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We obtain an integral representation of an energy for structured deformations of
continua in the space of functions of bounded variation, as a first step to the study of
asymptotic models for thin defective crystalline structures, where phenomena as
slips, vacancies and dislocations prevent the effectiveness of classical theories.

1. Introduction

The theory of first-order structured deformations introduced by Del Piero and
Owen [17] forms a basis for addressing a large variety of problems in contin-
uum mechanics, where geometrical changes can be associated to smooth-classical
deformations, piecewise deformations and more complex deformations for which
an analysis at the macroscopic and microscopic levels is required. Specifically, this
theory can be applied to problems relating to plasticity, crystals with defects, liquid
crystals and material composites.

From a variational point of view, the problem of assigning a free energy to a
body that undergoes a structured deformation was first studied by Choksi and
Fonseca [13] in the context of functions of special bounded variation (SBV) (the
main notation and concepts used throughout this work are given in § 2). This energy
was defined as the most effective way to build up the deformation using sequences
of approximating simple deformations in SBV. More precisely, Choksi and Fonseca
defined a structured deformation in an open and bounded set Ω ⊂ R

N , N � 1, as a
pair (g, G) where the macroscopic deformation g is an element of SBV(Ω; Rd) and
G (deformation without disarrangements) is an integrable tensor field in Ω. Using
a Lusin-type result of Alberti [1] (see theorem 2.5) it was proven in [13] that, given
such a pair, there exist deformations un in SBV(Ω; Rd) with

un
L1

−−→ g and ∇un
M(Ω)
⇀ G. (1.1)

As a result, the energy associated to (g, G), I(g, G) was defined as the relaxation
with respect to the topology given in (1.1) of the functional

E(u) =
∫

Ω

W(∇u) dx +
∫

Su

Ψ([u], νu) dHN−1, u ∈ SBV(Ω; Rd),
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for appropriate bulk and interfacial densities W and Ψ , that is,

I(g, G) := inf
{un}⊂SBV(Ω;Rd)

{
lim inf
n→∞

E(un), un
L1

−−→ g, ∇un
M(Ω)
⇀ G

}
. (1.2)

The main objective in [13] was then to characterize I(g, G) through an integral
representation formula. The principal difference of this characterization from pre-
vious integral representation results for similar relaxed energies, where relaxation
is taken with respect to the L1 (BV-weak) topology [4,7–10,20,21] is the fact that
gradients of approximating sequences {un} in (1.1) are constrained to converge to
the given function G (not necessarily ∇g). In this case, if ∇un → G in L1, the
difference G − Dg is achieved by the limit of singular measures since Dun → Dg
in the sense of distributions. Moreover, the Hausdorff measure of the jump set of
un tends necessarily to infinity, otherwise theorem 2.1 of Ambrosio [3] asserts that
G = ∇g almost everywhere.

In the context of defective crystals, as mentioned in [13], (1.2) can be interpreted
as a way of realizing the deformed crystal by piecing together elastic crystals on
an increasingly fine scale. We refer to Choksi et al . [14], where the framework
introduced in [13] has been used to predict, for simple models, the origins and
main characteristics of phenomena such as fracturing, yielding and hysterisis, with
applications to single defective crystals (see [14, § 4.3]).

Our objective is to generalize the relaxation result derived in [13] to the full BV
setting for a class of second-order energies suitable for the study of equilibrium
configurations of thin defective crystalline structures, as addressed by Matias and
Santos [26]. As noted in [26], the energy considered in [13] is not appropriate for
this study since some control in the second-order derivatives of the deformation is
needed to avoid geometrical obstacles in the thin film limit.

To present our main result, theorem 4.1, whose complete statement is given
in § 4, we denote by BV2(Ω; Rd) (SBV2(Ω; Rd)), d � 1, the space of functions
u ∈ BV(Ω; Rd) such that ∇u ∈ BV(Ω; Rd×N ) (respectively, for SBV2(Ω; Rd)) and
we start by introducing the space of generalized structured deformations

GSD(Ω; Rd) := BV2(Ω; Rd) × BV(Ω; Rd×N ).

For any (g, G) ∈ GSD(Ω; Rd) we consider the relaxed energy

I(g, G) = inf
{un}⊂SBV2(Ω;Rd)

{
lim inf
n→∞

E(un), un
L1

−−→ g, ∇un
L1

−−→ G
}

, (1.3)

where

E(u) =
∫

Ω

W (∇u, ∇2u) dx +
∫

Su

Ψ1([u], νu) dHN−1 +
∫

S∇u

Ψ2([∇u], ν∇u) dHN−1

for u ∈ SBV2(Ω; Rd), and the functions W , Ψ1 and Ψ2 satisfy the hypotheses
(H1)–(H7) introduced in § 3. Under hypotheses (H1)–(H7), theorem 4.1 asserts that
there exist bulk and interfacial densities W1, W2, γ1, γ2 (see (3.2)–(3.5)) such that,
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for all (g, G) ∈ GSD(Ω; Rd),

I(g, G) =
∫

Ω

(W1(G − ∇g) + W2(G, ∇G)) dx +
∫

Sg

γ1([g], νg) dHN−1

+
∫

SG

γ2(G+, G−, νG) dHN−1 +
∫

Ω

W1

(
− dDcg

d|Dcg|

)
d|Dcg|

+
∫

Ω

W∞
2

(
G,

dDcG

d|DcG|

)
d|DcG| (1.4)

where W∞
2 , as usual, denotes the recession function of W2 in the second variable,

that is,

W∞
2 (A, B) = lim sup

t→∞

W (A, tB)
t

, A ∈ R
d×N , B ∈ R

d×N×N .

To show (1.4) we start by deriving a similar relaxation result in the SBV setting:
theorem 3.2. Although this characterization could have been derived directly for
the whole energy I(g, G) using localization and blow-up methods, Alberti’s theorem
(theorem 2.5) allows us to divide this energy into two first-order relaxed energies
I1(g, G) and I2(G), making our arguments more concise. The effect of the struc-
tured deformation is captured in the first energy I1(g, G) through the limit energy
density W1 that depends on G − ∇g (deformation due to disarrangements at the
microscopic level). The full BV characterization (1.4) then follows from theorem 3.2
together with a sequential characterization of the energy I1(g, G) (see lemma 4.3),
Reshetnyak’s theorem (see theorem 2.2) and Alberti’s rank-one theorem [2].

We finish this introduction by referring the interested reader to Carriero et al .
(see [11,12] and the references therein) for other second-order variational problems
arising from some models in image segmentation and in continuum mechanics.

The overall plan of this work in the ensuing sections will be as follows. Section 2
gives the main notation and results used throughout. Section 3 is devoted to a proof
of the SBV counterpart of our main result, theorem 3.2. A proof of theorem 4.1 is
obtained in § 4.

2. Preliminaries

The purpose of this section is to set some notation and to give a brief overview
of the concepts and main results that are used in subsequent sections. All of these
results are stated without proof since they can be readily found in the references
given below.

2.1. Notation

Throughout the text, Ω ⊂ R
N , N � 1, will denote an open bounded set, and we

will use the following notation.

• A(Ω) is the family of all open subsets of Ω.

• M(Ω) is the set of finite Radon measures on Ω.

• ‖µ‖ stands for the total variation of a measure µ ∈ M(Ω).
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• SN−1 stands for the unit sphere in R
N .

• ei denotes the ith element of the canonical basis of R
N for i = 1, . . . , N .

• Q denotes the unit cube centred at the origin with one side orthogonal to eN .

• Q(x, δ) denotes a cube centred at x ∈ Ω with side length δ and with one side
orthogonal to eN .

• Qν(x, δ) is the cube centred at x ∈ Ω with side length δ and with one side
orthogonal to ν ∈ SN−1.

• Qν := Qν(0, 1).

• R
d×N×N is the set of real tensors of order d × N × N , d � 1.

• C represents a generic constant,

• limn,m := limn limm, while limm,n := limm limn.

2.2. Measure theory

We start by recalling a generalization of the Besicovitch differentiation theorem
due to [4].

Theorem 2.1. If λ and µ are Radon measures in Ω, µ � 0, then there exists a
Borel set E ⊂ Ω such that µ(E) = 0 and, for every x ∈ suppµ \ E,

dλ

dµ
(x) := lim

ε→0

λ(x + εC)
µ(x + εC)

exists and is finite whenever C is a bounded, convex, open set containing the origin.

We also recall Reshetnyak’s theorem on weak convergence of vector measures
(see [27]; see also [6]).

Theorem 2.2. Let µ and µn be R
d-valued finite Radon measures in Ω such that

µn
∗
⇀ µ in Ω and such that ‖µn‖(Ω) → ‖µ‖(Ω). Then

lim
n→∞

∫
Ω

f

(
x,

µn

‖µn‖ (x)
)

d‖µn‖(x) =
∫

Ω

f

(
x,

µ

‖µ‖ (x)
)

d‖µ‖(x)

for every continuous and bounded function f : Ω × Sd−1 → R.

2.3. BV-functions

In this section we briefly summarize some facts on functions of functions of
bounded variation to be used later. We refer to the interested reader to [6, 18,
19,23,28] for a detailed description of this subject.

A function u ∈ L1(Ω; Rd) is said to be of bounded variation, and we write u ∈
BV(Ω; Rd) if all its first distributional derivatives Djui ∈ M(Ω) for i = 1, . . . , d
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and j = 1, . . . , N . The matrix-valued measure whose entries are Djui is denoted by
Du. The space BV(Ω; Rd) is a Banach space when endowed with the norm

‖u‖BV = ‖u‖L1 + ‖Du‖(Ω).

By the Lebesgue decomposition theorem, Du can be split into the sum of two mutu-
ally singular measures Dau and Dsu (the absolutely continuous part and singular
part, respectively, of Du with respect to the Lebesgue measure LN ). We denote
by ∇u the Radon–Nikodým derivative of Dau with respect to LN , so that we can
write

Du = ∇uLN � Ω + Dsu.

Let Ωu be the set of points where the approximate limit of u exists, i.e. x ∈ Ω
such that there exist z ∈ R

N with

lim
ε→0

−
∫

Q(x,ε)
|u(y) − z| dy = 0.

If x ∈ Ωu and z = u(x), we say that u is approximately continuous at x (or that
x is a Lebesgue point of u). The function u is approximately continuous LN -a.e.
x ∈ Ωu and

LN (Ω \ Ωu) = 0. (2.1)

Let Su be the jump set of this function, i.e. the set of points x ∈ Ω \Ωu for which
there exists a, b ∈ R

N and a unit vector ν ∈ SN−1, normal to Su at x, such that
a �= b and

lim
ε→0+

1
εN

∫
{y∈Qν(x,ε) : (y−x)·ν>0}

|u(y) − a| dy = 0 (2.2)

and

lim
ε→0+

1
εN

∫
{y∈Qν(x,ε) : (y−x)·ν<0}

|u(y) − b| dy = 0. (2.3)

The triple (a, b, ν) uniquely determined by (2.2) and (2.3) up to permutation of
(a, b) and a change of sign of ν is denoted by (u+(x), u−(x), νu(x)).

If u ∈ BV(Ω), it is well known that Su is countably N − 1 rectifiable, i.e.

Su =
∞⋃

n=1

Kn ∪ E,

where HN−1(E) = 0 and Kn are compact subsets of C1-hypersurfaces. Further-
more, HN−1((Ω \ Ωu) \ Su) = 0 and the following decomposition holds:

Du = ∇uLN � Ω + [u] ⊗ νuHN− 1� Su + Dcu,

where [u] := u+ − u− and Dcu is the Cantor part of the measure Du, i.e. Dcu =
Dsu � (Ωu).

If Ω is an open and bounded set with Lipschitz boundary, then the outer unit
normal to ∂Ω (denoted by ν) exists HN−1 almost everywhere and the trace for
functions in BV(Ω; Rd) is defined.

Next we recall some useful results on BV functions used in what follows.
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244 M. Báıa, J. Matias and P. M. Santos

Theorem 2.3 (approximate differentiability). If u ∈ BV(Ω; Rd), then, for LN -a.e.
x ∈ Ω

lim
ε→0

1
εN

{ ∫
Q(x,ε)

|u(y) − u(x) − ∇u(x) · (y − x)|N/(N−1) dy

}(N−1)/N

= 0.

Lemma 2.4. Let u ∈ BV(Ω; Rd). There exist piecewise constant functions un such
that un → u in L1(Ω; Rd) and

‖Du‖(Ω) = lim
n→∞

‖Dun‖(Ω) = lim
n→∞

∫
Sun

|[un](x)| dHN−1(x).

The space of special functions of bounded variation introduced in [16] for problems
arising from pattern recognition and the mathematical theory of liquid crystals,
SBV(Ω; Rd), is the space of functions u ∈ BV(Ω; Rd) such that Dcu = 0, i.e. for
which

Du = ∇uLN + [u] ⊗ νuHN−1 � Su.

The next result is a Lusin-type theorem for gradients due to [1] and is essential
for our arguments.

Theorem 2.5. Given f ∈ L1(Ω; Rd×N ), there exists u ∈ SBV(Ω; Rd) and a Borel
function g : Ω → R

d×N such that

Du = fLN + gHN−1 � Su,

∫
Su

|g| dHN−1 � C‖f‖L1(Ω;Rd×N ).

Remark 2.6. From the proof of theorem 2.5, it also follows that

‖u‖L1(Ω) � C‖f‖L1(Ω;Rd×N ).

The following technical result is a simplified version of lemma 4.3 of [25].

Lemma 2.7. Let Ω ⊂ R
N be open and bounded and let A ∈ R

d×N . Then there
exists u ∈ SBV(Ω; Rd) such that u�∂Q = 0 and ∇u = A almost everywhere in Ω.
In addition,

|Dsu|(Ω) � C(N)|A| |Ω|.

Following [11,12], we define, as presented in § 1,

SBV2(Ω; Rd) = {v ∈ SBV(Ω; Rd), ∇v ∈ SBV(Ω; Rd×N )}.

If u ∈ SBV2(Ω; Rd), we use the notation ∇2u = ∇(∇u), that is, ∇2u is the
absolutely continuous part of D(∇u) with respect to the Lebesgue measure. We
will also define

BV2(Ω; Rd) = {v ∈ BV(Ω; Rd), ∇v ∈ BV(Ω; Rd×N )}.
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3. Integral representation in SBV

The aim of this section is to derive an integral representation of the relaxed func-
tional energy defined in (1.3),

I(g, G) = inf
{un}⊂SBV2(Ω;Rd)

{
lim inf
n→∞

E(un), un
L1

−−→ g, ∇un
L1

−−→ G
}

,

E(u) =
∫

Ω

W (∇u, ∇2u) dx +
∫

Su

Ψ1([u], νu) dHN−1

+
∫

S∇u

Ψ2([∇u], ν∇u) dHN−1, u ∈ SBV2(Ω; Rd),

for (g, G) ∈ SD(Ω; Rd), where

SD(Ω; Rd) := SBV2(Ω; Rd) × SBV(Ω; Rd×N ).

In a similar way to the approach used in [13], we assume the density functions W ,
Ψ1, Ψ2 to satisfy the following conditions.

(H1) There exists C > 0 such that

1
C

|B| − C � W (A, B) � C(1 + |B|)

for all A ∈ R
d×N and B ∈ R

d×N×N .

(H2) There exists C > 0 such that

|W (A1, B1) − W (A2, B2)| � C(|A1 − A2| + |B1 − B2|)

for all Ai ∈ R
d×N and Bi ∈ R

d×N×N , i = 1, 2.

(H3) There exists 0 < α < 1 and L > 0 such that∣∣∣∣W∞(A, B) − W (A, tB)
t

∣∣∣∣ � C

tα

for all t > L, A ∈ R
d×N , B ∈ R

d×N×N with |B| = 1.

(H4) There exist c1 > 0 and C1 > 0 such that

c1|λ| � Ψ1(λ, ν) � C1|λ|

for all λ ∈ R
d and ν ∈ SN−1.

(H5) There exist c2 > 0 and C2 > 0 such that

c2|Λ| � Ψ2(Λ, ν) � C2|Λ|

for all ν ∈ SN−1 and Λ ∈ R
d×N .
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(H6) (Homogeneity of degree one.)

Ψ1(tλ, ν) = tΨ1(λ, ν), Ψ2(tΛ, ν) = tΨ2(Λ, ν)

for all ν ∈ SN−1, λ ∈ R
d, Λ ∈ R

d×N and t > 0.

(H7) (Sub-additivity.)

Ψ1(λ1 + λ2, ν) � Ψ1(λ1, ν) + Ψ1(λ2, ν),

Ψ2(Λ1 + Λ2, ν) � Ψ2(Λ1, ν) + Ψ2(Λ2, ν)

for all ν ∈ SN−1, λi ∈ R
d, Λi ∈ R

d×N , i = 1, 2.

We observe that, as already mentioned in [13], the coercivity hypotheses above
and the homogeneity condition (H6) are of technical order and can be relaxed
(see [13, remark 3.3]). In addition, the linear growth and subadditivity requirements
on the interfacial densities could be weakened by assuming a Lipschitz continuity
property instead.

Remark 3.1. (i) In what follows, we extend Ψi, i = 1, 2, as homogeneous functions
of degree one in the second variable to all of R

N .

(ii) We note that the class of functions over which the infimum in the definition of
I(g, G) is taken is non-empty and, in addition, under hypotheses (H1), (H4) and
(H5), the energy I(g, G) < ∞. More precisely, there exists C > 0 such that

I(g, G) � C

[ ∫
Ω

(1 + |∇g| + |G| + |∇G|) dx + ‖Dsg‖(Ω) + ‖DsG‖(Ω)
]

(3.1)

for all (g, G) ∈ SD(Ω; Rd).
Furthermore, given (g, G) ∈ SD(Ω; Rd) from theorem 2.5, there exists h ∈

SBV(Ω; RN ) such that
∇h = G, LN a.e. in Ω

and
‖Dsh‖(Ω) � C1‖G‖L1 .

Moreover, by lemma 2.4, there exists a sequence {ūn} of piecewise constant func-
tions such that

ūn
L1

−−−−→
n→∞

g − h, ‖Dsūn‖(Ω) −−−−→
n→∞

‖Dg − Dh‖(Ω).

Now define un ∈ SBV(Ω; RN ) as

un := ūn + h.

Clearly, ∇un(x) = G(x) for LN -almost every x ∈ Ω and un → g in L1. Thus, by
hypotheses (H1), (H4) and (H5),

I(g, G) � lim inf
n→∞

{ ∫
Ω

W (∇un, ∇2un) dx+
∫

Sun

Ψ1([un](x), ν(un(x))) dHN−1

+
∫

S∇un

Ψ2([∇un](x), ν(∇un(x))) dHN−1
}
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� C lim inf
n→∞

{ ∫
Ω

W (G, ∇G) dx + ‖Dsun‖(Ω) + ‖Ds∇un‖(Ω)
}

� C

[ ∫
Ω

(1 + |∇g| + |G| + |∇G|) dx + ‖Dsg‖(Ω) + ‖DsG‖(Ω)
]
.

The main result of this section is stated as follows.

Theorem 3.2. For all (g, G) ∈ SD(Ω; Rd), under hypotheses (H1)–(H7) we have
that

I(g, G) =
∫

Ω

(W1(G − ∇g) + W2(G, ∇G)) dxHN−1

+
∫

Sg

γ1([g], νg) d +
∫

SG

γ2(G+, G−, νG) dHN−1,

where, given A, B, Λ, Γ ∈ R
d×N , C ∈ R

d×N×N , λ ∈ R
d and ν ∈ SN−1,

W1(A) = inf
u∈SBV2(Q;Rd)

{ ∫
Su

Ψ1([u], νu) dHN−1,

u|∂Q = 0, ∇u = A a.e. in Q

}
, (3.2)

W2(B, C) = inf
v∈SBV(Q;Rd×N )

{ ∫
Q

W (B,∇v(x)) dx

+
∫

Sv

Ψ2([v], ν(v)) dHN−1, v|∂Q(x) = Cx

}
, (3.3)

γ1(λ, ν) = inf
u∈SBV2(Qν ;Rd)

{ ∫
Su

Ψ1([u], νu) dHN−1,

u|∂Qν
= γ(λ,ν), ∇u = 0 a.e. in Qν

}
, (3.4)

γ(λ,ν)(x) :=

{
λ if x · ν > 0,

0 if x · ν < 0,

γ2(Λ, Γ, ν) = inf
v∈SBV(Qν ;Rd×N )

{ ∫
Qν

W∞(v,∇v) dx

+
∫

Sv

Ψ2([v], ν(v)) dHN−1, v|∂Qν = γ(Λ,Γ,ν)

}
,

(3.5)

γ(Λ,Γ,ν)(x) :=

{
Λ if x · ν > 0,

Γ if x · ν < 0.

Remark 3.3. We observe that, as a consequence of hypothesis (H6), the function
W1 is homogeneous of degree one. Moreover, it is easy to check that the recession
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function of W2 in the second variable is given by

W∞
2 (B, C) = inf

v∈SBV(Q;Rd×N )

{ ∫
Q

W∞(B,∇v(x)) dx

+
∫

Sv

Ψ2([v], ν(v)) dHN−1, v|∂Q(x) = Cx

}

for all (B, C) ∈ R
d×N × R

d×N×N .

The proof of theorem 3.2 is an immediate consequence of lemma 3.4, proposi-
tion 3.5 and theorem 3.6.

Lemma 3.4. Under hypotheses (H4) and (H7), for all (g, G) ∈ SD(Ω; Rd),

I(g, G) = I1(g, G) + I2(G), (3.6)

where

I1(g, G) = inf
{un}⊂SBV2(Ω;Rd)

{
lim inf
n→∞

∫
Sun

Ψ1([un], ν(un)) dHN−1,

un
L1

−−→ g, ∇un
L1

−−→ G

}

and

I2(G) = inf
{vn}⊂SBV(Ω;Rd×N )

{
lim inf
n→∞

∫
Ω

W (vn, ∇vn) dx

+
∫

Svn

Ψ2([vn], ν(vn)) dHN−1, vn
L1

−−→ G

}
.

Proof. In fact, it is immediate to see that

I1(g, G) + I2(G) � I(g, G).

On the other hand, let un ∈ SBV2(Ω; Rd) with un → g in L1 and ∇un → G in L1

be such that

I1(g, G) = lim
n→∞

∫
Sun

Ψ1([un], ν(un)) dHN−1

and let vn ∈ SBV(Ω; Rd×N ) with vn → G in L1 be such that

I2(G) = lim
n→∞

[ ∫
Ω

W (vn, ∇vn) dx +
∫

Svn

Ψ2([vn], ν(vn)) dHN−1
]
.

By theorem 2.5, let hn ∈ SBV(Ω; Rd) be such that ∇hn = vn − ∇un, and by
lemma 2.4, let h̃n be a piecewise constant function with ‖h̃n − hn‖L1 < 1/n and
‖|Dh̃n‖(Ω) − ‖Dhn‖(Ω)| < 1/n. Then the sequence

wn = un + hn − h̃n
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is admissible for I(g, G) and

I(g, G) � lim inf
n→∞

[ ∫
Ω

W (∇wn, ∇2wn) dx +
∫

Swn

Ψ1([wn], ν(wn)) dHN−1

+
∫

S∇wn

Ψ2([∇wn], ν(∇wn)) dHN−1
]

� lim
n→∞

∫
Sun

Ψ1([un], ν(un)) dHN−1

+ lim sup
n→∞

∫
Shn

Ψ1([hn], ν(hn)) dHN−1

+ lim sup
n→∞

∫
Sh̃n

Ψ1([h̃n], ν(h̃n)) dHN−1

+ lim
n→∞

[ ∫
Ω

W (vn, ∇vn) dx +
∫

Svn

Ψ2([vn], ν(vn)) dHN−1
]

� I1(g, G) + I2(G) + C

∫
Ω

|vn − ∇un| dx

by conditions (H4) and (H7), theorem 2.5 and lemma 2.4. Inequality I1(g, G) +
I2(G) � I(g, G) follows by letting n → ∞ since vn → G and ∇un → G in L1.

Proposition 3.5. For all G ∈ SBV(Ω; Rd×N ), under hypotheses (H1)–(H3) and
(H5),

I2(G) =
∫

Ω

W2(G, ∇G) dx +
∫

SG

γ2(G+, G−, νG) dHN−1.

Proof. The proof is a consequence of theorem 4.2.2 in [8].

Theorem 3.6. Under hypotheses (H4), (H6) and (H7), for all (g, G) ∈ SD(Ω; Rd),

I1(g, G) =
∫

Ω

W1(G − ∇g) dx +
∫

Sg

γ1([g], νg) dHN−1. (3.7)

The proof of theorem 3.6 will be divided into three parts (§§ 3.1–3.3). Specifically,
in § 3.1 we will introduce a local version of I1(g, G) defined on A(Ω) and show that
I1(g, G, ·) is the restriction to A(Ω) of a Radon measure absolutely continuous with
respect to LN + HN−1 � Sg. In §§ 3.2 and 3.3, we will prove that, for all A ∈ A(Ω),

I1(g, G, A) =
∫

A

W1(G − ∇g) dx +
∫

A∩S(g)
γ1([g], νg) dHN−1

from which, taking A = Ω, equality (3.7) follows, completing the proof of theo-
rem 3.6.
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3.1. Localization

We start by localizing I1(g, G), i.e. we define, for A ∈ A(Ω),

I1(g, G, A) := inf
{un}⊂SBV2(A;Rd)

{
lim inf
n→∞

∫
Sun

Ψ1([un], ν(un)) dHN−1,

un
L1(A;Rd)−−−−−−→ g, ∇un

L1(A;Rd×N )−−−−−−−−→ G

}
.

Our objective in this subsection is to show that I1(g, G, ·)�A(Ω) is a Radon
measure.

Remark 3.7. Following the argument used in remark 3.1, it is easy to see that
there exists C > 0 such that, for all A ∈ A(Ω),

I1(g, G, A) � C

[ ∫
A

(|∇g| + |G|) dx + ‖Dsg‖(A)
]
. (3.8)

The following lemma shows that I1(g, G, ·) is nested-subadditive.

Lemma 3.8. Let A, B, C ∈ A(Ω) with A ⊂⊂ B ⊂ C. Then

I1(g, G, C) � I1(g, G, B) + I1(g, G, C \ Ā). (3.9)

Proof. Let un ∈ SBV2(B; Rd) and vn ∈ SBV2(C \ Ā; Rd) be two sequences such
that un → g in L1(B; Rd), ∇un → G in L1(B; Rd×N ), vn → g in L1(C \ Ā; Rd),
∇vn → G in L1(C \ Ā; Rd×N ), and such that, in addition,

I1(g, G, B) = lim
n→∞

∫
Sun

Ψ1([un], ν(un)) dHN−1

and

I1(g, G, C \ Ā) = lim
n→∞

∫
Svn

Ψ1([vn], ν(vn)) dHN−1.

Note that

un − vn → 0 in L1(B ∩ (C \ Ā); Rd) (3.10)

and

∇un − ∇vn → 0 in L1(B ∩ (C \ Ā); Rd×N ).

For δ > 0, define
Aδ := {x ∈ B, dist(x, A) < δ}.

Let d(x) := dist(x, A), x ∈ C. Since the distance function to a fixed set is Lipschitz
continuous (see [28, exercise 1.1]), we can apply the change of variables formula
(see [18, theorem 2, § 3.4.3]) to obtain∫

Aδ\Ā

|un − vn|Jd(x) dx =
∫ δ

0

[ ∫
d−1(y)

|un − vn| dHN−1(x)
]

dy
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and, as Jd(·) is bounded and (3.10) holds, then, for almost every ρ ∈ [0, δ], it follows
that

lim
n→∞

∫
d−1(ρ)

|un − vn| dHN−1 = lim
n→∞

∫
∂Aρ

|un − vn| dHN−1 = 0. (3.11)

Fix ρ0 such that (3.11) holds. We observe that Aρ0 is a set with locally Lipschitz
boundary since it is a level set of a Lipschitz function (see, for example, [22]). Hence,
we can consider un, vn, ∇un, ∇vn on ∂Aρ0 in the sense of traces and define

wn =

{
un in Āρ0 ,

vn in C \ Āρ0 .

Then
I1(g, G, C) � lim inf

n→∞

∫
Swn

Ψ1([wn], ν(wn)) dHN−1

and, using (H4) and (3.10), we obtain (3.9).

Theorem 3.9. Assume that hypothesis (H4) holds. Then I1(g, G, ·) � A(Ω) is a
Radon measure absolutely continuous with respect to LN + HN−1 � Sg.

Proof. Let un ∈ SBV2(Ω; Rd) be such that un → g in L1(Ω; Rd), ∇un → G in
L1(Ω; Rd×N ) and

I1(g, G, Ω) = lim
n→∞

∫
Sun

Ψ1([un], ν(un)) dHN−1,

and define, for all Borel sets B ⊂ R
N ,

µn(B) :=
∫

Sun ∩B

Ψ1([un], ν(un)) dHN−1.

By (H4), the sequence of non-negative Radon measures {µn} is uniformly bounded
in M(RN ) and thus, passing to a subsequence if necessary, we conclude that

µn
∗
⇀ µ in M(RN ).

Let us show that, for all V ∈ A(Ω),

µ(V ) = I1(g, G, V ). (3.12)

Given V ∈ A(Ω), let ε > 0 and take W ⊂⊂ V such that µ(V \ W ) < ε. It follows
that

µ(V ) � µ(W ) + ε

= µ(Ω) − µ(Ω \ W ) + ε

� I1(g, G, Ω) − I1(g, G, Ω \ W̄ ) + ε

� I1(g, G, V ) + ε,

where we have used the equality µ(Ω) = µ(Ω̄) and lemma 3.8. Thus, letting ε → 0,
we obtain

µ(V ) � I1(g, G, V ). (3.13)
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252 M. Báıa, J. Matias and P. M. Santos

Now let us see the reverse inequality. Define, for A ∈ A(Ω),

λ(A) :=
∫

A

(|∇g| + |G|) dx + ‖Dsg‖(A). (3.14)

Let K ⊂⊂ V be a compact set such that λ(V \ K) < ε, and choose an open set W
such that K ⊂⊂ W ⊂⊂ V . Again using lemma 3.8, (3.14) and (3.8),

I1(g, G, V ) � I1(g, G, W ) + I1(g, G, V \ K)
� µ(W̄ ) + Cλ(V \ K)
� µ(V ) + Cε,

which, together with (3.13), yields (3.12) by letting ε → 0.

3.2. Lower bound

The objective of this part is to show that, for all A ∈ A(Ω),

I1(g, G, A) �
∫

A

W1(G(x) − ∇g(x)) dx +
∫

A∩S(g)
γ1([g], νg) dHN−1. (3.15)

To prove inequality (3.15), let un ∈ SBV2(Ω; RN ) be such that

un
L1

−−−−→
n→∞

g, ∇un
L1

−−−−→
n→∞

G,

lim
n→∞

∫
Sun

Ψ1([un], ν(un)) dHN−1 < ∞.

Define µn as

µn(B) =
∫

B∩S(un)
Ψ1([un], ν(un)) dHN−1

for all Borel sets B ⊂ Ω. Since, by the hypotheses on Ψ1, the sequence of Radon
measures {µn} is bounded, then there exists (up to a subsequence) µ ∈ M(Ω) with
µn

∗
⇀ µinM(Ω). We now show that

dµ

dLN
(x0) � W1(G(x0) − ∇g(x0)) (3.16)

for LN -almost every x0 ∈ Ω and that

dµ

dHN−1 � Sg
(x0) � γ1([g](x0), νg(x0)) (3.17)

for HN−1 � Sg-almost every x0 ∈ Ω.

Proof of equation (3.16). Let x0 ∈ Ω be a point of approximate differentiability of
g and of approximately continuity of G (see theorem 2.3 and equality (2.1)) and
such that dµ/dLN (x0) exists. Let {δk} → 0 be such that µ(∂Q(x0, δk)) = 0. Then
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limn→∞ µn(Q(x0, δk)) = µ(Q(x0, δk)) and

dµ

dLN
(x0)

= lim
k→∞

µ(Q(x0, δk))
LN (Q(x0, δk))

= lim
k,n→∞

1
δN
k

∫
Sun ∩Q(x0,δk)

Ψ1([un], ν(un)) dHN−1

= lim
k,n→∞

1
δk

∫
Q∩{y : x0+δky∈Sun }

Ψ1([un](x0 + δky), ν(un)(x0 + δky)) dHN−1(y).

Defining

vn,k(y) :=
un(x0 + δky) − g(x0)

δk
, y ∈ Q,

we have that

dµ

dLN
(x0) = lim

k,n→∞

∫
Q∩Svn,k

Ψ1([vn,k], ν(vn,k)) dHN−1. (3.18)

As x0 is a point of approximate differentiability of g, then

vn,k
L1

−−−−−→
k,n→∞

∇g(x0)(·)

since

lim
n→∞

∫
Q

|vn,k(y) − ∇g(x0)y| dy

= lim
n→∞

∫
Q

∣∣∣∣un(x0 + δky) − g(x0)
δk

− ∇g(x0)y
∣∣∣∣ dy

=
∫

Q

∣∣∣∣g(x0 + δky) − g(x0)
δk

− ∇g(x0)y
∣∣∣∣ dy

=
1

δN
k

∫
Q(x0,δk)

∣∣∣∣g(z) − g(x0) − ∇g(x0)(z − x0)
δk

∣∣∣∣ dy

by a change of variables. Similarly, as x0 is also an approximately continuity point
of G,

∇vk,n
L1

−−−−−→
k,n→∞

G(x0). (3.19)

We now change the sequence {vn,k} to comply in (3.18) with the definition of W1
(see (3.2)). We start by setting

wn,k(y) = vn,k(y) − ∇g(x0)y, y ∈ Q,

and, following the argument used in (3.11), we choose rn,k ∈ ]0, 1[ such that

rn,k −−−−−→
k,n→∞

1
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and ∫
∂Q(0,rn,k)

|wn,k| dHN−1 −−−−−→
k,n→∞

0. (3.20)

By theorem 2.5, let ρn,k be such that

∇ρn,k(y) = G(x0) − ∇vn,k(y), y ∈ Q,

and define
zn,k := wn,k + ρn,k in Q(0, rn,k).

Note that
∇zn,k = G(x0) − ∇g(x0) in Q(0, rn,k).

In addition, by (3.19), ∇ρn,k −−−−−→
k,n→∞

0, and then, by theorem 2.5,

|Dsρn,k|(Q(0, rn,k)) −−−−−→
k,n→∞

0. (3.21)

Thus, by the continuity of the trace with respect to the intermediate topology
(see [6, proposition 3.88]), it follows that∫

∂Q(0,rn,k)
|ρn,k| dHN−1 −−−−−→

k,n→∞
0. (3.22)

Applying lemma 2.7 in Q \ (Q(0, rn,k)), let {ηn,k} be a sequence of functions such
that

∇ηn,k(y) = G(x0) − ∇g(x0) in Q \ (Q(0, rn,k)), (3.23)
ηn,k = 0 on ∂(Q \ (Q(0, rn,k))) (3.24)

and
|Dsηn,k|(Q \ Q(0, rn,k)) � C(N)|Q \ Q(0, rn,k)|. (3.25)

Then the sequence

z̃n,k(y) :=

{
zn,k(y), y ∈ Q(0, rn,k),
ηn,k(y), y ∈ Q \ (Q(0, rn,k))

is admissible for W 1(G(x0) − ∇g(x0)), and, in addition by, (H4), (H7) and (3.24),
we have, for any n and k, that∫

Q∩Sz̃n,k

Ψ1([z̃n,k], ν(z̃n,k)) dHN−1

�
∫

Q(0,rn,k)∩Szn,k

Ψ1([zn,k], ν(zn,k)) dHN−1

+ C

[ ∫
∂Q(0,rn,k)

|zn,k| dHN−1 +
∫

[Q\Q(0,rn,k)]∩Sηn,k

|[ηn,k]| dHN−1
]
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�
∫

Q(0,rn,k)∩Svn,k

Ψ1([vn,k], ν(vn,k)) dHN−1

+ C

[ ∫
∂Q(0,rn,k)

|wn,k| dHN−1 +
∫

∂Q(0,rn,k)
|ρn,k| dHN−1

+
∫

Q(0,rn,k)∩Sρn,k

|[ρn,k]| dHN−1 +
∫

[Q\Q(0,rn,k)]∩Sηn,k

|[ηn,k]| dHN−1
]
.

Therefore, by (3.20)–(3.22) and (3.25), we obtain that

lim inf
k,n→∞

∫
Q∩Sz̃n,k

Ψ1([z̃n,k], ν(z̃n,k)) dHN−1

� lim
k,n→∞

∫
Q∩Svn,k

Ψ1([vn,k], ν(vn,k)) dHN−1,

which, together with (3.18), implies (3.16).

Proof of equation (3.17). Let x0 ∈ Sg be such that dµ/dHN−1 � Sg(x0) exists,

lim
δ→0

HN−1(Sg ∩ Qν(x0, δ))
δN−1 = 1, (3.26)

lim
δ→0

1
δN−1

∫
Qν(x0,δ)

|G(x)| dx = 0, (3.27)

where ν ≡ νg(x0). We note that, for HN−1-a.e. x0 ∈ Sg, all the conditions above
hold (see [6] for (3.26)). Equality (3.27) holds by (3.26) and the fact that

d|G|LN

dHN−1 � Sg
= 0.

Let {δk} → 0 be such that µ(∂Qν(x0, δk)) = 0. Then,

lim
n→∞

µn(Qν(x0, δk)) = µ(Qν(x0, δk))

and
dµ

dHN−1 � Sg
(x0)

= lim
k→∞

lim
n→∞

1
HN−1(Sg ∩ Qν(x0, δk))

µn(Qν(x0, δk))

= lim
k→∞

lim
n→∞

1
HN−1(Sg ∩ Qν(x0, δk))

∫
Sun ∩Qν(x0,δ)

Ψ1([un], ν(un)) dHN−1

= lim
k→∞

lim
n→∞

δN−1
k

HN−1(Sg ∩ Qν(x0, δk))

×
∫

Qν∩{y : x0+δky∈Sun }
Ψ1([un](x0 + δky), ν(un)(x0 + δky)) dHN−1

= lim
k→∞

lim
n→∞

∫
Qν∩{y : x0+δky∈Sun }

Ψ1([un](x0 + δky), ν(un)(x0 + δky)) dHN−1
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by (3.26). Defining

w1
n,k(y) = un(x0 + δky) − g−(x0), y ∈ Qν ,

it follows that

dµ

dHN−1 � Sg
(x0) = lim

k→∞
lim

n→∞

∫
Qν∩S

w1
n,k

Ψ1([w1
n,k](y), ν(w1

n,k)(y)) dHN−1.

By (2.2) and (2.3), we have

w1
n,k

L1

−−−−−→
n,k→∞

γ([g](x0),ν),

and, in addition, by (3.27),

∇w1
n,k

L1

−−−−−→
n,k→∞

0

since, for all k,
∇un(x0 + δk·) −−−−→

n→∞
G(x0 + δk·).

Using theorem 2.5, and following the arguments of lemma 3.8, we note that it
is possible to modify w1

n,k so that ∇w1
n,k = 0 and w1

n,k|∂Qν
= γ([g](x0),ν). Thus, by

definition of γ1 (see (3.4)), inequality (3.17) holds.

As a consequence of (3.16) and (3.17), we now derive (3.15).

Proof of equation (3.15). Denote by µa the absolutely continuous part of µ with
respect to the Lebesgue measure and denote by µs

g the absolutely continuous part
of µ with respect to HN−1 � Sg. Since µ is a positive measure, we conclude that

lim inf
n→∞

µn(A) � µ(A)

�
∫

A

µa(x) dx +
∫

A∩Sg

µs
g(x) dHN−1(x)

�
∫

A

W1(G(x) − ∇g(x)) dx +
∫

A∩Sg

γ1([g], νg) dHN−1.

Taking the infimum over all sequences

un ∈ SBV2(Ω; Rd), un
L1

−−−−→
n→∞

g, ∇un
L1

−−−−→
n→∞

G,

inequality (3.15) holds.

3.3. Upper bound

Our objective here is to show that, for all A ∈ A(Ω),

I1(g, G, A) �
∫

A

W1(G(x) − ∇g(x)) dx +
∫

A∩S(g)
γ1([g], νg) dHN−1.

https://doi.org/10.1017/S0308210510001460 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001460


A relaxation result in the framework of structured deformations 257

For this purpose, it is enough to prove that

dI1(g, G, ·)
dLN

(x0) � W1(G(x0) − ∇g(x0)), LN -a.e. x0 ∈ Ω, (3.28)

dI1(g, G, ·)
dHN−1 � Sg

(x0) � γ1([g](x0), ν(g)(x0)), HN−1-a.e. x0 ∈ Sg. (3.29)

We start with two auxiliary results.

Proposition 3.10. Let Ψ1 satisfy (H4) and (H7). Then constants C1, C2 > 0 exist
such that

|γ1(λ, ν) − γ1(λ′, ν)| � C1|λ − λ′|, ∀λ, λ′ ∈ R
d, (3.30)

|W1(A) − W1(B)| � C2|A − B|, ∀A, B ∈ R
d×N . (3.31)

Moreover, γ1 is upper semicontinuous with respect to ν.

Proof. We show (3.31) and we refer to the proof of proposition 4.3 in [13] for the
remainder of the statement. We start by showing that

W1(A) � W1(B) + C1|B − A|, ∀A, B ∈ R
d×N .

Fixing ε > 0, let u ∈ SBV(Q; Rd) be such that u|∂Q = 0, ∇u = A and

ε + W1(A) �
∫

Su∩Q

Ψ1([u], νu) dHN−1.

Now let v ∈ SBV(Q; Rd) be such that v|∂Q = 0, ∇v = B − A and |Dsv|(Q) �
C|B − A| (see lemma 2.7), and set w = u + v. Then, by (H4) and (H7),

W1(B) �
∫

Sw∩Q

Ψ1([w], ν(w)) dHN−1

�
{ ∫

Su∩Q

Ψ1([u], νu) dHN−1 +
∫

Sv∩Q

Ψ1([v], ν(v)) dHN−1
}

� W1(A) + ε + C1|B − A|.

The reverse inequality is proved in a similar way.

The following proposition easily follows from a diagonalization argument.

Proposition 3.11. Let (gn, Gn) ∈ SD(Ω; Rd) be such that

gn
L1

−−−−→
n→∞

g and Gn
L1

−−−−→
n→∞

G.

Then
I1(g, G) � lim inf

n→∞
I1(gn, Gn).

We now show that inequalities (3.28) and (3.29) hold.
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Proof of (3.28). Let x0 be a point of approximate continuity for G and ∇g, that
is, such that

1
δN

{ ∫
Q(x0,δ)

|G(x) − G(x0)| + |∇g(x) − ∇g(x0)| dx

}
−−−→
δ→0

0. (3.32)

Let ε > 0 and consider u ∈ SBV2(Ω; RN ) such that

W1(G(x0) − ∇g(x0)) + ε �
∫

Q∩Su

Ψ1([u], νu) dHN−1, (3.33)

u|∂Q = 0 and ∇u(x) = G(x0) − ∇g(x0) for a.e. x ∈ Q. Extend u by periodicity to
all of R

N and define, for n ∈ N and δ > 0,

un,δ(x) =
δ

n
u

(
n(x − x0)

δ

)
.

Given δ > 0, apply theorem 2.5 and let ρδ ∈ SBV2(Q(x0, δ); RN ) be a function
such that

∇ρδ(x) = G(x) − G(x0) + ∇g(x0) − ∇g(x) (3.34)

LN -a.e. x ∈ Q(x0, δ) and satisfying

‖Dρδ‖(Q(x0, δ)) � C(N)
∫

Q(x0,δ)
|G(x) − G(x0)| + |∇g(x0) − ∇g(x)| dx.

Note that, by (3.32),
‖Dρδ‖(Q(x0, δ))

δN
−−−→
δ→0

0. (3.35)

In addition, using lemma 2.4, define a sequence of piecewise constant functions ρn,δ

such that, for all δ > 0,

ρn,δ
L1

−−−−→
n→∞

−ρδ and ‖Dρn,δ‖(Q(x0, δ)) −−−−→
n→∞

‖Dρδ‖(Q(x0, δ)). (3.36)

Now define

wn,δ(x) := g(x) + un,δ(x) + ρδ(x) + ρn,δ(x), x ∈ Q(x0, δ).

Clearly,

wn,δ ∈ SBV2(Q(x0, δ); Rd), wn,δ
L1

−−−−→
n→∞

g, ∇wn,δ
L1

−−−−→
n→∞

G.

For each δ > 0, the sequence wn,δ is admissible for I1 and

dI1(g, G, ·)
dLN

(x0) = lim
δ→0

I1(g, G, Q(x0, δ))
δN

.

Then

dI1(g, G, ·)
dLN

(x0) � lim inf
δ→0

lim inf
n→∞

{
1

δN

∫
Swn,δ

∩Q(x0,δ)
ψ1([wn,δ], ν(wn,δ)) dHN−1

}

https://doi.org/10.1017/S0308210510001460 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001460


A relaxation result in the framework of structured deformations 259

and, by (H7),

dI1(g, G, ·)
dLN

(x0)

� lim inf
δ→0

lim inf
n→∞

{
1

δN

∫
Sg∩Q(x0,δ)

Ψ1([g], νg) dHN−1

+
1

δN

∫
{x0+(δ/n)Su}∩Q(x0,δ)

Ψ1

(
δ

n
[u]

(
n(x − x0)

δ

)
, νu

(
n(x − x0)

δ

))
dHN−1

+
1

δN

∫
Sρδ

∩Q(x0,δ)
Ψ1([ρδ], ν(ρδ)) dHN−1

+
1

δN

∫
Sρn,δ

∩Q(x0,δ)
Ψ1([ρn,δ], ν(ρn,δ)) dHN−1

}
.

By (H4), we observe that

1
δN

∫
Sg∩Q(x0,δ)

Ψ1([g], νg) dHN−1 −−−→
δ→0

0

since
d|Dsg|
dLN

(x0) = 0.

Moreover,
1

δN

∫
Sρδ

∩Q(x0,δ)
Ψ1([ρδ], ν(ρδ)) dHN−1 −−−→

δ→0
0

and
lim
δ→0

lim
n→∞

1
δN

∫
Sρn,δ

∩Q(x0,δ)
Ψ1([ρn,δ], ν(ρn,δ)) dHN−1 = 0

by (H4), (3.35) and (3.36). Finally, changing variables, we obtain that

1
δN

∫
{x0+(δ/n)Su}∩Q(x0,δ)

Ψ1

(
δ

n
[u]

(
n(x − x0)

δ

)
, νu

(
n(x − x0)

δ

))
dHN−1

=
∫

Q∩Su

Ψ1([u], νu) dHN−1,

from where
dI1(g, G, ·)

dLN
(x0) �

∫
Q∩Su

Ψ1([u], νu) dHN−1.

As a consequence, letting ε → 0 in (3.33), inequality (3.28) follows.

Proof of equation (3.29). Following an argument in [5], we note that it suffices to
prove (3.29) for g = λχE with λ ∈ R and where χE is the characteristic function
of a set of finite perimeter E.

(i) We will start by addressing the case where E is a polyhedron. Let x0 ∈ Sg be
such that

lim
δ→0

1
δN−1

∫
Qν(x0,δ)

|G(x)| dx = 0, (3.37)
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where ν ≡ νg(x0). Given ε > 0, let u ∈ SBV(Qν ; Rd) be such that ∇u = 0,
u|∂Qν = γ(λ,ν) and

γ1(λ, ν) + ε �
∫

Qν

Ψ1([u], νu) dHN−1 (3.38)

(see (3.4)). For sufficiently small δ > 0,

Dn
ν (x0, δ) := Qν(x0, δ) ∩

{
x :

|(x − x0) · ν|
δ

<
1
2n

}
,

Q+
ν (x0, δ) = Qν(x0, δ) ∩

{
x :

(x − x0) · ν

δ
> 0

}

and Q−
ν (x0, δ) in an analogous way. Now set

un,δ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ, x ∈ Q+
ν (x0, δ) \ Dn

ν (x0, δ),

u

(
n(x − x0)

δ

)
, x ∈ Dn

ν (x0, δ),

0, x ∈ Q−
ν (x0, δ) \ Dn

ν (x0, δ),

where u has been extended by periodicity to all of R
N . Note that, for x ∈ Dn

ν (x0, δ),
we have that n/δ|(x − x0) · ν| < 1

2 . Clearly,

un,δ
L1

−−−−−−−→
n→∞,δ→0

γ̃(λ,ν),

where, for x ∈ Qν(x0, δ),

γ̃(λ,ν)(x) :=

{
λ if x · ν > 0,

0 if x · ν < 0.

By theorem 2.5, there exists ζδ ∈ SBV(Qν(x0, δ); Rd) such that ∇ζδ = G and

|Dsζδ|(Qν(x0, δ)) � C‖G‖L1(Qν(x0,δ);Rd×N ). (3.39)

Moreover, by lemma 2.4, there exists a sequence ζn,δ of piecewise constant functions
defined on Qν(x0, δ) such that

ζn,δ
L1

−−−−→
n→∞

ζδ

and

|Dζn,δ|(Qν(x0, δ)) −−−−→
n→∞

|Dζδ|(Qν(x0, δ)).

Set

wn,δ = un,δ + ζδ − ζn,δ.
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Clearly, wn,δ is admissible for I1(g, G, Qν(x0, δ)). Therefore,

dI1(g, G, ·)
dHN−1 � Sg

(x0)

= lim
δ→0

1
δN−1 I1(g, G, Qν(x0, δ))

� lim
δ→0

lim inf
n→∞

1
δN−1

{ ∫
Qν(x0,δ)∩Swn,δ

Ψ1([wn,δ](x), ν(wn,δ)(x)) dHN−1
}

= lim
δ→0

lim inf
n→∞

1
δN−1

{ ∫
Qν(x0,δ)∩Sun,δ

Ψ1([un,δ](x), ν(un,δ)(x)) dHN−1

+
∫

Qν(x0,δ)∩Sζδ

Ψ1([ζδ](x), ν(ζδ)(x)) dHN−1

+
∫

Qν(x0,δ)∩Sζn,δ

Ψ1([ζn,δ](x), ν(ζn,δ)(x)) dHN−1
}

=: J1 + J2 + J3.

The terms J2 and J3 go to zero due to (H4), (3.39), (3.3) and (3.37). Moreover,

J1 = lim
δ→0

lim inf
n→∞

1
δN−1

∫
Qν(x0,δ)∩Sun,δ

Ψ1([un,δ](x), ν(un,δ)(x)) dHN−1

= lim
δ→0

lim inf
n→∞

1
δN−1

×
∫

Dn
ν (x0,δ)∩{x : (n(x−x0)/δ)∈Su}

Ψ1

(
[u]

(
n(x − x0)

δ

)
, νu

(
n(x − x0)

δ

))
dHN−1

= lim
δ→0

lim inf
n→∞

1
nN−1

∫
nQν∩{y : |y·ν|<1/2}∩Su

Ψ1([u](y), νu(y)) dHN−1(y)

=
∫

Qν∩Su

Ψ1([u](y), νu(y)) dHN−1(y).

Thus
dI1(g, G, ·)
dHN−1 � Sg

(x0) �
∫

Qν∩Su

Ψ1([u](y), νu(y)) dHN−1(y)

and, consequently, (3.29) follows by letting ε → 0 in (3.38).

(ii) Now let E be a general set of finite perimeter and let g = λχE , λ ∈ R. Consider
En a sequence of polyhedra such that (see [15])

per(En) −−−−→
n→∞

per(E), (3.40)

LN (En∆E) −−−−→
n→∞

0,

and

χEn

L1

−−−−→
n→∞

χE . (3.41)
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By proposition 3.10 and [7, proposition 3.6] we obtain a sequence of functions
γm
1 : R

N → [0, ∞) that are continuous, homogeneous of degree one and satisfy

γ1(λ, y) � γm
1 (y) � C|y|, ∀y ∈ R

N , (3.42)

γ1(λ, y) = inf
m

γm
1 (y), (3.43)

where γ1(λ, ·) has been extended as an homogeneous function of degree one to all
of R

N . Let

gn = λχEn . (3.44)

By (3.41) it is clear that

gn
L1

−−−−→
n→∞

g.

Given A ∈ A(Ω), from the previous case and proposition 3.11, we have that

I1(g, G, A) � lim inf
n→∞

I1(gn, G, A)

� lim inf
n→∞

{ ∫
A

W1(G − ∇gn) dx +
∫

Sgn ∩A

γ1([gn], ν(gn)) dHN−1
}

= lim inf
n→∞

{ ∫
A

W1(G) dx +
∫

Sgn ∩A

γ1([gn], ν(gn)) dHN−1
}

� C

∫
A

|G| dx + lim
n→∞

∫
Sgn ∩A

γ1([gn], ν(gn)) dHN−1, (3.45)

where, in the last inequality, we have used (3.31) together with the fact that
W1(0) = 0. For fixed m by (3.45), the definition of gn, (3.43) and theorem 2.2,
it follows that

I1(g, G, A) � C

∫
A

|G| dx + lim
n→∞

∫
∂En∩A

γm
1 (ν(gn)) dHN−1

� C

∫
A

|G| dx +
∫

∂E∩A

γm
1 (νg) dHN−1.

Now, letting m → ∞ and using the monotone convergence theorem, we obtain

I1(g, G, A) � C

∫
A

|G| dx +
∫

Sg∩A

γ1(λ, νg) dHN−1. (3.46)

Consider x0 satisfying (3.37). Then, from (3.46), we immediately conclude that, for
g defined by (3.44),

dI1(g, G, ·)
dHN−1 � Sg

(x0) = lim
δ→0

1
δN−1 I1(g, G, Qν(x0, δ))

� γ1([g](x0), νg(x0)).
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4. Integral representation in BV

This section is devoted to the characterization of the energy I(g, G) (see (1.3)) in
the full BV setting for (g, G) ∈ GSD(Ω; Rd) := BV2(Ω; Rd) × BV(Ω; Rd×N ). We
refer the reader to theorem 3.2 for the hypotheses and notation used throughout.

Theorem 4.1. Let (g, G) ∈ GSD(Ω; Rd). Under hypotheses (H1)–(H7),

I(g, G) =
∫

Ω

(W1(G − ∇g) + W2(G, ∇G)) dx +
∫

Sg

γ1([g], νg) dHN−1

+
∫

SG

γ2(G+, G−, νG) dHN−1 +
∫

Ω

W1

(
− dDcg

d|Dcg|

)
d|Dcg|

+
∫

Ω

W∞
2

(
G,

dDcG

d|DcG|

)
d|DcG|. (4.1)

To prove theorem 4.1, we start by deriving two auxiliary results.

Proposition 4.2. Let ν ∈ SN−1 and define, for all C ∈ R
d×N ,

W̃1(C) = inf
{ ∫

Qν

W1(C − ∇v(x)) dx +
∫

Qν∩Sv

γ1([v], ν(v)) dHN−1,

v ∈ SBV2(Qν ; Rd), v|∂Qν
(x) = b(x · ν),

b ∈ SBV2([− 1
2 , 1

2 ]; Rd), 1
2b = b(− 1

2 )
}

.

Then W̃1(C) = W1(C).

Proof. Clearly, W̃1(C) � W1(C). Let us prove the reverse inequality. Fix ε > 0 and
let v ∈ SBV2(Qν ; Rd) with v|∂Qν (x) = b(x ·ν) for some b ∈ SBV2([− 1

2 , 1
2 ]; Rd), with

1
2b = b(− 1

2 ) be such that

W̃1(C) �
∫

Qν

W1(C − ∇v(x)) dx +
∫

Qν∩Sv

γ1([v], ν(v)) dHN−1 − ε. (4.2)

Extend v by periodicity to all of R
N and define

wn(y) =
v(ny)

n
− Cy, y ∈ Qν .

By theorem 3.2 it follows that

I1(wn, 0, Qν) =
∫

Qν

W1(C − ∇v(ny)) dy

+
1
n

∫
Qν∩{y : ny∈Sv}

γ1([v](ny), ν(v)(ny)) dHN−1

=
∫

Qν

W1(C − ∇v(ny)) dy +
1

nN

∫
nQν∩Sv

γ1([v](y), ν(v)(y)) dHN−1

=
∫

Qν

W1(C − ∇v(ny)) dy +
∫

Qν∩Sv

γ1([v](y), ν(v)(y)) dHN−1.
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Therefore, by the Riemann–Lebesgue lemma,

lim
n→∞

I1(wn, 0, Qν) =
∫

Qν

W1(C − ∇v(y)) dy +
∫

Qν∩Sv

γ1([v](y), ν(v)(y)) dHN−1,

and, consequently, by proposition 3.11,

I1(−C(·), 0, Qν) �
∫

Qν

W1(C − ∇v(y)) dy +
∫

Qν∩Sv

γ1([v](y), ν(v)(y)) dHN−1.

Since
I1(−C(·), 0, Qν) =

∫
Qν

W1(C) dy = W1(C),

then, by (4.2),
W̃1(C) � W1(C) − ε

and the result follows by letting ε → 0.

Lemma 4.3. Let (g, G) ∈ GSD(Ω; Rd). For all A ∈ A(Ω), define

Ĩ1(g, G, A) = inf
{gn}⊂ SBV2(A;Rd)

{Gn}⊂ SBV(A;Rd×N )

{
lim inf
n→∞

I1(gn, Gn, A), gn
L1

−−−−→
n→∞

g, Gn
L1

−−−−→
n→∞

G
}

.

Then Ĩ1(g, G, A) = I1(g, G, A).

Proof. Let (gn, ∇gn) ∈ SD(Ω; Rd) with gn
L1

−−−−→
n→∞

g and ∇gn
L1

−−−−→
n→∞

G. Then

I1(gn, ∇gn, A) �
∫

Sgn ∩A

ψ1([gn], ν(gn)) dHN−1

for all n ∈ N. Hence,

lim inf
n→∞

∫
Sgn ∩A

ψ1([gn], ν(gn)) dHN−1 � lim inf
n→∞

I1(gn, ∇gn, A) � Ĩ1(g, G, A).

By the arbitrariness of the sequence {gn}, it follows that

I1(g, G, A) � Ĩ1(g, G, A).

To show that the reverse inequality is true, let

Ĩ1(g, G, A) = lim inf
n→∞

I1(gn, Gn, A)

with

gn ∈ SBV2(A; Rd), Gn ∈ SBV(A; Rd×N ), gn
L1

−−−−→
n→∞

g, Gn
L1

−−−−→
n→∞

G.

For each n ∈ N, let un ∈ SBV2(A; Rd) be such that

I1(gn, Gn, A) +
1
n

�
∫

Sun

ψ1([un], ν(un)) dHN−1,

|un − gn|L1 � 1
n

,

|∇un − Gn|L1 � 1
n

.
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Therefore,

Ĩ1(g, G, A) = lim inf
n→∞

I1(gn, Gn, A)

� lim inf
n→∞

∫
Sun

ψ1([un], ν(un)) dHN−1

� I1(g, G, A).

We proceed now to the proof of theorem 4.1.

Proof of theorem 4.1. Given (g, G) ∈ GSD(Ω; Rd) by lemma 3.4 (which still holds),
we can decompose

I(g, G) = I1(g, G) + I2(G),

where

I1(g, G)

= inf
{un}⊂SBV2(Ω;Rd)

{
lim inf
n→∞

∫
Sun

Ψ1([un], ν(un)) dHN−1, un
L1

−−→ g, ∇un
L1

−−→ G

}
(4.3)

and

I2(G) = inf
{vn}⊂SBV(Ω;Rd×N )

{
lim inf
n→∞

∫
Ω

W (vn, ∇vn) dx

+
∫

Svn

Ψ2([vn], ν(vn)) dHN−1, vn
L1

−−→ G

}
.

(4.4)

As in the proof of theorem 3.2, by theorem 4.2.2 of [8] we have that

I2(G) =
∫

Ω

W2(G, ∇G) dx +
∫

SG∩Ω

γ2(G+, G−, νG) dHN−1

+
∫

Ω

W∞
2

(
G,

dDcG

d|DcG|

)
d|DcG|,

and, hence, to prove our claim (4.1), it is enough to show that

I1(g, G) =
∫

Ω

W1(G − ∇g) dx +
∫

Sg

γ1([g], νg) dHN−1

+
∫

Ω

W1

(
− dDcg

d|Dcg|

)
d|Dcg|. (4.5)

We divide the argument into four steps.

Step 1 (localization). As in § 3.1, we can see that I1(g, G, ·) � A(Ω) is an absolutely
continuous Radon measure with respect to LN + HN−1 � Sg + d|Dcg|.
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Step 2 (upper bound for the density energy derivation with respect to the Cantor
part Dcg of Dg). Let us prove that, for |Dcg|-a.e. x0 ∈ Ω,

dI1(g, G, ·)
d|Dcg| (x0) � W1

(
− dDcg

d|Dcg| (x0)
)

. (4.6)

Let gn be a sequence of regular functions such that

gn
L1

−−−−→
n→∞

g, ‖Dgn‖(Ω) −−−−→
n→∞

‖Dg‖(Ω)

and, in addition, consider

Gn ∈ SBV(Ω; Rd×N ) with Gn
L1

−−−−→
n→∞

G.

Given A ∈ A(Ω) by theorem 3.2 (see (3.7)), lemma 4.3 and proposition 3.10, we
obtain that

I1(g, G, A) � lim inf
n→∞

I1(gn, Gn, A)

= lim inf
n→∞

∫
A

W1(Gn(x) − ∇gn(x)) dx

� C

∫
A

|G(x)| dx + lim
n→∞

∫
A

W1(−∇gn(x)) dx

= C

∫
A

|G(x)| dx +
∫

A

W1

(
− dDg

d|Dg|

)
d|Dg|, (4.7)

where the last equality follows by theorem 2.2 since W1 is Lipschitz continuous and
homogeneous of degree one.

Let x0 ∈ supp |Dcg| such that dI1(g, G, ·)/d|Dcg|(x0) exists and

W1

(
− dDcg

d|Dcg| (x0)
)

= lim
δ→0

1
|Dcg|(Q(x0, δ))

∫
Q(x0,δ)

W1

(
− dDcg

d|Dcg|

)
d|Dcg|.

Then,

dI1(g, G, ·)
d|Dcg| (x0) = lim

δ→0

I1(g, G, Q(x0, δ))
|Dcg|(Q(x0, δ))

� W1

(
− dDcg

d|Dcg| (x0)
)

by (4.7) so that (4.6) holds.

Step 3 (lower bound for the density energy derivation with respect to the Cantor
part Dcg of Dg). Let us prove that, for |Dcg|-a.e. x0 ∈ Ω,

dI1(g, G, ·)
d|Dcg| (x0) � W1

(
− dDcg

d|Dcg| (x0)
)

. (4.8)

Let x0 ∈ supp |Dcg| be such that

dDcg

d|Dcg| (x0) = ax0 ⊗ νg(x0)
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for some ax0 ≡ a ∈ R
d and νg(x0) ≡ ν ∈ SN−1 (see Alberti’s rank one theorem [2])

and with
d|G|LN

d|Dcg| (x0) = 0. (4.9)

Thus, showing (4.8) is equivalent to showing that

dI1(g, G, ·)
d|Dcg| (x0) � W1(−a ⊗ ν). (4.10)

To prove (4.10), let (gn, Gn) ∈ SBV2(Ω; Rd)×SBV(Ω; Rd×N ) be a sequence with

gn
L1(Ω;Rd)−−−−−−→

n→∞
g and Gn

L1(Ω;Rd×N )−−−−−−−−→
n→∞

G,

and fix δ > 0. Note that, by proposition 3.10,

lim
n→∞

[I1(gn, Gn, Qν(x0, δ)) − I1(gn, G, Qν(x0, δ))] = 0

and, by theorem 3.2 and (4.3), we have that

I1(gn, G, Qν(x0, δ))

=
∫

Qν(x0,δ)
W1(G − ∇gn) dx +

∫
Qν(x0,δ)∩Sgn

γ1([gn], ν(gn)) dHN−1

= δN

∫
Qν

W1(G(x0 + δy) − ∇gn(x0 + δy)) dy

+ δN−1
∫

Qν∩{y:x0+δy∈Sgn }
γ1([gn](x0 + δy), ν(gn)(x0 + δy)) dHN−1.

Defining

tδ =
|Dcg|(Qν(x0, δ))

δN
, (4.11)

we can write that
I1(gn, Gn, Qν(x0, δ))

|Dcg|(Qν(x0, δ))

=
1
tδ

∫
Qν

W1(G(x0 + δy) − ∇gn(x0 + δy)) dy

+
1

δtδ

∫
Qν∩{y:x0+δy∈Sgn }

γ1([gn](x0 + δy), ν(gn)(x0 + δy)) dHN−1

and setting

wn,δ(y) =
gn(x0 + δy) −

∫
Qν

gn(x0 + δy) dy

δtδ
, y ∈ Qν ,

we derive that
I1(gn, Gn, Qν(x0, δ))

|Dcg|(Qν(x0, δ))
=

1
tδ

∫
Qν

W1(G(x0 + δy) − tδ∇wn,δ(y)) dy

+
∫

Qν∩Swn,δ

γ1([wn,δ](y), ν(wn,δ)(y)) dHN−1.
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Consequently,

lim inf
δ→0

lim inf
n→∞

I1(gn, Gn, Qν(x0, δ))
|Dcg|(Qν(x0, δ))

= lim inf
δ→0

lim inf
n→∞

[
1
tδ

∫
Qν

W1(G(x0 + δy) − tδ∇wn,δ(y)) dy

+
∫

Qν∩Swn,δ

γ1([wn,δ](y), ν(wn,δ)(y)) dHN−1
]
.

Using Alberti’s result on the blow-up of the Cantor part (see [2], [4, theorem 2.3]
and [24, lemma 5.1]), there exists a non-decreasing function ζ ∈ BV[− 1

2 , 1
2 ] such

that

ζ( 1
2 ) − ζ(− 1

2 ) = 1,

∫ 1/2

−1/2
ζ(s) ds = 0 (4.12)

and

lim
δ→0

lim
n→∞

∫
Qν

|wn,δ(y) − aζ(y · ν)| dy = 0.

Therefore, passing to a diagonalizing sequence wk ≡ wn(k),δ(k), setting δk = δ(k)
and using the homogeneity property of W1, we have that

lim inf
δ→0

lim inf
n→∞

I1(gn, Gn, Qν(x0, δ))
|Dcg|(Qν(x0, δ))

= lim
k→∞

[ ∫
Qν

W1

(
G(x0 + δky)

tδk

− ∇wk(y)
)

dy

+
∫

Qν∩Swk

γ1([wk](y), ν(wk)(y)) dHN−1
]
.

Now set

vk(y) =
a(ρk ∗ ζ)(y.ν)

ck
, y ∈ Qν , (4.13)

where ρk denotes the standard mollifier sequence, and

ck = (ρk ∗ ζ)( 1
2 ) − (ρk ∗ ζ)(− 1

2 ).

It is clear, by (4.12), that ck → 1 as k → ∞. Since

wk − vk
L1

−−−−→
k→∞

0

with a similar argument to the one used in lemma 3.8, we can assume that wk�∂Qν =
vk�∂Qν . Thus, defining

w̄k(y) = wk(y) − (a ⊗ ν)y, y ∈ Qν ,
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we have that

lim inf
δ→0

lim inf
n→∞

I1(gn, Gn, Qν(x0, δ))
|Dcg|(Qν(x0, δ))

= lim
k→∞

∫
Qν

(
W1

(
G(x0 + δky)

tδk

− ∇w̄k(y)
)

− (a ⊗ ν)
)

dy

+
∫

Qν∩Sw̄k

γ1([w̄k](y), ν(w̄k)(y)) dHN−1.

Since, by proposition 3.10 and (4.11),

lim sup
k→∞

∫
Qν

∣∣∣∣W1

(
G(x0 + δky)

tδk

−∇w̄k(y)− (a ⊗ ν)
)

−W1(−∇w̄k(y)− (a ⊗ ν))
∣∣∣∣dy

� lim sup
k→∞

C

∫
Qν

∣∣∣∣G(x0 + δky)
tδk

∣∣∣∣ dy

= lim sup
k→∞

C

tδk

∫
Qν

∣∣∣∣G(x0 + δky)
∣∣∣∣ dy

= lim
k→∞

C

tδk
δN
k

∫
Qν(x0,δk)

|G(x)| dx

= 0 (4.14)

by (4.9). From (4.13), it is easy to see that, for each k ∈ N, the function w̄k(y) is
admissible for W̃1. Therefore, from (4.14) and proposition 4.2, we conclude that

lim inf
δ→0

lim inf
n→∞

I1(gn, Gn, Qν(x0, δ))
|Dcg|(Qν(x0, δ))

� lim
k→∞

∫
Qν

(
W1(−∇w̄k(y)) − (a ⊗ ν)

)
dy

+
∫

Q∩Sw̄k

γ1([w̄k](y), ν(w̄k)(y)) dHN−1

� W̃1(−a ⊗ ν) = W1(−a ⊗ ν).

Finally, the lower bound (4.10) follows from the arbitrariness of the considered
sequence

(gn, Gn) ∈ SBV2(Ω; Rd) × SBV(Ω; Rd×N )

and from the characterization of I1 given in lemma 4.3.

Step 4. We remark that, as in theorem 3.2,

dI1(g, G, ·)
dLN

(x0) = W1(G(x0) − ∇g(x0)), LN -a.e. x0 ∈ Ω

and
dI1(g, G, ·)
dHN−1 � Sg

(x0) = γ1([g](x0), ν(g)(x0)), HN−1-a.e. x0 ∈ Sg.

In fact, the proof of the upper bounds can be obtained in a similar way to (4.6).
To do so, it is sufficient to choose sequences

gn
L1

−−−−→
n→∞

g with |Dgn|(Ω) −−−−→
n→∞

|Dg|(Ω),

https://doi.org/10.1017/S0308210510001460 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001460
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which are regular functions for the case of

dI1(g, G, ·)
dLN

and piecewise constant functions to address

dI1(g, G, ·)
dHN−1 � Sg

.

Since both W1 and γ1 are homogeneous functions of degree one, the result follows
from lemma 4.3 and theorem 2.2. It is also easy to check that the lower bounds hold
since the proof of their counterparts in theorem 3.2 is still valid in the BV setting.

As a consequence of steps 1–4,

I1(g, G, A) =
∫

A

W1(G − ∇g) dx +
∫

A∩Sg

γ1([g], νg) dHN−1

+
∫

A

W1

(
− dDcg

d|Dcg|

)
d|Dcg| (4.15)

for all A ∈ A(Ω), from which, taking A = Ω, equality (4.5) follows, completing the
proof of theorem 4.1.
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