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How exactly do learners generalise in the face of ambiguous data? While there has
been a substantial amount of research studying the biases that learners employ,
there has been very little work on what sorts of biases are employed in the face
of data that is ambiguous between phonological generalisations with different
degrees of complexity. In this article, we present the results from three artificial
language learning experiments that suggest that, at least for phonotactic sequence
patterns, learners are able to keep track of multiple generalisations related to the
same segmental co-occurrences; however, the generalisations they learn are only
the simplest ones consistent with the data.

1 Introduction

The natural language data that forms the input for learning by children
and adults almost invariably gives rise to multiple competing generali-
sations. Even when their focus is restricted to only a particular segmental
co-occurrence pattern, it becomes immediately apparent that there are
multiple possible generalisations that are consistent with the pattern. Of
course, this is not a novel insight, and many have grappled with the ques-
tion in the past. However, the observation does raise the question that is of
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primary importance to this article. That is, how exactly do speakers gener-
alise in the face of data that is ambiguous between generalisations of
varying complexity? The experiments presented in this article suggest
that, at least for phonotactic sequence patterns, learners are able to keep
track of multiple generalisations related to the same segmental co-
occurrences; however, the generalisations they learn are only the simplest
ones consistent with the data, where the ‘simplest’ generalisation is the one
whose definition uses the fewest representational primitives.
With regard to phonotactic patterns, there is considerable evidence that

both infants and adults possess phonotactic knowledge of their native
languages. This knowledge has been probed on the basis of phonotactic
judgements of nonce words (Scholes 1966, Jusczyk et al. 1993), word-
segmentation tasks (Friederici & Wessels 1993, McQueen 1998) and
perceptual illusions (Dupoux et al. 1999, Kabak & Idsardi 2007). There
is further evidence that this phonotactic knowledge involves not just
segmental patterns, but also more abstract natural class or featural patterns
(Moreton 2002, Albright 2009).
The paradigm of artificial language learning has been especially fruitful

in probing the kinds of patterns that both children and adults learn in the
domain of phonotactic learning.1 There is again substantial evidence that
exposure to words with particular patterns during a training phase of an
artificial language learning experiment is sufficient for children and
adults to generalise the patterns to novel words (Chambers et al. 2003).
Results from such experiments also suggest that, in line with typological
asymmetries, speakers are able to employ ‘substantive biases’ in generalis-
ing from the training data (Wilson 2006, Moreton 2008, Becker et al.
2011). As well as substantive biases that are in line with typological asym-
metries, learners in such experiments also appear to exhibit what might be
called ‘structural biases’; i.e. they exhibit different phonotactic learning
biases over different representations (Bergelson & Idsardi 2009,
Chambers et al. 2011). Finally, in line with what has been observed for
natural language phonotactics, participants in artificial language learning
experiments also seem to learn featural generalisations; i.e. they are able
to access more abstract generalisations than segment-sequence generalisa-
tions (Finley & Badecker 2009, Cristià et al. 2011). One common theme in
much of the research on biases just discussed is that they are more directly
related to substantive issues, involving either typological asymmetries or
representational issues.
Given that artificial language learning experiments show such similarity

to research on natural language phonotactics, they provide an additional
source of evidence, alongside modelling, for understanding formal induct-
ive biases employed by a learner during the acquisition of phonotactic

1 In what follows, we only cite representative work related to phonotactic learning; for
a more general review of artificial language learning across a variety of linguistic
domains, see Culbertson (2012) and Folia et al. (2010), and for a more general
review of the artificial language learning literature on phonological learning
Moreton & Pater (2012a, b).
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patterns. Here, too, some recent work has probed the issue. Research sug-
gests that, for both adults and children, simpler (particularly single-
feature) generalisations are easier to learn than more complex generalisa-
tions (Pycha et al. 2003, Saffran & Thiessen 2003, Cristià & Seidl 2008,
Kuo 2009). Other research has focused on issues of formal computational
complexity, and has shown that adults are able to learn patterns that belong
to only a subset of the patterns describable by finite-state automata,
labelled SUBREGULAR classes (Lai 2015, McMullin 2016).
As mentioned at the outset, our interest in this article is in determining

what kind of bias, if any, learners impose on data that is consistent with
multiple phonotactic generalisations. However, none of the experimental
results reviewed very briefly above – i.e. neither the experimental results
showing that patterns mirror typological tendencies nor those showing
that simpler generalisations are learned better than more complex general-
isations – directly address the question of what speakers learn in the face of
ambiguity. Furthermore, while there are quite a few approaches espoused
for theoretical or logical reasons in the literature, there is far less experi-
mental work on the issue. We describe the few experimental studies that
we are aware of that address this question in more detail below, and then
we discuss them again in the context of the different theoretical
approaches.
Gerken (2006) gave 9-month-old infants training stimuli that consisted

of syllables that had the pattern AAB (or ABA), e.g. jidiji or jijidi.2
Furthermore, in one training condition, the B syllable was always di
(e.g. leledi, wiwidi, jijidi, dededi) and, in a second training condition, it
varied between four different syllables, di, je, li and we (e.g. leledi,
wiwije, jijili, dedewe). The infants were then tested on novel items that
were consistent with the AAB (or ABA) pattern (e.g. kokoba, popoga). In
response to the second training condition, the infants had significantly
different looking times compared to controls for test stimuli that consisted
of AAB (or ABA) syllables with a different set of B syllables. This did not
hold for the first training condition (where all the training words had the
same B syllable, namely di). However, in a follow-up experiment in
which the B syllables in the test stimuli were also di, the infants had sig-
nificantly different looking times even with the first condition. In both
experiments, for the first condition there were two competing generalisa-
tions possible during training; one possible generalisation was that all
words were AAB (or ABA) and the B was always di (the more specific gen-
eralisation), and a second possible generalisation was that all the words
were AAB (or ABA) (the less specific generalisation). Gerken interprets
the results of their experiment as evidence for infants forming the subset
(or most specific) generalisation.
A second relevant study is that of Linzen & Gallagher (2014, 2017). The

authors were interested in the time-course of generalisation, but some of
the results in their experiments are relevant to the question of how

2 We follow Gerken in using italics to represent the stimuli.
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generalising proceeds when the data is consistent with multiple different
generalisations. They conducted four experiments; we focus here on the
aspects of their results that are crucial in this paper. For example, in
their Experiment 1, they gave one group of participants training words
with an initial voiced obstruent and another group words with an initial
voiceless obstruent. In the testing phase, there were three types of stimuli:
those whose initial consonants were the same as in the training set (which
Linzen & Gallagher call conforming–attested), those whose initial conso-
nants had the same voicing as the training set but were not experienced
during the training (conforming–unattested), and those whose initial
consonants were inconsistent with the training data (non-conforming–
unattested). Overall, across the experiments, Linzen & Gallagher observed
that, with sufficient training, participants accepted conforming–attested
more often than conforming–unattested, which in turn were accepted
more often than non-conforming–unattested, meaning that they were able
to learn generalisations, but still had a preference for items encountered in
the training set. They interpret their results as evidence that, with
sufficient exposure, participants learn not only featural (or class level)
generalisations, but also specific segmental generalisations.
A third relevant study is that of Cristià et al. (2013), who present evi-

dence from an artificial language learning experiment that participants
do not learn a more complex generalisation if simpler generalisations are
available. As with many artificial language learning experiments, partici-
pants were auditorily presented with non-words in a training phase. The
test-phase stimuli combinations were more complicated than presented
below; we highlight the crucial aspects of their results. In the test phase,
there were four types of stimuli: onsets already encountered in the training
phase (‘exposure’), new onsets that had the same phonological features as
the narrowest class that described the training set (‘within’), new onsets
that differed in one feature from the narrowest class that described the
training set (‘near’) and new onsets that differed in two features from the
narrowest class that described the training set (‘far’). Participants rated
how frequently they thought the test stimuli had occurred in the training
phase. They gave the highest frequency ratings to the old onsets (‘expo-
sure’); the ‘within’ and ‘near’ stimuli received similar frequency ratings
and the ‘far’ onsets the lowest ratings. Since there was generalisation
beyond the exposure set of consonants to those outside the set, the
results suggest the target grammar was not the subset grammar (i.e. the
more complex generalisation in our terms). Similarly, the fact that the par-
ticipants gave similar frequency ratings to the ‘within’ and ‘near’ stimuli is
evidence that the subset generalisation was not learned.
Finally, another set of studies suggests local generalisations are privi-

leged (Finley 2011, 2012, Lai 2015, McMullin 2016). For example,
Finley (2011) shows that speakers have a bias to learn patterns that are
transvocalic (also called ‘first-order local’). When presented with training
stimuli that contain a version of sibilant harmony across a vowel (e.g.
[pisasu], [piʃaʃu]), learners do not extend the pattern to transsegmental
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(‘second-order non-local’) occurrences (e.g. [sipasu], [ʃipaʃu]), but are
willing to extend the pattern from the latter stimuli to the former. This
could be argued to show that learners have a bias for the more specific
(or complex) generalisation, under the assumption that transsegmental
non-local patterns are simpler to represent than transvocalic non-local pat-
terns, as the latter make specific reference to ignoring only vowels, while
the former make no such fine-grained distinction.
Before discussing the different viewpoints on generalisation under

ambiguity and seeing how they are informed by the above results, we
think it is helpful to break down the question of how learners generalise
from data that is ambiguous between multiple different generalisations
into the two subquestions in (1).

(1) a. Do speakers learn just a single generalisation that is consistent with
a specific segmental co-occurrence pattern, or do they learn multiple
(even all) possible generalisations?

b. Do speakers learn the simplest generalisation or the most specific
(therefore most complex) generalisation?

The questions might be easier to follow with a concrete example.
Assume the exposure stimuli all have consonants that agree in both
voicing and continuancy (e.g. [fisu], [pita], [badi]). There are multiple
generalisations that are consistent with the input, including a voicing
harmony generalisation (which we will notate as ‘[α voice]’), a continuancy
harmony generalisation (‘[β cont]’) and a complex voicing + continuancy
harmony generalisation (‘[α voice, β cont]’). Note that [α voice] here
stands for the feature-sequence generalisation [α voice … α voice], and
[β cont] for the feature-sequence generalisation [β cont … β cont]; i.e.
both generalisations are over two (albeit identical) features. Similarly,
the conjoined generalisation [α voice, β cont] involves four features, and
therefore counts as more complex.3 (We will use the shorter descriptions
throughout the paper, to make the text more readable.) The first question,
(1a), asks whether speakers learn just a single one of the possible general-
isations or more than one generalisation consistent with the data, and
the second, (1b), asks whether speakers learn the more complex [α voice,
β cont] generalisation (where the generalisation is that both voicing
harmony and continuancy harmony have to be present in a stimulus for

3 There are of course other possible generalisations in these stimuli; we focus on these
three. Foreshadowing our experiments, we control for the possibility of other gen-
eralisations through the use of Disharmony stimuli. In addition, it is not clear if the
representations [α, β] count as separate representational primitives. This is because
[α, β] can be thought of as stand-ins for the actual feature polarities, which them-
selves might be unnecessary in a privative feature system. Similarly, the conjunction
‘and’ implicit in the description of the complex generalisation need not be an explicit
element of the intensional description, as its use will depend on the format of the
description. In what follows, we consider neither of the two issues discussed for
the count of representational primitives, as we do not think that the main argument
is affected by their presence in such a count.
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it to be acceptable), given that the data is consistent with the simpler inde-
pendent generalisations [α voice] and [β cont].
There are two important things worth bearing in mind with regards to

the terminology we use. First, we follow Hayes & Wilson (2008) in apply-
ing the notions of SIMPLICITY and SPECIFICITY to individual rules and con-
straints instead of whole grammars. Second, we conflate the terms ‘most
complex’ and ‘most specific’, and use them interchangeably. These are
of course separate notions, where the former refers to the intensional
description, and the latter to the extension set. We adopt this conflation
largely because it simplifies the discussion of the previous literature.
However, we return to this issue in §5, and elaborate on how our results
bear on the distinction.
One response to the above questions is to suggest that speakers learn

just a single, simplest generalisation in response to ambiguous data (i.e.
just [α voice] or [β cont] in our example above). In one of the earliest
discussions of the topic, Halle (1961) and Chomsky & Halle (1968)
suggest something similar. They propose that the learner acquires the
simplest generalisation consistent with the data, where they define the
‘simplest’ generalisation to be one that uses the fewest representational
primitives (e.g. features, segments, etc.).4 We call this the SIMPLEST

GENERALISATION principle. Throughout this paper, echoing Halle (1961)
and Chomsky & Halle (1968), we use ‘simplicity’ to refer to simplicity
in terms of representational primitives. Furthermore, we use ‘simplest’
to refer to one extreme on the scale of simplicity, and the phrase ‘most
complex’ to refer to the other extreme of the same scale. Simplicity is
therefore based on the INTENSIONAL description, not on the EXTENSIONAL

sets that result from the description. For example, a generalisation that
utilises one feature is simpler than one that utilises more features; simi-
larly, a generalisation that invokes the representation of just a syllable is
simpler than one that invokes the representation of a syllable along with
that of a segment simultaneously.
A second approach, which goes in the opposite direction of the Simplest

Generalisation principle, is one where the learner keeps track of a single
most specific generalisation that is consistent with the data (i.e. the
complex generalisation [α voice, β cont] in our example above). This has
been termed the SUBSET principle (Dell 1981, Berwick 1985).5 There is
some experimental evidence directly arguing for the Subset principle. As
mentioned above, Gerken (2006) interprets their results as evidence that

4 Both Halle and Chomsky & Halle mention simplicity in the context of phonological
features. However, as far as we can see, nothing in their discussion precludes an
extension of the view to other phonological primitives.

5 However, see Hale & Reiss (2003) for a view that argues that the Subset principle is
about lexical representations, not generalisations. Briefly, they suggest that the
learner initially posits very specific (thus richer) lexical representations, and then
moves to simpler (or less elaborate) lexical representations at later stages of
acquisition.

182 Karthik Durvasula and Adam Liter

https://doi.org/10.1017/S0952675720000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0952675720000093


infants formed the subset (or most specific) generalisation; however,
Cristià et al. (2013) argue against this viewpoint.
A third view that is very close in spirit to the Simplest Generalisation

principle is that the speaker learns the simplest generalisation, and, in
case there is more than one such generalisation that can lay claim to
being the ‘simplest’, then keeps track of all such ‘simplest’ generalisations
(i.e. in our example above, the learner acquires both the independent gen-
eralisations [α voice] and [β cont]). In fact, the Chomsky & Halle (1968)
approach discussed above could be extended along these lines, given that
they assume a single ‘simplest’ generalisation in their own discussion.
This viewpoint is also espoused by Hayes & Wilson (2008) in their
attempt to develop a baseline Maximum Entropy phonotactic learner
model. We call this the MULTIPLE SIMPLEST GENERALISATIONS principle.
A fourth possible approach is one that suggests that learners are also able

to keep track of all generalisations consistent with the ambiguous data (i.e.
the learner acquires all the generalisations [α voice], [β cont] and [α voice,
β cont] in our example above). However, such approaches differ in how
they weight the most specific or simplest generalisations. One variation
of this approach aligns itself to the Simplest Generalisation principle,
instead of the Subset principle; i.e. learners keep track of multiple (poten-
tially, all) generalisations that are consistent with the data, but are biased to
weight the simpler generalisations more highly than the more specific ones.
We call this the PROPORTIONAL TO SIMPLICITY principle. Although not
direct, some evidence for this position comes from the artificial language
learning experiments conducted by Linzen & Gallagher (2014, 2017).
For their experiments, greater acceptability of the conforming–unattested
items over the non-conforming–unattested items can be regarded as due to
the learning of a simpler pattern involving voicing; however, any increase
in acceptability of the conforming–attested items over the non-conform-
ing–unattested items could be due to both the learning of a simpler featural
generalisation and/or a more complex/specific segmental generalisation.6
In other words, if both the complex and the simple generalisations are
learned, then the acceptability of the conforming–attested could be an
additive effect of the two generalisations. Overall, Linzen & Gallagher
showed that, with sufficient training, participants accepted conforming–
attested more than conforming–unattested, which in turn were accepted
more than non-conforming–unattested, meaning that they were able to
learn generalisations but still had a preference for items from the training
set. Furthermore, if we look carefully at the relativemagnitudes of the accept-
ability judgements in their Experiments 1 and 2, it seems that, for the largest
exposure groups, the difference between the conforming–unattested items

6 Segmental generalisation might be viewed as more complex if segments themselves
are not viewed as representational primitives, but instead as collections of feature
bundles. If, however, segments themselves are seen as representational primitives
along with features, then Linzen & Gallagher’s results are consistent with the
Multiple Simplest Generalisations principle laid out earlier. This is a point we
will return to in our interpretation of our own Experiment 1.
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compared to the non-conforming–unattested items was larger than the
difference between the conforming–attested items and the conforming–
unattested items. This suggests that, for these groups of participants, the
simpler (featural) generalisation had a higher weighting than the more
specific (segmental) generalisation. The logic behind this potential under-
standing of their results is further fleshed out below in the context of a dis-
cussion of the predictions of the different principles for our own
experiments (see Fig. 1 below).
A second variant of the fourth principle is instantiated in Bayesian

models. In a probabilistic formulation of the Subset principle, it has
been suggested that learning is proportional to the specificity of the gener-
alisation; i.e. a generalisation that is more specific is more highly valued or
weighted (Tenenbaum & Griffiths 2001, Xu & Tenenbaum 2007, Linzen
& O’Donnell 2015).7 Researchers who argue for this approach (typically)
take a specific generalisation to be a generalisation whose extension is a
set of possible forms that is closest in size to that of the data encountered
through experience (in our case, the training data). We call this the
PROPORTIONAL TO SPECIFICITY principle. It should be pointed out that
some of these claims are made in the context of word learning, and there
is no clear experimental evidence supporting the model’s claim for the
learning of phonotactic sequences. Furthermore, while Linzen &
O’Donnell (2015) set out to explain the artificial language learning
results related to the phonotactic patterns in Linzen & Gallagher (2014,
2017) using their model, a crucial prediction of the model – namely, that
the weight (or posterior probability) associated with the simplest general-
isation will decrease with an increasing number of training items – was not
observed in Linzen & Gallagher’s experimental results. So, it is unclear
that the experimental evidence from Linzen & Gallagher can be inter-
preted as clear evidence in favour of their model.
These different approaches are summarised in Table I, by way of

answering the two different subquestions laid out above in (1).
In this article, we present three artificial language learning experiments

that provide evidence for the Multiple Simplest Generalisations principle,
which states that learners do acquire multiple generalisations in the face
of ambiguous data, but the generalisations they learn are only the simplest
ones that are consistent with the data, i.e. there is no evidence that learners
acquire the more complex/specific generalisations in the presence of simpler
possibilities. In the following sections we first present the details of the
respective experiments, and then flesh out more detailed predictions for
each of the above principles. Briefly, in Experiment 1, we look at how

7 We acknowledge the point that Eberhardt & Danks (2011) make that, for a Bayesian
model to be rational, the model needs to use the generalisation with the maximum a
posteriori probability; i.e. the model will consistently use the generalisation with the
highest associated weight. If this is implemented, then such models would make
exactly the same predictions as the Subset principle. However, we follow what we
think are the intentions of the original papers in assuming that the use of the general-
isations is proportional to the a posteriori weight assigned to them.
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participants learn from training words that are ambiguous between the
two simple featural generalisations ([α voice] and [β cont]) and the
more complex featural generalisation ([α voice, β cont], in which the two
simple generalisations are satisfied simultaneously). While the experiment
presents clear evidence that learners acquired the multiple simple generali-
sations, the evidence for them acquiring the more complex generalisation is
confounded, as they could also have simply kept track of a simple general-
isation over segmental representations. To overcome this confound, in
Experiments 2 and 3 we specifically tested participants on stimuli that
could not be accepted based simply on the segmental sequences in the
training stimuli. The results of Experiments 2 and 3 argue clearly that
there is no evidence that the participants kept track of a more complex
featural generalisation when simpler generalisations were possible for the
training data.

2 Experiment 1

2.1 Methods

2.1.1 Participants. 25 English-speaking undergraduates at Michigan
State University participated in this experiment for extra credit;
however, two of the participants were excluded because they always
responded ‘yes’ both to stimuli that were present during the training
and to those that violated the crucial phonotactic generalisations in training
data, making it difficult to ascertain whether they had learned anything at
all. Only the data from the remaining 23 participants is presented and ana-
lysed in what follows (18 female, 5 male; mean age = 19.9, SD = 1.5).

2.1.2 Materials. In this experiment, participants were trained on a lan-
guage that consisted of CVCV nonce words. The vowels in the language

Table I
Generalisation in the face of ambiguity under the di‰erent principles.

single

single or multiple
generalisations?

simple or most complex
generalisation?

simplest Simplest Generalisation

principle

single most specific/complex Subset

multiple simplest Multiple Simplest
Generalisations

multiple greater weighting for simplest Proportional to Simplicity

multiple greater weighting for most
specific/complex Proportional to Specificity
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were /a i u/ and the consonants /p b t d f v s z/. All possible CVCV com-
binations of these vowels and consonants (8 × 3 × 8 × 3 = 576 items) were
recorded by a native speaker of American English from Michigan.
Having all possible stimuli allowed us to randomise the training and
testing stimuli on a participant-by-participant basis at the runtime of the
experiment, which was predicated on the hope that by randomising we
would control against any unintended generalisations in any single stimu-
lus set.
The experiment consisted of two phases, a training phase and a testing

phase, and lasted about 10–15 minutes in total.
Training. For the experiments in the paper, we chose to focus on obstru-

ent consonants differing in voicing and continuancy, because there are a
large enough number of contrasts in English to allow us to have a
sufficient number of training and testing stimuli without there being
other concomitant (phonological) featural changes. In the training phase
of the experiment, participants were given only CVCV nonce words
where the consonants simultaneously agreed in both voicing and contin-
uancy. For example, [tipa] was a possible word in the language, since [t]
and [p] are both voiceless and non-continuant.8 Similarly, [fisa] was a pos-
sible word in the language, since [f] and [s] are both voiceless and continu-
ant. On the other hand, [tisa] and [fiza] were not possible, since [t] and [s]
disagree in continuancy, and [f] and [z] disagree in voicing. The input data
was therefore consistent with at least the three following generalisations:
(i) a voicing harmony generalisation, (ii) a continuancy harmony general-
isation and (iii) a simultaneous voicing + continuancy harmony generalisa-
tion. Thus the input data was consistent with multiple generalisations,
with different levels of complexity.
The training phase consisted of exposure to 100 possible CVCV nonce

words in the language. The set of 100 words that a participant was
exposed to during the training phase was chosen randomly from the 144
words in the target language on a participant-by-participant basis, using
the statistical software R (R Development Core Team 2014).9
Each participant was exposed to their list of 100 words twice, in an

order that was pseudo-randomised at the runtime of the experiment by
the software used for the experiment, PsychoPy (Peirce et al. 2019). The
pseudo-randomisation was constrained in such a way that a complete
pass through the list of 100 words was completed before any repetitions
were allowed. The words were presented both orthographically and

8 Henceforth, we will use the term ‘language’ to refer to the list of all possible words in
the training phase; while there were 576 possible CVCV combinations from the seg-
ments in our materials, in only 144 of these did the consonants agree in both voicing
and continuancy. Thus, when we use ‘language’ or ‘target language’ we are referring
to these 144 words.

9 As the training and testing stimuli lists used for each participant were generated
using controlled random seeds, they are fully replicable, and the original source
files, including R scripts reproducing the simulations in Experiments 2 and 3, are
available at the permanent link https://gitlab.com/ka-research/simplicity_bias.
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auditorily on an iMac desktop computer; auditory presentation occurred
through headphones.
Participants were asked to silently mouth the words, in order to ensure

that they were paying attention to the training items, which would likely
facilitate their learning of the language. For a given training trial, partici-
pants saw a grey screen with small white writing near the top that gave the
instructions to ‘silently mouth the following word’; the word was pre-
sented orthographically in a larger font in the centre of the screen, and
played over headphones. The training trials progressed automatically,
with an intertrial interval of 0.5 seconds. The orthographic rendition of
the CVCV word was displayed for one second; the duration of each trial
was therefore equal to either the duration of the auditory presentation of
the word or the one-second duration of the orthographic version, which-
ever was longer. The sound files for the CVCV words were on average
0.73 seconds. For all but four sound files, the duration of each trial was
one second. The remaining four sound files had a trial duration of at
most 1.03 seconds.
Testing. After the training, participants were given a randomised list

containing five different types of testing stimuli: (i) Old, (ii) New, (iii)
OnlyVoicing, (iv) OnlyContinuancy and (v) Disharmony. There were
twelve items in each of these five categories, giving 60 test items in all.
Participants were asked to determine whether the words they heard were
possible words in the language that they had learned in the training
phase. The two possible responses were ‘yes’ and ‘no’. As with the training
stimuli, the testing stimuli were randomly chosen on a participant-by-
participant basis.
The Old stimuli had actually occurred in that participant’s training list.

The New stimuli had not occurred in that participant’s training list, but
did conform to both the voicing harmony and the continuancy harmony
generalisations. The OnlyVoicing stimuli had consonants that only
agreed in voicing (i.e. they disagreed in continuancy); an example of a pos-
sible OnlyVoicing stimulus would be [tisa]. The OnlyContinuancy stimuli
had consonants that only agreed in continuancy (i.e. they disagreed in
voicing); an example of a possible OnlyContinuancy stimulus would be
[zifa]. Lastly, the Disharmony stimuli had consonants that disagreed in
both voicing and continuancy; an example of such a test stimulus would
be [tiva].

2.2 Predictions

Given that the training data was consistent with both voicing and con-
tinuancy harmony, there were three different generalisations that were
consistent with the data: (a) voicing harmony ([α voice]), (b) continuan-
cy harmony ([β cont]) and (c) voicing + continuancy harmony ([α voice,
β cont]), as shown in (2). Note that the third generalisation is the most
complex and most specific, while the first two are equally simple, where
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Figure 1
Predicted proportion of ‘yes’ responses (averaged over multiple participants) to

the test stimuli under the di‰erent principles. The dashed line indicates the baseline
proportion of ‘yes’ responses to Disharmony stimuli, [avoice] indicates the weight
of the voicing harmony generalisation, [bcont] indicates the weight of the continuancy
harmony generalisation and [avoice, bcont] indicates the weight of the complex
harmony generalisation. Predictions for the relative magnitudes of these weights
under each principle are given on the right. The relative weights are identical here
for the Simplest Generalisation and Multiple Simplest Generalisations principles

because of averaging over participants; we discuss this issue in the text.
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simplicity is defined in terms of representational primitives used for the
generalisation.

(2) training stimuli
[tapi, sifa, sasi, …]

[avoice] [bcont] [avoice, bcont]

Since there are multiple generalisations consistent with the training
data, the different principles presented earlier make different predictions
about how the learners will generalise from the data, as shown in Fig. 1.
The figure gives the predicted proportion of ‘yes’ responses (averaged
over multiple participants) for the different types of test stimuli for each
of the different principles. There is evidence of learning any of the relevant
generalisations only if the proportion of ‘yes’ responses to any type of
stimuli extends above the dashed line, which represents the baseline pro-
portion of ‘yes’ responses for Disharmony stimuli. For example,
OnlyVoicing and OnlyContinuancy stimuli would be above the line only
if the learner has acquired a voicing harmony generalisation ([α voice])
and a continuancy harmony ([β cont]) generalisation respectively. The pre-
dictions related to the different principles are elaborated further below.
The Subset principle suggests that the learners would prefer only New

and Old stimuli to Disharmony stimuli, as these are the only stimuli that
are consistent with [α voice, β cont], the more complex/specific generalisa-
tion. The learners should not find OnlyVoicing and OnlyContinuancy
stimuli more acceptable than Disharmony, as neither of them are consis-
tent with the most specific generalisation.
The Simplest Generalisation principle predicts that some learners will

generalise to voicing harmony ([α voice]), while others will generalise to
continuancy harmony ([β cont]). Therefore, some learners should prefer
OnlyVoicing stimuli to Disharmony stimuli, and others should prefer
OnlyContinuancy stimuli. Furthermore, since New stimuli are consistent
with either generalisation, they should be as acceptable for any single
speaker as either OnlyVoicing or OnlyContinuancy. As a consequence,
when averaged over multiple speakers, it seems as if the acceptance of
New stimuli arises from an additive effect resulting from learning
voicing and continuancy harmony separately. Crucially, however, there
should be a negative correlation between learning voicing and continuancy
harmony; i.e. as the acceptance for OnlyVoicing stimuli increases, the
acceptance for OnlyContinuancy stimuli should decrease, since any
given participant should have only learned one of the simple generalisa-
tions, not both.
The Multiple Simplest Generalisations principle predicts that learners

acquire voicing harmony and continuancy harmony as separate generalisa-
tions. Therefore, both OnlyVoicing stimuli and OnlyContinuancy stimuli
should be preferred over Disharmony stimuli. As a consequence, there is a
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predicted additive effect on New stimuli, which are consistent with
both voicing and continuancy harmony (i.e. New ≈ OnlyVoicing +
(OnlyContinuancy ― Disharmony)). Furthermore, based on the assump-
tion that more successful learning of each generalisation is driven by
greater overall learning (due to performance factors such as more attention
to or greater aptitude for the task), there should be a positive correlation
between learning voicing and continuancy harmony; i.e. as the acceptance
for OnlyVoicing over and above Disharmony stimuli increases, the accept-
ance for OnlyContinuancy over and above Disharmony stimuli should also
increase.
The Proportional to Simplicity principle predicts that learners acquire all

three generalisations, but the importance given to each of them is expected to
be directly proportional to their simplicity; therefore, the simpler generalisa-
tions ([α voice] and [β cont]) should be learned better than the more specific
generalisation ([α voice, β cont]). As a consequence, learners will prefer
OnlyVoicing and OnlyContinuancy stimuli over Disharmony stimuli.
Furthermore, since the New stimuli are in the extension of all three general-
isations, the preference for New stimuli should bemore than just an additive
effect of the preference for OnlyVoicing and OnlyContinuancy over
Disharmony; i.e. a superadditive (or interactive) effect is predicted for
New stimuli compared to OnlyVoicing stimuli and OnlyContinuancy
stimuli. Finally, since theweight associatedwith themore specific generalisa-
tion is not as large as those with the simpler generalisations, the contribution
of themore specific generalisation to the acceptability of theNew stimuli will
consequently also be smaller than the contributions of the simpler generali-
sations. Therefore, an interactive or superadditive effect observed for the
preference for New stimuli over OnlyVoicing and OnlyContinuancy
stimuli should be smaller than the preference for OnlyVoicing
and OnlyContinuancy stimuli when compared to Disharmony (i.e. New ≈
(OnlyVoicing + (OnlyContinuancy ― Disharmony) + x), where x > (Only
Voicing ― Disharmony) and x > (OnlyContinuancy ― Disharmony)).
Finally, the Proportional to Specificity principlemakes similar predictions

to the Proportional to Simplicity principle, as it too predicts that all three
generalisations will be learned. However, the one difference is in the import-
ance of the weight given to each of the generalisations. Where Proportional
to Simplicity is biased towards simpler generalisations, Proportional to
Specificity is biased towards more complex/specific generalisations. So,
like Proportional to Simplicity, Proportional to Specificity predicts that
the preference for New stimuli should be more than just an additive effect
of the preference for OnlyVoicing and OnlyContinuancy stimuli over
Disharmony stimuli (i.e. again a superadditive, or interactive, effect is pre-
dicted). However, since the most complex generalisation has greater weight
than the simpler generalisations, the interactive effect observed should be
larger than the preference for either the OnlyVoicing stimuli or the
OnlyContinuancy stimuli when compared to Disharmony (i.e. New ≈
(OnlyVoicing + (OnlyContinuancy ― Disharmony) + x), where x > (Only
Voicing – Disharmony) and x > (OnlyContinuancy ― Disharmony)).
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2.3 Results

Visual inspection of the mean proportion of ‘yes’ responses in Fig. 2 sug-
gests that all four types of test stimuli (OnlyVoicing, OnlyContinuancy,
New and Old) are more acceptable to participants than Disharmony.
Furthermore, the proportion of ‘yes’ responses for the New stimuli
appears to be more than just an additive effect of the OnlyVoicing and
OnlyContinuancy stimuli.
In order to confirm the observations made by visual inspection of the

results, we conducted a statistical analysis. In this article, wherever pos-
sible, participant responses were analysed using mixed-effects logistic
regression models in R. The models were fitted using the glmer() function
from the lme4 package (Bates et al. 2015). We attempted to obtain the
maximum possible random-effects structure (Barr et al. 2013). However,
as is typical in psycholinguistic data, the models with the most complex
random-effects structures did not converge. There is no general consensus
on how to best proceed in identifying the best random-effects structure,
especially when a model with a particular random-effects structure does
not converge (Bolker 2014). In what follows, we describe the selection
process for random-effects structure that we used for our experiments by
following other experienced linear mixed-effects modellers in psycho-
linguistics (Barr et al. 2013).
We identified the appropriate random-effects structure by keeping the

fixed effects constant; we used the full fixed-effects model for the experi-
ment (i.e. with interactions for all the fixed effects, if relevant). We
started with the most complex random-effects structure. In the case of
non-convergence of the complex random-effects model, we systematically
pared down the random-effects structure until convergence was reached.

Figure 2
Proportion of ‘yes’ responses to the test stimuli in

Experiment 1 (error bars represent standard errors).
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The least complex random-effects structure we considered was one with a
varying intercept for both subjects and items. When convergence was
reached, the corresponding random-effects model was identified as the
maximal random-effects structure possible for the data. We then per-
formed model comparison (using the maximal random-effects structure
possible for the data identified in the manner just detailed), in order to
identify the best combination of fixed effects; specifically, we compared
models through backward elimination of non-significant terms, beginning
with the interactions, using a chi-squared test of the log-likelihood ratios.
The most complex fixed-effects model considered was the full model with
all interaction terms, and the least complex was the model with only an
intercept term and no fixed effects.
Using the above procedure, we attempted to fit logistic mixed-effects

models for all the responses in Experiment 1, where the dependent vari-
able was a binary variable that codes for whether participants responded
with ‘yes’. To find out if the responses to the New stimuli were more
than an additive effect of the OnlyVoicing and OnlyContinuancy
responses (i.e. a superadditive effect), we coded the OnlyVoicing
stimuli as Voicing, the OnlyContinuancy stimuli as Continuancy, the
New stimuli as both Voicing and Continuancy and the Disharmony
stimuli as neither Voicing nor Continuancy. The random-effects struc-
ture included a varying intercept for subjects and items. The best
model was one with an interaction effect, shown in Table II. This sug-
gests that the responses to the New stimuli cannot be modelled as
simply an additive effect of the responses to the OnlyVoicing and
OnlyContinuancy stimuli; crucially, the interaction effect is larger
than either of the main effects.

We include the comparison between the above model and a model
without an interaction term in Table III. As can be seen, on the basis of
the chi-squared test and the AIC/BIC, the model with the interaction
term is the better model.

Table II
Best-fitting logistic mixed-e‰ects model for Experiment 1.

estimate

(Intercept)
Voicing
Continuancy
Voicing:Continuancy

p(>| z| )

0.2934
0.0059**

<0.0001***
0.0012**

z

—0.1231
0.4758
0.7574
0.8881

—0.544
2.513
3.920
3.032

fixed e‰ect

Table II
Best-fitting logistic mixed-e‰ects model for Experiment 1.

estimate

(Intercept)
Voicing
Continuancy
Voicing:Continuancy

p(>| z| )

0.2934
0.0059**

<0.0001***
0.0012**

z

—0.1231
0.4758
0.7574
0.8881

—0.544
2.513
3.920
3.032

fixed e‰ect
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2.4 Discussion

The results of Experiment 1 suggest that participants are able to learn the
simpler generalisations even when the more complex generalisation is con-
sistent with the training data. This must be true, as the OnlyVoicing and
OnlyContinuancy stimuli were both rated higher than the Disharmony
stimuli during training, which would not be predicted if participants
had only learned the more complex generalisation. Therefore, the prin-
ciple that suggests that the learner would acquire only the most
complex/specific generalisation (i.e. the Subset principle) is inconsistent
with the results.
Furthermore, the results also suggest that the ‘yes’ responses to the New

stimuli cannot be modelled simply as an additive effect of the two simpler
generalisations. Therefore, the results can be reasonably interpreted as
support for the principles that claim that learners keep track of all the
possible generalisations; i.e. the results can be seen as support for the
Proportional to Simplicity and Proportional to Specificity principles.
However, it is possible that learners keep track of segment-sequence

generalisations along with featural generalisations; i.e. segments, like
features, are representational primitives. Note that such a view is inde-
pendently needed to account for phonological patterns such as segment
metathesis, segment epenthesis and segment deletion (see Albright 2009
and Kazanina et al. 2018 for a similar claim that segment-sized represen-
tational primitives are needed). Furthermore, if consonant-sequence gen-
eralisations are considered to be as simple as featural generalisations by
learners (provided they involve the same number of primitives), then the
Multiple Simplest Generalisations principle would say that learners
should be able to keep track of consonantal sequences separately from
their featural content. In such a case, [p…t] would be simpler than a con-
joined featural generalisation [α voice, β cont], because ‘simplicity’, as used
in this paper, refers to the intensional description, and is established by
counting the number of representations (features, segments, etc.) in the
generalisation. As a consequence, since the responses to the New stimuli
would be an additive effect of the voicing harmony, continuancy
harmony and consonant-sequence generalisations learned during training,

Table III
Model comparison with a model without an interaction term.

Lower values for AIC (Akaike Information Criterion) and BIC
(Bayesian Information Criterion) indicate better models.

AIC

without interaction term
with interaction term

p(>|z|)

0.002

c2

1293.0
1285.7 9.3

model BIC

1318.0
1315.7
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even the Multiple Simplest Generalisations view would say that the
responses to the New stimuli would be more than an additive effect of
just the responses to the OnlyVoicing and OnlyContinuancy stimuli.
Given this potential confound from the possibility that segments them-
selves can independently be representational primitives, the evidence
that the more complex featural generalisation is learned is not clear from
Experiment 1.
Given that there is no clear evidence that the learners acquired the

complex (conjoined) constraint, we cannot directly adjudicate between
the Proportional to Specificity and Proportional to Simplicity principles.
Assessing these two principles would be more appropriate in the case of
Experiments 2 and 3, where the segmental generalisation confound is
not present. However, foreshadowing the results, there is no evidence in
these experiments that participants learned a more complex featural gene-
ralisation (i.e. [α voice, β cont]). Thus, adjudicating between the
Proportional to Specificity and Proportional to Simplicity becomes
unnecessary, as both principles predict that participants should learn the
more complex generalisation, contrary to what we will find in our subse-
quent results.
The main findings in Experiment 1 are that speakers are able to keep

track of the simple featural generalisations ([α voice] and [β cont]), as evi-
denced by the fact that they accept OnlyVoicing and OnlyContinuancy
stimuli during the test phase. There is no clear evidence for whether
they are learning the more complex featural generalisation ([α voice,
β cont]), because the interaction result observed with New stimuli could
also be explained if speakers use segments as representational primitives
in forming generalisations. In Experiments 2 and 3 we focus specifically
on avoiding this confound, to see if there is any evidence of participants
learning complex featural generalisations, and we show that the interactive
effect found in Experiment 1 for the New stimuli disappears when the pos-
sibility of using a segmental generalisation is removed. This suggests that
learners are not acquiring the more complex featural generalisation when
the simpler featural generalisations are present.

3 Experiment 2

In Experiment 1, learners’ responses to the New stimuli appeared to be
more than an additive effect of their responses to the OnlyVoicing and
OnlyContinuancy stimuli. However, the New stimuli contained consonant
sequences that may have been heard during training, so the superadditivity
could simply be a result of the learners keeping track of consonant-
sequence generalisations alongside simple featural generalisations. To
control for this possibility, in Experiment 2 we withheld certain pairs of
consonants during training, and created New stimuli during testing
using those withheld consonant sequences (as described below in
§3.1.2). As a consequence, the responses to New stimuli could no longer
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be influenced by any consonant-sequence generalisations. Therefore, if the
responses to the New stimuli are still superadditive over the responses to
OnlyVoicing and OnlyContinuancy, this constitutes evidence that, when
faced with ambiguous data, learners are able to keep track of not only
the simpler featural generalisations [α voice] and [β cont], but also the
more complex featural generalisation [α voice, β cont].

3.1 Methods

3.1.1 Participants. 78 English-speaking undergraduates at Michigan
State University participated in this experiment for extra credit. We
decided that many more participants were needed in Experiment 2, to
ensure that any lack of a superadditive effect observed was not due to a
lack of statistical power, as discussed further in §3.3. A minimum of 50
participants was fixed in advance (this was not based on data peeking).
However, since we couldn’t precisely control the number of participants
who signed up for extra credit, we ended up with 78.
Of these 78 participants, 15 were excluded due to non-learning (i.e. they

always responded ‘yes’ to the Disharmony and Old test items). Only the
data of 63 participants is presented and analysed in what follows (46
female, 17 male; mean age = 20.0, SD = 3.0).

3.1.2 Materials. The design of Experiment 2 was nearly identical to that
of Experiment 1. The vowels and consonants were the same, and the
experiment also took about 10–15 minutes.
Training. The only difference between Experiment 1 and Experiment 2

in the training phase was that we withheld certain consonant sequences in
the training phase of Experiment 2. As mentioned above, this was to
address a possible confound in Experiment 1, where participants may
have been keeping track of consonant sequences. The consonant pairs
we withheld were randomised on a participant-by-participant basis. For
example, one participant would never receive [tVpV] or [pVtV] in their
training input, while another participant would never receive [fVsV] or
[sVfV]. These participants would never hear these consonant pairs, but
would nonetheless still hear these consonants in other contexts in their
training. For example, while the first participant would never hear
words of the form [tVpV], this participant would hear words of the form
[tVtV] and [pVpV]. We allowed for the possibility of the learners
hearing identical consonant sequences consisting of each of the consonants
in the withheld consonant sequences, to make sure that learners did not
choose a ‘no’ response to the withheld consonant sequences in testing
purely because the consonants themselves were novel to them.
Other than this constraint on the training stimuli, the training procedure

for Experiment 2, including the presentation of the stimuli, was exactly the
same as in Experiment 1.
Testing. As with the training, the testing phase in Experiment 2 was

nearly identical to the testing phase in Experiment 1. There were the
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same five different types of testing stimuli, consisting of twelve items, each
for a total of 60 test items. The only difference was that the New stimuli
during the test phase of Experiment 2 consisted of words that used the con-
sonant pairs withheld during training.
In other words, the New stimuli in Experiment 1 were novel words, but

contained consonant sequences that a participant might have previously
heard. For example, if a New test stimulus in Experiment 1 was [fasi],
the participant would never have heard [fasi] in training, but might have
heard [fisu]. This was no longer the case in Experiment 2. In
Experiment 2, the New test stimuli were novel words that had novel con-
sonant pairings (because the consonant pairings were withheld during
training, as discussed immediately above).

3.2 Predictions

Since Experiment 2 controls for the possibility of participants using
segmental generalisation for the test stimuli, the predictions of all the prin-
ciples presented earlier are the same as discussed in §2.2.

3.3 Results

Visual inspection of the mean proportion of ‘yes’ responses in Fig. 3 sug-
gests that, as in Experiment 1, all four types of test stimuli (OnlyVoicing,
OnlyContinuancy, New and Old) are more acceptable to participants than
Disharmony. Two further observations can be made. First, the proportion
of ‘yes’ responses for New stimuli is much lower than in Experiment 1.
Second, unlike in Experiment 1, the ‘yes’ responses for the New stimuli
appear to be no more than an additive effect of the responses to the
OnlyVoicing and OnlyContinuancy stimuli, over and above the
Disharmony stimuli.
As in Experiment 1, to find out if the responses to the New stimuli were

more than an additive effect of the OnlyVoicing and OnlyContinuancy
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Figure 3
Proportion of ‘yes’ responses to the test stimuli in Experiment 2.
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responses (i.e. a superadditive effect), we attempted to fit a mixed-effects
logistic regression model using the same coding as before. The random-
effects structure, as in Experiment 1, included a varying intercept for sub-
jects and items. The best model was one with two simple main effects in
Table IV. The results of the modelling suggest that the responses to the
New stimuli can in fact be modelled as simply an additive effect of the
responses to the OnlyVoicing and OnlyContinuancy stimuli. This is con-
sistent with what can be observed in Fig. 3. Given that the best model was
one with two simple main effects, there appears to be no evidence of a
superadditive effect for the New stimuli.10

In order to better understand whether the lack of an interaction effect in
Fig. 3 and Table IV is due either to the atypical responses of just a few par-
ticipants or perhaps to a lack of sufficient statistical power in our experiment,
we further plotted the cumulative proportions of ‘yes’ responses to each type
of test stimulus with increasing number of participants (Fig. 4). The plot
suggests that the relative differences in the cumulative effect sizes stabilise
after about 25–30 participants, thereby suggesting that the non-interactivity
is not due to a lack of power in Experiment 2. The plot also includes the
putative additive effect of OnlyVoicing and OnlyContinuancy = (Voicing
+Continuancy = OnlyVoicing + (OnlyContinuancy ― Disharmony)). As
can be observed, the Voicing+Continuancy line almost perfectly coincides
with the New responses after about 25–30 participants, thereby providing
further evidence that the responses to New stimuli are indeed no more
than an additive effect of the responses to the OnlyVoicing and
OnlyContinuancy stimuli.
Finally, we also took a closer look at the data to see if participants were

indeed learning both simple generalisations ([α voice] and [β cont]). It is
possible to read the data presented so far for Experiments 1 and 2 as con-
sistent with some participants learning voicing harmony, and others learn-
ing continuancy harmony. That is, since we presented only the overall
mean proportion of responses, it is not clear if each participant was

Table IV
Best-fitting logistic mixed-e‰ects model for Experiment 2.

estimate

(Intercept)
Voicing
Continuancy

p(>| z| )z

0.1625
0.1829
0.4031

1.279
1.941
4.272

fixed e‰ect

0.2
0.05

<0.001
*
***

10 The model with the interaction term for Voicing and Continuancy was not signifi-
cantly better than the best model. Furthermore, the interaction term was not sig-
nificant in that model (Í = 0.015, p = 0.93).
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learning both simple generalisations. Therefore, to confirm that the parti-
cipants were really learning both simple generalisations, we looked at the
proportion of ‘yes’ responses both to OnlyContinuancy stimuli and to
OnlyVoicing stimuli. Note that we could not make a similar comparison
in Experiment 1, as 23 data points (one corresponding to each participant)
are usually seen as insufficient to fit a simple linear regression model (Field
2013).11 If each participant was really learning just one simple generalisa-
tion (at the cost of the other), then there should be a trade-off in their
responses to the OnlyVoicing and OnlyContinuancy stimuli (i.e. there
should be a negative correlation between the two responses). On the
other hand, if each learner is acquiring both generalisations, there should
be a positive correlation between the responses to the OnlyVoicing and
OnlyContinuancy stimuli. In Fig. 5, we indeed see a positive correlation
(Í = 0.469, p < 0.00001). This suggests that if a learner thought that the
OnlyVoicing stimuli were more like the training data, they were also
likely to think the same about the OnlyContinuancy stimuli.

3.3.1 Is there any evidence that the complex generalisation was
learned? The logistic regression models that we have presented cannot di-
rectly test whether a model without an interaction effect is supported by the
data.12 The issue is the following: it is possible for the learners to acquire a
more complex generalisation along with the simpler generalisations, and for
the interaction term in the logistic regression to still be non-significant. The

Figure 4
Cumulative proportions of ‘yes’ responses to test stimuli with increasing number

of participants in Experiment 2 (ribbons represent 95% confidence intervals).
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11 Nonetheless, there was also a significant positive correlation for the same compari-
son in Experiment 1 (Í = 0.361, p = 0.03).

12 Thanks to the associate editor for highlighting this issue and for providing a way
forward by suggesting the Monte Carlo simulations we present here.
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fundamental problem is the indirect relationship between interaction terms
in logistic regression and superadditive raw probability.
Since the original logistic regression analyses did not quite address the

issue we are interested in probing, we ran a Monte Carlo simulation. In
order to doMonte Carlo simulations, we have to be explicit about the under-
lying probabilitymodels, and about how learners would employ themultiple
generalisations that they have learned. There are at least two ways, given in
(3), in which one could flesh out the underlying probability models.

(3) a. Model A
The learner uses all the generalisations simultaneously while making
an acceptability judgement. This can be operationalised as a proba-
bility that is the product of the probabilities associated with each of
the generalisations.

b. Model B
Despite knowing multiple generalisations, the learner uses only one
generalisation at any one time while making an acceptability
judgement. The learner randomly chooses which generalisation to
use; all generalisations have equal probability of being chosen. That
is to say, the generalisations are used individually and mutually
exclusively while making an acceptability judgement. This can be
operationalised as the average of the probabilities associated with
each of the generalisations.

In our opinion, both of these are reasonable probability models, and it is
not possible to decide a priori which is the more appropriate model. For

Figure 5
Correlation between increase in ‘yes’ responses in Experiment 2
to OnlyVoicing compared to those of OnlyContinuancy (jitter

has been added to the plot to reveal overlapping points).
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this reason, we present the results of the Monte Carlo simulations with
each underlying probability model.
The steps we used for the Monte Carlo simulation are given in (4).

(4) a. Step 1
Sketch out a model of the predicted probability of acceptance, with
and without the complex generalisation. (We ran simulations for
both of the probability models in (3).)

b. Step 2
Fit underlying probabilities to the observed data, without allowing
for any complex generalisation. This is the null hypothesis.

c. Step 3
Use the Monte Carlo approach to generate the experimental data
for each experiment 1000 times (replicating the combinatorics of the
experiments) from these underlying probabilities, and fit a logistic
regression model (with interaction) to each iteration.13 This gives
the distribution of interaction coecients expected under the null
hypothesis of no complex generalisation.

d. Step 4
Fit a logistic regression model (with interaction) to the observed
data. This gives the observed interaction coecient.

e. Step 5
Check whether the interaction coecient for the observed data is
further from the mean of the interaction coecients obtained from
the simulation than 95% of the interaction coecients.

In Table V we present the results based on two sets of 1000 simulations
of the null models for Experiment 2 (simulations were repeated to ensure
reliability). We present the proportion of interaction coefficients for data
simulated from the null model that were further away from the mean of
the interaction coefficients than the actual interaction coefficient observed
in the experiments. This is essentially a p-value with the simulations giving
us the sampling distribution of the interaction coefficients; a higher pro-
portion means the interaction is closer to the mean of the interaction co-
efficients under the null model. Effectively, we ran a two-tailed test. We
believe this is appropriate, as the interaction coefficient could have been
either more than or less than the mean of the interaction coefficients for
the simulated data from the null model.
As can be seen from the results, there is simply no evidence of a more

complex generalisation being learned. The model with only the simple
generalisations captures the data almost perfectly; this is so because the
interaction effect for the actual data is very close to the mean of the inter-
action coefficients for the simulated data from the null models.

13 This seemed sufficient, given the nature of the results presented below. In one case
in Experiment 3, we generated 10,000 replications, as discussed in §4.3.1.
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3.4 Discussion

In Experiment 1, there was a possible confound that learners were also
keeping track of consonant-sequence generalisations, which might have
affected their responses to the New stimuli. If segments themselves are
representational primitives, then the superadditive effect observed for
the New stimuli in Experiment 1 could have been accounted for by mul-
tiple principles. In Experiment 2, once the segment-sequence confound
was removed from the New test stimuli by withholding the relevant con-
sonant sequences during training, the proportion of ‘yes’ responses to the
New stimuli was no more than an additive effect of the proportion of ‘yes’
responses to the OnlyVoicing and OnlyContinuancy stimuli (see Fig. 3
and Table IV); that is, there was no superadditive effect. This suggests
that learners do not keep track of more complex featural generalisations
when simpler generalisations are available. Furthermore, a closer look at
the cumulative proportion of ‘yes’ responses for each type of test stimulus
(see Fig. 4) revealed that the lack of a superadditive effect for the New
stimuli could not be due to insufficient statistical power, i.e. to an insuffi-
cient number of participants in our experiment. Finally, the results also
clearly establish that learners were indeed acquiring both simple general-
isations, since the higher the proportion of ‘yes’ responses to
OnlyVoicing over and above Disharmony, the higher the proportion of
‘yes’ responses to OnlyContinuancy over and above Disharmony (Fig. 5).
There are three aspects of the data that deserve further consideration.

First, the proportion of ‘yes’ responses to OnlyVoicing over and above
Disharmony, while consistent in direction with the results in
Experiment 1, was barely statistically significant. Second, the responses
to the New stimuli in Experiments 1 and 2, while visually different,
were not directly comparable, due to huge imbalances in the number of
participants, and differences in the types of training and test stimuli.
Finally, given that there can be subtle effects of the training data on poten-
tial generalisations, as discussed in Gerken & Knight (2015), it is impor-
tant to establish that the results are not due to accidental patterns in the
(randomised) training stimuli. To address these concerns, we ran
Experiment 3, which is in part a replication of Experiment 2.

Table V
Proportion of interaction coecients for data simulated from the null models
that were further away from the mean of the interaction coecients than the

actual interaction observed in Experiment 2, based on 1000 replications.

all generalisations evaluated together
one generalisation evaluated at a time

0.796
0.945

probability model first simulation

0.831
0.966

second simulation
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4 Experiment 3

4.1 Methods

4.1.1 Participants. 51 English-speaking undergraduates at Michigan
State University participated in this experiment for extra credit (39
female, 12 male; mean age = 20.1; SD = 3.6). None of the participants
were excluded due to non-learning.14

4.1.2 Materials. The design of the Experiment 3 was nearly identical to
those of Experiments 1 and 2. The vowels and consonants were the same,
and the experiment again took about 10–15 minutes.
Training. The training phase for Experiment 3 was identical to that of

Experiment 2. As in Experiment 2, we withheld certain consonant
sequences in the training phase of Experiment 3. The training stimuli
were presented in exactly the same manner as in Experiments 1 and 2.
Testing. The testing phase in Experiment 3 was nearly identical to the

testing phase in Experiment 2. However, there were six different types
of testing stimuli (instead of five), consisting of ten items each, giving a
total of 60 test items.
As in Experiments 1 and 2, the test items consisted of Disharmony,

OnlyVoicing, OnlyContinuancy and Old stimuli. Along with those four
types, there were two other types of New stimuli, corresponding to the
New stimuli of Experiments 1 and 2 respectively. Those new stimuli
that consist of consonant sequences observed during training, as in
Experiment 1, are labelled NewWord stimuli. To reiterate, these are
novel stimuli because the vowels are different. For example, a participant
might have heard [fusi] during training but not [fisa]; [fisa] could have
therefore been a NewWord stimulus for this participant in the test
phase. So while the consonant sequence is not new, the word itself is
new to the participant. Furthermore, we again withheld random consonant
sequences from participants on an individual basis in the training phase,
just as in Experiment 2. The withheld consonant sequences were used
for what we call the NewConsonant testing stimuli. For example, if a par-
ticipant had never heard [bVdV] and [dVbV] during training, then any
words of this form could have made up the NewConsonant stimuli for
this participant in the testing phase.

4.2 Predictions

Since the experiment was carried out (a) to confirm the findings of the pre-
vious two experiments, (b) to allow for a more direct comparison of the

14 It is interesting to note that, unlike in Experiments 1 and 2, none of the participants
hit ceiling for either the Disharmony or the Old test items. It is unclear what caused
this change in participant results. There were no systematic changes in pre-experi-
ment instructions given to the participants. It is possible that the emphasis to some
of the participants by one of the authors to focus on the training might have had an
effect; however, it is not obvious how this would have a bearing on the results.
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‘yes’ responses to the two types of New stimuli in Experiments 1 and 2 and
(c) to ensure that the effect observed for OnlyVoicing stimuli in
Experiment 2 was replicable, the predictions of all the principles presented
earlier are effectively the same as discussed in §2.2. We furthermore
predict that NewWord stimuli will be rated more highly than
NewConsonant stimuli, because NewWord stimuli also conform to any
segment-based generalisations a learner might have formed during train-
ing (in addition to the feature-based generalisations), whereas
NewConsonant stimuli do not.

4.3 Results

Visual inspection of the mean ‘yes’ responses in Fig. 6 suggests that the five
types of test stimuli of main interest (OnlyVoicing, OnlyContinuancy,
NewConsonant, NewWord and Old) are more acceptable to participants
than Disharmony, as shown in Fig. 6.

Three further observations can be made. First, the OnlyVoicing stimuli
are clearly more acceptable than the Disharmony stimuli, thereby suggest-
ing that the marginally significant results in Experiment 2 were not due to
chance variation. Second, as in Experiment 1, the ‘yes’ responses for the
NewWord stimuli appear to be the result of a superadditive effect of the
‘yes’ responses to the OnlyVoicing and OnlyContinuancy stimuli, over
and above the Disharmony stimuli. Finally, as in Experiment 2, the
‘yes’ responses for the NewConsonant stimuli appear to be just an additive
effect (if anything, a subadditive effect) of the ‘yes’ responses to the
OnlyVoicing and OnlyContinuancy stimuli, over and above the
Disharmony stimuli.
As in Experiments 1 and 2, to find out if the responses to the

NewConsonant stimuli were more than an additive effect of the

Figure 6
Proportion of ‘yes’ responses to the test stimuli in Experiment 3.
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OnlyVoicing and OnlyContinuancy responses (over and above the
Disharmony stimuli), we coded the OnlyVoicing stimuli as Voicing, the
OnlyContinuancy stimuli as Continuancy, the NewConsonant stimuli as
both Voicing and Continuancy, and the Disharmony stimuli as neither
Voicing norContinuancy. We again attempted to fit a mixed-effects logistic
regression model (following the procedure discussed in §2.3). The
random-effects structure included a varying intercept for subjects and
items, as in Experiments 1 and 2. As in the case of Experiment 2, the
best model was one with two simple main effects, as shown in
Table VI.15 The results of Experiment 3 therefore replicate those of
Experiment 2.

Next, to establish whether the proportion of ‘yes’ responses to NewWord
stimuli was higher than that for NewConsonant stimuli, we fitted a logistic
mixed-effects model with the data subsetted to only those two types of test
stimuli, and with the responses to NewConsonant stimuli as the baseline.
Therefore, the independent variable of Type has only two levels
(NewConsonant, NewWord). The random-effects structure was one with
a varying intercept for both subjects and items. The model with the inde-
pendent factor for Type in Table VII was the best model for the above
random-effects structure. The model clearly supports the earlier visual
inspection in suggesting that there was indeed a higher proportion of ‘yes’
responses to NewWord stimuli than to NewConsonant stimuli.

Table VI
Best-fitting logistic mixed-e‰ects model for Experiment 3.

estimate

(Intercept)
Voicing
Continuancy

p(>| z| )zfixed e‰ect

0.295
<0.01
<0.001

**
***

—0.0689
0.3022
0.3737

—0.538
2.948
3.646

Table VII
Logistic mixed-e‰ects model comparing NewConsonant and NewWord stimuli.

estimate

(Intercept)
NewWord stimuli

p(>| z| )z

0.5300
1.2169

3.523
7.335

fixed e‰ect

<0.001
<0.0001

***
***

15 The model with the interaction term for Voicing and Continuancy was not signifi-
cantly better than the best model. Furthermore, the interaction term was not sig-
nificant in that model (Í = ―0.29, p = 0.16).
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Finally, as with Experiment 2, we also took a closer look at the data to see
if participants were indeed learning both simple generalisations. As can be
seen in Fig. 7, there is a positive correlation between the preference for
OnlyContinuancy and the preference for OnlyVoicing (Í = 0.372, p =
0.001), replicating the results of Experiment 2. Therefore, there is again
no trade-off between learning the two generalisations for the learners.
This suggests, in line with Experiment 2, that learners who acquired
voicing harmony also learned continuancy harmony, clearly showing
that participants are able to learn both simple generalisations
simultaneously.

4.3.1 Is there any evidence that the complex generalisation was learned? As
with Experiment 2, to probe whether the more complex generalisation was
also learned along with the simple generalisations, we ran a Monte Carlo
simulation. Here, too, we ran the simulation with both the probability
models described in §3.3.1.
Below, we present the results based on two sets of 1000 simulations of

the null models for Experiment 3. Table VIII shows the results of the
simulations. The second set of simulations for the second probability
model (which assumes that averaging over the probabilities of all general-
isations is appropriate) is based on 10,000 replications (this value is itali-
cised). This is because the observed proportion in the first 1000

Figure 7
Correlation between increase in ‘yes’ responses in Experiment 3
to OnlyVoicing compared to those of OnlyContinuancy (jitter

has been added to the plot to reveal overlapping points).
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replications was very close to the 0.05 threshold, so we thought it prudent
to have a larger set of interaction coefficients for comparison.

As with Experiment 2, there is no clear evidence of an interaction effect
beyond the simple model. There is at best a marginally significant effect
under the second probability model (which assumes that the learner uses
only one generalisation at any one time during evaluation). But, if we
consider the full range of results, it is clear from Experiments 2 and 3
that they support the null models (i.e. the models with only the simple
generalisations).17

4.4 Discussion

In Experiment 3, we were able to replicate all the important aspects of the
results in Experiment 2. First, there is a decrease in the preference for
NewConsonant stimuli compared to NewWord stimuli, paralleling the
decrease in the preference for the New stimuli in Experiment 2 compared
to those in Experiment 1. This suggests that there are other generalisations
(possibly consonant-sequence generalisations) that allowed the partici-
pants to rate the NewWord stimuli in Experiment 3 and the New
stimuli in Experiment 1 so highly.
Second, the preference for OnlyVoicing stimuli over Disharmony

stimuli was barely statistically significant in Experiment 2, so it was
important to see that the effect was replicated in Experiment 3.

Table VIII
Proportion of interaction coecients for data simulated from the null

models that were further away from the mean of the interaction
coecients than the actual interaction observed in Experiment 3. Based

on 1000 replications, except for the second set of simulations for the
second model, which was based on 10,000 replications (see note 16).

all generalisations evaluated together
one generalisation evaluated at a time

probability model first simulation

0.2150
0.0930

second simulation

0.2360
0.081216

16 This is based on 10,000 replications. Note that the proportion of values below the
observed interaction coefficient would be half the proportions presented in the
table; however, these are effectively one-tailed p-values, which we think are inappro-
priate, given that the direction of the interaction parameter in the experiment was
not predicted to be less than the mean of the interaction parameters for the simulated
data a priori.

17 Furthermore, the marginally significant effects are only for the probability model
where the generalisations can be used individually and mutually exclusively of
one another while making acceptability judgements, despite there being multiple
generalisations present as part of the grammar. It is not possible to account for
this behaviour with phonological grammars that have parallel architectures, such
as Optimality Theory and Harmonic Grammar.
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Finally, and most crucially, as in Experiment 2, the preference for the
NewConsonant stimuli was no more than an additive effect of the prefer-
ence for OnlyVoicing and OnlyContinuancy stimuli. Therefore, this re-
inforces the finding that the participants in our experiments were not
learning the more complex generalisation when simpler generalisations
were available.

5 General discussion and conclusion

We have presented the results of three artificial language learning experi-
ments that probed the question of what learners do when faced with
data that is consistent with multiple competing phonotactic generalisa-
tions. As mentioned earlier, it is more insightful to break down the ques-
tion into the two subquestions in (1) in §1. The results of Experiments 1, 2
and 3 suggest that learners are indeed able to keep track of multiple gene-
ralisations. However, this does not mean they keep track of all available
generalisations. While the results of Experiment 1 appeared to suggest
that learners could be acquiring more complex generalisations, when the
confounding possibility of using consonant-sequence patterns was
removed from the relevant test items (New stimuli in Experiment 2, and
NewConsonant stimuli in Experiment 3), participants showed no evidence
of learning the more complex featural generalisation; instead, they were
only keeping track of the simplest generalisations, where simplest is
defined as the use of the fewest representational primitives needed to
state the generalisation.
As briefly mentioned in §1, in the interest of expository convenience, we

have conflated the terms ‘complex’ and ‘specific’, where the former refers
to the intensional description, while the latter refers to the extension set.
Crucially, the participants in our experiments were able to learn both
simple featural generalisations and segment-based generalisations, but
did not seem to be able to learn the complex featural generalisations.
The fact that participants learned multiple simple featural generalisations,
but were unable to learn the complex featural generalisation, suggests that
SIMPLICITY is an important notion in understanding learnable and unlearn-
able patterns. In contrast, the fact that participants were able to learn both
the most specific segmental generalisations and the least specific single-
feature generalisations, but unable to learn the complex feature generalisa-
tion (which is intermediate on the specificity scale), suggests that
SPECIFICITY is not a useful notion in understanding learnable and unlearn-
able patterns.18 To reiterate, our experiments suggest that the notion of
simplicity is of relevance to the learner, but not the notion of specificity.

18 To the extent that more specific grammars are favoured as a matter of fact by the
mathematics behind Bayesian inference (cf. the Size Principle; Linzen &
O’Donnell 2015, Tenenbaum & Griffiths 2001, Xu & Tenenbaum 2007), this
could be seen as evidence against some of the predictions of Bayesian models of
learning. This may be due to the fact Bayesian models are not necessarily
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It is important to note that the results cannot be accounted for by just
saying simpler generalisations are easier to learn (Pycha et al. 2003,
Saffran & Thiessen 2003, Cristià & Seidl 2008, Kuo 2009). Such a state-
ment is insufficient to account for the results, as ample training data was
provided to participants to learn the more complex generalisation (com-
pared to previous research that showed that complex generalisations
appear to be learned when there is no competition with simpler generalisa-
tions).19 Therefore, even on this view, the complex generalisation could
still have been learned, albeit with less weight attached to it. If so, there
should have been a superadditive effect observed in participants’ prefer-
ence for the relevant New (or NewConsonant) stimuli in Experiments 2
and 3. Furthermore, it has been suggested that the learning bias for
simpler generalisations stems from what amounts to a sampling bias
(Pierrehumbert 2001, 2003). Pierrehumbert suggests that one reason
that simpler generalisations are learned better than more complex ones is
possibly that more complex generalisations require a more specific set of
data in order to be confirmed, and random sampling might not allow the
learner to experience that particular set of data. However, in our experi-
ments, the amount of training data that supported the more complex gen-
eralisation was equal to the amount of training data that supported the
simpler generalisations; therefore, it is clear that the observed bias
cannot be reduced to a sampling bias in the input data.
There are four other issues that we wish to touch upon. First, how do we

square our results with those of Gerken (2006) and Linzen & Gallagher
(2014, 2017), who argue that their results suggest that learners might be
acquiring more complex (or specific) generalisations? As a reviewer
points out, it is reasonable to reinterpret Gerken’s (2006) results as
showing that learners need stimulus variation to infer a more abstract gen-
eralisation. For, if the learner were simply maintaining the subset
grammar, they could still have memorised all the possible final syllables.
Furthermore, in each of the above papers the comparisons were over gen-
eralisations with different representational primitives. For example,
Linzen & Gallagher’s (2014, 2017) specific generalisation involved seg-
ments, while the simpler one involved features. However, the specific
one is only more complex if we assume that segments are not themselves

incremental or algorithmic models of learning, but rather computational-level
models; this is worth further investigating.

19 We say the training data was ample compared to other artificial language learning
experiments. Of course, it is possible to defend any particular hypothesis by
arguing that there are not enough training items, and not enough training segments
in the items. In that case, we think the onus is on such researchers to specify what
constitutes sufficient training data to falsify the hypothesis. For example, there
could be a strong prior bias against a grammar with the conjoined feature rule,
and we would only see evidence for the learning of this conjoined feature rule if par-
ticipants received more data. This may be true, but could always be true in the
absence of a clear statement of what one thinks the magnitude of the prior bias is.
In particular, in the absence of an idea of what the magnitude of the bias against a
conjoined feature rule might be, we don’t think this would be a fruitful discussion.
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representational primitives, but nothing more than a collection of features.
If this assumption is wrong, then equating specificity with the notion of
complexity is not relevant to their experiments. As our experiments
show, when the possibility of segment-sequence generalisations was
removed (Experiments 2 and 3), there was no evidence for the claim that
learners were keeping track of more complex (featural) generalisations.
Similarly, Gerken (2006) compared a simple syllabic generalisation
(AAB) with one that involved both syllables and segments (AAdi, i.e.
two identical syllables followed by di). Given that the putative complex
generalisation involved both syllables and segments, it is possible that
the more complex generalisation is actually decomposable into simpler
generalisations involving syllables and segments separately. What we
wish to primarily highlight from this discussion is that in order to test
the learnability of simple vs. complex generalisations, the class of represen-
tational primitives used in the two types of generalisations needs to be kept
constant, as in our Experiments 2 and 3. Otherwise, it is difficult to draw
firm conclusions from the results, whatever they may be.
Second, how do our results relate to those of Finley (2011, 2012), Lai

(2015) and McMullin (2016), which suggest that learners appear to be
unwilling to accept a seemingly more general non-local pattern across
both vowels and consonants (‘second-order non-local’) when trained on
a transvocalic (‘first-order local’) pattern, but are willing to accept a trans-
vocalic pattern when trained on a more general non-local pattern?20 In our
opinion, these results are actually unclear with respect to the issue of sim-
plicity. The crux of the argument in such experiments is contingent on a
comparison with chance (0.5), with the inference that a generalisation
has not been used in novel contexts if the acceptability proportion is
around 0.5; however, it is not clear that a proportion of 0.5 is the appropri-
ate representation of chance (as the stimuli display other patterns that are
consistent with the training data); instead, the results should, we believe,
be seen in relative terms. That is, when trained on transvocalic patterns,
participants accept transvocalic patterns more than the more general
pattern, but when trained on the more general (transsegmental) pattern,
there is no such clear difference. If the results are seen in this light, we
can reinterpret the results. Following Heinz (2010), we assume that a
learner is equipped with the ability to acquire both n-gram generalisations
(up to a suitable n; see Cowan 2010 for an argument that n ≈ 4 for short-
term memory generally) and separate precedence and piecewise general-
isations which make no reference to locality. If so, when presented with
training stimuli with transvocalic harmony, learners can represent them
with either an n-gram generalisation or a precedence generalisation. As a
consequence, during testing, the acceptability of the transvocalic stimuli
can be analysed as an additive effect of both types of generalisation,
while the acceptability of the more general (transsegmental)

20 Recall that in the second-order non-local case, the patterns were across VCV con-
texts, while in the first-order local case, the patterns were across a single V.
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generalisations is only due to the precedence grammar. In effect, we expect
the latter to be more acceptable than the former. In contrast, when pre-
sented with the transsegmental pattern during training, learners can only
acquire the precedence generalisation; as a consequence, during testing
they show no difference between the transvocalic and transsegmental
patterns.
Third, the fact that learners keep track of only the simplest generalisa-

tions consistent with the data in the face of ambiguity suggests that there
is a certain structure to the search space of possible generalisations, as
touched upon by Chomsky & Halle (1968) and Hayes & Wilson (2008);
this structure, if present, dramatically decreases the computational chal-
lenge faced by the learner. Such a view leads to a slight reinterpretation
of previous artificial language learning results that suggest that simpler
generalisations are easier to learn than more complex generalisations
(Pycha et al. 2003, Saffran & Thiessen 2003, Cristià & Seidl 2008, Kuo
2009). More specifically, the results presented in this article suggest that
the reason that simpler generalisations appear to be learned better in pre-
vious artificial language learning experiments is that learners attempt to
acquire simpler generalisations first, and only in the absence of viable
simpler generalisations do they attempt to learn more complex ones.
Fourth, a more speculative possibility, one that takes a substantial

inductive leap from our results, is that learners are only able to keep
track of simple phonotactic generalisations, by which we mean generalisa-
tions that involve the precedence relationships between at most a single
pair of features, segments, syllables, etc. Therefore, the issue of complex
vs. simple learned generalisations itself would vanish, as the learner
simply cannot keep track of complex generalisations (of the relevant
type).21 For example, learners might be able to keep track of precedence
relationships such as feature1 … feature2 or segment1 … segment2, etc.,
but not precedence relationships involving more than that, such as
feature1, feature3 … feature2, feature3 or segment1 … segment2 …
segment3. Such a possibility would automatically explain why our experi-
ments found no evidence for participants learning the complex general-
isation. It would further suggest that the reason that previous
experiments seemed to show learning of a complex generalisation was
just because they did not – or could not, given their design – test
whether their results were merely the additive result of multiple simple
generalisations. As mentioned above, this possibility requires a big
inductive leap from the results presented in this article, and should at
this point be seen as a speculation that is, at best, worthy of future analyt-
ical and/or experimental consideration.
In conclusion, we would like to reiterate the primary findings in the

article. In the face of data that is ambiguous between many phonotactic

21 Note that a similar sentiment that simple (and even categorical) models of phonotac-
tics can account for the extant data on word-acceptability judgements is discussed by
Gorman (2013).
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sequence generalisations, learners keep track of multiple generalisations, as
long as they are the simplest possible generalisations.
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