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We consider a model in which each round consists of a sequence of games, with
each game resulting in either a positive or a zero score. If a zero score occurs, then
the current round is ended with no points being accumulated during that round. If a
game ends with a positive score, then the player can either end that round or play
another game in the round. If she elects to end the round, then the sum of all scores
earned in games played during that round are added to her cumulative score and a
new round begins.

Under the assumption that successive game scores are independent and iden-
tically distributed random variables whose conditional distribution, given that it is
positive, is exponential, we consider this problem under such objectives as minimiz-
ing the expected number of rounds until a cumulative score exceeds a given goal g
and maximizing the probability that a cumulative score of at least g is obtained by
the end of round n. We present the model in the hypothetical context of a clinical trial
of a treatment for reducing glycated hemoglobin in diabetic patients.
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1. A MODEL FOR LOCKING IN GAINS

Consider a researcher attempting to document the efficiency of a new procedure for
reducing glycated hemoglobin in patients with diabetes, a disease affecting more than
20 million Americans at an annual cost of over 116 billion dollars [1]. Patients are
dealt with sequentially. Each time a patient is given the procedure, the result will be
either that the patient abandons the study (which occurs with probability α) or has a
glycated hemoglobin reduction having distribution F(x) = 1 − e−λx (which occurs
with probability 1 − α). After a patient’s treatment reduction is determined, a decision
must be made on whether to give that patient another treatment or to go on to the next
patient. If the decision is made to move on to a new patient, then the total hemoglobin
reduction of the old patient is recorded. However, if a patient abandons the study, then
all data concerning that patient is lost.

In Section 2 we consider the problem of determining when to move on to new
patients so as to minimize the expected number of patients required for the cumulative
reduction of all (nonabandoning) patients to exceed a specified goal g. In Section 3 we
consider the same problem, but this time with the objective of minimizing a weighted
average of the number of patients and the number of times the procedure is used (i.e.,
this section supposes not only a cost per procedure but also a recruiting cost for each
patient). In Section 4 we suppose that we deal with multiple patients simultaneously
in a group-visit setting.

The group visit is a treatment modality increasingly used for service delivery to
diabetic patients to improve care efficiency and clinical outcomes (see, for instance,
[2–4,7–9]). In Section 5 we again suppose that we deal with patients one at a time and
consider the problem of determining when to voluntarily move on to the next patient
when our objective is to maximize the probability of obtaining a cumulative reduction
of at least g when there is a fixed number of patients.

2. MINIMIZINGTHE EXPECTED NUMBER OF PATIENTS
TO REACH A GOAL

Let us use the terminology that a new round begins when a new patient is given his
or her first treatment. The result of each treatment can be regarded either as a failure
(patient abandoning the study) or as yielding a random score (equal to the glycated
hemoglobin reduction resulting from the treatment). After each nonfailed treatment,
the clinician can decide either to give another treatment to that patient or to end
that round. When the round is voluntarily ended, the total points (e.g., total of the
hemoglobin reduction scores) accumulated during that round is added to the clinic’s
cumulative reduction total and a new round begins. When a failure occurs, all scores so
far accumulated during that round are lost and a new round begins. (Thus, voluntarily
ending a round locks in all the scores accumulated during that round.) Assuming that
each treatment results in a failure with probabilityα and that the distribution of scores is
F(x) = 1 − e−λx, we are interested in determining a good strategy for minimizing the
expected number of rounds that it takes to amass a cumulative reduction of at least g.
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MODEL FOR LOCKING IN GAINS 639

The dynamic programming state of the system when a decision is to be made is
the pair (x, y) with the interpretation that x was the additional amount needed before
the current round had begun (so the current round began with a total reduction of
g − x) and y is the total of the scores so far amassed in the round. The decision is then
to either perform another procedure or to end the round. Letting Vc(x, y) and Ve(x, y)
be the minimal expected additional numbers of rounds needed when the state is (x, y)
and the decision is made to continue (for Vc(x, y)) or to end (for Ve(x, y)) the round,
then V(x, y), the minimal expected additional number of rounds needed from state
(x, y), satisfies

V(x, y) =
{

0 if y ≥ x

min{Vc(x, y), Ve(x, y)} if y < x,

where

Vc(x, y) = α

(
1

1 − α
+

∫ x

0
λe−λwV(x, w) dw

)
+ (1 − α)

∫ x−y

0
λe−λwV(x, w + y) dw

Ve(x, y) = 1

1 − α
+

∫ x−y

0
λe−λwV(x − y, w) dw.

Although it is easily proven that

x′ ≥ x, x′ − y′ ≥ x − y ⇒ V(x′, y′) ≥ V(x, y),

it is difficult to explicitly solve the optimality equation. As a result, we propose
analyzing a reasonable heuristic policy.

Suppose that the decision has been made to only end a round when the total of
the scores amassed during that round is at least s. If we think of the result of each
procedure as being a game, then, with probability α, each game results in a failure,
which ends the round with all previously amassed scores during that round being lost.
The reduction score in any successful game (i.e., one that is not a failure) is exponential
with rate λ. Let us imagine that the score in a successful game is accumulated at a
rate of one per unit time while the game goes on and that the total time of the game is
exponential with rate λ. Consequently, if the total amassed score so far during a round
is y, y < s, then the failure rate at that time is λα. However, this constant failure rate
implies that once points begin to be accumulated, the amount amassed before a failure
occurs is exponential with rate λα. Consequently, if we let T(s) denote the total of the
usable scores amassed during a round, then

T(s) =
{

0 with probability α + (1 − α)(1 − e−αλs)

s + Y with probability (1 − α)e−αλs,
(1)

where Y , which represents the amount by which the total score of a successful round
exceeds s, is exponential with rate λ.
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Note that

max
s

E[T(s)] = max
s

(1 − α)

(
s + 1

λ

)
e−αλs = 1 − α

αλ
e−(1−α)

with the maximizing value of s being s∗ = (1 − α)/αλ.

Remark: For any distribution F, the problem of maximizing the expected total reduc-
tion in a round is known as the burglar’s problem (see [5]). The optimal policy is a
one-stage look-ahead stopping rule policy that ends a round whenever the accumulated
amount s is such that s ≥ (1 − α)(s + μF), where μF is the mean of the distribution
F. Thus, the optimal policy is to end a round whenever s ≥ [(1 − α)/α]μF .

For the criterion of minimizing the expected number of rounds needed to reach
a total locked-in score of g, consider the following heuristic policy: If a round is to
begin when one has a cumulative score of g − x, then the round should be ended when
the amount accumulated in the round is at least min(s, x). To approximate the mean
number of rounds needed under the heuristic policy until the player’s locked-in score
reaches g, note that the number of rounds until the player’s locked-in score exceeds
g − s has the same distribution as 1 + N(g − s), where N(t) is the number of renewals
by time t of a renewal process whose interarrivals have the distribution given by (1).
Now, for a renewal process {N(t)} with interarrival times distributed as X,

E[X](E[N(t)] + 1) = t + E[Y(t)],
where Y(t) is the time from t until the next renewal. Approximating E[Y(t)] by its
limiting value (see [6]) yields that

E[X](E[N(t)] + 1) ≈ t + E[X2]
2E[X]

or

E[N(t)] + 1 ≈ t

E[X] + E[X2]
2E2[X] .

Thus, if we let Rs(g − s) be the number of rounds until the player’s locked-in score
exceeds g − s when the heuristic policy is used, then

E[Rs(g − s)] ≈ g − s

E[T(s)] + E[T 2(s)]
2E2[T(s)] .

Because

E[T(s)] = (1 − α)e−αλs(s + 1/λ)

and

E[T 2(s)] = (1 − α)e−αλsE[(s + Y)2]
= (1 − α)e−αλs(Var(s + Y) + (E[s + Y ])2)

= (1 − α)e−αλs(1/λ2 + (s + 1/λ)2),
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this yields that

E[Rs(g − s)] ≈ (g − s)

(1 − α)(s + 1/λ)
eαλs + 1/λ2 + (s + 1/λ)2

2(1 − α)(s + 1/λ)2
eαλs. (2)

The player’s cumulative locked-in score when it first exceeds g − s will exceed
it by an amount that approximately has the equilibrium distribution of T(s). Calling
this distribution Ge and using that

P(T(s) > y) = (1 − α)e−αλs if y < s,

it follows that

Ge(x) = 1

E[T(s)]
∫ x

0
P(T(s) > y) dy = λx

1 + λs
if x < s.

Because the number of additional rounds needed under the heuristic policy when the
current cumulative score is g − s + x, x < s, is a geometric random variable with
parameter (1 − α)e−αλ(s−x), it follows from the preceding that the expected additional
number of rounds needed when the cumulative locked in score first exceeds g − s
is approximately

1

1 − α

∫ s

0
eαλ(s−x) dGe(x) = 1

1 − α

λ

1 + λs

∫ s

0
eαλ(s−x) dx

= 1

1 − α

1

α(1 + λs)
(eαλs − 1). (3)

Putting it all together yields that E[Rs(g)], the expected number of rounds that it
takes, under the heuristic policy, to obtain a cumulative locked-in score of at least g,
is such that

E[Rs(g)] ≈ E[Rs(g − s)] + 1

1 − α

1

α(1 + λs)
(eαλs − 1) (4)

≈ (g − s)

(1 − α)(s + 1/λ)
eαλs + 1/λ2 + (s + 1/λ)2

2(1 − α)(s + 1/λ)2
eαλs

+ 1

1 − α

1

α(1 + λs)
(eαλs − 1).

Letting s = s∗ = (1 − α)/αλ, which is the heuristic we recommend, yields that

E[Rs∗(g)] ≈
(

g − 1 − α

αλ

)
αλ

1 − α
e1−α + 1 + α2

2(1 − α)
e1−α + 1

1 − α
(e1−α − 1)

= e1−α

{
gαλ

1 − α
+ (1 + α)2

2(1 − α)

}
− 1

1 − α
. (5)
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Example 1: If λ = 1, α = 0.1, and g = 100, then s∗ = 9, E[T(s∗)] = 9e−.9 = 3.659,
and the preceding yields the approximation E[Rs∗(g)] ≈ 27.871, whereas a simulation
of 105 runs yielded the result E[Rs∗(g)] = 27.925.

One might wonder at this point if the optimal policy is a control limit policy
like our heuristic; that is, whenever a new round begins, does it suffice to specify a
value v, depending on the current locked in score, with the instruction that the round
should be continued until either the patient abandons or the total score in the round
exceeds v? It turns out that such a policy need not be optimal. For a counterexample,
consider the parameters of our preceding example and suppose that a round is to begin
with a locked-in total of g − 20. The probability of success if one tries for the entire
additional amount of 20 in a single round is .9e−2, indicating that the mean number of
additional rounds if that policy is employed is (1/.9)e2 = 8.210. On the other hand,
if one continues each round until the total 9 is exceeded, then a simulation indicates
that the expected number of rounds needed is 7.092. Thus, if a control limit policy is
optimal, then when the current locked in total is g − 20, it sets a critical value less
than 20. However, whatever value is set, suppose that the reduction from the most
recent procedure was such that the total not yet locked in amount during the round
is 20 − ε. If one elects to continue the round, then with probability .9, no additional
rounds are needed, whereas with probability .1 a new round would begin with an
additional amount 20 still needed. Because in the latter case there is a policy that will
require an expected number of 7.092 additional rounds, it follows that the optimal
expected number of additional rounds needed if we continue the current round is less
than .71, which dominates ending the round. Thus, the optimal policy is not a control
limit policy.

3. MINIMIZING ROUNDS AND PROCEDURES

Whereas in the preceding section we only concerned ourselves with finding a good
policy for minimizing the expected number of rounds needed to reach a locked-in
reduction of at least g, in this section we will suppose that we are also interested in
keeping the number of procedures low. To do so, imagine that a cost C > 0 is incurred
whenever a new round begins and that an additional cost c > 0 is incurred each time
the procedure is used.

Suppose, as earlier, that the decision has been made to only end a round when
the total of the scores amassed during that round is at least the minimum of s and
the additional amount needed to obtain a total locked-in reduction of at least g. Let
N(s) denote the number of procedures used during a round in which a voluntary stop
only occurs when the total reduction is at least s. Let Yi denote the reduction in the
ith nonfailed game and let

M = min

(
n :

n∑
i=1

Yi > s

)
.
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Because the Yi are independent exponential random variables with rate λ, it follows
that M—which represents the number of procedures needed to obtain a reduction of
at least s—is distributed as 1 plus the number of events by time s of a Poisson process
with rate λ. Now,

P(N(s) > k|M = n) =
{

(1 − α)k if k < n

0 if k ≥ n.

Hence,

E[N(s)|M = n] =
n−1∑
k=0

(1 − α)k = 1 − (1 − α)n

α
,

yielding that

E[N(s)] = 1

α
[1 − E[(1 − α)M]

= 1

α

[
1 − (1 − α)

∞∑
i=0

(1 − α)ie−λs(λs)i

i!

]

= 1

α
[1 − (1 − α)e−αλs]

Now, if we let Ni(s) denote the number of procedures used in round i, then with
Rs(g − s) equal to the number of rounds needed until the player’s locked-in score
exceeds g − s, it follows from Wald’s equation that the expected number of procedures
used in that time is

E

[
Rs(g−s)∑

i=1

Ni(s)

]
= E[Rs(g − s)]E[N(s)] = 1

α
[1 − (1 − α)e−αλs]E[Rs(g − s)],

where E[Rs(g − s)] is approximated by (2). Because the expected additional number of
procedures needed from that point on is as approximated by (3), we see that E[Ps(g)],
the expected number of procedures needed, is such that

E[Ps(g)] ≈ E[N(s)]E[Rs(g − s)] + 1

1 − α

1

α(1 + λs)
(eαλs − 1).

Letting E[TC(s)] be the expected total cost incurred under the s-policy then

E[TC(s)] = CE[Rs(g)] + cE[Ps(g)].
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Because the dominant term in E[Rs(g)] is (g − s)/E[T(s)] whereas the dominant
term in E[Ps(g)] is E[N(s)](g − s/E[T(s)]), it follows that the dominant term of
E[TC(s)] is

g − s

E[T(s)] {C + cE[N(s)]} ≈ C + cE[N(s)]
E[T(s)] g

≈ C + (c/α)[1 − (1 − α)e−αλs]
(1 − α)(s + 1/λ)e−αλs

g. (6)

Letting sc,C be that value of s that minimizes the right-hand side of (6), we propose the
heuristic policy, which, when a round is to begin when the current locked-in reduction
is g − x, continues a round until the total reduction is at least min{x, sc,C}. It should be
noted that sc,C is the value of s that minimizes the ratio of the expected cost of a round
whose goal is to reach a reduction of at least s divided by the expected reduction of
such a round; that is, sc,C minimizes

C + cE[N(s)]
E[T(s)] = C + (c/α)[1 − (1 − α)e−αλs]

(1 − α)(s + 1/λ)e−αλs
.

Example 2: Letting, as in Example 1, λ = 1, α = 0.1, g = 100 and taking C = 1, we
have the following table for the approximate values of sc,1, E[Psc,1(100)], E[Rsc,1(100)],
E[TC(sc,1)], for a variety of values of c.

c sc,1 E[Psc,1 ] E[Rsc,1 ] E[TC(sc,1)]
1 2.843 123.97 39.07 163.04
0.5 3.945 130.43 33.97 99.19
0.33 4.652 134.91 31.92 76.89
0.25 5.165 138.28 30.82 65.39
0.10 6.697 149.26 28.80 43.73
0 9 168.07 27.87 27.87

4. MULTIPLE PATIENTS PER ROUND

Suppose now that every round begins with a group of m patients who are each initially
given the procedure. After each group of patients are given the procedure, the scores
of all the nonfailed patients are observed and we must then decide which of them
should be given another treatment and which of them should be discontinued so as to
lock in the total of their so far amassed scores for the round. Say that a subround is
completed each time a group of patients is given the procedure. Although the problem
of minimizing the expected number of rounds—or minimizing the expected total cost
when there is a cost for each round as well as a cost each time the procedure is used—
can be set up as a dynamic programming problem, the state of the system at the
beginning of a subround would be a multidimensional vector (x, r, y1, . . . , yr), where
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x is the remaining locked-in reduction needed, r is the number of surviving patients in
the round, and y1, y2, . . . , yr are the total reductions so far of these r patients. Because
a simple coupling argument can be used to show that it would never be optimal to
continue with a patient whose total reduction so far is s while locking in a patient
whose total reduction so far is t whenever s > t, it follows that the optimal decision
in state (x, r, y1, . . . , yr) can be represented as one of the values i, i = 0, . . . , r, with
the interpretation that if decision i is made, then the procedure is given to the i of
the r patients whose total reductions so far are smallest. However, a great deal of
computational effort would be needed to solve this dynamic programming problem.
Thus, we propose slight variants of the heuristic strategies of Section 2 (if one wants
to minimize the expected number of rounds needed to obtain a total reduction of g)
or of Section 3 (if there are costs both for rounds and procedures). In the former case,
after each subround we propose that all scores should be locked in if doing so yields
a cumulative locked- in score of at least g; if this is not the case, then an individual
patient’s total score should be locked in if it exceeds s∗. The patients whose scores are
not locked in are once again given the procedure. In the latter case, where there are
costs C for each round and c for each time the procedure is used, we propose using
the same strategy as in the preceding case except that sc,C is substituted for s∗.

5. MAXIMIZINGTHE PROBABILITY OF REACHINGTHE GOAL
WITH n PATIENTS

Suppose now that our objective is to maximize the probability of having a total reduc-
tion of g within n rounds when a single patient is treated in each round. One thing to
note is that if additional reductions are needed to reach our goal when only two rounds
remain, then neither of those rounds should be voluntarily ended before the goal is
reached. Clearly, this is true for the final round. To see that it is also true for the next to
last round, note that if we would stop that round when an additional reduction amount
x is needed, then we will only be successful if the next round’s reduction reaches
x before an abandonment and this is the same as the probability that the additional
reduction in the next to last round reaches x.

Now, suppose that there are presently k rounds to go (n − k have already been
used) and that so far we have a locked-in total reduction of g − f (so an additional
amount f is needed). Imagine that we will continue each of the next k − 2 rounds
until the reduction in that round exceeds s, and if an additional goal reduction is still
needed when only two rounds remain, then we continue each round until reaching the
goal. Let X be the total reduction obtained in the initial k − 2 rounds. Additionally,
let N be the number of those k − 2 rounds that amassed a positive reduction. Because
each round will end with a reduction of at least s with probability

p(s) ≡ (1 − α)e−λαs,

it follows that N is a binomial random variable with parameters k − 2 and p(s). Given
N , the total reduction in the k − 2 rounds is distributed as Ns plus the sum of N
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independent exponential random variables with rate λ (the exponentials represent the
amounts by which the reduction in a successful round exceeds s.) Hence,

E[X|N] = sN + N/λ = (s + 1/λ)N

and

Var(X|N) = N/λ2,

implying that

E[X] = (s + 1/λ)(k − 2)p(s) ≡ μk−2(s)

and, by the conditional variance formula (see [6]),

Var(X) = (s + 1/λ)2(k − 2)p(s)(1 − p(s)) + (k − 2)p(s)/λ2 ≡ σ 2
k−2(s).

Now, we can express X as

X =
k−2∑
i=1

Ii(s + Yi),

where Ii is an indicator variable for the event that round i is successful (i.e., does not
end with a failure), Yi is exponential with rate λ, and all of the random variables in
the sum are independent. Consequently, for k not small, by the central limit theorem
it follows that X approximately has a Normal distribution. Thus, if, when k rounds
remain and an additional reduction of f is needed, we were to utilize the policy that
continues each of the first k − 2 rounds until the total score s is reached and then “goes
for broke” during the final two stages, then the probability this strategy results in a
success is

P(success) = E[P(success|X)] = E[h( f , X)] ≈ E[h( f , Ws,k−2)],

where Ws,k is a normal random variable with mean μk(s) and variance σ 2
k (s) and

where

h( f , x) =
{

1 if x ≥ f

1 − (1 − p( f − x))2 if x < f .

Letting s(k, f ) be the value of s that maximizes E[h( f , Ws,k)], we propose the follow-
ing heuristic policy: When k rounds remain and the still needed locked-in reduction
amount is f , then the next round should be voluntarily ended when the total score
amassed in the round is at least s(k − 2, f ).

Remarks:

1. The values s(k, f ) only need be computed when needed. A simulation will be
needed to determine them.
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2. For Z a standard normal,

P(Ws,k > f ) = P

(
Z >

f − μk(s)

σk(s)

)
,

leading us to believe that s(k, f ) will be close to the value of s that minimizes
( f − μk(s))/σk(s).
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