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Abstract. Imploding z-pinch shells with total currents that are proportional to
some power of time are investigated. Time-space separable self-similar solutions
with cylindrical symmetry are explicitly obtained. The problem is treated asymp-
totically in high thermal conductivity within the model of magnetized resistive
plasmas, while the ionization and radiation processes are ignored.

1. Introduction
Time-space separable self-similar quasi-equilibrium solutions are obtained for cyl-
indrical z-pinch shells that implode under the pressure of an azimuthal magnetic
field that is produced by the axial current.
Self-similar equilibrium solutions are of great interest due to their possible role as

attractors at long times. Such solutions were previously found for full cylindrical
z-pinches that carry total currents following a power law in time ∼tS , with the
pinch radius ∼t(1−3S )/2 . The z-pinches implode for S > 1/3 and explode otherwise
(Bud’ko et al. 1994). The solutions are conventionally related to either exact (Cop-
pins et al. (1988) for S = ±1/3) or long-time asymptotic (Bud’ko et al. (1994) for
S > −1/5; see also Shtemler andMond (2005), hereafter called SM 2005) mechanical
equilibrium.
These studies were carried out within the framework of a resistive and heat

conductingmagneto-hydrodynamics (MHD)model. It was assumed that converting
the magnetic energy into the kinetic energy of the z-pinches would add some
dissipation and thereby the model of the resistive and thermally conductive plasma
was adopted, while ionization and radiation effects that breaks the symmetry
that underlies the self-similar solutions were neglected. Such solutions have been
developed for two limiting cases of magnetized and unmagnetized plasmas (Coppins
et al. 1988; Coppins et al. 1992; Bud’ko et al. 1994). In the case of a magnetized
plasma, i.e. high values of Ωciτii � 1 (Ωci is the ion cyclotron frequency, τii is the
ion–ion collision time), explicit Bessel-type solutions were obtained in the limit of
infinite thermal conductivity (isothermal approximation), which leaves the radius of
the full z-pinch undetermined. In the limit of high but finite thermal conductivity,
the ohmic heating and entropy terms are neglected in the leading-order energy
equation; however, they are taken into account by the solvability condition for the
next-order energy equation, and thus determine the pinch radius and influence the
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leading-order approximate solution (SM 2005). A small parameter of the asymptotic
procedure that is proportional to the square root of the electron-to-ion mass ratio
naturally emerges in the magnetized plasma model. Explicit equilibrium solutions
for high thermal conductivity significantly simplify the modeling compared with
the limit of unmagnetized plasmas where the thermal conductivity is small (Coppins
et al. 1992).
Although gas-puff z-pinches are described in the limit of unmagnetized plasma

rather than in the limit of magnetized plasmas (see also Sec. 6), the concept of the
imploding shell observed in the gas-puff z-pinches (Gregorian et al. 2003) forms the
basis of the present study of quasi-equilibrium states in magnetized plasmas.
The recent experimental investigations of gas-puff z-pinches (Gregorian et al.

2003, 2005a,b; Kroupp et al. 2007; see also the discussion in Sec. 6) refer to the
model of annular z-pinch shell configurations, which differs from that for full
cylindrical z-pinches. The whole imploding phase may be separated into three
stages: an initial stage that is characterized by a near-linear time variation of
the total current and almost constant outer radius of the shell, an intermediate
stage, and the final stagnation stage that corresponds to the saturation of the
total current and the plasma converging at the pinch axis (Davara et al. 1998).
At the final stagnation stage of the implosion the total mass of the imploding
plasma significantly increases, the kinetic plasma energy is converted into plasma
internal energy, and radiation is accompanied by shock waves and MHD turbulence
(Gregorian et al. 2005a,b; Kroupp et al. 2007). During the intermediate stage, the
imploding shell is characterized by a density that is significantly higher than in
the dilute plasma in the inner region as well as by the highest radial velocities
of the plasma, since the magnetic field energy is mainly spent on the radial flow.
Although the inner ionization front propagates inward to the center of the pinch
and ionizes the new portion of the working gas, the plasma mass rise is small,
being only ∼10%, during the intermediate time interval. Thus, during this time the
sweeping effect is small and the plasma column that contains most of the plasma
mass has a nearly annular geometry. That annular region of the z-pinch plasma
was named the ‘imploding shell’ by Gregorian et al. (2003), a term that is adopted
hereafter.
In the present modeling the previous study of quasi-equilibrium self-similar

solutions for full z-pinches (SM 2005) is generalized to include z-pinch shells. As
stated before, ionization and radiation processes as well as shock wave and sweeping
effects are ignored. Instead, based on the concept of the imploding shell, an effective
inner boundary of the imploding shell is introduced which satisfies the conventional
kinematic and dynamic boundary conditions. The imploding shell concept of the
quasi-equilibrium z-pinch is proposed as an alternative model to the full z-pinch
model.
The quasi-equilibrium solutions of the MHD model which depend only on time

and radius are also exact solutions of the Hall MHD model since in such cases the
Hall term in Ohm’s law is identically zero. In this respect they may serve as basic
states for studying the stability of Hall MHD plasmas, similar to the procedure
for the full cylindrical z-pinches (see e.g. Shtemler and Mond 2006 and references
therein). The stability analysis is motivated by some experimental observations
(see the discussion in Sec. 6) that demonstrate small-scale turbulent ion motion in
the outer radius of the z-pinches. The characteristic length scale of that turbulence
may be compared with the wavelengths λH of the perturbations excited due to the
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Hall electric field:

λH =
c

ωpi
=

c

2eZ

√
mi

πn̂i
∼ 0.1 cm, (1.1)

where c is the light velocity, ωpi is the ion plasma frequency, the ion current density
averaged over the shell radius n̂i ∼ 1016 cm−3 and the average ion charge Z = 2.
This paper is organized as follows. In the next section the basic governing re-

lations are presented. Self-similar quasi-equilibrium solutions for z-pinch plasma
shells are described in Sec. 3. In Sec. 4 asymptotic expansions in the limit of
high thermal conductivity are carried out. Results of numerical simulations for
the imploding shells are presented in Sec. 5. Applicability of the model of magnet-
ized plasmas to conditions of gas-puff z-pinches, and the Hall instability within
them, is discussed in Sec. 6. The principle results and conclusions of the study are
given in Sec. 7. A closure condition that determines the outer radius of the pinch
shell is derived in Appendix A. Explicit solution of the problem is carried out in
Appendix B.

2. Governing relations
2.1. The physical model

A resistive MHD model for a quasi-neutral magnetized plasma that accounts for
thermal conductivity is considered. The displacement current, viscosity, ionization,
and radiation shock wave as well as sweeping effects are neglected:

∂n

∂t
+ ∇(nV) = 0, (2.1a)

min
DV
Dt

= −∇P +
1
c
j× B, (2.1b)

1
γ − 1

nγ D

Dt
(Pn−γ ) = η⊥j2 − ∇ · Q, Q = −K⊥∇T, (2.1c)

P = 2nT, (2.1d)

j =
1
4π

c∇ × B, (2.1e)

∂B
∂t

+ c∇ × E = 0, ∇ · B = 0, E = η⊥j− 1
c
V× B. (2.1f)

Here V, T = Ti = Te, and P = Pe + Pi are the plasma velocity, temperature,
and pressure. Pk = nkTk , mk are the electron and ion masses, where k = e, i,
n ≈ ni = ne/Z is the number density, Z is the effective ion charge of the quasi-
neutral plasma, γ = 5/3 is the specific heat ratio, B and E are the magnetic and
electric fields, j is the current density, c is the speed of light,D/Dt = ∂/∂t+(V·∇), t
is the time and Q is the ion heat flux. η⊥ andK⊥ are the cross-field Spitzer resistivity
and ion thermal conductivity (Lifshits and Pitaevskii 1981),

K⊥ =
ain

2

B2T 1/2 , η⊥ =
ae

T 3/2 ,

ai = aZ2e2c2√
mi, ae = aZe2

√
me/2, a =

8
3
l
√

π,

https://doi.org/10.1017/S0022377809007867 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377809007867


376 Y. M. Shtemler and M. Mond

where l ≈ 14 is the Coulomb logarithm, e is the electron charge and, for magnetized
plasmas,

Ωciτii � 1, Ωci =
ZeB

mic
, τii =

m
1/2
i T 3/2

4πZ4e4 ln
. (2.2)

The physical system is described in a cylindrical frame of reference (r, θ, z),
where subscripts r, θ, and z denote the corresponding projections. The boundary
conditions for the thermally isolated z-pinch shell for vanishing sheet currents are
as follows (Kruskal and Schwarzchild 1954):

P = 0, Vr = Vout, Qr = 0, Bθ = Bout at r = rout, (2.3a)

Vr = Vin, Qr = 0, Bθ = 0 at r = rin. (2.3b)

Here rk and Vk are the pinch radius and boundary velocity for the outer and inner
edges, k = out, in. Outside the pinch the toroidal magnetic field is potential one:

Bout(r, t) =
2I(t)
cr

at r � rout. (2.4)

The system of relations (2.1)–(2.4) is complemented by the integral conditions
for the total current, I(t), that is a known function of time, and for the constant
line density, N , of the imploding shell:

2π

∫ rout

r in

jz r dr = I(t), 2π

∫ rout

r in

nr dr = N ≡ const. (2.5)

Due to Ampère’s law in (2.1) and relation (2.4), relation (2.5) for the total current
is satisfied identically and is omitted from further consideration. The initial data
is not relevant here since time-space separable self-similar solutions are sought.
For equilibrium cylindrical z-pinch shells, the Bennett relation for the temper-

ature averaged over the pinch-shell cross-section, TB , follows from the equilibrium
momentum equation (i.e. with zero acceleration) and Ampère’s law

TB (t) = Tmax(t) − πr2
in(t)Pin(t)

(1 + Z)N
, Tmax(t) =

I2(t)
2(1 + Z)c2N

.

Here Tmax is the Bennett mean temperature for the associated full cylindrical z-
pinch at zero pressure Pin = P (rin) at the inner edge. The Bennett relation is used
for verifying the numerical solution.

2.2. Dimensionless equations

All relevant characteristic normalizing scales denoted by subscript * may be ex-
pressed through four independent scales, namely, the characteristic radius and time
(r∗, t∗) as well as the given dimensional line density N and total current I∗:

m∗ = mi, V∗ =
r∗
t∗

, T∗ =
I2

∗
c2N

, n∗ =
N

r2
∗
, j∗ =

I∗
r2

∗
, P∗ = n∗T∗,

B∗ =
I∗
cr∗

, E∗ =
r∗B∗
ct∗

, η∗ =
ae

T
3/2
∗

, K∗ =
aiP

2
∗

T
5/2
∗ B2

∗
, Q∗ =

aiP
2
∗

T
3/2
∗ B2

∗ r∗
.

(2.6)
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Substituting (2.6) into (2.1)–(2.5) results in

∂n

∂t
+

1
r

∂

∂r
(rnVr ) = 0, (2.7a)

Πin

(
∂Vr

∂t
+ Vr

∂Vr

∂r

)
= −∂P

∂r
− jzBθ , (2.7b)

1
γ − 1

nγ

[
∂

∂t
(Pn−γ ) + Vr

∂

∂r
(Pn−γ )

]
= ΠRη⊥j2

z − ΠT
1
r

∂

∂r
(rQr ), (2.7c)

P = (1 + Z)nη
−2/3
⊥ , (2.7d)

jz =
1

4πr

∂

∂r
(rBθ ), (2.7e)

∂Bθ

∂t
− ∂

∂r
(ΠRη⊥jz − Vr Bθ ) = 0. (2.7f)

Here the temperature and the radial heat flux are expressed through the resistivity

T = η
−2/3
⊥ , Qr =

2P 2

3(1 + Z)2B2

∂η⊥
∂r

.

The dimensionless boundary conditions at the pinch edges, the integral mass
conservation law, and the condition for magnetized plasmas are given by

Vr = Vout, Bθ =
2I(t)

r
, Qr = 0, P = 0, at r = rout, (2.8a)

Vr = Vin, Bθ = 0, Qr = 0 at r = rin, (2.8b)

2π

∫ rout

r in

nr dr = 1, (2.8c)

Ωciτii ∼ ΠM � 1. (2.8d)

The dimensionless parameters in relations (2.7)–(2.8) are

ΠI =
mir

2
∗

T∗t2∗
, ΠT =

ΠR

ε
, ΠR =

t∗aZ2e2c2√
mi

T
3/2
∗ r2

∗
ε, ΠM =

2T 2
∗ r∗

3acZ3e3
√

πNmi
,

(2.9)

where ε � 1 is proportional to the square root of the electron-to-ion mass ratio

ε =
aec

2

ai
≡ 1

Z

(
me

2mi

)1/2

. (2.10)

Alternatively, the inertial, heat-transfer and magnetization parameters ΠI, ΠT and
ΠM may be expressed through the resistivity parameter ΠR and the Lundquist
number Lu that is defined through the characteristic Alfvén speed Va ,

ΠI =
1

Π2
RLu2 , ΠT =

ΠR

ε
, ΠM = εLuΠ

(
Π =

2c

3Ze

√
mi

πN

)
, (2.11a)

Lu =
Var∗
c2η∗

≡ T 2
∗ r∗

c2aZ2e2mi

1
ε

(
Va =

B∗√
min∗

≡ T∗√
mi

)
. (2.11b)

https://doi.org/10.1017/S0022377809007867 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377809007867


378 Y. M. Shtemler and M. Mond

The condition for the plasma magnetization is ΠM � 1. The quasi-equilibrium
state is reached if the inertial term in the momentum equation is small, i.e. ΠI � 1.
That condition presumes that the characteristic time t∗, during which the equilib-
rium self-similar solution settles, is smaller than the current pulse duration of the
imploding z-pinch shell. Since the current pulse duration is bounded from above, the
latter condition essentially restricts the admissible values of the z-pinch parameters
consistent with the solution developed in the present study: the equilibrium self-
similar isothermal solution should be settled during the life-time of the z-pinch.
Note also that the condition for applicability of the isothermal approximation is
ΠT � 1. According to (2.11a) all the above three conditions (ΠI � 1, ΠT � 1 and
ΠT � 1) are satisfied if

Lu � ε−1 , ΠR � ε. (2.12)

3. Self-similar solutions
For cylindrical z-pinch shells, the same self-similarity law is valid as for conventional
full cylindrical z-pinches (Bud’ko et al. 1994; see also SM 2005):

t = t̃, r = r̃α(t̃), Vr (r, t) = r̃α̇(t̃), ar (r, t) = r̃α̈(t̃),

rk (t) = r̃kα(t̃), Vk (t) = drk/dt, ak (t) = dVk/dt,

I(t) = Ĩ t̃S , jz (r, t) = j̃(r̃)ακ1 (t̃), Bθ (r, t) = B̃(r̃)ακ2 (t̃),

T (r, t) = T̃ (r̃)ακ3 (t̃), P (r, t) = P̃ (r̃)ακ4 (t̃),

η⊥(r, t) = η̃(r̃)ακ5 , n(r, t) = ñ(r̃)ακ6 (t̃), Qr (r, t) = Q̃(r̃)ακ7 (t̃).

(3.1)

Here ar (r, t) = DVr (r, t)/Dt is the plasma acceleration, ak (t) is the pinch boundary
acceleration, r̃k ≡ const, k = in, out, α(t̃) = t̃κ0 , the upper dots denote the
derivatives of α(t̃) with respect to time t̃ and

κ0 =
1 − 3S

2
, κ1 =

4S − 1
κ0

, κ2 =
5S − 1

2κ0
, κ3 =

2S

κ0
,

κ4 =
5S − 1

κ0
, κ5 = −3S

κ0
, κ6 =

3S − 1
κ0

, κ7 =
7S − 3

2κ0
.

(3.2)

In the present study we focus on imploding z-pinch shells with total current expo-
nent S > 1/3. The arbitrary dimensionless total current amplitude Ĩ in relations
(3.1) may be set to unity (Ĩ = 1) due to the choice of the characteristic total-current
amplitude I∗. However, a more convenient choice of I∗ is used in Sec. 5.
Substituting (3.1)–(3.2) into (2.7) results in

0 =
dP̃

dr̃
+ j̃B̃, (3.3a)

dη̃

dr̃
= ε

3(1 + Z)2

2r̃

B̃2

P̃ 2

∫ r̃

0
r̃

(
η̃j̃2 − Γ

ΠR
P̃

)
dr̃

(
Q̃ =

2
3(1 + Z)2

P̃ 2

B̃2

dη̃

dr̃

)
, (3.3b)

(1 + Z)ñ = P̃ η̃2/3 (T̃ = η̃−2/3), (3.3c)
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j̃ =
1

4πr̃

d

dr̃
(r̃B̃), (3.3d)

SB̃ − ΠR
d

dr̃
(η̃j̃) = 0. (3.3e)

Here Γ = 1 + 3S(γ − 5/3)/(γ − 1) so that Γ = 1 everywhere below for γ = 5/3.
The kinematic boundary conditions and the mass balance relations (2.8) are

satisfied identically for the solution (3.1), while the rest of the boundary conditions
at the pinch edges and the integral condition for the line density are

B̃ = 0, P̃ = 0, Q̃ = 0 at r̃ = r̃out, (3.4a)

B̃ = 0, Q̃ = 0 at r̃ = r̃in, (3.4b)

πη̃2/3
∫ r̃out

r̃ in

P̃ r̃ dr̃ = (1 + Z)/2. (3.4c)

4. High-thermal-conductivity asymptotic expansions
Further simplifications are still possible in the problem described in (3.3)–(3.4),
which contain the small parameter ε. Thus solutions of (3.3)–(3.4) are sought in the
limit of high thermal conductivity in the form of a power series in ε (SM 2005):

f̃(r̃) = f (0)(ρ) + εf (1)(ρ) + · · · , ρk = ρ
(0)
k + ερ

(1)
k + · · · , (4.1a)

ρ = r̃/λ, ρk = r̃k /λ (k = in, out), (4.1b)

where f̃(r̃) stands for any of the unknown functions; the new independent variable
ρ is scaled by an arbitrary positive constant λ that is determined below.
Substituting (4.1) into (3.3)–(3.4) yields, to leading order in ε (the mass balance

equation is satisfied identically for the self-similar solutions),

dP

dρ
+ λjB = 0, (4.2a)

dη

dρ
= 0, (4.2b)

(1 + Z)n = Pη2/3 (T = η−2/3), (4.2c)

j = (4πλρ)−1 d

dρ
(ρB), (4.2d)

λSB − ΠRη
dj

dρ
= 0. (4.2e)

The superscript denoting the approximation order with respect to ε is dropped
everywhere in what follows unless this leads to misunderstanding.
The boundary conditions for the heat flux are identically satisfied in the iso-

thermal approximation (4.2b), while the rest of the boundary conditions at the
pinch edges and the integral condition for the line density are as follows:

B = 0 at ρ = ρin, B = 2/(λρ), P = 0 at ρ = ρout, (4.3a)

πλ2
∫ ρout

ρ in

nρ dρ = (1 + Z)/2. (4.3b)
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The differential equation for the magnetic field reduces to the standard form for
Bessel functions for the value of λ chosen as follows:

d

dρ

[
1
ρ

d

dρ
(ρB)

]
− B = 0, (4.4a)

λ = Λ
√

η, Λ =
1
2

√
ΠR

πS
. (4.4b)

Using (4.3)–(4.4) yields the following general solution of the system (4.2):

T = C0 (η = C
−3/2
0 ), (4.5a)

B = C1I1(ρ) + C2K1(ρ), (4.5b)

j =
1

4πλ
[C1I0(ρ) − C2K0(ρ)], (4.5c)

P + 2πλ2j2 =
1
4π

C3 . (4.5d)

Here Im (ρ) and Km (ρ) are the Bessel functions (m = 0, 1).
Four boundary conditions (4.3), closed by the solvability condition (A 2) for the

energy equation in the first-order approximation in ε (see Appendix A), lead to an
algebraic system of five equations for the six unknown variables, the coefficients Cj

(j = 0, 1, 2, 3) together with the outer and inner radii of the pinch (or, equivalently,
for the outer radius of the shell ρout and the radius ratio A = ρin/ρout). Thus,
substituting (B 7)–(B.9) for the coefficients Cj (j = 0, 1, 2, 3) and the solution of
the eigenvalue equation (B 6) for ρout vs A (Appendix B) into (4.5) provides explicit
expressions for the radial profiles of all the relevant physical variables.

5. Results of numerical simulations for imploding z-pinch shells
5.1. Solution of the eigenvalue equation for the outer radius

The eigenvalue equation (B 6) in Appendix B that relates the outer and inner radii
of the pinch shell, rewritten in terms of the outer radius ρout and the inner-to-outer
radius ratio A = ρin/ρout, is

D(ρout, A;S) = 0. (5.1)

In Fig. 1 the dependence of ρout on A = ρin/ρout is depicted. It was obtained by
the numerical solution of the eigenvalue equation for S = 2.5.

5.2. Characteristics of z-pinch shells for typical parameters of magnetized plasma

The following physical quantities are considered as the basic parameters that char-
acterize the imploding z-pinch shell: the inner-to-outer radius ratio A = ρin/ρout,
the line density N , the total-current exponent S, the constant value of the average
ion charge Z, the constant temperature T , and the characteristic time and radius
t∗ and r∗. It is convenient here to fit a given temperature T by the choice of the
characteristic total current I∗. The characteristic time t∗ that is naturally associated
with the time of equilibrium settling may be estimated by fitting the observed
values of the total current or the outer radius to that in the self-similar solution,
while the characteristic size is chosen to be equal to the shell thickness

r∗ = (1 − A)rout. (5.2)
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Table 1. Characteristics of the z-pinch shell for typical parameters of the plasma, S = 2.5,
A = 0.8, T = 0.25 keV, ρout ≈ 17, t∗ = 85 ns, ε = 0.017/Z , and ΠT = ΠR/ε.

T Z 10−17 N I∗ rout Pin ΠR 105 ΠI ΠM 10−3Lu 10−16 n̂ λH
(keV)(–) (m−1 ) (kA) (cm) (MPa) (–) (–) (–) (–) (cm−3 ) (cm)

3.1 1 0.25 11 0.17 0.7 0.13 2 50 1.6 0.75 0.26
3.1 1 0.5 16 0.17 1.5 0.13 2 35 1.6 1.5 0.18
3.1 1 1.0 22 0.17 2.9 0.13 2 25 1.6 3.0 0.13
4.7 2 0.25 14 0.24 0.5 0.06 4 22 2.7 0.3 0.2
4.7 2 0.5 19 0.24 1.1 0.06 4 15 2.7 0.62 0.15
4.7 2 1.0 27 0.24 2.2 0.06 4 11 2.7 1.25 0.1

Figure 1. The outer radius of the imploding z-pinch shell ρout vs A = 0.8 (S = 2.5).

The outer radius is determined by relations (4.1b) and (4.4b):

rout
r∗

=
1
2

√
ΠR

πS

T 3/4

T
3/4
∗

ρout, (5.3)

where T∗ is determined in (2.6), and ρout is the solution of the eigenvalue equation
(5.1). The dimensional outer radius rout is independent of r∗, since the dimensionless
resistivity parameter ΠR in (2.9) is proportional to 1/r2

∗ .
Characteristic results are presented in Table 1 in mixed SI–Gauss units for typical

parameters of z-pinch plasmas for t = t∗. The dimensionless parameters of the
model, ΠR, ΠI, ΠM, and Lu, may be calculated according to (2.9) and (2.11). It can
be seen from Table 1 that the parameters of the imploding shell satisfy sufficiently
well the conditions of the model applicability (2.12). Note that conditions (2.12)
depend on only two determining parameters, namely, the Lundquist number Lu
and the resistivity parameter ΠR. In turn the Lundquist number depends on the
characteristic temperature and radius Lu ∼ T 2

∗ r∗, while the resistivity parameter
depends additionally on the characteristic time, ΠR ∼ t∗/(T 3/2

∗ r2
∗ ). Hence, for any

given characteristic radius r∗, the Lundquist number satisfies the first of (2.12) for
sufficiently large T∗, while t∗ is the principal parameter, whose value allows one
to satisfy the second of conditions (2.12). Note also that for t∗ larger than 85 ns
adopted in Table 1 the resistivity parameter ΠR is larger and conditions (2.12) are
better satisfied. The pressure at the inner edge Pin = P (rin) and the characteristic
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Figure 2. Dimensionless radial profiles of pressure, density, and magnetic and electric fields.
S = 2.5, Z = 2, A = 0.8, T = 0.25 keV, ΠR ≈ 0.06, ΠI ≈ 4 ×10−5 , ΠM ≈ 15, Lu ≈ 2.7 ×103 ,
ε ≈ 8×10−3 (see Table 1). Curves 1, 2, and 3 correspond toN = 1 × 1017 cm−3 , 2 × 1017 cm−3 ,
and 3 × 1016 cm−3 , respectively.

wavelengths of the perturbations excited in the Hall regime λH, calculated by
using (1.1), are also presented in Table 1.
In Fig. 2 the radial profiles of the pressure, density, magnetic field, and electric

current are depicted for typical parameters of z-pinch imploding shells. Note that
the magnetic field and electric current have their maxima at the outer edge of the
shell, while the maximum of the number density (pressure) is located at the effective
inner edge.

6. Discussion
Annular gas-puff devices are characterized by a sufficiently large initial radius and
the driving pulse width of the total current is comparable to the total implosion
time. Although the duration of the whole process is too short to reach a Bennett-
like mechanical equilibrium (Ryutov et al. 2000), the concept of the imploding shell
by Gregorian et al. (2003) rather assumes that the shell is in equilibrium due to the
small duration of the imploding shell stage compared to the total implosion time,
and the thin shell thickness compared with the entire thickness of the plasma shell.
The gas-puff device discussed in Gregorian et al. (2003) produces an annular shell

of the working gas (CO2). The total duration of the implosion is ∼620 ns, while the
duration of the imploding shell stage is from 100 ns from 435 ns to 535 ns (Fig. 1(b)
in Gregorian et al. (2003)). At this period, the outer boundary of the plasma shell
moves radially from rout ≈ 2 cm to rout ≈ 1.1 cm, the thickness of the imploding
shell during this period is rout − rin ≈ (0.1–0.15) cm± 0.1 cm wide, while the entire
plasma shell is about 0.6 cm wide. Then, the following characteristic scales may be
adopted: the time instant of the start of the imploding shell stage t∗ = t1 ≈ 435 ns,
the ratio of the inner-to-outer radius A = rin/rout ≈ 0.9 cm, and the mean thickness
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of the imploding shell r∗ = rout − rin ≈ 0.125 cm. Furthermore, during that time
the total current does not exceed the value Imax (see Fig. 1 in Davara et al. (1998)):
I∗ < Imax < 175 kA. Since the imploding shell is charged with the ionization degree
Z ∼ 3–4 (see Fig. 7 in Gregorian et al. (2005a)), the effective value Z ≈ 4 may be
adopted. The dimensional line density of the imploding plasma in those experiments
is Nw ≈ (10 ± 3)μg/cm for CO2 gas (reduced to 70% of the imploding shell mass
this yields 0.7 · (10 ± 3)μg/cm) or, equivalently,

N =
Nw [μg/cm]
NCO2 mi[μg]

∼ 1017 cm−1 ,

where NCO2 is the particle number in one molecule of CO2 . The average value of the
electron number density observed in the experiments (see Fig. 5(b) in Gregorian
et al. (2003)) is n̂e = Zn̂i ∼ 4 × 1017 cm−3 , which yields n̂i ∼ 1 × 1017 cm−3 .
The above estimations for Imax , N , r∗, and Z yield the following value for the

magnetization parameter (using the expression for T∗ through I∗ in (2.6)):

ΠM =
2T 2

∗ r∗

3acZ3e3
√

πNmi
≡ 2I4

∗ r∗

3ac5Z3e3N 5/2√
πmi

<
2I4

maxr∗

3ac5Z3e3N 5/2√
πmi

≈ 0.06.

Thus, the plasma magnetization condition ΠM � 1 is violated, and the limit of un-
magnetized plasma is rather applicable to the experimental conditions in Gregorian
et al. (2003). Note also that the estimation ΠM ∼ 0.06 is also valid for the case of
unmagnetized plasma, since the magnetization condition has the same form as for
magnetized plasma up to a constant factor of the order of unity (Coppins et al.
1992).
Experiments by Gregorian et al. (2005a) exhibit small-scale turbulent ion motion

in the outer radius of the z-pinch shell with wavelength λ ∼ c/ωpi < 0.05 cm. Such
small scale perturbations may be excited by the Hall instability. Indeed, adopting
the above estimations n̂i and Z yield λH = c/ωpi ∼ 0.02 cm for the wavelength
excited in the Hall regime (see (1.1)).

7. Summary and conclusions
Time-separable self-similar quasi-equilibrium solutions were developed. The concept
of the imploding shell proposed by Gregorian et al. (2003) for interpretation of the
experimental data for gas-puff z-pinches in unmagnetized plasmas lies in the basis of
the present modeling of z-pinches in magnetized resistive plasmas. The intermediate
time interval of the implosion corresponds to the imploding shell stage during which
the radiation and ionization processes as well as shock wave and sweeping effects
are ignored.
The problem is treated asymptotically in the limit of high, but finite, thermal

conductivity (similar to the full cylindrical z-pinches, SM 2005). The resulting char-
acteristics of the quasi-equilibrium z-pinch shells are determined by the following
input values: the ion charge Z, the ratio of the inner-to-outer radius A, the total
current exponent S, the line density N , and the constant temperature T , as well as
the characteristic settling time of the equilibrium t∗ (the characteristic length r∗ is
chosen to be equal to the shell thickness). The model determines the outer radius of
the shell, while the inner shell radius is known up to an arbitrary factor. The radial
profiles of the magnetic and electric fields, pressure, density etc. are calculated
for typical parameters of the plasmas. Considering the comparison of the present
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qualitative modeling with the results of experiments or numerical computations,
the outer interface of the model must be associated with the location of the magnetic
field maximum that separates the plasma from the surroundings, while the effective
inner boundary of the imploding shell should be associated with the location of the
density (pressure) maximum. Estimations have been made which demonstrate the
possibility of the Hall instability for typical plasma parameters.

Appendix A. Closure condition
Following SM 2005, the boundary conditions (4.3) are closed by considering the
first-order approximation in ε of the energy equation (3.3b):

dη(1)

dρ
=

3(1 + Z)2

2
Q(1)(ρ)

B2(ρ)
P 2(ρ)

, Q(1)(ρ) =
1
ρ

∫ ρ

ρ in

ρ

[
ηj2(ρ)− Γ

ΠR
P (ρ)

]
dρ. (A 1)

Here P and B are given by the zero-order approximation in ε, and as above the
superscript 0 is omitted with no misunderstanding, but superscript 1 for the first-
order approximation is preserved with no confusion.
According to the boundary conditions, at the outer pinch edge in (4.3a) the

pressure is zero, while the magnetic field there is non-zero, P (ρout) = 0, B(ρout) 	= 0.
As a result, (A 1) is singular at ρ = ρout for Q(1)(ρout) 	= 0. Hence, the coefficient
Q(1)(ρ) must vanish at ρ = ρout in order to avoid that singularity (SM 2005):∫ ρout

ρ in

ρ[ΓP (ρ) − ΠRηj2(ρ)] dρ = 0. (A 2)

Let us reduce the closure condition (A 2) to an equivalent but more convenient
form. Multiplying (4.5d) by 2Sρ, using the definition of λ = Λ

√
η in (4.4b) and

integrating the result over the pinch radius from ρin to ρout yields∫ ρout

ρ in

ρ[2SP (ρ) − ΠRηj2(ρ)] dρ =
S

4π
C3α0(ρin, ρout), α0 =

ρ2
out − ρ2

in

2
. (A 3)

Adding (A 2) and (A 3) gives∫ ρout

ρ in

ρP (ρ) dρ =
1
4π

S

2S + Γ
C3α0(ρin, ρout). (A 4)

Substituting (4.3b) into (A 4) and using (4.5a) reduces the closure condition (A 2)
to the following form:

4
1 + Z

Λ2 C
5/2
0 − 2S

2S + Γ
α0(ρin, ρout)C3 = 0. (A 5)

Appendix B. Explicit solution of the boundary value problem
Using (4.5) and the definition of λ in (4.4), let us rewrite the conditions (4.3) and
the closure condition in the following form:

I1(ρout)C1 + K1(ρout)C2 =
2

Λρout
C

3/4
0 , (B 1a)

C3 − [I0(ρout)C1 − K0(ρout)C2 ]2 = 0, (B 1b)

I1(ρin)C1 + K1(ρin)C2 = 0, (B 1c)
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4
1 + Z

Λ2 C
5/2
0 − α0C3 + α2

1,1C
2
1 + α2

2,2C
2
2 − 2α1,2C1C2 = 0, (B 1d)

4
1 + Z

Λ2 C
5/2
0 − 2S

2S + Γ
α0C3 = 0, (B 1e)

where, by denoting the linear operator 2ΔΦ(ρ) = Φ(ρout) − Φ(ρin),

α0(ρin, ρout) =
∫ ρout

ρ in

ρ dρ ≡ Δ{ρ2}/2,

α1,2(ρin, ρout) =
∫ ρout

ρ in

ρI0(ρ)K0(ρ) dρ ≡ Δ{ρ2 [I0(ρ)K0(ρ) + I1(ρ)K1(ρ)]}/2,

α1,1(ρin, ρout) =
∫ ρout

ρ in

ρI2
0 (ρ) dρ ≡ Δ{ρ2 [I2

0 (ρ) − I2
1 (ρ)]}/2,

α2,2(ρin, ρout) =
∫ ρout

ρ in

ρK2
0 (ρ) dρ ≡ {ρ2 [K2

1 (ρ) − I2
1 (ρ)]}/2. (B 2)

The algebraic system (B1) determines five unknown variables, the coefficients
Cj (j = 0, 1, 2, 3) and the outer radius of the pinch ρout (the inner-to-outer radius
ratio A and hence ρin = Aρout is assumed to be known in the equilibrium state).
Then system (B1) may be reduced to the form

c1I1(ρout) + c2K1(ρout) = 1, (B 3a)

c3 − [c1I0(ρout) − c2K0(ρout)]2 = 0, (B 3b)

c1I1(ρin) + c2K1(ρin) = 0, (B 3c)

c0 − c3α0 − 2c1c2α1,2 + c2
1α

2
1,1 + c2

2α
2
2,2 = 0, (B 3d)

c0 − 2S

2S + Γ
α0c3 = 0, (B 3e)

where the following variable change has been made:

c0 = (1 + Z)ρ2
outC0 , c1 =

ρoutΛC1

2C
3/4
0

, c2 =
ρoutΛC2

2C
3/4
0

, c3 =
ρ2
outΛ

2C3

4C
3/2
0

. (B 4)

The subsystem (B3b)–(B 3d) of the system (B3) may be reduced to a system of
two linear equations with respect to c2

1 and c3 :

χ0c3 − χ1c
2
1 = 0, (B 5a)

χ2c3 − χ3c
2
1 = 0, (B 5b)

where

χ0(ρin) = K2
1 (ρin), χ1(ρin, ρout) = I0(ρout)K1(ρin) + I1(ρin)K0(ρout),

χ2(ρin, ρout) =
Γ

Γ + 2S
K2

1 (ρin)α0 ,

χ3(ρin, ρout) = K2
1 (ρin)α1,1 + I2

1 (ρin)α2,2 + 2I1(ρin)K1(ρin)α1,2 .
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The system (B5) has a non-trivial solution at zero discriminant

D(ρin, ρout;S) ≡ χ0χ3 − χ1χ2 = 0. (B 6)

Then, assuming the outer radius of the pinch ρout to be found from the eigenvalue
equation (B 6) for any given A (0 < A < 1) and omitting one of the equations,
e.g. (B 3d) from the subsystem (B3b)–(B 3e), the rest equations (B 3) provide for
expressions for the coefficient ck (k = 0, 1, 2, 3):

c0 =
2S

2S + Γ
χ1

Δ2 α0 , c1 =
K1(ρin)

Δ
, c2 =

I1(ρin)
Δ

, c3 =
χ1

Δ2 , (B 7)

where Δ(ρin, ρout) = I1(ρout)K1(ρin) + I1(ρin)K1(ρout). Then (B 4) provide expres-
sions for the unscaled coefficient Ck (k = 0, 1, 2, 3):

C0 =
c0

(1 + Z)ρ2
out

, C1 =
2c1C

3/4
0

Λρout
, C2 =

2c2C
3/4
0

Λρout
c2C

3/4
0 , C3 =

4c3C
3/2
0

Λ2ρ2
out

.

(B 8)

Substituting (B 8) into (4.5) provides explicit expressions for the radial distributions
of temperature, magnetic field, current, and pressure.
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