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We compute critical groups in semilinear elliptic boundary-value problems in which
the nonlinear term may fail to have asymptotic limits at zero and at infinity. As
applications, we prove several new existence results.

1. Introduction
Consider the semilinear elliptic boundary-value problem

—Au = f(z,u) in (2,

1.1
u=20 on 042, (1.1)

where (2 is a bounded domain in R™ with smooth boundary 0f2, and f is a
Carathéodory function on {2 X R that satisfies

f(z,0) =0, T € {2, (1.2)
If(z,t)| <C(tP~t+1), z€n, teR (1.3)

for some p < 2n/(n — 2). As is well known, solutions of (1.1) are the critical points
of the C! functional

G(u) = /Q |Vu|?> = 2F (z,u), u€ Hj(£2), (1.4)
where .
F(x,t)z/o f(z,s)ds.
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Since f(x,0) = 0, we have the trivial solution u(x) = 0, and computing the crit-
ical groups of G at zero and at infinity may yield non-trivial solutions (see, for
example, [2] or [8]). These critical groups depend mainly upon the behaviour of the
nonlinearity f near zero and infinity, respectively.

When G is C?, it is well known that the critical groups of a non-degenerate crit-
ical point are completely determined by its Morse index. It was observed in [17-19]
that even in some degenerate cases where G has a local linking near zero, C, (G, 0)
can be computed explicitly via the shifting theorem. For Landesman-Lazer-type
problems, C,(G,0) and C.(G,o0) were computed in [2,5,6] when G is only C*,
but assuming that the limits lim; .o f(x,t)/t and limy o f(x,t)/t exist. In [3,
4,9,10,12], C,(G,0) were computed for problems with a jumping nonlinearity at
zero, i.e. assuming only that the one-sided limits lim,_, g+ f(z,t)/t exist. Similarly,
C.(G, ) were computed in [11] for some resonance problems with a jumping non-
linearity at infinity, i.e. when lim;_, 4 o0 f(,t)/t and lim;—,_o f(z,t)/t are different.

In the present paper we compute C(G,0) and C. (G, o00) without even assuming
that the one-sided limits exist. We assume that f satisfies

|flz t1) = f(z,t2)| S C([t1P72 + [P 2+ Dty — to], ti,t2€R (1.5)

for some p € (2,2n/(n—2)), so that G is of class C?27°. Let A\; < Ay < ... denote the
distinct Dirichlet eigenvalues of —A on (2. Our computations include the following
as special cases.

ProposiTiON 1.1. If

flz,t)

<Ay, 0<t <4, (1.6)
for some § > 0, then Cy(G,0) = 044,G, where d; is the sum of the multiplicities of
A1, ..., A and G is the coefficient group.

ProprosiTION 1.2. If

fla,t)

A+ e < P

<Ag1—e, |tl=M (1.7)

for some e, M > 0, then G satisfies the Palais—-Smale compactness condition (PS)
and Cq(G,00) = §44,9.

ProposiTION 1.3. If

t
Al +¢e< @ <A1, 2F(z,t) < (N —e)t%, |t = M, (1.8)
for some e, M > 0, then G satisfies (PS) and Cy(G,0) = §44,G. If
t
A < @ <ANt1—¢, 2F(z,t) =2 (N + E)tQ, |t| > M, (1.9)

then G satisfies (PS) and Cgq, (G, 0) # 0.

Note that (1.6) characterizes (1.1) as double resonant between two consecutive
eigenvalues near zero, and (1.8), (1.9) characterize (1.1) as resonant from one side at
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infinity. Proposition 1.1 improves some results in [13], and proposition 1.2 extends a
result in [2], where it was required that limy_, f(2,t)/t exist and be in (A, Aj41).
Some immediate applications are as follows.

THEOREM 1.4. If

~

(@t

~—

Al < r <41, 0< |t| <9, (1.10)
t
Am < f(f: ) <Ama1—¢&, 2F(z,t) 2 (A —|—E)t2, lt| > M (1.11)

for some 0,e, M > 0 and l # m, then (1.1) has a non-trivial solution.

THEOREM 1.5. If

Nt? < 2F (x,t) < Mgpat?, |t <6, (1.12)
t
Am + € < f(ﬁ’ ) < oas—e, > M (1.13)

for some 0,e, M > 0 and l # m, then (1.1) has a non-trivial solution.

THEOREM 1.6. If

N2 < 2F (z,t) < Agat?, t] <6, (1.14)
t
Am + e < f(ﬁ’ ) < Angts 2F(2,8) < Mg — )2, || =M (1.15)

for some 0,e, M > 0 and l # m, then (1.1) has a non-trivial solution.

We will carry out our critical group computations in §§2 and 3 and give more
existence theorems for (1.1) in §4.

2. Critical groups at zero

Throughout this section we assume that 0 is an isolated critical point of G in order
to ensure that C,(G,0) are defined.

Set A; = I—X\(—=A)71, let N;_1, E()\;), M; denote the negative, zero and positive
subspaces of A;, respectively, and for a,b € R, let

Iwah) = [ [Vl = o(u)? = bV, (21)
2
vi(a)= sup I(v,a,0), Ii(a)= inf I(w,a,0), (2.2)
vEN; weM,;
vl 2=1 lwF]lp2=1
where u*(z) = max{+u(z),0}. The functions v; and I} were introduced in [15],

where it was shown that they are continuous, decreasing and satisfy
m(A) = A, Ii(ANit1) = Mg, I <y (2.3)
Note that
I(v,a,v(a)) <0, veN, I(wa,li(a))=20, we M. (2.4)
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It was shown in [15] that if b > 7;(a) (respectively, b < I3(a)), then there is an
€ > 0 such that

I(v,a,b) < —¢|jv||?, v € N; (respectively, I(w,a,b) > el|w|?, —w € M;). (2.5)
We shall use these properties of ; and I} in our critical group computations.
ProposiTION 2.1. If

at ) +v(a)tT)? < fx, )t < Mat?, [t <6, (2.6)
for some a € R and § > 0, then
Cq(G,0) = 64a,9, (2.7)
where d; = dim N;. The same conclusion holds if
N2 < fla, )t <a(t)>+b(th)2 |t <96, (2.8)
for some b < Ii(a).

Conditions (2.6) and (2.8) are illustrated in the figure 1. Proposition 1.1 follows
by taking a = X; in (2.6) and using v;(A;) = A;.

Proof of proposition 2.1. Set

f(l‘,t) = f(.%‘,t) - )‘H-lta (29)
write
G(u) = (Ajp1u,u) — 2/ F(z,u), (2.10)
2
where

F(Jc,t)z/o f(z,s)ds,
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and foru=v+y+w € N, ® E(N11) ® M1, set 4t = —v+y+ w. By (2.6),

0 < —fla, )t < \at® —a(t™)? = yla)(tT)?, |t <4, (2.11)
SO
5 . f(x,u
Fewyi = L2002 gy (212)
0 if ut > 0,
<1 (Apg1 —a)v? ifu<0, a>0, (2.13)
N1 —y(a)v? ifu>0,a<0
< Ap1v? —a(v7)? = mla)(0h)?, ful <0 (2.14)
Hence
/ flz,u)a < / N0 —a(v™)? —y(a)(vh)% (2.15)
lu|<§ [0
On the other hand, there is a p > 0 such that
loll<p = |o()] < 39, (2.16)
Iyl <p = ly(@)| <39, (2.17)

since N; and E()\;y1) are finite dimensional. Suppose that ||u|| < p and |u(z)| > 6.
Then

u(@)| < Jw(@)| + ly(2)] + (@) < lw(@)] + 34, (2.18)
so
[u(@)l, la(z)] < 3lw(z)l. (2.19)
Thus
/ f(z,w)al < C lulP~Hal < € [w]” < Cllwl? (2.20)
[ul>6 |u|>6 [u|>68
by (1.5).
Now consider the homotopy
Gi(u) = (1 = )G (u) + t(=[lv]|* + lly* + [w]?), te[0,1]. (2.21)
We have

K@, i) = (1= 0] (i) = (Augro) = [ Flaa| +dlal? (222

> (-0 (1= 32 ) fol? = Gl = 1600, + l? 229)

by (2.15) and (2.20). Since p > 2 and I(v, a,v;(a)) < 0, it follows that 0 is the only
critical point of G in B,(0) if p is sufficiently small, so

Cq(G,0) = C4(Go,0) = Cy(G1,0) = 04a, G (2.24)

by the homotopy invariance of critical groups.
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If (2.8) holds, then we take

f(.l‘,t) = f(.l‘,t) - )\lta (225)
so that
G(u) = (Aju,u) — 2/ F(z,u), (2.26)
Q
and take t = —v —y+wforu=v+y+w € Nj_1 ® E(\) ® M;. Now
0< flz, )t <a(t™)?+b(th)> = Nt?,  |t] <9, (2.27)
SO
Fewi = L2002 o 1y (2.25)
0 if wi < 0,
<9 (a—N)w? ifu,a <0, (2.29)
(b— X\)w? ifu, 4 >0
<alw )+ bwh)? — Nw?,  |ul <. (2.30)
Now setting
Gi(u) = (1 = )G (u) + t(=[lv]* = llyI* + [w]?), te[0,1], (2.31)

we see that

@) > (1= 0 1Gs0,0) = ol + (52 = 1) IolP ] + el (252

Using (2.5) to estimate I(w,a,b), the conclusion follows as before. O

We get the following weaker result if we replace (2.6) and (2.8) by their integrated
versions.

ProproSITION 2.2. If
a(t™)’ +m(@)(t")* < 2F(x.t) <a(t™)* +b(tH)?, |t <s, (233)
for some a € R, b < I(@) and § > 0, then
Cy4,(G,0) #£ 0. (2.34)
The same conclusion holds if a = b= Al41-

Proof. We will show that G has a local linking near zero with respect to the splitting
H&(Q) = N; ® M, i.e.

G <0, veN, ol <p (2.35)
G(w) >0, weM,;, 0<]w|<p, (2.36)

for sufficiently small p. By [7], equation (2.34) follows from this.
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Since N; is finite dimensional,
G(v) < I(v,a,m(a)) <0 (2.37)

for v € N; with |jv|| sufficiently small. If b < I(a@), then, for w € M;,

Vw|? - b -2 F(z,w 2.38
/| o[ i e el @)
> 1wl - (239

|w|>é
> e|wl® - Cllw]? (2.40)

for some e > 0, so (2.36) also holds in this case. We refer the reader to [16] for the
proof of (2.36) when @ =b = A\41. |
3. Critical groups at infinity

In this section we compute C, (G, 00) under the corresponding assumptions at infin-
ity, using the following homotopy invariance theorem for critical groups at infinity
from [14] (the proof is included here for the convenience of the reader).

THEOREM 3.1. Let Gy,t € [0,1] be a family of C' functionals defined on a Hilbert
space H, which satisfy (PS), such that G}, 0;G; are locally Lipschitz continuous. If
there are a € R, § > 0 such that

Giuw)<a = |[Gu)|| =46 W, (3.1)

then
C.(Gp,0) = C,(Gy,00). (3.2)

In particular, equation (3.2) holds if there is an R > 0 such that

G, >0, inf Gi(u) > —oo0. 3.3
[oun|>RH ()l N L PP (3:3)

Proof. Let n(t)u be the flow generated by

. ath( ) 12 =u a
n=— EE )||2G (), t>0, n0)=uecG§. (3.4)
Then d
3 Ctn(t)u) = (GY(n), 1) + 0eGi(n) =0, (3.5)
Gi(n(t)u) = Go(u). (3.6)

In particular, G¢(n) < a and hence this flow exists by (3.1). It can be reversed by
replacing Gy with G1_¢ in (3.4). Thus 7(1) is a homeomorphism of G§ onto G, so

C*(Go,OO):H*(H,Gg)gH*(H,GT)ZC*(Gl,OO) (37)
O
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First we consider the following ‘non-resonance’ case.
PRrROPOSITION 3.2. If
a(t™)? +b(t7)? < fz,0)t < (i — )8, |t > M, (3.8)

for some b > v;(a) and e, M > 0, then G satisfies (PS) and

Cy(G,0) = 64a,9. (3.9)
The same conclusion holds if
N4 e)t? < fla, )t <a(t™)* +b(tT)2, |t > M, (3.10)
for some b < Ii(a).
Proof of proposition 3.2. Set
fl@,t) = f(2,t) = (N1 — e)t, (3.11)
write
_ /Q Vul2 = (s — e)u2 — 2 (), (3.12)
and set ¢t = —v+w for u =v+w € N; ® M;. Then
0< —flw, )t < (1 =)t —a(t™)? =b(t")?, [l >M,  (3.13)
by (3.8), so
Flawa = L&Y g2 2y (3.14)
0 if ut > 0,
<1 (N1 —e—a)p? ifu<0, 4>0, (3.15)
MNa1—e—0bw? ifu>0, a<0
< Ng1 —ew? —a(w™)? —bwh)?  |ul =M, (3.16)
and hence
fewis [ Gua-o9 e P -beh @)
lul> M 2

On the other hand,

[ il < clal. (3.18)
|u|<M
So setting
Golu) = (1 - G () +t(—ol]? + ], < [0.1], (3.19)
we see that
(@), i) > (1 t>[i||w||2 I(vab) - cnan] Celalt (320
ALyl
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Estimating I(v,a,b) by (2.5), it follows that

G, >0
o, 1] nf, H>RII (W

for sufficiently large R. Hence G; satisfies (PS) for each ¢, and
C4(G.00) = Cy(Go,0) = Cy(G1,50) = 6,4,
by lemma 3.1. The proof when (3.10) holds is similar and is omitted.
We have the following weaker result in the ‘resonance’ case.

ProposiTION 3.3. If

at™)? +b(t")? < flx, )t < Mgat?, 2F(x,t) < (N — )%, [t = M

for some b > v;(a) and e, M > 0, then G satisfies (PS) and
Cy(G,00) = 644,G.
If
N2 flr, )t <a(t)?2+ b1, 2F(x,t) = (N +e)t?, |t =M
for some b < I'(a), then G satisfies (PS) and
Cy,(G,00) # 0.
Proof of proposition 3.3. We show (3.24) by applying lemma 3.1 to
Gi(u) = (1 = )G (u) + t(=[lv]* + [lyll* + [[w]?),

729

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

where u = v+ y+w € Ny @ E(MN41) ® Mi11. We claim that if Géj (uj) — 0 and
p;j = llujll — oo, then Gy, (uj) — oo for a subsequence, which implies both (PS)

and (3.1). To see this, let

oy
U5 = —L = 0j + J; +W;.
Pj

Setting 1; = —v; + y; +w; and
f(.l‘,t) = f(.l‘,t) - )‘H—lta
an argument similar to the one in the proof of proposition 3.2 shows that
/ f(@,uy)i \/ )\l+1v2 a(vj_)2 - b(vf)2 +Cpj.
Thus

o(1)p; = (G, (uj), i)
> (1 - t;)(Arrwy, wy) — I(vj,a,b) — Cp;) + tpF

Al+1 - -
> (1- tj)P?[(l TN [ @; 1 + €'l15; 11 | = Cpj + t;pF
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for some ¢’ > 0, and it follows that ¢; — 0, 9;,w; — 0. Since ||| = 1, then
¥; — § # 0 for a subsequence. Hence

Gy, (uz) = (1 —ty) /QHVUHQ — (Aig1 —e)ui] — C — tjllvs|?

> (1= t))pilellg;llz — CUlw;l1* + [19;]1)] — € — oo (3.31)
by (3.23).
If (3.25) holds, a similar argument gives (PS). Since
N+ e)t? —C < 2F(x,t) <a(t™ ) +b(tT) +C (3.32)
and b < Ij(a),
G(w) < —¢||v)|22 +C — —o0  as |lv]| = 00, wvE N, (3.33)
G(w) 2 I(w,a,b) —C > —-C, w € M, (3.34)
so0 (3.26) follows from proposition 3.8 of [1]. |

4. Applications

The following existence theorems for problem (1.1) are immediate consequences of
the propositions of §§2 and 3, and include theorems 1.4-1.6 as special cases.

THEOREM 4.1. Assume that
ao(t7)? +bo(tT)? < fla, )t <ao(t™)*+bo(t™)?,  |t| <0, (4.1)
A2 < flz, )t < a(t)? +b(tT)%, 2F(x,t) = (N, +)t%, |t/ =M, (4.2)

for some b < I'y,(a), 0,6, M >0 and |l # m. Then (1.1) has a non-trivial solution
in each of the following cases.

(i) by = (), @o =bo = Ni+1.
(i) ag = by =\, bo < I (do).

Proof. By (4.2) and proposition 3.3, Cy, (G,00) # 0, whereas Cy, (G,0) = 0
by (4.1), proposition 2.1 and the assumption that [ # m, so it follows that G
must have a non-trivial critical point. O

Similarly, we have the following result.
THEOREM 4.2. Assume that
ao(t™)? + mla)(t)? < 2F(2,t) ST (t7)* + bo(th)?, [t <4, (4.3)
a(t™)? +b(tT)? < fla, )t <a(t™)? +b(th)?, |t = M, (4.4)

for some by < I(@y) or @y = by = Niy1, 6, M > 0 and I # m. Then (1.1) has a
non-trivial solution in each of the following cases.

(1) b>ym(a),a=b< Api1.
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(i) a=0> A\, b < I),(@).
THEOREM 4.3. Assume that

ao(t7)? + mlag)(th)? < 2F(z,t) <To(t7)* + bo(th)?, [t <6, (4.5)
a2+ bt < flz, )t < Apyat?,  2F(z,t) < (Mpg1 — )t2, |t] = M, (4.6)

for some by < I(@) or @o = by = Nig1, b > Ym(a), 8,6, M > 0 and | # m.
Then (1.1) has a non-trivial solution.
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