], a.s. By Lemma 5,

Sν is a random variable, and then by Theorem 5.3 in [15], there exists a regular conditional
distribution of ν on Sν .

Conditioning on Sν for both sides of (10), we see that (ν|Sν) must be an invariant measure

a.s. By Lemma 6, conditionally on Sν , we have (ν|Sν)
d= I a.s., where I is the random proba-

bility measure with parameters L, Q, h= Sν and satisfies P(SI = Sν |Sν)= 1 a.s. This finishes
the proof. �

Appendix A. Analysis of ln h(1−b)∫
xKQ(dx) in Kingman’s model

We discuss respectively Theorem 1-1, i.e.

∫
Q(dx)

1− x/h
≥ b−1,

and Theorem 1-2, i.e. ∫
Q(dx)

1− x/h
< b−1.

For the former, let us first compute
∫

xKQ(dx):

∫
xKQ(dx)=

∫
bθbxQ(dx)

θb − (1− b)x

=
∫

bθb(x− θb/(1− b))Q(dx)+ bθ2
b /(1− b)Q(dx)

θb − (1− b)x

= bθb

1− b
+ bθ2

b

1− b

∫
Q(dx)

θb − (1− b)x

= θb, (47)

where the last equality is due to the fact that θb is the solution of the equation (4). The equation
(4) also implies ∫

θbQ(dx)

θb − (1− b)x
=
∫

Q(dx)

1− (1− b)x/θb
= b−1.
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Recall that
∫ Q(dx)

1−x/h ≥ b−1. Then the above display implies that

1

h
≥ 1− b

θb
.

Taking into account (47), we arrive at

h(1− b)∫
xKQ(dx)

≤ 1, or equivalently, ln
h(1− b)∫
xKQ(dx)

≤ 0.

Equality holds if and only if ∫
Q(dx)

1− x/h
= b−1.

For Theorem 1-2, we have

∫
xKQ(dx)=

∫
bxQ(dx)

1− x/SQ
+
(

1−
∫

bQ(dx)

1− x/SQ

)
SQ

= SQ +
∫

b(x− SQ)Q(dx)

1− x/SQ

= (1− b)SQ.

Thus we obtain

ln
h(1− b)∫
xKQ(dx)

= ln
h

SQ
≥ 0,

where equality holds if and only if h= SQ.
In conclusion, if h > SQ, then

ln
h(1− b)∫
xKQ(dx)

≤ 0

is equivalent to ∫
Q(dx)

1− x/h
≥ b−1

(non-condensation case), and

ln
(1− b)SQ∫

xKQ(dx)
> 0

is equivalent to ∫
Q(dx)

1− x/h
< b−1

(condensation case).
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If h= SQ, then

ln
SQ(1− b)∫

xKQ(dx)
= 0

is equivalent to either ∫
Q(dx)

1− x/SQ
= b−1

(non-condensation case) or ∫
Q(dx)

1− x/SQ
< b−1

(condensation case), and

ln
SQ(1− b)∫

xKQ(dx)
< 0

is equivalent to ∫
Q(dx)

1− x/SQ
> b−1

(non-condensation case). The case

ln
SQ(1− b)∫

xKQ(dx)
> 0

does not occur, which is in line with Remark 13.
Therefore, if h= SQ, knowing only

ln
SQ(1− b)∫

xKQ(dx)
= 0

does not allow one to determine whether condensation occurs or not.
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