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COMPOUND GEOMETRIC APPROXIMATION
UNDER A FAILURE RATE CONSTRAINT
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Abstract

We consider compound geometric approximation for a nonnegative, integer-valued
random variable W . The bound we give is straightforward but relies on having a lower
bound on the failure rate of W . Applications are presented to M/G/1 queuing systems,
for which we state explicit bounds in approximations for the number of customers in the
system and the number of customers served during a busy period. Other applications are
given to birth–death processes and Poisson processes.
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1. Introduction and main result

We consider the approximation of a nonnegative, integer-valued random variable W by a
compound geometric distribution. We say that Y has a compound geometric distribution if
it is equal in distribution to

∑N
i=1Xi , where X,X1, X2, . . . are independent and identically

distributed (i.i.d.) andN ∼ geom(p) has a geometric distribution with P(N = k) = p(1−p)k
for k = 0, 1, 2, . . . . In this work we will only consider the case where X takes values in
N = {1, 2, . . .}. As usual, the empty sum is treated as 0, so that P(Y = 0) = P(N = 0) = p.

Such compound geometric distributions arise in a number of applications in a variety of
fields, including reliability, queueing theory, and risk theory; see [11] for an overview. It is
well known that a compound geometric distribution converges to an exponential distribution as
p → 0. Explicit bounds in exponential approximation for compound geometric distributions
have been given by Brown [5], [7], Bon [4], and Peköz and Röllin [18]. Brown’s work takes
advantage of reliability properties of such compound geometric distributions; such properties
will also prove useful in our work. The bounds given by Peköz and Röllin [18] apply more
generally than to compound geometric distributions, relaxing the assumptions that N have a
geometric distribution and that the Xi be independent. Peköz et al. [19] gave bounds in the
geometric approximation of compound geometric distributions. Note that some of the above-
mentioned bounds apply in the case where N is supported on {0, 1, . . .}, and some in the case
where N has support {1, 2, . . .}.

Here we will consider the approximation of W by our compound geometric random vari-
able Y using the total variation distance, defined by

dTV(L(W),L(Y )) = sup
A⊆Z+

|P(W ∈ A)− P(Y ∈ A)|,
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where Z
+ = {0, 1, 2, . . .}. Some work on compound geometric approximation in total variation

distance has been carried out by Daly [9], whose main application is to hitting times of Markov
chains in a quite general setting. We build upon that work by presenting bounds which are
more straightforward to evaluate, but which require some knowledge about the behaviour of
the failure rate of the random variable W . We recall that the failure rate (or hazard rate) of a
nonnnegative, integer-valued random variable W is defined to be

rW (j) = P(W = j)

P(W > j)
, j ∈ Z

+.

Some authors use an alternative definition, taking the failure rate of W to be

r̃W (j) = P(W = j)

P(W ≥ j)
, j ∈ Z

+.

The failure rate of a continuous random variable may be defined analogously, by replacing the
mass function in the numerators of the above with a density function.

Note that our bounds may be applied in conjunction with bounds for exponential or geometric
approximation of compound geometric distributions discussed above.

In our main result, Theorem 1.1 below, we will assume that we have δ > 0 such that
rW (j) ≥ δ for all j . Given such a δ, the total variation distance between W and a compound
geometric distribution may be effectively bounded by computing their expectations. This is
in contrast to the bounds presented in [9], where more detailed information must be known
about W to allow them to be computed.

We note the work by Brown and Kemperman [8] and Brown [6], who found bounds on
the distribution function and variance of a random variable, respectively, under bounds on
its failure rate. Explicit bounds in probability approximation for a random variable with a
bounded failure rate have also been derived in the recent work of Brown [7]. He gave sharp
bounds in exponential approximation for random variables whose failure rate may be bounded
from above, with applications to compound geometric distributions, and first passage times of
birth–death processes and other reversible Markov chains (in continuous time). Note that here
we are working with discrete random variables, under the assumption of a lower bound on the
failure rate. Our results complement, but do not overlap with, Brown’s work.

After stating our main theorem, a first application (approximating the equilibrium number
of customers in an M/G/1 queueing system) will be presented to illustrate our bound. Further
applications will be given in Sections 2 and 3.

In Section 2 we will consider the well-studied problem of geometric approximation for
random variables with increasing failure rate. We will consider two straightforward applications
of our Theorem 1.1 (to Poisson processes and the Pólya distribution) which allow us to explicitly
compare our bound with a similar result from [16]. In Section 3 we consider compound
geometric approximation for random variables with decreasing failure rate. In particular, we
consider the number of customers served during a busy period of an M/G/1 queue, and the time
to extinction of a discrete birth–death process.

The proof of our Theorem 1.1 is given in Section 4. The proof uses Stein’s method (see [2]
and the references therein), building upon previous work on Stein’s method for geometric [17]
and compound geometric [9] approximation. Finally, in Section 5 we give related results which
we illustrate with short examples.

https://doi.org/10.1017/jpr.2016.35 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.35


702 F. DALY

For future use, for any 0 ≤ p ≤ 1 and positive, integer-valued random variable X with
u = 1 − dTV(L(X),L(X + 1)), we define

Hp(X) = min

{
p + (1 − p)P(X > 1), p

(
1 +

√
−2

u log(1 − p)

)}
. (1.1)

We now state our main result.

Theorem 1.1. Let W be a nonnegative, integer-valued random variable with P(W = 0) =
p ∈ (0, 1) and rW (j) ≥ δ > 0 for all j . Let Y = ∑N

i=1Xi , where N ∼ geom(p) and
X,X1, X2, . . . are i.i.d. positive, integer-valued random variables. If

EX ≥ p

(1 − p)δ
,

then dTV(L(W),L(Y )) ≤ Hp(X)(EY − EW).

Note that under the conditions of this theorem, it is straightforward to show that EW ≤ δ−1,
so that the resulting upper bound is nonnegative, as expected.

1.1. Application to the number of customers in an M/G/1 queue

Consider an M/G/1 queueing system in equilibrium, with customers arriving at rate λ and
with i.i.d. service times having the same distribution as the random variable S. Letting ρ =
λE[S], we assume throughout that ρ < 1. Let W be the number of customers in the system.
It is well known that

P(W = 0) = 1 − ρ and EW = ρ + ρ2
E[S2]

2(1 − ρ)(ES)2
.

See, for example, [1, p. 281].
Let Rj denote the residual service time of the customer currently being served in the queue,

conditional on the event {W = j}. Then Ross [21] showed that

rW (j) = 1 − ρ

λERj
and ERj ≤ sup

t∈R+
E[S − t | S ≥ t].

We may thus apply Theorem 1.1 with the choice

δ = 1 − ρ

λ supt∈R+ E[S − t | S ≥ t] .

The random variable S is said to be new better than used in expectation (NBUE) if we have
E[S − t | S ≥ t] ≤ ES for all t ≥ 0. In this case we may take δ = ρ−1(1 − ρ) and, in the
notation of Theorem 1.1, we may then take X = 1 almost surely (a.s.), so that Y simply has a
geometric distribution and Hp(X) = p. We thus obtain the following.

Corollary 1.1. LetW be the number of customers in an M/G/1 queueing system in equilibrium
as above. If S is NBUE then

dTV(L(W), geom(1 − ρ)) ≤ ρ2
(

1 − E[S2]
2(ES)2

)
.
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Note that, as expected, this upper bound is 0 if the service time S has an exponential distribution
(which is indeed NBUE).

Finally, in this section, we refer the interested reader to Müller and Stoyan [15], who prove
many stochastic comparison and monotonicity results for queueing models (and in many other
applications), and derive associated bounds on quantities such as the mean waiting time and
mean busy period for stationary queues. Some of their work also takes advantage of reliability
properties of the underlying random variables, as we have done here.

2. Geometric approximation for increasing failure rate distributions

In the notation of Theorem 1.1, since p = P(W = 0) it follows that rW (0) = p(1 − p)−1.
If the failure rate rW (j) is increasing in j , this may clearly serve as the lower bound δ. In this
case, we may let the random variableX be 1 a.s., so that Y has a geometric distribution. Noting
that Hp(X) = p in this case, we obtain the following.

Corollary 2.1. LetW be a nonnegative, integer-valued random variable with P(W = 0) = p.
If W has increasing failure rate (IFR) then

dTV(L(W), geom(p)) ≤ 1 − p(1 + EW).

Note that we do not need the monotonicity of rW to obtain such a bound; it suffices to have
rW (j) ≥ rW (0) for all j ∈ Z

+.
Geometric approximation theorems for IFR random variables are well known. We use

the remainder of this section to give two explicit examples in which we can compare our
Corollary 2.1 to the main theorem of Obretenov [16]. Obretenov does not use total variation
distance dTV, but employs the Kolmogorov distance dK defined by

dK(L(W),L(Y )) = sup
j∈Z+

|P(W ≤ j)− P(Y ≤ j)|.

Since total variation distance is stronger than Kolmogorov distance, Corollary 2.1 also bounds
the Kolmogorov distance between W and our geometric distribution, and thus Obretenov’s
bound may be compared with ours.

Obretenov [16] showed that ifW is a nonnegative, integer-valued, IFR random variable with
EW = μ then

dK(L(W), geom((1 + μ)−1)) ≤ μ

1 + μ

(
1 − var(W)

μ(1 + μ)

)
. (2.1)

Note that Obretenov chooses a geometric distribution having the same expectation asW , while
we have chosen ours to have the same probability of being zero.

2.1. Application to the Pólya distribution

Suppose m balls are distributed randomly among d ≥ 2 urns, in such a way that all
assignments are equally likely. Let W count the number of balls in the first urn. Then
W ∼ Pya(m, d) has a Pólya distribution, with

P(W = k) =
(
d +m− k − 2

m− k

)/(
d +m− 1

m

)
, 0 ≤ k ≤ m.

It is straightforward to show that, with this definition

P(W = k)2 ≥ P(W = k − 1)P(W = k + 1) for 1 ≤ k ≤ m.
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Table 1: Geometric approximation for W ∼ Pya(m, d). Values of p = (d − 1)(d +m− 1)−1 given to
four decimal places; total variation distance betweenW and Y ∼ geom(p), and bounds (2.2)–(2.4) given

to four significant figures

m d p dTV(L(W),L(Y )) (2.2) (2.3) (2.4)

200 200 0.4987 0.000 945 8 0.002 506 0 0.004 975 0 0.000 628 1
200 10 0.0431 0.030 550 0 0.095 690 0 0.173 200 0 0.000 198 1
10 10 0.4737 0.022 550 0 0.052 630 0 0.090 910 0 0.013 850 0
10 200 0.9522 0.000 219 0 0.000 239 2 0.000 473 8 0.000 219 0

Hence,W is IFR. See, for example, [16, p. 177]. We may thus apply Corollary 2.1, which gives

dTV(L(W),L(Y )) ≤ m

d(d +m− 1)
, (2.2)

where Y ∼ geom((d − 1)/(d +m− 1)). In this case, Obretenov’s bound (2.1) is

dK

(
L(W), geom

(
d

d +m

))
≤ 2m

(d + 1)(d +m)
. (2.3)

Our bound is better than (2.3) for large enough d (specifically, d2 + dm− 3d −m > 0). Note,
however, that (2.2) bounds the total variation distance, while (2.3) bounds only the weaker
Kolmogorov distance. Our (2.2) also improves upon bounds for geometric approximation of
the Pólya distribution in [9, Example 3.1] and [20, Section 4].

A simple lower bound corresponding to (2.2) is given by

dTV(L(W),L(Y )) ≥ |P(W = 1)− P(Y = 1)| = m(d − 1)

(d +m− 2)(d +m− 1)2
. (2.4)

In the case where d is of order O(m), this lower bound is of the same order as each of the
upper bounds (2.2) and (2.3). Some numerical comparison of the bounds (2.2)–(2.4) is given
in Table 1.

2.2. Application to Poisson processes

Let {N(t) : t ≥ 0} be a homogeneous Poisson process of rate λ and let T be an IFR random
variable independent of {N(t) : t ≥ 0}. By [22, Corollary 5.2], N(T ) is also IFR. Since
P(N(T ) = 0) = Ee−λT , EN(T ) = λET , and var(N(T )) = λET + λ2 var(T ), from our
Corollary 2.1, we have

dTV(L(N(T )), geom(Ee−λT )) ≤ 1 − (Ee−λT )(1 + λET ), (2.5)

while Obretenov’s result (2.1) gives

dK(L(N(T )), geom((1 + λET )−1)) ≤ λET

1 + λET

(
1 − ET + λ var(T )

ET (1 + λET )

)
. (2.6)

To give an explicit example where we may compare these bounds, suppose that T ∼ �(α, β)

has a gamma distribution with density function φ(x) proportional to xα−1e−βx for some α > 1
and β > 0. Then T is IFR. Since

Ee−λT =
(

1 + λ

β

)−α
, ET = α

β
, var(T ) = α

β2 ,
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the bounds (2.5) and (2.6) become, respectively,

dTV

(
L(N(T )), geom

((
1 + λ

β

)−α))
≤ 1 −

(
1 + λ

β

)−α(
1 + αλ

β

)
, (2.7)

and

dK

(
L(N(T )), geom

(
β

β + αλ

))
≤ α(α − 1)λ2

(β + αλ)2
. (2.8)

To compare (2.7) and (2.8), we use Taylor’s theorem to note that for small λ the upper bound
of (2.7) is approximately equal to α(α − 1)λ2(2β2)−1, which is smaller than the upper bound
of (2.8) whenever (

√
2 − 1)β > αλ. Finally, we again emphasise that (2.7) bounds the total

variation distance, while (2.8) bounds only the weaker Kolmogorov distance.
We return to further applications of our results to Poisson processes in Section 5.

3. Approximation for decreasing failure rate distributions

In this section we present some further applications of our main result, Theorem 1.1. We will
consider random variables which have the decreasing failure rate (DFR) property, so that the
lower bound δ may be taken to be limj→∞ rW (j). The applications we will consider will be to
the number of customers served in a busy period of an M/G/1 queue, and to the time to extinction
of a discrete birth–death process. In each case we will construct the relevant random variable
W as the time at which a particular Markov chain on Z

+ first visits the origin. In this case,
Shanthikumar [24] gave sufficient conditions for the DFR property to hold and an expression
for the failure rate which will allow us to apply our Theorem 1.1.

Let {Zn : n ≥ −1} be a discrete-time Markov chain with state space Z
+ and transition matrix

P = (pij ). Let the entries of the matrix P + = (p+
ij ) be given byp+

ij = ∑∞
k=jpik for i, j ∈ Z

+.
Assume that the Markov chain starts at Z−1 = 1 and define the hitting time

W = min{n ≥ 0 : Zn = 0}. (3.1)

Without loss of generality in what follows, we may assume that the state 0 is absorbing. We have
chosen to start our Markov chain at time −1 so that the support of W matches that of our
compound geometric distributions.

We say that the matrix P + is totally positive of order 2 (TP2) if p+
ikp

+
j l ≥ p+

il p
+
jk for all

i < j and k < l. Shanthikumar [24, Theorem 3.1] states that if P + is TP2 then W is DFR.
From the proof of that theorem, we also have that for such DFR hitting times W , r̃W (j) ≥ δ̃

for all j ∈ Z
+, where

δ̃ =
∞∑
i=1

pi0 lim
j→∞ P(Zj = i | Zj ≥ 1). (3.2)

In order to evaluate this expression, we will therefore need an expression for the limiting
distribution of our Markov chain conditional on nonabsorption.

To translate a lower bound on r̃W (j) into a lower bound on rW (j), we will use the following
lemma, whose proof is straightforward and, therefore, omitted.

Lemma 3.1. Let W be a nonnegative, integer-valued random variable with r̃W (j) ≥ δ̃ for all
j ∈ Z

+. Then rW (j) ≥ δ̃(1 − δ̃)−1 for all j ∈ Z
+.
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3.1. Customers served during a busy period of an M/G/1 queue

Consider the M/G/1 queue of Section 1.1, with customers arriving at rate λ and i.i.d. service
times with the same distribution as S. Again letting ρ = λES, we will assume throughout
that ρ < 1. We will also assume that S is IFR, so that, by [24, Theorem 5.1], the number of
customers served during a busy period is DFR.

Consider the embedded Markov chain {Zn : n ≥ −1}, whereZ−1 = 1 andZn represents the
number of customers in the system after the departure of customer n (with customers labelled
0, 1, 2, . . .). Then W + 1, with the hitting time W given by (3.1), is the number of customers
served during a busy period of the queue.

This Markov chain has the transition probabilities p00 = 1 and pij = g(j + 1 − i), where

g(k) =
⎧⎨⎩

1

k!E[e−λS(λS)k] if k ≥ 0,

0 if k < 0.

Hence,
p = P(W = 0) = p10 = Ee−λS. (3.3)

We also have EW = ρ(1 − ρ)−1. See, for example, [13, p. 217].
Since pi0 = 0 for i > 1, the lower bound δ̃ given by (3.2) becomes δ̃ = pθ , where

θ = limj→∞ P(Zj = 1 | Zj ≥ 1). To find an expression for θ , we use a formula due to
Kyprianou [14]. Suppose that the density of the service time S has Laplace transform ϕ, and
let ξ be the real solution of 1 + λϕ′(s) = 0 nearest the origin. By a result on [14, p. 829], we
then have

θ = ξ − λ+ λϕ(ξ)

(ξ − λ)ϕ(λ)
. (3.4)

Using Lemma 3.1, we may then take the lower bound δ = pθ(1 − pθ)−1 in Theorem 1.1 and
we obtain the following.

Theorem 3.1. LetW+1 be the number of customers served in a busy period of an M/G/1 queue
with arrival rate λ and service time S. Let p and θ be given by (3.3) and (3.4), respectively.
Suppose that S is IFR and that ρ = λES < 1. Let N ∼ geom(p) and Y = ∑N

i=1Xi , where
X,X1, X2, . . . are i.i.d. with (1 − p)θEX ≥ 1 − pθ . Then

dTV(L(W),L(Y )) ≤ Hp(X)

(
(1 − p)EX

p
− ρ

1 − ρ

)
.

The number of customers served in a busy period of this queueing system is closely related
to the total progeny of a certain branching process, and so our Theorem 3.1 may also be applied
in that setting. If we define the offspring of a customer to be the other customers who arrive
while he/she is being served, the number of customers served during a busy period has the same
distribution as the total progeny of the customer initiating the busy period. See [1, p. 284] for
further details.

To illustrate our Theorem 3.1, we consider the example where S ∼ �(k, β) has an Erlang
distribution for some integer k ≥ 1 and some β > 0. In this case, S is indeed IFR. Since
ES = kβ−1, our condition on ρ requires that kλ < β.

Using (3.3), p = (1 + λβ−1)−k . The Erlang density has Laplace transform ϕ(s) = βk(s +
β)−k , and since kλ < β it is straightforward to check that ξ = (λkβk)1/(k+1) − β and that,
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Table 2: Some values of the upper bound U of (3.6) for the Erlang service time example. Invalid
parameter choices are marked with ‘–’.

β
k λ

0.1 0.5 1 1.5 10

1

0.001 0.1134 0.0470 0.0327 0.0265 0.0101
0.005 0.3183 0.1134 0.0769 0.0617 0.0229
0.010 0.5652 0.1714 0.1134 0.0901 0.0327
0.050 > 1 0.5652 0.3183 0.2388 0.0769
0.100 – > 1 0.5652 0.3978 0.1134

5

0.001 0.3784 0.1985 0.1588 0.1406 0.0846
0.005 > 1 0.3783 0.2781 0.2378 0.1294
0.010 > 1 0.5619 0.3784 0.3137 0.1588
0.050 – > 1 > 1 0.8366 0.2781
0.001 – – > 1 > 1 0.3784

10

0.001 0.5777 0.2827 0.2271 0.2025 0.1282
0.005 > 1 0.5777 0.4027 0.3402 0.1874
0.010 – 0.9890 0.5777 0.4614 0.2272
0.050 – – > 1 > 1 0.4027
0.100 – – – > 1 0.5777

therefore, by (3.4),

θ =
(
β + λ

β

)k(
1 − 1

A

)
,

where A = (β + λ)(kk/λβk)1/(k+1) − k. Theorem 3.1 thus requires that we choose

EX ≥ βk

(A− 1)((β + λ)k − βk)
. (3.5)

If we choose X such that equality holds in (3.5), the upper bound of Theorem 3.1 becomes
Hp(X)U ≤ U , where

U = 1

A− 1
− kλ

β − kλ
. (3.6)

Some numerical illustration of this bound is given in Table 2.

3.2. Time to extinction of a birth–death process

We let {Zn : n ≥ −1} be the Markov chain with Z−1 = 1, p00 = 1, and

pij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pi if j = i + 1,

qi if j = i − 1,

ri if j = i,

0 otherwise,

for i ≥ 1.

Let W be the hitting time defined by (3.1): the time when this discrete birth–death process
becomes extinct.
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Clearly, we have p = P(W = 0) = q1 and, from (3.2),

δ̃ = q1 lim
j→∞ P(Zj = 1 | Zj ≥ 1). (3.7)

To find an expression for this limit, we use the famous Karlin–McGregor [12] representation
of the n-step transition probabilities of this chain. Define π1 = 1 and

πj = p1p2 · · ·pj−1

q2q3 · · · qj for j ≥ 2.

Then Karlin and McGregor [12] showed that there is a unique positive measure ψ , of total
mass 1, supported on [−1, 1] such that

pij (n) = P(Zn = j | Z0 = i) = πj

∫ 1

−1
xnQi(x)Qj (x) dψ(x) for i, j ≥ 1,

where {Qj : j ≥ 1} is a sequence of polynomials (orthogonal with respect to ψ) satisfying the
relations Q1(x) = 1, p1Q2(x) = x − r1, and

xQj (x) = qjQj−1(x)+ rjQj (x)+ pjQj+1(x) for j ≥ 2.

Following the notation of van Doorn and Schrijner [25], Qj+1 has j distinct 0s, which we
denote x1j < x2j < · · · < xjj . We write η = limk→∞ xkk and

Cn(ψ) =
∫ 0
−1(−x)n dψ(x)∫ 1

0 x
n dψ(x)

.

Assumption 3.1. In what follows, we make the following assumptions:

(i)
∑∞
k=1(pkπk)

−1 = ∞;
(ii) η < 1;

(iii) limn→∞ Cn(ψ) = 0;
(iv) rj ≥ 1

2 for all j ≥ 1.

Assumption 3.1(i) guarantees that the birth–death process does eventually reach extinction;
see [25, Section 4]. Assumptions 3.1(ii) and 3.1(iii) are used to ensure that the limit (3.7) exists,
and are taken from [25, Lemma 4.1]. Finally, Assumption 3.1(iv) is sufficient to guarantee that
the transition matrix of our birth–death chain is TP2, and, hence, that the extinction time W is
DFR. See [10, p. 6] and [24, Remark 3.2].

We note that [25, Section 3] gives several conditions under which Assumption 3.1(iii) holds
and which may be used to check its validity in practice.

Under Assumption 3.1, from [25, Lemma 4.1], we have δ̃ = 1 − η, and so (by Lemma 3.1)
we may take δ = η−1(1−η) in Theorem 1.1. Applying that result, we then obtain the following.

Theorem 3.2. Let W be the time to extinction of the discrete birth–death process defined
above. Assume that Assumption 3.1 holds. Let N ∼ geom(q1) and Y = ∑N

i=1Xi , where
X,X1, X2, . . . are i.i.d. with (1 − q1)(1 − η)EX ≥ q1η. Then

dTV(L(W),L(Y )) ≤ Hq1(X)

(
(1 − q1)EX

q1
− EW

)
.

Finally, note that Brown [7] considered exponential approximation for hitting times of birth–
death processes in continuous time, taking advantage of monotonicity of the failure rate in his
work. See also the references within Brown’s work.
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4. Proof of Theorem 1.1

We use this section to give the proof of our main result, Theorem 1.1. The proof is based
on Stein’s method for compound geometric approximation. Stein’s method was first applied
to the problem of approximation by a geometric distribution by Barbour and Grübel [3] and
Peköz [17]. More recent developments in Stein’s method for geometric approximation are
given in [19] and [20]. Stein’s method has previously been used in the compound geometric
case in [9], and compound geometric distributions have appeared in conjunction with Stein’s
method in [4], [18], and [19]. The interested reader is also referred to [2] and the references
therein for an introduction to Stein’s method more generally.

Throughout this section we will let W and Y be as defined in Theorem 1.1, and Hp(X) be
given by (1.1). We define the random variable V to be such that V +X

d=(W | W > 0), where
‘

d=’ denotes equality in distribution.
We will employ the usual stochastic ordering in what follows. Recall that for any two

random variables T and U , T is said to be stochastically smaller than U (written T ≤ST U ) if
P(T > j) ≤ P(U > j) for all j .

Lemma 4.1. Let W be a nonnegative, integer-valued random variable with P(W = 0) = p

and rW (j) ≥ δ > 0 for all j ∈ Z
+. Let V be as above and suppose that EX ≥ p/(1 − p)δ.

Then V +X ≤ST W +X.

Proof. From the definition of V , the required stochastic ordering will follow if

(1 − p)P(W +X > j) ≥ P(W > j) for all j ∈ Z
+. (4.1)

Conditioning on X (which is independent of W ), we write

P(W +X > j) = P(W > j)+ E

[ j∑
k=j+1−X

P(W = k)

]
.

Using this, we rearrange (4.1) to obtain that the required stochastic ordering holds if

1

P(W > j)
E

[ j∑
k=j+1−X

P(W = k)

]
≥ p

1 − p
. (4.2)

Now, if rW (k) ≥ δ for all k then

1

P(W > j)
E

[ j∑
k=j+1−X

P(W = k)

]
≥ E

[ j∑
k=j+1−X

rW (k)

]
≥ δEX.

Hence, if EX ≥ p/(1 − p)δ then (4.2) holds and our lemma follows. �

The proof of Theorem 1.1 then follows similar lines to that of [9, Proposition 3.1]. For
A ⊆ Z

+, we let fA : Z
+ �→ R be such that fA(0) = 0 and

1{j∈A} −P(Y ∈ A) = (1 − p)EfA(j +X)− fA(j), (4.3)

where 1{·} denotes the indicator function. We then note the following property of fA.
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Lemma 4.2. Let fA be as above. Then

sup
j∈Z+

|fA(j + 1)− fA(j)| ≤ 1

p
Hp(X).

Proof. From (4.3), it is easy to check that

fA(j) = −
∞∑
i=0

(1 − p)i[P(j +X1 + · · · +Xi ∈ A)− P(Y +X1 + · · · +Xi ∈ A)], (4.4)

from which it follows that |fA(j + 1)− fA(j)| may be bounded by

∞∑
i=0

(1 − p)i |P(j + 1 +X1 + · · · +Xi ∈ A)− P(j +X1 + · · · +Xi ∈ A)|. (4.5)

To complete the proof, we bound (4.5) in two different ways. First, letting N ∼ geom(p), we
write this as

1

p
|P(j + 1 +X1 + · · · +XN ∈ A)− P(j +X1 + · · · +XN ∈ A)|

≤ 1

p
dTV(L(Y ),L(Y + 1))

≤ 1 + (1 − p)

p
P(X > 1), (4.6)

where the final inequality uses [26, Theorem 3.1]. Alternatively, we have

|P(j + 1 +X1 + · · · +Xi ∈ A)− P(j +X1 + · · · +Xi ∈ A)|
≤ dTV(L(X1 + · · · +Xi),L(X1 + · · · +Xi + 1)).

We may then follow the analysis of [19, Theorem 3.1] to obtain

|fA(j + 1)− fA(j)| ≤ 1 +
√

−2

u log(1 − p)
,

where u = 1 − dTV(L(X),L(X + 1)). This completes the proof. �

Remark 4.1. Lemma 4.2 improves upon part of [9, Theorem 2.1] by presenting a sharper
bound and removing a restriction on the support ofX. This may, in turn, be used to improve on
[9, Proposition 3.1]. For a general X, Lemma 4.2 gives the bound |fA(j + 1)− fA(j)| ≤ p−1

(which is the same bound given in [9]), but also shows that a better bound is possible when
P(X = 1) is large (informally, when Y is close to a geometric distribution) or when X is
smooth (in the sense that the total variation distance between X and X+ 1 is small). Note that
the bound |fA(j + 1) − fA(j)| ≤ p−1 is the best possible without imposing restrictions
on X. To see this, suppose that X = 2 a.s. and let A = 2Z

+. In this case, (4.4) gives
fA(j+1)−fA(j) = (−1)jp−1. The inequalities in (4.6) are also sharp, in that ifY ∼ geom(p)
then dTV(L(Y ),L(Y + 1)) = p.
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Using the definitions of fA and V , we may write

P(W ∈ A)− P(Y ∈ A)
= (1 − p)E[fA(W +X)− fA(V +X)]

= (1 − p)

∞∑
j=0

[fA(j + 1)− fA(j)][P(W +X > j)− P(V +X > j)]. (4.7)

Now, under the conditions of Theorem 1.1, Lemma 4.1 gives us V + X ≤ST W + X. Hence,
bounding (4.7) using Lemma 4.2, we have

|P(W ∈ A)− P(Y ∈ A)| ≤ (1 − p)

p
Hp(X)E[W − V ] = Hp(X)E[Y −W ],

where the final equality follows from the definition ofV . We have thus established Theorem 1.1.

Remark 4.2. The techniques of this section may also be used to bound the Wasserstein distance
dW(L(W),L(Y )) = suph |Eh(W)−Eh(Y )|, where the supremum is taken over all 1-Lipschitz
functions h. Under the conditions of Theorem 1.1, we follow the above methods to obtain the
bound dW(L(W),L(Y )) ≤ EY − EW . This bound is sharp. Suppose, for example, that W is
IFR and Y ∼ geom(p). ThenW ≤ST Y (see [23, Theorem 1.B.1]) and so dW(L(W),L(Y )) =
EY − EW . See [23, Theorem 1.A.11].

5. Some further results

In this section we note two results, closely related to Theorem 1.1, which may prove useful
in applications. Potential applications are indicated for each via short examples.

5.1. Approximation for translated distributions

Let W be as in Theorem 1.1, and let Wm
d= (W −m | W ≥ m) for some m ∈ Z

+. In many
cases it is more natural to seek a compound geometric approximation forWm (for somem ≥ 1)
than for W . This may be achieved in a straightforward way using Theorem 1.1. We note that
the failure rate of Wm may be bounded from below by

δm = min
j≥m rW (j) ≥ δ, (5.1)

and that if W has monotone failure rate, Wm inherits this property. Letting

pm = P(Wm = 0) = P(W = m)

P(W ≥ m)
, (5.2)

we may apply Theorem 1.1 to Wm to obtain the following corollary.

Corollary 5.1. LetW be a nonnegative, integer-valued random variable,m ∈ Z
+, andWm

d=
(W −m | W ≥ m). Let δm and pm be given by (5.1) and (5.2), respectively. Let Y = ∑N

i=1Xi ,
where N ∼ geom(pm) and X,X1, X2, . . . are i.i.d. with

EX ≥ pm

(1 − pm)δm
.

Then
dTV(L(Wm),L(Y )) ≤ Hpm(X)(EY − EWm).
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To illustrate one situation in which such a result would be useful, consider the Markov chain
{Zn : n ≥ −1} with state space {0, 1, 2}, Z−1 = 2, and transition matrix⎛⎝ 1 0 0

α1 β1 ε1
α2 β2 ε2

⎞⎠ ,

where, for i ∈ {1, 2}, we have αi, βi, εi ∈ (0, 1)with αi+βi+εi = 1 and where we consider εi
to be small.

Letting W be the hitting time W = min{n ≥ 0 : Zn = 0}, the most natural geometric-
type approximation in this setting is to approximate W1 by a geometric distribution with
parameter close to α1. We will show that this is easily achieved using Corollary 5.1. Elementary
calculations show that, since P(W = 0) = α2,

p1 = α1β2 + α2ε2

1 − α2
, EW1 = EW

1 − α2
− 1, EW = (1 − β1)ε2 + β2(1 + ε1)

(1 − β1)(1 − ε2)− β2ε1
.

For simplicity in what follows, we will assume that α1 ≥ α2 and that β1(β2 + ε2) ≥
β2(β1+ε1). These conditions are sufficient to guarantee thatW is IFR (using [22, Theorem 4.1]).
In this case we may take X = 1 a.s. in Corollary 5.1, as we did in the IFR examples we have
previously considered.

Corollary 5.1 then gives us the bound dTV(L(W1), geom(p1)) ≤ A+ B + C, where

A = α1β2 + α2ε2

α2(1 − α2)+ (α1 − α2)(1 − α2 − ε2)
, B = (α1β2 + α2ε2)(1 + ε1 − ε2)

(1 − α2)(α1 − ε1(α1 + α2))
,

and

C = ε2(α1 − α2)(α1β2 + α2ε2)

(1 − α2)2(α2ε1 + α1(1 − ε2))
.

We conclude this illustration by noting that if either ε1 = ε2 = 0 or α1 = α2 then our upper
bound is 0, as expected.

5.2. Hazard rate ordering

In this section we will need the hazard rate ordering. For two nonnegative random variablesT
and U , T is said to be smaller than U in the hazard rate order (denoted T ≤HR U ) if rT (j) ≥
rU (j) for all j . See, for example, [23, Section 1.B].

In proving Theorem 1.1, Lemma 4.1 gave conditions under which V + X ≤ST W + X,
which then allowed us to deduce a compound geometric approximation bound. In the case of
geometric approximation, we use the hazard rate order to express conditions under which this
stochastic ordering holds.

If X = 1 a.s. (so we are in the geometric approximation case, and Hp(X) = p), then (4.2)
tells us that V + 1 ≤ST W + 1 if

rW (j) ≥ p

1 − p
= rN(j),

where p = P(W = 0) and N ∼ geom(p). That is, if W ≤HR N then V + 1 ≤ST W + 1 and
the bound of Theorem 1.1 holds with X = 1 a.s. A similar argument shows that if N ≤HR W

then W + 1 ≤ST V + 1 and we obtain an analogous geometric approximation result. In fact,
we have the following.
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Theorem 5.1. Let W be a nonnegative, integer-valued random variable with p = P(W = 0).
Let N ∼ geom(p) and suppose that either W ≤HR N or N ≤HR W . Then

dTV(L(W),L(N)) ≤ |1 − p(1 + EW)|.
To illustrate this result, we return to the setting of Section 2.2, and let {N(t) : t ≥ 0} be a

Poisson process of rateλ and T be a nonnegative random variable independent of {N(t) : t ≥ 0}.
Corollary 5.2. Let {N(t) : t ≥ 0} and T be as above. Let p = Ee−λT and μ = λp(1 − p)−1.
Let η ∼ Exp(μ) have an exponential distribution with mean μ−1 and suppose that either
T ≤HR η or η ≤HR T . Then dTV(L(N(T )), geom(p)) ≤ λp|μ−1 − ET |.

Proof. We note that p = P(N(T ) = 0),EN(T ) = λET , and that N(η) ∼ geom(p).
The bound follows from Theorem 5.1 if either N(T ) ≤HR N(η) or N(η) ≤HR N(T ).

Consider first the inequality N(T ) ≤HR N(η). Using [23, Theorem 1.B.14], this holds
if T ≤HR η. To see this, we need to verify that if Zα ∼ Po(α) has a Poisson distribution
with mean α then Zα ≤HR Zβ whenever α ≤ β. This is most easily checked by noting that
P(Zβ = j)P(Zα = j)−1 is increasing in j , and then using [23, Theorem 1.C.1] to obtain the
required hazard rate ordering.

Similarly, if η ≤HR T then N(η) ≤HR N(T ) and the stated upper bound holds. �
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