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Numerical investigation of multiple-bubble
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Clarifying the mechanism of particle removal by megasonic cleaning and multiple-
bubble dynamics in megasonic fields is essential for removing contaminant particles
during nanodevice cleaning without pattern damage. In particular, the effect of the
interaction of multiple bubbles on bubble-collapse behaviour and impulsive pressure
induced by bubble collapse should also be discussed. In this study, a compressible
locally homogeneous model of a gas–liquid two-phase medium is used to numerically
analyse the multiple-bubble behaviour in a megasonic field. The numerical results
indicate that, for bubbles with the same equilibrium radius, the natural frequency of
the bubble decreases, and bubbles with smaller equilibrium radii resonate with the
megasonic wave as the number of bubbles increases. Therefore, the equilibrium radius
of bubbles showing maximum wall pressure decreases with an increasing number of
bubbles. The increase in bubble number also results in chain collapse, inducing
high wall pressure. The effect of the configuration of bubbles is discussed, and the
bubble–bubble interaction in the concentric distribution makes a greater contribution
to the decrease in the natural frequency of bubbles than the interaction in the straight
distribution.

Key words: bubble dynamics, cavitation, drops and bubbles

1. Introduction
Semiconductor cleaning is an important process because contaminant particles

adhering to a wafer surface reduce the quality of the semiconductor device. As the
size of semiconductor devices decreases, the size of contaminant particles that can
cause fatal defects also decreases. Furthermore, unconventional materials have been
introduced to reduce power consumption and improve the speed of semiconductor
devices. The conventional RCA clean, which is a batch immersion chemical cleaning
method, can dissolve these new materials and cause pattern damage. Therefore,
better cleaning techniques are required for removing contaminant particles without
pattern damage. Physical cleaning techniques include a cryogenic high-speed spray of
micro-solid nitrogen (Ishimoto et al. 2014), an Ar aerosol method (Okada, Kawata &
Sonoda 2002), a CO2 gas cluster method (Choi et al. 2013) and wet laser shockwave

† Email address for correspondence: ochiai@alba.ifs.tohoku.ac.jp

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

15
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0003-2236-2048
mailto:ochiai@alba.ifs.tohoku.ac.jp
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2017.154&domain=pdf
https://doi.org/10.1017/jfm.2017.154


Numerical investigation of multi-bubble behaviour in megasonic field 563

cleaning (Kim et al. 2012). Megasonic cleaning is an acoustic cleaning technique that
uses high frequencies of 1 MHz and above. It is a gentler, more even cleaning method
than acoustic cleaning with lower-frequency waves. However, the physical forces of
megasonic cleaning can cause pattern damage. Thus, clarifying the mechanism of
particle removal by megasonic cleaning and control of cavitation bubbles in the
megasonic field are essential for removing contaminant particles without pattern
damage. We have previously developed a numerical analysis method of single-bubble
behaviour in a megasonic field (Ochiai & Ishimoto 2014). In an actual megasonic
cleaning field, multiple bubbles interact with each other and show complicated
behaviour. We performed numerical analysis of two bubbles in a megasonic field
focusing on the translational motion as a first step in clarifying the multiple-bubble
dynamics in megasonic cleaning (Ochiai & Ishimoto 2015). To understand the removal
of particles during megasonic cleaning, the effect of the interaction of multiple bubbles
on bubble collapse and the resulting impulsive pressure should also be discussed.

Multiple-bubble behaviour is also important for clarifying cavitation erosion (Kim
et al. 2014), sonoluminescence and sonochemistry (Grieser et al. 2015), and there
are many previous studies about the effect of multiple-bubble interactions on bubble
collapse behaviour and impulsive pressure. Lauterborn & Hentschel (1985, 1986)
performed experiments examining the oscillation behaviour of two same-sized and
two different-sized bubbles. The same-sized bubbles approached each other, whereas
for the different-sized bubbles, the smaller bubble generated a microjet towards the
larger bubble and disintegrated. Chahine & Liu (1985) and Chahine & Duraiswami
(1992) numerically analysed bubble cluster behaviour with the boundary element
method and the singular perturbation method, and demonstrated that bubble growth
is suppressed and the bubble collapse time is delayed by the interaction with the
surrounding bubbles. Foody & Huber (1981), Nakagawa (1985) and Shima &
Jounouchi (1994) theoretically derived the natural frequencies of two, three and
four bubbles, and showed that the natural frequency decreases with increasing bubble
number. The natural frequency of bubbles has also been derived for a single bubble
(Howkins 1965; Shima & Tomita 1981) and two bubbles (Fujiwara & Shima 1993)
near a wall boundary, and it was shown that the wall boundary decreases the natural
frequency. Takahira, Akamatsu & Fujikawa (1994) used a stricter method considering
bubble–bubble interactions and demonstrated that the natural frequency of a bubble
cluster is smaller than that of a single bubble when the bubbles oscillate in phase.
Tomita, Shima & Ohno (1984) studied the behaviour of multiple bubbles attached
to a wall acted on by a shock wave and the induced wall pressure. They showed
that, for bubbles distributed in a straight line, maximum wall pressure induced by
multiple bubbles is lower than that induced by a single bubble, and that the value
approaches an asymptotic value as the bubble number increases. They also performed
the experiment for concentrically distributed bubbles, and they observed that the
maximum wall pressure decreases as the bubble number increases for two bubbles,
whereas it gradually increases towards a value for a single bubble. Dear & Field
(1988) examined the collapse of arrays of bubbles by shock waves, and they showed
that the bubbles that collapsed later induced high pressure owing to the effect of
the previous collapsed bubbles. Blake et al. (1993) performed an experiment on
two bubbles vertically aligned with a wall boundary and showed that the bubble
nearer the wall was elongated perpendicular to the wall and finally separated into
two sections. Kodama, Takayama & Nagayasu (1996) examined the behaviour of two
bubbles induced by a shock wave, and showed that the bubble–bubble interaction
does not affect the bubble behaviour when the distance between bubbles is more than
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six times the initial bubble diameter, and that the direction of the microjet induced
by the bubble collapse changes with the distance between bubbles. They used a
gelatin wall, and the penetration depth into the wall caused by the bubble collapse
showed that the collapse of two bubbles of different initial radius was stronger than
that of the single bubble. Fong et al. (2009) and Chew et al. (2011) examined the
interaction behaviour of two or three spark-generated bubbles, and used the distance
between bubbles and the phase difference of the bubbles to categorize the bubble
behaviour into coalescence of bubbles, microjet formation against another bubble, and
repulsion of bubbles (catapult effect) by a high-speed jet. Swantek & Austin (2010)
investigated the bubble collapse induced by stress wave loading, and showed that the
upstream bubble collapsed, similar to the single bubble. In contrast, the collapse of
the downstream bubble was delayed because of the shielding by the upstream bubble
from the stress wave, and the collapse was induced by the high pressure caused by the
upstream bubble. They also examined the behaviour of a four-bubble staggered array,
and they observed that the most upstream bubble collapsed first and the next two
bubbles that collapsed generated microjets towards the most downstream bubble. Han
et al. (2015a) reported the behaviour of two laser-generated bubbles and evaluated
the bubble behaviour by using three non-dimensional parameters: the non-dimensional
distance between bubbles, ratio of bubble radii and phase difference of the two bubble
oscillations. Cui et al. (2016) examined the behaviour of two, three and four bubbles
generated by electric discharge, and showed that, in the case of three bubbles, the
middle bubble was elongated by the attraction force from the other two bubbles
and finally separated. Recently, multiple-bubble behaviour has also been studied
numerically. Lauer et al. (2012) numerically investigated the collapse behaviour of
cavity arrays induced by a shock wave, and for three bubbles, the pressure induced
by the collapse of the most upstream bubble is lower than that induced by the single
bubble, and the pressure induced by the second and third bubbles becomes high when
the distance between the bubbles is small. Betney et al. (2015) numerically studied
the interaction between a shock wave and multiple bubbles. They showed that, for
two bubbles, the pressure induced by the collapse of the downstream bubbles acts on
the upstream bubble, and the upstream bubble collapse induces high pressure again,
in addition to results similar to the results of Swantek & Austin (2010). They also
calculated the behaviour of two different-sized bubbles, and showed that the bubbles
induce higher pressure than two bubbles of the same size. Han, Zhang & Liu (2015b)
performed numerical analyses of two oscillating bubbles using the boundary integral
method. They classified the behaviours of bubbles using the distance between the
bubbles and the ratio of the minimum radius to the maximum radius. Furthermore,
numerical studies of far more bubbles have been published (Ma, Hsiao & Chahine
2015; Tiwari, Pantano & Freund 2015). Omta (1987) and D’Agostino & Brennen
(1989) studied the nonlinear multiple bubble oscillations in an acoustic field using
averaged equations not considering the motion of individual bubbles. In a study of
cleaning by cavitation bubbles, a coupling model of the fluid analysis of cavitation
bubbles and the surrounding fluid, and material analysis of adhered particles, was
proposed (Chahine et al. 2015).

Multiple bubble dynamics in an acoustic wave are crucial for clarifying the
mechanism of particle removal in megasonic cleaning and for controlling multiple
bubble behaviour in a megasonic field. Many previous studies used laser or electric
spark discharge for bubble generation to observe accurately controlled bubbles,
whereas there are few studies of multiple-bubble behaviour in an acoustic field
(Ochiai & Ishimoto 2015; Xi, Xiongliang & Rui 2015). In the present study, multiple
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bubble behaviour in a megasonic field near a sidewall is numerically analysed by
our numerical analysis method (Ochiai & Ishimoto 2014, 2015), and the effects of
bubble–bubble interactions on the bubble behaviour in a megasonic field and the wall
pressures induced by the collapses are discussed. Multiple-bubble behaviour depends
on several parameters (Chew et al. 2011). In this study, the effects of the bubble
equilibrium radius, bubble configurations and distance between bubbles are analysed.

2. Numerical method
A compressible locally homogeneous model of a gas–liquid two-phase medium is

used to analyse the bubble behaviour in a megasonic field and the pressure wave
induced by the bubble collapse (Okuda & Ikohagi 1996; Ochiai et al. 2010). In
this model, it is assumed that an unlimited number of infinitely small bubbles are
distributed homogeneously in the control volume of the gas–liquid two-phase medium.
The liquid and gas phases are assumed to follow the Tammann equation of state and
the equation of state for an ideal gas. The density of the locally homogeneous
medium is expressed by linearly combining the gas-phase and liquid-phase densities
with the void fraction, α, and by using the relationship between the mass fraction of
the gas, Y , and α (ρ(1− Y)= ρl(1− α), where ρY = ρgα). The equation of state of
a two-phase medium is expressed as

ρ = p(p+ pc)

Kl(1− Y)p(T + T0)+ RgY(p+ pc)T
, (2.1)

where ρ, p and T are the density, pressure and temperature of a two-phase medium,
respectively, Y is the mass fraction of a gas, pc is the liquid pressure constant, Kl is
the liquid constant, T0 is the liquid temperature constant, and Rg is the gas constant.
The gas phase is treated as an air–vapour mixture such that Rg=DaRga+ (1−Da)Rgv,
where Da is the density ratio of air in the gas phase, and Rga and Rgv are the air and
vapour gas constants with values of 287.0 and 461.6 J kg−1 K−1, respectively. The
governing equations are the continuity equation, the momentum equation, the total
energy equation of a compressible two-phase medium and the continuity equations of
the mixture gas and non-condensable gas. They are expressed as

∂Q
∂t
+ ∂(Ej −Evj)

∂xj
= S, (2.2)

Q=


ρ

ρui
e
ρY
ρYDa

 , Ej =


ρuj

ρuiuj + δijp
ρujH
ρujY
ρujYDa

 , (2.3a,b)

Evj =


0
τij

−qj + τjkuk
0
0

 , S=


0

−κsσsni
0
ṁ
0

 , (2.4a,b)

τij =µ
(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij
∂uk

∂xk

)
, (2.5)
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qj =−κ ∂T
∂xj
, (2.6)

µ= (1− α)(1+ 2.5α)µl + αµg, (2.7)
κ = (1− α)κl + ακg, (2.8)

where H = (e + p)/ρ is the total enthalpy per unit mass, τij is the stress tensor, qj
is the heat flux, µ is the viscosity, κ is the heat conductivity, and ṁ is the phase
change term. In addition, assuming that the enthalpy per unit mass, h, is a linear
function with respect to T (h= CpmT + h0m, where Cpm and h0m are the specific heat
at constant pressure and the enthalpy constant of the two-phase medium, respectively),
e is expressed as

e= ρ
(

h− p
ρ
+ 1

2
u2

i

)
. (2.9)

The source term of the momentum equation is the surface tension term (Brackbill,
Kothe & Zemach 1992). The phase change ṁ (Ochiai et al. 2010) is expressed as

ṁ=


α(1− α)ACe

p∗v − pv√
2πRgvT

(pv < p∗v),

α(1− α)ACc
p∗v − pv√
2πRgvT

(pv > p∗v),
(2.10)

where pv and p∗v are the partial pressure of the vapour and the saturated vapour
pressure, respectively, A = Caα

−1/3(1 − α)−1/3 is the interfacial area concentration
in the gas–liquid mixture, and Ce, Cc and Ca are model constants. In this study,
CeCa = CcCa = 1000 m−1 (Ochiai et al. 2011). Partial pressure p∗v is given by the
empirical formula (Sugawara 1932)

p∗v = pk exp
[(

1− Tk

T

)
{a+ (b+ cT)(T − d)2}

]
, (2.11)

where pk = 22.130 MPa, Tk = 647.31 K, a = 7.21379, b = 1.1520 × 10−5 K−2,
c = −4.787 × 10−9 K−3 and d = 483.16 K. Finally, Cpm and h0m are expressed as a
linear combination of the specific heats at constant liquid and gas pressures Cpl and
Cpg, and the enthalpy constants of liquid and gas h0l and h0g with Y; and Cpg and
h0g are expressed as a linear combination of the specific heats of air and vapour Cpa
and Cpv, and the enthalpy constants of air and vapour h0a and h0v with Da. We use
the finite volume method, the fourth-order Runge–Kutta method for time integration
(Jameson & Baker 1983) and an AUSM upwind scheme (Shima & Jounouchi 1994)
with third-order MUSCL-TVD (Anderson, Thomas & Van Leer 1986) to evaluate the
numerical flux.

3. Calculation conditions
A typical megasonic cleaning device consists of a water vessel and oscillator at

the bottom of the vessel. Objects are submerged in the water and cleaned by the
acoustic waves from the oscillator. In the present study, the behaviour of multiple
bubbles oscillating near the sidewall, which is perpendicular to the moving wall that
induces the megasonic wave, is analysed (figure 1). The bottom moving wall and the
sidewall simulate the oscillator and the object being cleaned, respectively. Two initial
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FIGURE 1. (Colour online) Calculation area.
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FIGURE 2. Schematic diagram of initial bubble positions.

bubble position configurations are considered. In one configuration, the bubbles are
distributed in a straight line along the sidewall (figure 2a). In the other configuration,
the bubbles are concentrically distributed around one bubble (figure 2b). These are
the configurations used by Tomita et al. (1984). In figure 2(a), d indicates the initial
distance between two adjacent bubbles. In figure 2(b), d is the distance between
the central bubble and the concentrically distributed bubble. In both cases h is the
initial distance between the bubble and the sidewall. Figure 1 shows a schematic
of the calculation. The megasonic wave induced by the moving wall propagates in
the direction of the y axis and is reflected at the water surface. The incident wave
from the moving wall and the reflected wave form a standing wave between the
moving wall and the water surface. The megasonic wave is induced by the boundary
condition of the velocity perpendicular to the moving wall of

v =
{

Aam sin(2πfwt) (t< 2hw/C),
Aam sin(2πfwt)+ Aam sin(2πfw(t− 2hw/C)) (t > 2hw/C).

(3.1)
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FIGURE 3. Pressure distribution without bubbles. The numbers in the figure are time (µs).
(Reprinted from Ochiai & Ishimoto (2014), ECS J. Solid State Sci. Technol., vol. 3(1),
pp. N3112–N3117.)

Here, Aam and fw are the velocity amplitude and frequency, respectively, and
Aam = 0.02 m s−1 and f = 1 MHz; hw is the height of the water surface from the
moving wall; and C is the speed of sound. The velocity induced by the moving wall is
Aam sin(2πft). A megasonic wave induced by the moving wall is reflected at the water
surface, and the reflected wave propagates to the moving wall. Therefore, the boundary
condition of the velocity at the moving wall after the reflected wave reaches it is
determined by considering the velocity of the reflected wave, Aam sin(2πf (t− 2hw/C)).
A constant pressure and temperature are applied at the upper boundary. The water
surface is 1.3 mm above the moving wall. The bubble behaviour is assumed to be
symmetric with respect to the z= 0 plane; only the calculation in the area of z> 0 is
performed. We performed the calculation without bubbles to form the standing wave.
The initial liquid pressure and temperature are 0.1 MPa and 293.15 K, respectively.
A standing wave is formed after a certain period (figure 3) (Ochiai & Ishimoto
2014). Figure 3 shows that the pressure amplitude is approximately 60 kPa at the
antinode of the pressure standing wave. The y components of the initial bubble
positions in the present study are 0.76 mm 6 y 6 0.84 mm. The pressure antinode
and node of the standing wave are above and below all bubbles, respectively. The
bubble calculations are started after the standing wave is formed. The initial void
fractions inside and outside the bubbles are 1 and 0, respectively. The initial velocity,
pressure and temperature are determined from the calculation without bubbles. The
initial partial vapour pressure inside bubbles is assumed to be the saturated vapour
pressure. The other partial pressure is the initial pressure of non-condensable gas.
The grid numbers for pattern 1 (figure 2a) depend on the bubble number, but the
grid resolution is the same. For example, for nine bubbles, which is the maximum
number of bubbles in this study, the grid numbers are (x direction) × (y direction)
× (z direction) = 191 × 511 × 101; and 181 grids in 0 6 x 6 20 µm, 361 grids in
755 6 y 6 845 µm and 91 grids in 0 6 z 6 10 µm are concentrated upon. The grid
numbers for pattern 2 (figure 2b) are (x direction) × (y direction) × (z direction)
= 191× 351× 146; and 181 grids in 06 x 6 20 µm, 201 grids in 775 6 y 6 825 µm
and 136 grids in 0 6 z 6 15 µm are concentrated upon.

4. Validation of the calculation method
Numerical simulation of the bubble collapse near a wall is performed to validate

the numerical method. The bubble collapse due to the pressure difference between the
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Wall

FIGURE 4. Time evolution of the bubble shape during bubble collapse. The solid and
broken lines indicate the present calculation result and the result calculated by Plesset &
Chapman (1971), respectively.

0

p

30 (MPa)

FIGURE 5. Time evolution of pressure distribution and isoline of the void fraction α= 0.5
after bubble collapse (R0= 1.5 mm and tc=R0/

√
pout/ρ0, where pout and ρ0 are the initial

liquid pressure and density, respectively).

inside and outside of the bubble is simulated. The internal and external pressures are
3 and 100 kPa, respectively; and CeCa=CcCa are 1000 m−1. The initial bubble radius
is 1.5 mm. The initial non-dimensional standoff distance, γ = l0/R0, is 1.5, where l0
is the initial distance between the bubble centre and the wall. The calculation area has
a main area of 2.3R0 × 3.4R0 × 2.3R0 ((x direction) × (y direction) × (z direction))
and a buffer region. The y axis is perpendicular to the wall. The calculation is a
plane-symmetric calculation. The symmetric planes are the two orthogonal planes
perpendicular to the wall. Figure 4 compares the bubble shape calculated by the
present method with the previous numerical result by Plesset & Chapman (1971).
In the present calculation, the bubble is an air–vapour mixture. However, the bubble
calculated by Plesset & Chapman (1971) is a vapour bubble. The solid lines indicate
the isolines of void fraction α = 0.5 in the present calculation. The broken lines
indicate the result reported by Plesset & Chapman (1971). The bubble shapes of
the present calculation are similar to the shapes of Plesset & Chapman (1971), and
the present method can simulate microjet formation during bubble collapse. Figure 5
shows the time evolution of the pressure distribution after the bubble collapse.
After the bubble collapses, the pressure near the bubble becomes high (figure 5(i)).
Because the present numerical method considers the compressibility of the liquid and
gas phases, the propagation of the pressure wave due to the bubble collapse into the
ambient liquid is simulated (figure 5(ii),(iii)).
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(a)

(b)

(c)

0.1 1.0 3.0 (MPa)

p

FIGURE 6. Time evolution of pressure distribution and isoline of the void fraction α= 0.5
on the z= 0 plane (effect of grid resolution).

Next, the effect of the grid resolution on the numerical simulation of multiple
bubble behaviour in a megasonic field is examined. Grid resolutions of 101× 251× 56
(low grid resolution), 191× 351× 101 (medium grid resolution) and 281× 451× 146
(high grid resolution) are used. The grid numbers near bubbles are different. The
cases of the low and high grid resolutions have 0.5 and 1.5 times the grid number
of the medium grid resolution, respectively. We focus on the case of two bubbles.
Figure 6 shows the time evolution of pressure distribution and isoline of the void
fraction α= 0.5 on the z= 0 plane. In the time in figure 6, the two bubbles approach
and coalesce, and the coalesced bubble collapses. Figure 6(i),(ii) show the bubble
behaviour before the two bubbles come into contact, and the bubble shapes in each
case when the radii are close to maximum are similar (figure 6a(i)–c(i)). However,
the shapes are different when the bubbles collapse (figure 6a(ii)–c(ii)). Although the
bubble is largely deformed on the opposite side of the other bubble and the water jet
is formed for the medium and high grid resolutions (figure 6b(ii),c(ii)), such a large
shape deformation is not found for the low grid resolution (figure 6a(ii)). After that,
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FIGURE 7. Maximum wall pressure versus equilibrium bubble radius for two bubbles
(effect of grid resolution).

the two bubbles come into contact and coalesce (figure 6(iii)–(v)). The process and
timing of the coalescence are similar for all grid resolutions. The collapsing bubble
shape after the coalescence is long along the sidewall when the grid resolution is
high (figure 6a(vi)–c(vi)). The grid resolution strongly affects the bubble shape in
the final collapse stage. However, the characteristic behaviour, such as contact and
coalescence of bubbles, is simulated with the low grid resolution. Figure 7 shows the
maximum pressure on the sidewall, pw max, versus bubble equilibrium radius for two
bubbles. The oscillation characteristic of bubbles in the present study depends on the
equilibrium radius. A bubble with the resonant radius exhibits resonant behaviour and
induces high impulsive pressure on the sidewall. According to figure 7, pw max reaches
a maximum at R0= 2.0 µm and the resonant radius is 2.0 µm for all grid resolutions.
Therefore, all cases calculated in this section have sufficient grid resolution to predict
the resonant radius, which is important for the present study. However, the grid
resolution affects the value of the impulsive pressure slightly (figure 7). In the
present study, as a compromise between computational cost and accuracy, we chose
to use the medium grid resolution for the calculations in the following sections.

5. Results and discussion
5.1. Behaviour of multiple bubbles with the same equilibrium radius distributed in a

straight line
In this section, the behaviour of multiple bubbles with the same equilibrium radius
distributed in a straight line near the wall boundary (figure 2a) is analysed, and
the effect of bubble–bubble interaction on multiple-bubble behaviour is discussed.
The initial distances between adjacent bubbles, d, are d = 10 µm, and the distances
between the bubble and sidewall, h, are 4R0, where R0 is the initial (equilibrium)
bubble radius. The z coordinate of the initial positions of each bubble is 0. The y
coordinate of the centre of the multiple bubbles is 800 µm. For three bubbles, the
y coordinate of the centre of the second bubble from the moving wall, bubble 2, is
800 µm. For four bubbles, the y coordinate of the centre between the second and
third bubbles from the moving wall, bubbles 2 and 3, is 800 µm. The effects of
initial bubble radius R0 and bubble number n in the above conditions on multiple
bubble behaviour are analysed. Bubble calculations start at t = 2.12 µs when the
pressure at y = 800 µm is the equilibrium pressure of 0.1 MPa after a standing
wave forms. The initial partial pressure of vapour is the saturated vapour pressure,
and the partial non-condensable gas pressure is far higher than the vapour pressure.
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FIGURE 8. Bubble behaviour and temperature distribution: R0 = 2.2 µm, single bubble,
y= 800 µm and z= 0. Panels: (i) Time history of bubble equivalent radius. (ii),(iii) Time
evolution of temperature distribution for (ii) contraction stage and (iii) expansion stage;
xcentre is the x component of bubble centre position. Curves: (a) t = 2.66 µs, (b) t =
2.80 µs, (c) t= 2.90 µs, (d) t= 2.98 µs, (e) t= 3.02 µs, (f) t= 3.06 µs, (g) t= 3.10 µs,
(h) t= 3.20 µs and (i) t= 3.60 µs.

Therefore, the effect of vapour and the phase change on bubble behaviour is small
in the present calculations.

The total energy equation is used in the present study, and the temperature
field inside and outside the bubbles changes and heat transfer occurs with the
bubble oscillations. The thermodynamic behaviour is analysed and we focus on the
single-bubble case of R0 = 2.2 µm. Figure 8 shows the time history of the bubble
radius and the temperature distributions. The radius is the equivalent radius calculated
from the volume. Figure 8(ii),(iii) shows the temperature distribution at y= 800 µm
and z= 0. The horizontal axis indicates the x position from the bubble centre xcentre.
When the bubble radius reaches a maximum, the bubble internal temperature is almost
constant (figure 8(ii)(a)). The bubble starts contracting owing to the megasonic wave,
and the temperature inside the bubble increases (figure 8(ii)(b)–(d)). The bubble radii
at (b) t = 2.80 µs, (c) t = 2.90 µs and (d) t = 2.98 µs are 2.6 µm, 2.0 µm and
1.4 µm, respectively (figure 8(i)), and the temperature gradient near the gas–liquid
interface is large (figure 8(ii)). Therefore, heat transfer from the liquid phase to
the bubble occurs. The temperature outside the bubble hardly changes. In the
expansion stage, the temperature inside the bubble decreases (figure 8(iii)(e)–(g)).
At (g) t= 3.10 µs, the bubble radius is approximately 1.8 µm, which is smaller than
the initial radius. However, the temperature inside the bubble is lower than the initial
temperature because of the heat transfer during the contraction stage. The temperature
distribution induces the heat transfer from the liquid phase to the bubble. Therefore,
the temperature inside the bubble recovers (figure 8(iii)(h)–(i)) although the bubble
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(a)

(b)

(c)

0.1 1.0 3.0 (MPa)

p

Single bubble

Two bubbles

Three bubbles

FIGURE 9. Time evolution of pressure distribution on the sidewall and isosurface of the
void fraction α = 0.5: R0 = 2.0 µm, the rectangular region indicated by white lines is
20 µm× 50 µm× 20 µm, and the first frame is the start time of the bubble calculation.

grows. The bubble behaviours simulated in the present study are subject to this heat
transfer process.

First, the multiple-bubble behaviour for R0 = 2.0 µm is analysed to discuss
the effect of bubble number on the multiple-bubble behaviour and the pressure
induced on the sidewall. Figure 9 and supplementary movies 1–3 (available at
https://doi.org/10.1017/jfm.2017.154) show the time evolution of the bubble behaviour
and pressure distribution on the sidewall for one, two, or three bubbles with
R0 = 2.0 µm. The isosurface of α = 0.5 indicates the bubble behaviour. Figure 10
shows the time histories of the pressure on the sidewall (x, y, z)= (0, 800 µm, 0)
in each calculation (figure 9). The position corresponds to the initial position of the
centre of the multiple bubbles. For R0 = 2.0 µm, in a single bubble, the induced
pressure on the sidewall of 0.348 MPa is low. The amplitude of the oscillation in
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FIGURE 10. Time history of wall pressure.
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FIGURE 11. Maximum wall pressure versus equilibrium bubble radius.

the single bubble is smaller than those in two and three bubbles (figure 9), and
the pressure distributions on the sidewall for the single bubble (figure 9a(iv),(vi))
indicate that high pressure does not occur. For two bubbles, the bubble oscillations
gradually become large, and the size of the bubbles at the contraction stage are small
(figure 9b(ii)). The two bubbles approach gradually owing to the attraction between
the bubbles via volume oscillation (figure 9b(iii)) and they coalesce (figure 9b(v)).
The pressure on the sidewall grows gradually (figure 10) and the maximum pressure
on the sidewall occurs at collapse immediately after the coalescence (figure 9b(vi)).
The maximum pressure exceeds 10 MPa and is far higher than the maximum pressure
for the single bubble of 0.348 MPa. The coalesced bubble oscillation is damped by
the sidewall and the induced pressure on the sidewall also becomes low after 8 µs
(figure 10). For three bubbles, the oscillation amplitude of the bubbles gradually
grows and the bubbles approach each other (figures 9c(i)–(iii) and 10), in a similar
manner to the two bubbles. The central bubbles in figure 9c(ii),(iv) are too small
to be captured by the isosurface of α = 0.5. The highest pressure for two bubbles
occurs immediately after the bubbles coalesce (figure 9b(vi)). For three bubbles, the
highest pressure occurs immediately before the three bubbles coalesce (figure 9c(iv)).
The maximum pressure on the sidewall for two bubbles is highest for the scenarios
examined (figure 10).

Figure 11 shows the maximum pressure on the sidewall, pw max, versus bubble
equilibrium radius R0. The R0 value where pw max is the maximum, Rp max, is 2.2 µm
for one bubble, 2.0 µm for two bubbles, 1.8 µm for three bubbles and 1.7 µm
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FIGURE 12. Frequency of volume oscillation versus equilibrium bubble radius.

for four bubbles. The results show that Rp max decreases as the bubble number
increases. Tomita et al. (1984) investigated the relationship between the maximum
impulsive pressure and bubble number for bubbles distributed in a straight line, and
they showed that the maximum pressure decreases as the bubble number increases.
They kept the same initial bubble radius. When the equilibrium radius is the same,
the same relationship between the maximum pressure and bubble number is also
observed. For example, for R0 = 2.2 µm, pw max is the maximum for a single bubble,
and pw max decreases with increase in the bubble number (figure 11). However, the
present numerical results indicate that pw max reaches a maximum for multiple bubbles,
depending on the equilibrium radius. For example, for R0 = 2.0 µm, pw max is the
maximum for two bubbles. Figure 11 also shows that the decrease in Rp max as the
bubble number increases becomes slower for more than five bubbles. The equilibrium
radius for five bubbles of 1.7 µm is the same as for four bubbles. Furthermore, the
equilibrium radius for nine bubbles is 1.6 µm, and Rp max approaches a certain value.
The observation that Rp max decreases as the bubble number increases can be explained
by the decrease in the natural frequency with increase in bubble number. Nakagawa
(1985) and Shima (1971) derived the natural frequency of two bubbles, and Foody
& Huber (1981) derived the natural frequencies of two, three and four bubbles using
linear analysis. The results indicate that, when bubbles with the same equilibrium
radius oscillate in phase, the natural frequency decreases with increase of bubble
number. According to the present result, the decrease in the natural frequency occurs
even in highly nonlinear conditions. The oscillation frequencies of the total volume
of the bubbles, fb, in each calculation divided by the frequency of the megasonic
wave of 1 MHz are shown in figure 12 to confirm the decrease of the natural
frequency. Frequency fb is calculated by averaging the period between the times
when the maximum total volume is reached. There are no analytical solutions of the
natural frequency for the nonlinear condition. Therefore, we use the average period to
evaluate the natural frequency. From figure 12, the frequency decreases with increase
in bubble number when R0 is the same. Figures 11 and 12 also show that when fb

is close to the frequency of the moving wall, fw ( fb/fw is close to 1), the maximum
pressure on the sidewall, pw max, is high. When the R0 value with fb close to fw is
assumed to be the resonant radius in this study, the resonant radii in one, two and
three bubbles are 2.4, 2.0 and 1.8 µm, respectively. The following equations are
the natural frequencies of multiple bubbles oscillating in phase derived by Foody &
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Huber (1981):

f1 = 1
2πR0

√
3p0γ

ρ
, (5.1)

f2 = 1
2πR0

√√√√√ 3p0γ

ρ

(
1+ R0

d

) , (5.2)

f3 = 1
2πR0

√√√√√ 3p0γ

ρ

(
1+ 1.6861

R0

d

) . (5.3)

Here fn is the natural frequency of n bubbles, p0 is the equilibrium pressure and γ is
the polytropic index. Prosperetti, Crum & Commander (1988) predicted the effective
polytropic index for the internal gas in a spherical bubble as

γeff = 1
3 ReΦ, (5.4)

Φ = 3κ
1− 3(κ − 1)iχ [(i/χ)1/2 coth(i/χ)1/2 − 1] , (5.5)

χ = λ

ρgCpgfR2
0
, (5.6)

where κ is the specific heat ratio, λ is the thermal conductivity, f is the frequency of
the pressure fluctuation and R0 is the initial radius. To evaluate γeff for air bubbles in
the range of the present calculation conditions using κ = 1.4, λ= 0.257 W m−1 K−1,
ρg = 1.188 kg m3, Cpg = 1005 J kg−1 K−1 and f = 1 MHz, γeff is 1–1.03 for R0 of
several micrometres. The value is close to γ of an isothermal bubble. Therefore,
γ = 1 is used for calculations with (5.1)–(5.3). When the initial distance between
adjacent bubbles is d = 10 µm and fn = 1 MHz, the resonant radii of one, two and
three bubbles are 2.76, 2.47 and 2.33 µm, respectively. The resonant radii are larger
than these in the present calculations. The natural frequency of a bubble is decreased
by a solid wall (Howkins 1965; Shima & Tomita 1981; Fujiwara & Shima 1993)
and an increase in acoustic pressure (Lauterborn 1976). The bubbles in the present
calculations are oscillated near a solid wall by large acoustic pressure beyond the
linear analysis. However, the analysis of Foody & Huber (1981) is limited to linear
oscillation far from a solid wall. Therefore, the resonant radii of present calculations
and (5.1)–(5.3) are different. However, the decrease of the resonant radius of Foody
& Huber’s formula with the increase in bubble number becomes slow, similar to the
present calculations. Therefore, the decrease in the natural frequency with the increase
of bubble number results in the resonance oscillation of the smaller equilibrium radius
(the natural frequency becomes close to the frequency of the moving wall). In addition,
Rp max decreases with the increase in bubble number. The maximum value of pw max
for bubble numbers of more than four is high (figure 11). The bubble behaviour
and the pressure distribution on the sidewall for three, four and nine bubbles are
shown in figures 13–15 to explain the generation of the high impulsive pressure.
The time for figures 13–15 is the last phase of the bubble collapse. Supplementary
movie 4 also shows the bubble behaviour for nine bubbles. The R0 value in each
calculation is Rp max. For three bubbles with R0 = 1.8 µm, the bubbles approach with
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0.1 1.0 3.0 (MPa)

p

FIGURE 13. Time evolution of pressure distribution on sidewall and isosurface of the
void fraction α = 0.5 during the final stage of collapse: R0 = 1.8 µm, three bubbles, the
rectangular region indicated by white lines is 20 µm × 50 µm × 20 µm, and the first
frame is the start time of the bubble calculation.
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FIGURE 14. Time evolution of pressure distribution on sidewall and isosurface of the void
fraction α = 0.5 during the final stage of collapse: R0 = 1.7 µm, four bubbles and the
rectangular region indicated by white lines is 20 µm × 50 µm × 20 µm, and the first
frame is the start time of the bubble calculation.

repeated expansion and contraction (figure 13(i),(ii)), and the three bubbles collapse
almost simultaneously, inducing the maximum wall pressure (figure 13(iii),(v)). For
four bubbles with R0 = 1.7 µm (figure 14), the bubbles approach (figure 14(i),(ii))
similar to three bubbles, and the centre two bubbles make contact faster than the
other bubbles (figure 14(ii)) and coalesce (figure 14(iii)). Subsequently, the outer
two bubbles collapse (figure 14(iv)), and the central bubble collapses because of
the effect of the pressure waves induced by the collapse and rebound of the outer
bubbles (figure 14(v),(vi)). Chain collapse is also observed for nine bubbles with
R0 = 1.6 µm (figure 15). The centre two bubbles make contact before the outer two
bubbles (figure 15(i)), the outer two bubbles collapse earlier than the other bubbles
(figure 15(ii)), and the inner bubbles collapse sequentially after the collapse of the
outer bubbles (figure 15(iii)–(vi)). The detailed behaviour of the chain collapse is
shown in figures 16 and 17. Figure 16 shows the time evolution of the velocity
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FIGURE 15. Time evolution of pressure distribution on the sidewall and isosurface of the
void fraction α = 0.5 during the final stage of collapse: R0 = 1.6 µm, nine bubbles and
the rectangular region indicated by white lines is 20 µm× 90 µm× 20 µm.
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p

FIGURE 16. Time evolution of velocity vector, pressure distribution and isoline of the
void fraction α = 0.5 on the z= 0 plane during outer bubble collapse: R0 = 1.6 µm and
nine bubbles.

vector, the pressure distribution and the isoline of the void fraction α = 0.5 on the
z = 0 plane for nine bubbles. The area of figure 16 is 800 µm 6 y 6 840 µm, and
the lowest bubble in figure 16 is the centre bubble in figure 15. The outermost
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FIGURE 17. Time evolution of pressure distribution and isoline of void fraction α = 0.5
on the z= 0 plane during the inner bubble collapse: R0= 1.6 µm, nine bubbles, and ts=
11.14 µs.

bubble collapse induces a jet towards the inner bubble (figure 16(i),(ii)). The jet
contributes to the collapse of the inner bubble. The inner bubble collapse induces
a jet towards the next inner bubble (figure 16(iii),(iv)). The third bubble from the
outside collapses near the sidewall and induces a wall pressure of approximately
1 MPa (figure 16(iii)–(v)). Figure 17 and supplementary movie 5 show the time
evolution of the pressure distribution and the isoline of void fraction α = 0.5 on the
z= 0 plane after the time in figure 16. Time ts in figure 17 is 11.14 µs. The area of
figure 17 is 780 µm 6 y 6 820 µm. The bubbles close to the centre bubble collapse
(figure 17(ii),(iv)) more violently than the outer bubbles (figure 16). Therefore, the
propagation of the pressure wave induced by the bubble collapse and rebound is
observed (figure 17(iii),(v)). Propagation of the pressure wave is not observed during
the collapse of the outer bubbles (figure 16). The centre bubble collapses with the
effects of the pressure waves and induces high pressure (figure 15(vi)). As explained
above, the collapse behaviour of three bubbles (figure 13) is different from those for
four and nine bubbles (figures 14 and 15). In previous experiments (Dear & Field
1988; Swantek & Austin 2010) and calculations (Lauer et al. 2012; Betney et al.
2015), in which the collapse by a shock wave of multiple bubbles distributed in a
straight line was studied, the pressure wave from the bubble collapse acted on the
neighbouring bubble, which then collapsed more violently than the previous collapsed
bubble. Wang & Brennen (1999) calculated the collapse of a spherical bubble cloud
by using a coupled model of macroscopic conservation equations and a microscopic
bubble dynamics equation, and they showed that the inward-propagating bubble
collapse results in the high pressure at the cloud centre. In the present study, for four
and nine bubbles (figures 14 and 15), when the inner bubbles collapse after the outer
bubbles, the pressure waves induced by the outer bubbles act on the inner bubbles,
and the bubbles that collapse later induce a higher impulsive pressure (figure 11) as
well as in the case of the multiple bubbles affected by the shock wave.
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p

FIGURE 18. Time evolution of pressure distribution on the sidewall and isosurface of the
void fraction α = 0.5: R10 = 2.0 µm, R20 = 1.6 µm, the rectangular region indicated by
white lines is 20 µm× 50 µm× 20 µm, and the first frame is the start time of the bubble
calculation.
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FIGURE 19. Time history of bubble radius (R10 = 2.0 µm and R20 = 1.6 µm).

5.2. Behaviour of two bubbles with different equilibrium radii
In this section, the behaviour of two bubbles with different equilibrium radii is
discussed. The initial distance between the bubbles, d, is 10 µm, and the distance
between the bubble and the sidewall, h, is 4R0. The y coordinate of the centre of the
two bubbles is 800 µm.

First, the initial bubble radius of the lower y component of the initial position, R10,
is constant at R10 = 2.0 µm, and the initial radius of the upper y component of the
initial position, R20, is 1.4 µm 6 R20 6 3.0 µm. The initial bubble radius is 2.0 µm
where the highest wall pressure occurs for two bubbles of the same equilibrium radius.
Figure 18 and supplementary movie 6 show typical bubble behaviour and pressure
distribution on the sidewall for different equilibrium radii (R10 = 2.0 µm and R20 =
1.6 µm). The histories of the bubble radii are shown in figure 19. The radius is the
equivalent radius calculated by the volume. The oscillation periods of one cycle of the
two bubbles are different in the initial stage, as shown in figure 18(i)–(iii) and 19, until
t= 3 µs. The oscillation period of bubble 2 is shorter than that of bubble 1. Bubble 2
reaches a minimum earlier than bubble 1 at the first collapse (figure 18(ii)) and bubble
1 reaches a minimum slightly later (figure 18(iii)). Next, the times when the two
bubbles are at a minimum become close, and the difference in the periods becomes
small (figure 19) as the two bubbles repeatedly expand and contract. The two bubbles
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FIGURE 20. Maximum wall pressure versus equilibrium bubble radius for bubble 2
(R10 = 2.0 µm).

approach and coalesce (figure 18(iv),(v)), similar to the two bubbles with the same
equilibrium radius (figure 9). The collapse occurs immediately after the coalescence
induces the maximum pressure on the sidewall (figure 18(vi)). The two bubbles make
contact at t = 8.1 µs and coalesce at t = 9.2 µs. For the same equilibrium radius
(R10 = R20 = 2.0 µm), the contact and the coalescence of the two bubbles occur at
t= 5.4 and 6.4 µs, respectively, and two bubbles with different equilibrium radii take
a longer time to coalesce than those with the same equilibrium radius. This is because
the attraction between the bubbles (secondary Bjerknes force) is weak because of
the difference in the oscillation period of the two bubbles during the initial stage.
The approach and coalescence of the two bubbles is also observed for other bubbles
with different equilibrium radii. Figure 20 shows the maximum wall pressure versus
the equilibrium radius of bubble 2, R20. The results for R20 = 2.0 µm in figure 20
correspond to the results for R0 = 2.0 µm with the same equilibrium radius shown
in figure 11. The results for two bubbles with the same equilibrium radius are also
shown in figure 20. For a single bubble, pw max for R0 = 2.2 and 2.4 µm is high,
although R0 with a high pw max is small for two bubbles of the same equilibrium radius.
For two bubbles with different equilibrium radii, pw max for R20 = 1.6 and 1.8 µm
are also higher than pw max for a single bubble. In particular, for R10 = 2.0 µm and
R20= 1.8 µm, pw max is 22.7 MPa and higher than the maximum pw max for two bubbles
of the same equilibrium radius, 16.5 MPa (R10=R20=2.0 µm). For R10=2.0 µm and
R20 6 2.0 µm, the bubble collapse induces pw max immediately after the coalescence.
Therefore, the two bubbles with different equilibrium radii can induce higher pressure
than a single bubble if the two bubbles coalesce.

Next, the effect of equilibrium radius on the volume oscillation is discussed.
The volume oscillation of bubble 1, which has a constant equilibrium radius of
R10 = 2.0 µm, is analysed first. Figure 21 shows the time history of equivalent
radius of bubble 1 for R10 = 2.0 µm and various R20 until the two bubbles make
contact. The time history of the radius for a single bubble of R0 = 2.0 µm is also
shown in figure 21. The oscillation periods for two bubbles are longer than for a
single bubble according to figure 21. Figure 21 also indicates that the oscillation
period and maximum radius of bubble 1 increase when R20 is large for constant
R10. Figure 22 shows the time histories of the equivalent radii of bubble 2 for two
bubbles with R10=2.0 µm and R20=1.6 µm, and two bubbles with R10=2.0 µm and
R20 = 2.6 µm. The time history of the radius of a single bubble with an equilibrium
radius the same as R20 is also shown in figure 22. In both cases, the oscillation
periods of bubble 2 for two bubbles is longer than those for the single bubble
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FIGURE 21. Time history of bubble equivalent radius (bubble 1, R10 = 2.0 µm).
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FIGURE 22. Time history of bubble equivalent radius (bubble 2).

according to figure 22. Consequently, the oscillation period for two bubbles is longer
than that for a single bubble regardless of the equilibrium radius. The measurements
of Testud-Giovanneschi, Alloncle & Dufresne (1990) showed similar characteristics,
although they experimented with two laser-generated bubbles. For R10 = 2.0 µm and
R20 = 1.6 µm, bubble 2, which has an equilibrium radius smaller than bubble 1, is
strongly affected by the other bubble, and the oscillation behaviour is different from
that of a single bubble (figure 22(i)). However, bubble 2 does not strongly affect the
oscillation behaviour of bubble 1, and the difference between the oscillation behaviour
of bubble 1 for two bubbles and that for a single bubble is small (figure 21). This
behaviour is also observed for R10= 2.0 µm and R20= 2.6 µm (figures 21 and 22(ii)).
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FIGURE 23. Maximum wall pressure versus equilibrium bubble radius for two bubbles
(effect of initial distance between bubbles).

Therefore, a bubble with an equilibrium radius smaller than that of the other bubble
is strongly affected by the other bubble. The calculation result is consistent with
previous analytical results (Shima & Fujiwara 1992) for the bubble behaviour of two
bubbles caused by a stepwise pressure increase.

5.3. Effect of initial distance between bubbles on multiple-bubble behaviour
Bubble–bubble interactions depend strongly on the initial distance between bubbles
(Kodama et al. 1996; Fong et al. 2009; Chew et al. 2011; Lauer et al. 2012; Betney
et al. 2015; Han et al. 2015a). In § 5.1, the initial distance between bubbles is
constant (d= 10 µm). The multiple-bubble behaviour for d= 20 µm, which is longer
than d in the previous sections, is analysed to clarify the effect of the initial distance
on bubble–bubble interactions and the multiple-bubble dynamics. The calculation
conditions except d are the same as in § 5.1.

First, the case of two bubbles is discussed. Figure 23 shows the maximum wall
pressure versus the equilibrium radius to examine the effect of d. For two bubbles
with R0= 2.0 µm, the maximum wall pressure is obtained regardless of d (figure 23).
For d = 10 µm, 2.0 µm is the resonant radius, as stated in § 5.1. For d = 20 µm,
the resonant radius is also 2.0 µm, and bubbles with R0 = 2.0 µm have a large
oscillation amplitude and induce high impulsive pressure. However, for R0 = 2.0 µm,
the maximum wall pressure, pw max, is strongly dependent on d. For d= 20 µm, pw max
of 58.7 MPa, is more than three times higher than that for d= 10 µm of 16.5 MPa.
The result can be explained as follows. Two bubbles of R0= 2.0 µm resonate with the
1 MHz megasonic wave because the natural frequency of the bubble decreases owing
to the bubble–bubble interaction when the two bubbles oscillate separately. Therefore,
the bubble collapse induces high impulsive pressure until the two bubbles coalesce
or collapse immediately after the coalescence, and the oscillation amplitude and
the impulsive pressure are small because the oscillation behaviour of the coalesced
bubble is close to that of a single large bubble, as demonstrated by the results for
d= 10 µm (figures 9(b) and 10). Wall pressure also depends on the distance between
the collapse position of the bubble and the wall. The pressure wave induced by the
collapse and the rebound of a bubble is attenuated inversely proportionally to the
propagation distance, and the wall pressure becomes large when a bubble collapses
near the wall. Figure 24 and supplementary movie 7 show the time evolution of the
bubble behaviour and pressure distribution on the sidewall in the case of two bubbles
of d= 20 µm and R0= 2.0 µm. Figure 24(vi) shows the time at which the maximum
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FIGURE 24. Time evolution of the pressure distribution on the sidewall and isosurface of
the void fraction α = 0.5: R0 = 2.0 µm, d = 20 µm, two bubbles, the rectangular region
indicated by white lines is 20 µm× 50 µm× 20 µm, and the first frame is the start time
of the bubble calculation.
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FIGURE 25. Maximum wall pressure versus equilibrium bubble radius for three bubbles
(effect of initial distance between bubbles).

wall pressure occurs. Comparing figures 9(b) and 24, the two bubbles for d= 10 µm
make contact by t = 5.70 µs (figure 9b(iii)), whereas those for d = 20 µm do not
make contact, even at t= 13.00 µs (figure 24(v)) because of the large initial distance
between bubbles. The two bubbles gradually approach because of the secondary
Bjerknes force between the bubbles (figures 9b and 24). Furthermore, the bubbles
move towards the wall owing to the interaction force between the bubble and the
wall when a bubble is close to a wall. For d= 10 µm, the bubbles are away from the
sidewall when the bubbles make contact (figure 9b(iii)). However, for d= 20 µm, the
bubbles touch the sidewall before they make contact because the time until they make
contact with each other for d = 20 µm is longer than for d = 10 µm. Consequently,
for d = 20 µm, the bubbles exhibit resonant behaviour nearer the sidewall than for
d= 10 µm and induce a higher wall pressure.

Next, the effect of the initial distance between bubbles for three bubbles is discussed.
Figure 25 shows the maximum wall pressure versus equilibrium radius for three
bubbles. The equilibrium radius of R0= 1.8 µm at which the maximum wall pressure
reached is independent of the initial distance between the bubbles, d, as it is for two
bubbles. The effect of d on pw max for three bubbles is also similar to that for two
bubbles. For example, for R0= 1.8 µm, pw max of 191 MPa for a large initial distance
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FIGURE 26. Time evolution of the pressure distribution on the sidewall and isosurface of
the void fraction α= 0.5: R0 = 1.8 µm, d= 20 µm, three bubbles, the rectangular region
indicated by white lines is 20 µm× 50 µm× 20 µm, and the first frame is the start time
of the bubble calculation.

between bubbles of d = 20 µm is higher than 14.6 MPa for a short initial distance
of d = 10 µm. Figure 26 and supplementary movie 8 show the time evolution of
the bubble behaviour and pressure distribution on the sidewall for three bubbles with
R0 = 1.8 µm and d = 20 µm. Even for three bubbles, the bubbles with d = 20 µm
do not coalesce during the calculation time as well as for two bubbles (figure 24),
although three bubbles with d = 10 µm make contact with each other at t = 7.6 µs
(figure 13). At t= 26 µs the distances between bubbles 1 and 2, and between bubbles
2 and 3 are 15.4 and 13.3 µm, respectively. The movement due to the secondary
Bjerknes force is small, and the bubbles at t = 26 µs are still seven times the
equilibrium radius apart, although the distance is shorter than the initial distance
between bubbles of 20 µm. Figure 27 shows the time history of the maximum wall
pressure for three bubbles at d= 20 µm and R0 = 1.8 µm. Figure 27 shows that the
peak of the maximum wall pressure increases as the volume oscillation continues.
The time during which the peak pressure increases for d = 20 µm (figure 27) is
longer than that for d = 10 µm (figure 10). This is because, for d = 20 µm, the
resonant bubbles of R0 = 1.8 µm in the 1 MHz megasonic wave oscillate without
coalescing. The collapse when the peak wall pressure increases is shown in figure 26.
Bubbles 1 and 3 collapse before bubble 2, and bubble 2 collapses after it is affected
by the pressure wave induced by the collapse of bubbles 1 and 3 during the last
stage of the collapse (figure 26(iv)–(vi)). This chain collapse is similar to the collapse
behaviour in figures 14 and 15.

Tomita et al. (1984) concluded that bubble–bubble interaction is negligible when the
initial distance between bubbles is more than four times the initial bubble radius, and
Kodama et al. (1996) reported that the interaction is negligible at 12 times the radius.
In the previous simulations of the multiple-bubble collapse induced by a shock wave
(Lauer et al. 2012; Betney et al. 2015), the shorter initial distance between bubbles
results in a larger collapse pressure. Therefore, when a bubble collapses only once, the
longer initial distance between bubbles results in a weak interaction force. However,
for oscillating bubbles showing repeated collapses and rebounds in a standing wave,
as in the present study, the bubble–bubble interaction remains. Multiple bubbles can
induce higher wall pressure than a single bubble, depending on the interaction between
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FIGURE 27. Time history of wall pressure (d= 20 µm, R0 = 1.8 µm, three bubbles).
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FIGURE 28. Maximum wall pressure versus equilibrium bubble radius (circular
distribution).

the bubble and wall, translational motion due to the secondary Bjerknes force, and
resonance condition, even if the initial distance between bubbles is large.

5.4. Effect of configuration of bubbles on multiple-bubble behaviour
Calculations for concentrically distributed bubbles (figure 2b) are performed. The
effect of the configuration of bubbles on multiple-bubble behaviour is discussed by
comparing the results for bubbles in a straight line (figure 2a) and those arranged
concentrically. In the concentric arrangement, one bubble is placed in the centre,
and the other bubbles are concentrically distributed, separated by d = 10 µm from
the central bubble. The distances between the bubbles and sidewall is h = 4R0. The
initial position of the central bubble (y, z) is (800 µm, 0). Bubble calculations start
at t= 2.12 µs, as in the previous calculations. The configuration for three bubbles is
the same as the straight configuration.

Figure 28 shows the maximum wall pressure, pw max, versus the equilibrium
radius, R0, for the concentric distribution. The R0 value for the maximum pw max,
Rp max, decreases as the bubble number increases as well as the straight distribution
(figure 11). The Rp max value for nine bubbles is the same as for seven bubbles,
1.4 µm, and Rp max approaches a certain value as the bubble number increases.
Comparing the concentric and straight distributions for the same bubble number of
five, Rp max is 1.5 µm in the concentric distribution (figure 28), which is slightly
smaller than that in the straight distribution, Rp max = 1.7 µm (figure 11). Figure 29
and supplementary movies 9 and 10 show the time evolution of the bubble behaviour
and pressure distribution on the sidewall for concentric distributions of five bubbles
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(a)
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FIGURE 29. Time evolution of the pressure distribution on the sidewall and isosurface of
the void fraction α = 0.5: circular distribution, the rectangular region indicated by white
lines is 20 µm × 50 µm × 30 µm, and the first frame is the start time of the bubble
calculation.

with R0 = 1.6 µm and seven bubbles with R0 = 1.4 µm. For five bubbles of
R0 = 1.6 µm, the five bubbles gather around the central bubble due to the secondary
Bjerknes force (figure 29a(i),(ii)). In the last stage of the collapses, the upper and
lower two bubbles, which are parallel to the y axis with the central bubble, collapse
first (figure 29a(iv)), and then the central bubble collapses inducing maximum wall
pressure (figure 29a(v)). Subsequently, the two bubbles that are parallel to the z
axis collapse under the pressure wave induced by the central bubble (figure 29a(vi)).
The collapse of the central bubble induces a maximum wall pressure of 52 MPa.
However, the two bubbles that collapse after the central bubble also induce high
impulsive pressure (figure 29a(vi)) of approximately 4.5 MPa. Next, the results for
seven bubbles with R0= 1.4 µm (figure 29b(i)–(xii)) are discussed. For seven bubbles,
the oscillating bubbles also gather around the central bubble (figure 29b(i)–(vii)). In
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FIGURE 30. Time history of wall pressure (circular distribution, R0 = 1.6 µm and nine
bubbles).
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FIGURE 31. Time evolution of pressure distribution and isoline of the void fraction α=
0.5 on the z= 0 plane (circular distribution, R0= 1.6 µm, nine bubbles and ts= 6.32 µs).

the time between figure 29(b)(ii) and (v), the bubbles are some distance apart, and
the seven bubbles collapse almost simultaneously, inducing high pressure on the
sidewall (figure 29b(iv),(v)). In the time between figure 29(b)(vii) and (xii), the
surrounding bubbles get much closer to the central bubble (figure 29b(vi),(vii)) and
the collapse of multiple bubbles starts. The upper three bubbles in figure 29(b(i)–(xii))
at a higher y coordinate than the central bubble collapse nearer to the central bubble
than the lower three bubbles (figure 29b(vii)). The lower three bubbles collapse first
(figure 29b(ix)), the upper three bubbles collapse (figure 29b(x)) and finally the central
bubble collapses (figure 29b(xii)). The chain collapse induces the violent collapse of
the central bubble with a high wall pressure of 275 MPa.

Comparing the results of the five bubbles in figures 11 and 28, Rp max of 1.5 µm
for a concentric distribution is smaller than that for the straight distribution of
1.7 µm for the same bubble numbers. For the straight distribution, Rp max is 1.6 µm,
even for a bubble number of nine. As the bubble number increases, the natural
frequency of the bubbles decreases, and bubbles with a smaller equilibrium radius
resonate with the megasonic wave (§ 5.1). These results indicate that the effect of the
bubble–bubble interaction on the bubble behaviour depends on the configuration of
bubbles, and the bubble–bubble interaction in the concentric distribution contributes
to the larger decrease in the natural frequency of the bubbles compared with the
straight distribution. The collapse behaviours of the bubbles are also dependent on
the configuration of bubbles. The time history of the maximum wall pressure for nine
bubbles at R0 = 1.6 µm of the concentric distribution in figure 30 shows that two
comparable wall pressures occur during one collapse. Figure 31 and supplementary
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FIGURE 32. Evaporation rate distribution and isoline of the void fraction α = 0.001 on
the z = 0 plane in the low-pressure region (circular distribution, R0 = 1.6 µm and nine
bubbles).

movie 11 show the time evolution of the pressure distribution and the isoline of
the void fraction α = 0.5. The collapse and rebound of the central bubble induces
a pressure wave (figure 31(i)), and the pressure wave propagates to the surrounding
region (figure 31(ii)). The reflection of the wave at the sidewall and the propagation of
the reflected wave are also observed (figure 31(ii),(iii)). After that, the pressures of the
regions near the sidewall and the opposite side decrease (figure 31(iv),(v)). Expansion
waves are produced at the interfaces of bubbles when the pressure waves reach the
interfaces owing to the difference between the acoustic impedances of the gas and
liquid phases. The expansion waves reduce the pressure in these regions (figure 31(v)).
In the concentric distribution, expansion waves are generated at the interfaces of each
bubble around the centre bubble, and the superposition of the waves results in the
very low-pressure region. Figure 32 shows the distribution of evaporation rate and the
isoline of void fraction α= 0.001 on the z= 0 plane at the time in figure 31(v). The
evaporation rate becomes high in the low-pressure region induced by the expansion
waves, and a small amount of gas (small bubbles) is generated. The collapses of the
small bubbles induce the other peak pressure in figure 30. The generation of small
bubbles by the expansion waves has also been shown in previous studies (Brunton
& Camus 1970; Li et al. 2015). Small bubbles are produced by expansion waves
generated by many surrounding bubbles (figure 32). Therefore, small bubbles are not
generated in the straight distribution. The time histories of the bubble equivalent radii
of each bubbles for a straight distribution of nine bubbles with R0 = 1.6 µm and for
a concentric distribution of nine bubbles with R0 = 1.4 µm are shown in figures 33
and 34, respectively. The times are the collapse stage inducing the maximum wall
pressure for each of the conditions. Figure 33 shows the radii of the bubbles that
have y components of their positions that are lower than the centre bubble, bubble 6.
In the straight distribution, the bubbles collapse from the outside bubble to the inside
bubble (figure 33). The inside bubble has the larger maximum radius and the smaller
minimum radius. In the concentric distribution, the bubbles except for the centre
bubble have similar radius time histories (figure 34). The surrounding bubbles shrink
before the centre bubble (t= 8.16 µs and t= 9.22 µs), and the centre bubble violently
collapses under the influence of the surrounding bubbles (t= 8.19 µs and t= 9.25 µs).
The surrounding bubbles shrink again due to the pressure wave induced by the centre
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FIGURE 33. Time history of bubble equivalent radius (straight distribution, R0 = 1.6 µm
and nine bubbles).
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FIGURE 34. Time history of bubble equivalent radius (circular distribution, R0 = 1.4 µm
and nine bubbles).

bubble collapse (t = 8.21 µs and t = 9.28 µs). The rebound of the centre bubble
is rapid but the growth is suppressed immediately (t = 8.4 µs). The suppression is
caused by the pressure wave induced by the collapse of small bubbles generated by
expansion waves, as stated above. However, the small bubbles are generated not near
the sidewall (figure 32) but in the low-pressure region of the opposite side of the
sidewall (figure 31(v)). The maximum wall pressure is induced by the collapse of the
centre bubble in both configurations. In the straight distribution, all bubbles indirectly
affect the collapse of the centre bubble through the chain collapse (figure 33). In the
concentric distribution, the bubbles around the centre bubble collapse almost at the
same time (figure 34), and all bubbles affect the centre bubble more directly than in
the straight distribution. The direct effect on the centre bubble results in the larger
decrease in the natural frequency of the bubbles with the increase in the bubble
number in the concentric distribution.
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6. Conclusion
Multiple-bubble behaviour in a megasonic field was numerically analysed to

clarify the effect of bubble–bubble interactions on the bubble behaviour and the wall
pressures induced by bubble collapse. We used a compressible, locally homogeneous
model of a gas–liquid two-phase medium. The effect of the bubble equilibrium radius,
bubble configuration and distance between bubbles were discussed.

For bubbles with the same equilibrium radius distributed in a straight line, the
natural frequency of the bubbles decreases and bubbles with a smaller equilibrium
radius can resonate with the megasonic wave as the number of bubbles increases.
Therefore, the equilibrium radius of the bubbles showing maximum wall pressure
decreases with the increase in the number of bubbles. The chain collapse of multiple
bubbles can induce high wall pressure when the number of bubble exceeds four.

The behaviour of two bubbles with different equilibrium radii is numerically
analysed. The oscillation period of two bubbles is longer than that of a single bubble.
For bubbles with different equilibrium radii, the smaller bubble of the pair is more
strongly affected by the larger bubble. Two bubbles with different equilibrium radii
can induce higher pressure than a single bubble if the two bubbles coalesce because
of the attraction between the bubbles.

The effect of the initial distance between bubbles for two and three bubbles is
analysed to clarify the effect of the initial distance on bubble–bubble interactions and
multiple-bubble behaviour. A large initial distance between bubbles results in a large
movement towards the sidewall until the bubbles coalesce, when they resonate with
the megasonic wave. Therefore, if the initial distance between bubbles is large, the
bubbles resonate nearer the sidewall, inducing the high wall pressure.

Calculations for concentrically distributed bubbles are performed, and the effect
of the configuration of the bubbles on multiple-bubble behaviour is discussed. For
the concentric distribution, the natural frequency of the bubbles decreases as the
number of bubbles increases, similar to the straight distribution. The bubble–bubble
interactions in the concentric distributions contribute to the larger decrease in the
natural frequency of the bubble compared with the straight distribution. The collapse
behaviour of bubbles is also dependent on the bubble configuration. The bubbles in
the straight distribution undergo chain collapse from the outside bubble to the inside
bubble. In the concentric distribution, the bubbles except for the centre bubble collapse
almost simultaneously, and the centre bubble collapses after the surrounding bubbles.
Furthermore, the pressure wave induced by the collapse and the rebound of the centre
bubble reflects at the interfaces of the surrounding bubbles, and expansion waves are
produced. The superposition of the expansion waves can induce a low-pressure region
and generates small bubbles.
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