
J. Fluid Mech. (2008), vol. 602, pp. 129–174. c© 2008 Cambridge University Press

doi:10.1017/S002211200800075X Printed in the United Kingdom

129

Linked twist map formalism in two and three
dimensions applied to mixing in tumbled

granular flows

R. STURMAN1, S. W. MEIER2, J. M. OTTINO2,3

AND S. WIGGINS4

1Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
r.sturman@maths.leeds.ac.uk

2Department of Chemical and Biological Engineering, Northwestern University, Evanston,
IL 60208, USA

smeier@chem-eng.northwestern.edu
3The Northwestern Institute on Complex Systems (NICO), Northwestern University,

Evanston, IL 60208, USA
jm-ottino@northwestern.edu

4School of Mathematics, University of Bristol, Bristol BS8 1TW, UK
s.wiggins@bristol.ac.uk

(Received 1 September 2007 and in revised form 21 January 2008)

We study the mixing properties of two systems: (i) a half-filled quasi-two-dimensional
circular drum whose rotation rate is switched between two values and which can be
analysed in terms of the existing mathematical formalism of linked twist maps; and
(ii) a half-filled three-dimensional spherical tumbler rotated about two orthogonal
axes bisecting the equator and with a rotational protocol switching between two
rates on each axis, a system which we call a three-dimensional linked twist map,
and for which there is no existing mathematical formalism. The mathematics
of the three-dimensional case is considerably more involved. Moreover, as opposed
to the two-dimensional case where the mathematical foundations are firm, most of
the necessary mathematical results for the case of three-dimensional linked twist
maps remain to be developed though some analytical results, some expressible as
theorems, are possible and are presented in this work. Companion experiments in
two-dimensional and three-dimensional systems are presented to demonstrate the
validity of the flow used to construct the maps. In the quasi-two-dimensional circular
drum, bidisperse (size-varying or density-varying) mixtures segregate to form lobes of
small or dense particles that coincide with the locations of islands in computational
Poincaré sections generated from the flow model. In the 3d spherical tumbler, patterns
formed by tracer particles reveal the dynamics predicted by the flow model.

1. Introduction
While the study of mixing of fluids has received a great deal of attention recently,

there has been comparatively little research into the mixing of granular materials.
This is in spite of the ubiquity and range of situations in industrial, experimental and
natural processes. For example, an understanding of the behaviour of granular ma-
terials is a crucial step in many pharmaceutical, food, chemical, ceramic, metallurgical
and construction industries. One reason for the difference in levels of understanding
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is that while miscible fluids mix via molecular diffusion, granular materials often
have a tendency to segregate based on particle properties such as size and density.
Nevertheless, it is appropriate to apply many of the same tools to both problems, in
particular, ideas from dynamical systems theory (Meier, Lueptow & Ottino 2007).

The study of mixing of fluids significantly benefited from the adoption of tools from
nonlinear dynamics and its connection with chaos. A few flows played an essential
role. Thus, for example, the blinking vortex flow (Aref 1984), though idealized, served
as a springboard for many of the studies that followed. The rotating quasi-two-
dimensional granular tumbler with circular cross-section may play a similar role in
granular mixing. Flow in the quasi-two-dimensional circular tumbler is restricted
to two dimensions because the axial dimension of the tumbler is much smaller
than the radial dimension of the tumbler. Thus, the magnitude of the axial flow is
negligible compared to the magnitude of the streamwise flow. In experiments, the
two-dimensional dynamics of the flow can be observed through a clear endwall.

Fiedor & Ottino (2005) studied granular mixing and segregation in a half-filled
quasi-two-dimensional circular tumbler rotated in a time-dependent manner gene-
rating time-periodicity in the granular flow. Here, we propose a granular tumbler
flow analogous to the blinking vortex fluid flow with a rotation rate that alternates
between two different values in a stepwise manner. One may think that this quasi-
two-dimensional flow is the simplest system for studying granular mixing that has a
clean mathematical representation. There is, however, a second system that, while on
first viewing may appear to be physically more complicated, is in fact simpler since
it does not require physical fine tuning such as controlling the thickness of the device
to achieve the quasi-two-dimensional approximation needed to match the experiment
to the mathematical model. This is a three-dimensional system, a half-filled spherical
tumbler rotated by two orthogonal axes bisecting the equator of the sphere and
operated with a rotational protocol that switches between rotation around each
axis at constant angular rotation rates. We call this system a three-dimensional
linked twist map. The system can be modelled based on the experimental results
of Pohlman et al. (2006a), and requires no experimental fine-tuning, such as elimi-
nation of endwall effects. As we shall see, the mathematics becomes considerably
more involved, the possible computational outcomes considerably richer, and the
experimental results significantly more involved given the difficulties in imaging
the interior of opaque media. Moreover, as opposed to the two-dimensional case,
where the mathematical foundations are firm, most of the necessary mathematics for
the case of three-dimensional linked twist maps remains to be developed.

Linked twist maps embody the notion of ‘streamline crossing’, which is known to be
a mechanism for enhancing mixing (Ottino 1989; Sturman, Ottino & Wiggins 2006).
The linked twist map formalism gives considerable analytical insight into a field that
has typically resorted to numerical computations and where analytical predictions
are rare. In particular, it provides the formalism for proving the existence of the
mathematically strongest possible mixing property (the Bernoulli property) on a set
of positive area in the domain of the flow. Using the formalism of linked twist maps
in the two-dimensional case, in this paper we are able to develop a strategy for
understanding the structure and formation of islands. This is significant since islands
can be directly correlated with patterns of segregation.

Experiments in fluids using two-dimensional flow involve injecting blobs of dyed
fluid in strategic locations and directly observing the deformation and folding of dye
patterns, or resorting to two-dimensional cuts with laser sheets in three-dimensional
systems (Fountain, Khakhar & Ottino 1998). Such experiments are more complicated
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and often impossible in granular flows unless coarse resolutions are acceptable.
Surprisingly, one class of experiments involving granular matter is easier to set up.
These are segregation experiments, a case where the physics is undoubtedly more
complicated as these involve two classes of particles varying in either particle size
or density – leading to unmixed patterns that offer evidence of the soundness of the
underlying flow description (figure 1).

Results in two and three dimensions are presented here as an indication of the
possibilities and coarse qualitative agreement, and to show general matching between
analytical and computational results and underlying symmetries of the flow as
displayed by the experiments, rather than a direct quantitative prediction of specific
experiments by theory. We show also the results of segregation as predicted by a
computational simulation, though no presentation of the numerical model, except for
a reference, is given about the details of the model itself.

2. Rotating tumbler mixers in two dimensions
2.1. Circular tumblers with constant angular velocity

Consider a rotating quasi-two-dimensional circular tumbler of radius L half-filled
with a granular material. Note that for the two-dimensional circular tumbler which
we discuss in § 2 we could non-dimensionalize out the radius L, and set it to unity.
We retain L as a parameter here as we will require it for our discussion of three-
dimensional spherical mixers in § 3. Granular flows in rotating tumblers can be
categorized into several different flow regimes. The Froude number, Fr = ω2L/g

(where L is the tumbler radius, ω is the rotation rate of the tumbler, and g is
acceleration due to gravity), provides a ratio of the inertial force to the gravitational
force to identify the different flow regimes of dry granular material (Henein,
Brimacombe & Watkinson 1983; Mellmann 2001; Brucks et al. 2007). When the
Froude number is very small (Fr < 10−5) , the granular material flows in intermittent
avalanches at the free surface. When Fr � 1, the granular material rotates in solid-
body rotation with the tumbler walls. For the intermediate range 10−4 <Fr < 10−2

that is the subject of this paper, the flow in the tumbler is in what is referred to as
the rolling or continuous-flow regime (Henein et al. 1983; Mellmann 2001; Brucks
et al. 2007; Rajchenbach 1990). It is characterized by a thin, rapidly flowing, flat
surface layer that flows at an angle, the dynamic angle of repose, with respect to the
horizontal (Rajchenbach 1990; Duran 2000; Ristow 2000). In our experiments, the
flowing layer is approximately 5–10 particles thick (Jain et al. 2002). Particles enter
this flowing layer on the upstream end from a fixed bed (the bulk) in solid-body
rotation with the tumbler. Particles exit the flowing layer on the downstream end and
return to the bed of solid-body rotation.

A continuum model of the behaviour of the continuous-flow regime in a quasi-
two-dimensional tumbler is given in Fiedor & Ottino (2005) based on work by
Khakhar et al. (1997, 1999, 2001) and Makse (1999). This model is the basis for the
mixing studies in this paper. There is a substantial amount of experimental evidence
that these models capture the segregation patterns observed in experiments using
polydisperse granular materials varying in either size or density. Though this is not
direct confirmation of the velocity field itself, the weight of evidence is compelling
and the agreement between Poincaré sections using the velocity field and experiments
is clear (as shown in figure 1). Moreover the results are robust: they are largely
independent of the materials used and hold for dry granular systems, referred to
as DGS (granular materials wholly immersed in air), as well as for liquid granular
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(a) (b) (c)

Figure 1. This figure illustrating the agreement between experimental and numerical systems,
both liquid and dry, is taken from Sturman et al. (2006). A larger number of figures supporting
this agreement can be found in, for example, Fiedor & Ottino (2005). (a) DGS, (b) LGS,
(c) Poincaré section.

L

y

x α

ω

δ(x)

θ

r

Figure 2. The geometry of a circular tumbler rotating at a constant angular velocity, showing
the interface between the bulk and the flowing layer as a solid dotted line, and a closed
streamline passing through both the bulk and the flowing layer as a dotted line. The thickness
of the layer has been exaggerated.

systems, LGS (where the granular matter is wholly immersed in a liquid). Figure 1
shows representative examples.

The motion of a particle in this model (approximated by a point tracer in a fluid
mechanical sense) consists of two parts. Particles in the bulk undergo solid-body
rotation and move along circular arcs in solid-body rotation with the tumbler. If the
tumbler rotates with an angular velocity ω, the velocity components of the particles
in the bulk are given by

vr = 0, (2.1)

vθ = rω, (2.2)

in polar coordinates centred at the centre of the tumbler. The coordinate axes x

and y of the flow in the flowing layer are fixed in space, but are rotated through
the dynamic angle of repose, denoted by α. The polar coordinates r , θ are defined
with respect to the x, y coordinate system, but they are oriented differently to
the standard system: θ increases in the clockwise sense (the sense of rotation of the
cylinder) rather than the usual counterclockwise convention (see figure 2). This implies
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that

x = r cos θ,

y = −r sin θ.

Particles leave the bulk when they enter the flowing layer. The shape of the flowing
layer is given by the parabola

δ = δ(x) = δ0

√
1 − x2

L2
, (2.3)

where δ0 = δ0(ω) is the maximum thickness of the flowing layer. (The square root in
equation (2.3) appears in some models but not others (Khakhar et al. 1997; Hill et al.
1999). It is important to stress that largely identical results occur with a model of the
form δ(x) = δ0(1 − x2/L2).) It is assumed that the surface of the granulate is always
horizontal.

Particles in the flowing layer move according to a continuous downhill flow. We
assume the velocity in the flowing layer varies linearly with depth and that the shear
rate γ̇ is constant. As derived in Fiedor & Ottino (2005), we therefore have streamwise
and transverse components of the velocity given by

vx = γ̇ (δ(x) + y), (2.4)

vy =
ωxy

δ(x)
, (2.5)

in Cartesian coordinates also centred at the centre of the tumbler. Mass conservation
of the granular system means that the constant shear rate γ̇ takes the value γ̇ =
ωL2/δ2

0 .
We define precisely the domains Db,δ0

(the bulk) and Df,δ0
(the flowing layer) as

follows:

Df,δ0
= {(x, y) | − L � x � L, 0 � y < −δ(x)} , (2.6)

Db,δ0
= {(r, θ) | 0 � r � L, 0 � θ < π} − Df,δ0

. (2.7)

Note that the relative sizes of the domains depend on δ0, the depth of the flowing layer.
The relative time spent in each domain can be approximated as follows. Consider a
particle in the flowing layer. The depthwise average streamwise velocity in the layer is
v̄x = γ̇ δ(x)/2. Integrating over the length of the flowing layer yields the time it takes
a particle to cross the flowing layer, while the time spent circumnavigating the bulk
approaches π/ω for a thin flowing layer (δ0 � L). Thus

Time in flowing layer

Time in bulk
∝
√

ω

γ̇
.

A limiting case corresponds to the situation where the flow in the layer is very fast
compared with the flow in the bed. This can be thought of as the thickness of the
layer δ0 → 0. This limiting case clearly is of little value in the case of two-dimensional
blinking flows as the elimination of the layer itself results in no mixing. The limiting
case, however, can be used to examine aspects of three-dimensional blinking flows, a
case we examine in § 3.6.1.

For ω constant, particle streamlines form closed loops passing through the flowing
layer. Moreover, this system of differential equations describing the motion of particles
is steady, divergence free, and integrable. We will exploit the consequences of this
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more fully in the next section. The geometry of this system, together with the general
aspect of streamlines, is illustrated in figure 2.

2.1.1. Characterizing particle kinematics by a twist map: action–angle variables for
the circular tumbler rotating with constant velocity

The ‘mapping approach’ to study fluid particle kinematics is well-established (see,
e.g. Ottino 1989; Sturman et al. 2006). In this approach, the motion of fluid particles
is reduced to a discrete time map, which in this context is typically referred to as a
Poincaré map. In practice, this means that rather than observe a fluid particle tracing
out a continuous curve in the domain, we instead ‘stroboscopically’ view the particle
at fixed discrete intervals of time. The collection of discrete points in the flow domain
obtained in this way is referred to as a Poincaré section. Poincaré sections can give a
good picture of the mixing properties of a given flow.

For the circular tumbler rotating at constant angular velocity, the flow is steady
and the streamlines form closed concentric loops. The velocity field defined by (2.1),
(2.2), (2.4) and (2.5) is two-dimensional, steady, and area preserving. Such velocity
fields can be expressed as a Hamiltonian system, with the streamfunction playing the
role of the Hamiltonian function (see e.g. Ottino 1989; Samelson & Wiggins 2006).
The streamfunction for the flow in the bulk, expressed in Cartesian coordinates, is
given by

ψb(x, y) = 1
2
ω(x2 + y2),

and the streamfunction for the flow in the flowing layer is given by

ψf (x, y) = γ̇ y
(
δ + 1

2
y
)
. (2.8)

In regions of closed streamlines of Hamiltonian systems, a convenient set of
coordinates can be found, called action–angle coordinates (Wiggins 2003; Samelson
& Wiggins 2006), that can be viewed as a nonlinear generalization of standard
polar coordinates in the sense that one coordinate, ρ, labels the streamline and is
constant in time (essentially it is the area enclosed by the streamline) and the other
coordinate, φ, is an angular coordinate that evolves linearly in time (but the rate of
change, or frequency, depends on ρ). Action–angle variables play an important role
in characterizing the particle kinematics in terms of a twist map. Therefore we will
discuss first the definition of action–angle variables for this flow, and then show how
they are used to define a twist map.

The construction of action–angle variables in regions of closed streamlines is
standard in the case where the streamlines are defined by a single streamfunction.
The situation is slightly more complicated in our case since the flow consists of two
distinct regions with different streamfunctions in each region. Consequently, we must
take additional care in developing the setting where the construction of action–angle
variables can be carried out.

We begin by describing the flow domain in a more quantitative manner. Having
defined Df,δ0

and Db,δ0
in (2.6) and (2.7), the boundary between Df,δ0

and Db,δ0
,

denoted ∂f,b, is therefore given by

∂f,b = {(x, y) | − L � x � L, y = −δ(x)}.
The domain of the flow is given by Df,δ0

∪ Db,δ0
. We define the flow on each region

separately, with a matching condition for the streamlines at the boundary. Let

ψ(x, y) =

{
ψf (x, y) on Df,δ0

,

ψb(x, y) on Db,δ0
.

(2.9)
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δ(x)

α

ω

θ

x

y

r

Db

Df(x, y)

C
(0, –δ0)

(0, y0)
(0, –L)

L

�

Figure 3. The geometry associated with the construction of action–angle variables for the
circular tumbler mixer rotating at a constant angular velocity.

If a particle crosses ∂f,b with x > 0, then it is leaving Df,δ0
and entering Db,δ0

. If it is
crossing ∂f,b with x < 0, then it is leaving Db,δ0

and entering Df,δ0
.

Formally, (2.9) defines a streamfunction for the entire domain. However, a
priori, it does not have the usual property that the level sets of ψ(x, y), i.e.
ψ(x, y) = ψ = constant, are closed trajectories. This is because the union of
ψf (x, y) = ψ = constant and ψb(x, y) =ψ = constant may not define a closed
streamline in all of the domain, i.e. the two level sets in Df,δ0

and Db,δ0
may not meet at

the boundary, ∂f,b. This situation is easily addressed by noting that adding an arbitrary
constant to a streamfunction does not change the corresponding velocity field. Con-
sider a trajectory that passes from the flowing layer to the bulk at (x1, y1) = (x1, −δ(x1)),
and let ψf (x1, −δ(x1)) = ψf and ψb(x1, −δ(x1)) = ψb. Then we redefine ψf (x, y) as

ψ̃f (x, y) = ψf (x, y)+ψb −ψf for which we now have ψ̃f (x1, −δ(x1)) = ψf (x1, −δ(x1))+

ψb −ψf =ψb. We then replace ψf (x, y) by ψ̃f (x, y) and we have the desired property.
Now we are in a position to give the definition of the transformation to the

action–angle coordinates, and describe their relationship to the geometry of closed
streamlines. Let C denote a reference line between the points (0, −δ0) and (0, −L)
(figure 3). The line C plays the role of a set of initial conditions, and could be any
arbitrary curve intersecting each closed trajectory. We represent C in parametric form
as follows:

C = {
(
0, y0)

)
∈ �2 | −δ0 � y0 � −L},

and trajectories starting on C are represented by (x(t), y(t)) where x(0) = 0 and y(0) =
y0. Let (x, y) be an arbitrary point on a closed streamline traced out by the trajectory
(x(t), y(t)) and let t = t(x, y) be the time taken for the trajectory starting at (0, y0) to
flow to the point (x, y). We denote the period of each closed trajectory defined by
ψ(x, y) = ψ = constant by T (ψ). The angle variable, φ(x, y), is now defined as:

φ(x, y) =
2π

T (ψ)
t(x, y), (2.10)

where (x, y) ∈ ψ = constant (figure 3).
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The area enclosed by any closed streamline is clearly constant in time. We use this
to define the action variable, denoted ρ(x, y), as

ρ =
1

2π

∮
ψ

x dy, (2.11)

where ψ labels the closed streamline defined by ψ(x, y) = ψ = constant. It should be
clear from (2.11) that the action variable for a closed streamline is a function of ψ ,
which we explicitly denote as:

ρ = ρ(ψ),

and that this relationship can be inverted as a result of the one-to-one relationship
between closed streamlines and the area they enclose:

ψ = ψ(ρ).

We can also label the period of each closed streamline by either ρ or ψ .
We have thus defined coordinates (ρ, φ) on a region of closed streamlines such that

the velocity field is given by

ρ̇ = 0,

φ̇ =
2π

T (ρ)
≡ Ω(ρ),

(2.12)

where Ω(ρ) is the frequency associated with the closed streamline having action ρ.
The trajectories of (2.12) are easily obtained as

ρ(t) = ρ0 = constant,

φ(t) =
2π

T (ρ)
t + φ0 ≡ Ω(ρ)t + φ0.

(2.13)

It is shown in Wiggins (2003) that the Jacobian of the transformation to action–
angle coordinates is identically one, which implies that area is preserved under the
action–angle transformation, and that the ‘Hamiltonian structure’ is also preserved
under action–angle transformations. This latter point means that if we take the
streamfunction in the original (x, y) coordinates and transform it to action–angle
coordinates (ρ, φ), then the velocity field in action–angle coordinates may be obtained
from this transformed streamfunction in the usual way. More importantly, the
transformed streamfunction is a function of just the ρ variable.

We consider the motion of particles in terms of a map. The map is constructed
from the trajectories (2.13) and is obtained by considering the evolution of particles
for a fixed interval of time, which we will take to be t = τ/2 (the reason for the factor
of a half will be made clear in § 2.2). Therefore, the mapping of points is given by

P (ρ, φ) =

(
ρ, φ + Ω(ρ)

τ

2

)
. (2.14)

This is an example of a twist map since Ω(ρ) is a monotonic function of ρ which
is responsible for shearing, or ‘twisting’ a line of initial conditions transverse to the
streamlines.

Periodic points of period n of a map are points having the property that they return
to their starting point after n iterations of the map. Periodic points of two-dimensional
mappings can be classified into three types: hyperbolic, elliptic or parabolic. These
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three terms refer to properties of the eigenvalues of the matrix associated with the
linearization of the map at the periodic point (note that since the map preserves area,
the product of the eigenvalues is one). Hyperbolic means that the two eigenvalues are
real, one with absolute value less than one and the other with absolute value greater
than one, elliptic means that the eigenvalues are not real, but each has modulus
one, and parabolic means that the eigenvalues are real and have modulus one. The
linearized behaviour near hyperbolic periodic points exhibits a strongly (that is, at an
exponential rate) contracting and a strongly expanding direction, i.e. they are saddle
points. The linearized behaviour near an elliptic periodic point exhibits rotational
motion. Under generic conditions elliptic periodic points give rise to regions of
unmixed fluids since they are surrounded by closed material curves that are barriers
to mixing. These are the so-called ‘KAM curves’, which create ‘islands’ of unmixed
fluid (see e.g. Ottino 1989; Samelson & Wiggins 2006; Sturman et al. 2006). One of
the significant characteristics of hyperbolic and elliptic periodic points is that the
linearized dynamics is ‘qualitatively the same’ as the nonlinear dynamics near the
periodic point. However, the behaviour near a parabolic periodic point cannot be
determined solely from linearized behaviour, the effect of nonlinear terms is crucial.
Depending on the nature of the nonlinear terms, parabolic periodic points may be
surrounded by closed ‘KAM curves’ , or they may possess separatrices (see e.g. Simo
1980, 1982; Aharonov & Elias 1990). In either case, they do give rise to islands of
unmixed fluid, which is the essential feature that is relevant to us.

Since the Jacobian of the twist map P defined by (2.14) is given by

DP =

⎛
⎜⎝1

τ

2

dΩ(ρ)

dρ

0 1

⎞
⎟⎠ , (2.15)

it is clear that any periodic point which remains on the same streamline ρ = constant
is parabolic, since DP has a double unit eigenvalue. As described above, all points
are constrained to lie on a unique streamline. In the following section, we introduce
a time-dependent version of the angular rotation, which allows trajectories to visit
different streamlines.

2.2. Time-dependent angular rotation: the blinking tumbler mixer

The twist map (2.14) is integrable in the sense that orbits of points under the action of
the map lie on closed curves, i.e. the streamlines. If the flow becomes time-dependent,
then the flow generally becomes non-integrable. This leads to the possibility of chaotic
motion which one would believe would lead to ‘good mixing’, but it is also possible
for regions that do not mix to exist within the regions of chaos (‘islands’). In Fiedor
& Ottino (2005) the tumbler flow was made unsteady by modulating the rotation
rate ω sinusoidally in time. Here, we will follow the same approach, but rather than
modulate the rotation rate continuously in time, we will switch the rotation rate
discontinuously between two fixed frequencies. This is very similar in spirit to the
well-known blinking vortex flow first studied in Aref (1984). Accordingly, we will refer
to our flow as the blinking tumbler flow. As was the case for the blinking vortex flow,
this relatively simple form of time-dependence will enable us to gain a great deal of
insight into the mechanism of the kinematics without sacrificing the complexity.

Taking Poincaré sections and studying Poincaré maps instead of continuous time
equations as a way of extracting fundamental information about fluid systems
is a standard technique. This procedure typically involves sampling the flow at
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regular intervals in either time or space. In some recent studies of quasi-two-
dimensional granular mixers, polygonal tumblers are used (Khakhar et al. 1999; Cisar,
Umbanhowar & Ottino 2006). This gives a natural periodicity to the rotation (the
Poincaré map samples the flow each time the tumbler reaches its original orientation
under rotation). For a cylindrical tumbler, the angular position of the tumbler is
irrelevant. Thus, the Poincaré map is sampled at every period of the forcing. For the
blinking tumbler, we take as the Poincaré map the time-τ map of the flow, which will
correspond to one iteration of the linked twist map.

More precisely, the rotation rate of the tumbler is periodically alternated between
two constant angular velocities ωa �= ωb as follows:

ω =

⎧⎪⎨
⎪⎩

ωb = ω̄ + ω̂ for iτ < t < (i + 1/4)τ,

ωa = ω̄ − ω̂ for (i + 1/4)τ < t < (i + 3/4)τ,

ωb = ω̄ + ω̂ for (i + 3/4)τ < t < (i + 1)τ,

(2.16)

where we take ω̄ = 1 and ω̂ = 1/3. In other words, the tumbler is rotated at a rate
of ωa for time τ/2, then at a rate of ωb for time τ/2, with this sequence of rotation
rates repeated indefinitely. We will refer to the instant in time at which the angular
velocity changes as a switching point.

In our chosen Poincaré section we include an initial ‘phase shift’ of t = τ/4. This is
a largely arbitrary operation, and simply has the effect of shifting the switching times
with respect to the rotation of the cylinder. We take t = τ/4, partly as we believe it
clarifies the images of the flow structure in later figures, since the Poincaré sections
are symmetric about x = 0, and partly to establish a close link to Fiedor & Ottino
(2005), who include an identical phase shift in their sinusoidally forced rotations. If we
denote by N the number of pairs of alternations between ωa and ωb (‘modulations’)
in one rotation of the cylinder, we have

2π =

(
ωb

τ

4
+ ωa

τ

2
+ ωb

τ

4

)
N =

(
ωa + ωb

2

)
Nτ = ω̄Nτ = Nτ,

and therefore,

τ =
2π

N
.

The total amount of time required for the cylinder to make one complete revolution,
T , is given by Nτ = T or, using the equation above, T = 2π.

Since the angular rotation takes one of two constant values, δ0 = δ0(ω) also alternates
between two constant values, for which we take δ0a =0.05 and δ0b = 0.1. This gives γ̇a ≡
ωaL

2/δ2
0 = 800L2/3 and γ̇b ≡ ωbL

2/δ2
0 = 400L2/3. The streamlines for this situation

are shown in figure 4, with streamlines for frequency ωa shown in black and those for
ωb shown in grey.

Numerically computed Poincaré sections for this system are shown in figure 5, for
even N , and figure 6, for odd N . For N = 2, 4, 6 and 8, the figures share common
features. There are N/2 large islands, lying at the same radius for each figure, and
equally spaced in the angular direction. These islands have a ‘rectangular’ shape,
in that their sides lie roughly along lines of constant r and θ . Also discernible
(particularly for N = 2, 4) are smaller islands, again at roughly the same radius, in
between the large islands. Numerous other small islands may also appear, but the most
prominent form this collection of rectangular islands. These islands lie symmetrically
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Figure 4. Two sets of streamlines of tracers in a rotating tumbler for frequency ωa shown in
black and those for ωb shown in grey. The two different frequencies give two different depths of
the flowing layer, and the overlap (shown in the inset with the vertical direction exaggerated)
of the two flowing layers for the two different frequencies is the area of transverse ‘streamline
crossing’.

N = 2 N = 4

N = 6 N = 8

Figure 5. Blinking-modulated angular frequency for even modulation, N = 2, 4, 6, 8. Para-
meter values are ωa = 2/3, ωb = 4/3, δ0a = 0.05. δ0b =0.1, L = 1, giving γ̇a = 800/3, γ̇b = 400/3.
In each figure the lower boundary of the flowing layer for each frequency is indicated by the
parabola.
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N = 3 N = 5

N = 7 N = 9

Figure 6. Blinking-modulated angular frequency for odd modulation, N = 3, 5, 7, 9.
Parameter values are as in figure 5.

about the x = 0 axis, owing to the choice of phase shift τ/4; a different choice simply
leads to the islands appearing at the same radius, but at different angular positions.

Just as was observed in Fiedor & Ottino (2005), there is a dichotomy between the
behaviour of the system for even and odd N . Similar rectangular islands appear for
N = 3, 5, 7, 9, but these are not nearly as prominent as for even N .

2.2.1. The blinking tumbler mixer as a linked twist map

Modulating the angular velocity in a blinking fashion has two advantages. First,
it allows the system to be cast in the form of a linked twist map; secondly, analysis
of periodic orbits can be performed and the location and size of the associated
islands can be predicted. Linked twist maps form a paradigm for fluid or granular
systems which mix by switching their flow patterns periodically in time. They do so
by formalizing the ubiquitous concept of ‘crossing of streamlines’ in a mathematically
rigorous way (Sturman et al. 2006).

First, we define what we mean by a linked twist map and show how it arises in
the setting of the blinking tumbler mixer. Referring to figure 4, the blinking protocol
defined by (2.16) means that points evolve for a time τ/2 with frequency ωa along one
streamline pattern (shown in black in figure 4) and then they evolve for a time τ/2 at
frequency ωb along the other streamline pattern (shown in grey in figure 4). Following
the discussion in § 2.1.1, the flow in the modulated tumbler can be described as the
composition of two maps Pa and Pb. The composition of two twist maps is a linked
twist map, denoted by P ≡ Pb ◦ Pa .

The phenomenon of streamline crossing is made explicit in the formulation
as a linked twist map. Consider a point (x1, y1) ∈ Db,δ0a

∩ Db,δ0b
(that is, in

the intersection of the two bulk regions). Since streamlines for ωa and ωb are
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coincident in this region (they are circular arcs with the same centre), we have
ψa(x1, y1) = ψb(x1, y1) = ψ(ρ) = constant, and (x1, y1) lies on the same streamline for
both ωa and ωb. For a point (x2, y2) ∈ Df,δ0a

∪Df,δ0b
(that is, in either of the two flowing

layers), streamlines are not coincident (assuming δ0a �= δ0b; see figure 4), and we may
have ψa(x2, y2) �= ψb(x2, y2). Thus, any trajectory of P remaining in Db,δ0a

∩ Db,δ0b
for

all time remains on a single streamline and has the dynamics of a single twist map,
whereas for streamline crossing, and hence non-trivial, non-integrable, dynamics to
occur, a trajectory must enter the union of the flowing layers.

Linked twist maps have been studied in great detail in Burton & Easton (1980),
Wojtkowski (1980), Devaney (1978, 1980), Przytycki (1983) and Sturman et al. (2006)
and they are one of the few types of dynamical systems with a direct relation to
applications where it is possible to prove rigorously the existence of ergodicity and
the strongest possible mixing properties. However, to achieve the strongest possible
mixing properties, the best results have been obtained by assuming rather stringent
requirements on either the geometry or the nature of the overlap of the two streamline
patterns that define the two twist maps whose composition forms the linked twist
map. The currently known requirements for linked twist maps to achieve the best
possible mixing are not satisfied for the blinking tumbler mixer. Nevertheless, the
mathematical results provide a good guide for studying the mixing properties of the
blinking tumbler flow, which we now describe.

Consider the overlap of the two streamline patterns in figure 4. There are three
distinct regions that we focus on. One is the bulk, where the streamlines for the two
patterns are coincident. Another region is the overlap of the two flowing layers for
the two streamline patterns. Here the streamlines for the two patterns are essentially
parallel. The final region is the region of the flowing layer that is not in the intersection
of the two flowing layers. Here the streamlines for the two patterns are transverse, i.e.
they cross.

Roughly, the linked twist map theorems tell us that we want to eliminate (or make
as small as possible) regions where the streamlines from the two patterns are parallel,
and maximize the size of the regions where the streamlines for the two patterns are
transverse (this is the notion of streamline crossing).

Unfortunately for mixing, the blinking tumbler mixer in two dimensions has large
regions where the streamline patterns are essentially parallel and only a relatively
small region where the two streamline patterns are transverse. Thus, we expect this
flow to be a poor mixer unless typical trajectories visit the regions of transverse
streamlines sufficiently often. We will see that this expectation of visiting transverse
regions is not realized and that mixing is never complete. Nevertheless, these ideas
provide a guide for us to predict the size and location of islands, as well as to
understand the stability properties of the related periodic orbits.

2.2.2. Comments and remarks on the study of blinking tumbler mixers as a map

It is well known that features of the Poincaré map such as chaotic regions and
islands organize features of the flow itself. The features which impact most strongly
on the flow patterns produced are periodic orbits of low period. As is well-known,
hyperbolic periodic orbits tend to be good for chaotic mixing, whereas elliptic
periodic orbits tend to be surrounded by islands of unmixed fluid. A third class of
periodic orbits form parabolic periodic points which may also give rise to surrounding
islands.

Let ξ be a periodic orbit of P. Then the stability of the periodic orbit is governed
by the eigenvalues of the matrix formed by multiplying the Jacobians evaluated along
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the periodic orbit. Suppose ξ consists of points ξi all of which lie in Db,δ0a
∩ Db,δ0b

, in
which no streamline crossing occurs. Then, as shown above, each of the ξi lie on the
same streamline, and moreover, each of the Jacobians around the orbit has the form
of (2.15). Since the product of such upper triangular matrices with unit entries on the
leading diagonal is also an upper triangular matrix with unit entries on the leading
diagonal, such a periodic orbit is a parabolic orbit.

In contrast, suppose ξ contains some points which lie in Df,δ0a
∪ Db,δ0b

. In this case,
computing the product of the Jacobians is not as simple, since we require a coordinate
change each time the trajectory changes ρ. In general, this coordinate change will
not be analytically tractable, and the eigenvalues of an arbitrary periodic orbit (or
trajectory in general) will not be computable. We note that in a related but much
simpler system, that of a linked twist map defined on the union of two interlocking
circular annuli, the coordinate change can be given explicitly, and the dynamics can
be deduced accordingly (Wojtkowski 1980).

In the following, we construct periodic orbits of a given period with the property
that all points in the periodic orbit lie in Db,δ0a

∩ Db,δ0b
. These parabolic orbits are

precisely the points which give rise to large islands appearing in the flow. To simplify
the analysis in § 2.3, we remove the arbitrary phase shift from the definition of the
map. Then each iteration of the maps Pa and Pb corresponds to a change in angular
velocity. The islands in figures 5 and 6 are the islands we construct below, although
their positions are rotated. Note that a result of this is that an island may be shifted
out of the bulk and into the flowing layer, but this is simply the effect of the phase
shift and does not contradict the premise that the large parabolic islands are formed
from orbits which do not visit the flowing layer at switching times.

2.3. Appearance of islands

It is immediately noticeable that all figures in figure 5 share a common feature. All
have prominent islands which lie at approximately the same radial position and are
similarly all equally spaced in θ . We first discuss the case of even N . For m =N/2
applications of the linked twist map in time T/2 = π, there are m such islands.
The blinking form of the system makes it possible to predict the locations of these
islands.

2.3.1. Even frequency ratios

Consider a trajectory starting on a closed streamline S(r) at (x2, y2), just entering
the bulk. In order for this orbit to be a periodic orbit of period m =N/2 it must
return to its initial condition after time T/2; that is, the distance travelled along
S(r) in time T/2 = π must equal the length of S(r) itself (alternatively, the distance
travelled could be an integer multiple of the length of S(r), but for simplicity we
preclude this and concentrate on orbits of minimal period m). For such a periodic
orbit to avoid the flowing layer at switching points requires m episodes of angular
velocity ωa interspersed with m − 1 episodes of angular velocity ωb occurring whilst
the tracer particle remains in the bulk. The remaining episode of angular velocity
ωb must carry the particle from the bulk, through the flowing layer, and back to
the bulk. Thus, the aim is to find a streamline S(r) which makes such an orbit
possible.

Radial position of islands. The length l of streamline S(r) can be given as

l(S(r)) = l(Sb(r)) + l(Sf (r)), (2.17)
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r

a

b
ab

a

b∗
(x1, y1) (x2, y2)

Figure 7. Sketch of periodic orbit with the property that switching points do not fall in the
intersection of the flowing layers. Here N = 6.

where Sb is the portion of the streamline lying in the bulk, and Sf is the portion
lying in the flowing layer. Since streamlines in the bulk form a circular arc, we have
(see figure 7)

l(Sb(r)) = r
(

π − 2 sin−1
∣∣∣y1

r

∣∣∣),

where y1 = y2. Recall that at the boundary of the bulk and the flowing layer,

y1 = δ0

√
L2 − r2

L2 − δ2
0

.

The distance travelled along the closed streamline is given by

d(r) = m
τ

2
rωa + (m − 1)

τ

2
rωb + b∗ + l(Sf (r)), (2.18)

where b∗, as shown in figure 7, is the remainder of the bulk streamline after time
(N − 1)τ/2. Equating (2.17) and (2.18), we find that we need r such that

r
(

π − 2 sin−1
∣∣∣y1

r

∣∣∣) = m
τ

2
rωa + (m − 1)

τ

2
rωb + b∗. (2.19)

Let t(Sf (r) be the time taken to traverse the flowing layer. In Appendix A we
show how to compute this analytically, and give the expression

t(Sf (r)) =
π√
ωbγ̇b

.

We have

b∗ = rωb

(
τ
2

− t(Sf (r))
)
.

Substituting this into (2.19), and since ω̄ =1 implies ωa + ωb = 2, we have

r
(

π − 2 sin−1
∣∣∣y1

r

∣∣∣) = mτr − rωbt(Sf (r)))

or, since mτ = π,

2 sin−1
∣∣∣y1

r

∣∣∣ = ωbt(Sf (r)).
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Solving the above gives r ≈ 0.5191. Note that this expression is independent of N ,
and so we expect the islands in figure 5 to appear at the same radius for each N . The
above is valid for m such that τ = π/m is less than t(Sf (r)) (that is, the time between
switching points is large enough to allow a particle to pass completely through the
flowing layer). This is the case up to (about) m = 10.

Angular length of islands. The length b∗ gives the angular length of points which
have the property of not falling into the flowing layer at a switching point during a
complete period. This gives the approximate size and location of islands which should
be expected in such a system. Thus since as above b∗ = rωb(τ/2 − π/

√
ωbγ̇b) whilst

crossing the flowing layer at angular velocity ωb, the sizes of the parabolic islands are
determined by the parameters ωb and γ̇b. For example, if m =2, b∗ ≈ 0.371, with the
time to cross the flowing layer t(Sf (r)) ≈ 0.4986.

Of course, if the slower speed ωa is such that the time to cross the flowing layer
is also less than τ , we can make the same argument as the above with the a and b

interchanged (so that we have m episodes at speed ωb and m − 1 episodes at speed
ωa in the bulk, with the flowing layer crossed at speed ωa). Doing so gives r ≈ 0.5176
and a∗ ≈ 0.1419, giving the smaller parabolic islands discernible between the larger
ones in figure 5.

2.3.2. Odd frequency ratios

Figure 6, corresponding to those in Fiedor & Ottino (2005), shows cases for odd
values of N . This means that in time T/2 = π, we have a non-integer number of
applications of the linked twist map (recall that m =N/2). Thus, we must look for
periodic orbits of twice the length – that is, a periodic orbit which returns after time
T = 2π. Applying the above argument (that is, looking for a periodic orbit which
makes one circuit of the bulk and flowing layer in time 2T ) leaves the equation

rπ − 2r sin−1 |y1/r | = mτr(ωa + ωb) − τwωb + b∗,

that is,

π + 2 sin−1 |y1/r | = ωbt(Sf (r)).

However, typically, it is not possible to balance this as the time to cross the flowing
layer is much too small. We can make a similar argument, however, for a periodic
orbit which completes two circuits of the bulk in time T . In this case (taking odd m –
for even m one can look at half a periodic orbit and repeat the argument above), we
have the distance travelled in time T to be

d(r) = (2m − 1)r
τ

2
ωa + (2m − 1)r

τ

2
ωb + a∗ + b∗ + 2lf (S(r),

and the length of the streamline as before (to be traversed twice). Thus, we equate

2πr − 2 sin−1
∣∣∣y1

r

∣∣∣
a

− 2 sin−1
∣∣∣y1

r

∣∣∣
b

= (2m − 1)
τ

2
r(ωb + ωb) + a∗ + b∗,

that is,

2 sin−1
∣∣∣y1

r

∣∣∣
a
+ 2 sin−1

∣∣∣y1

r

∣∣∣
b

= ωata(Sf (r)) + ωbtb(Sf (r)),

where the subscripts a and b denote parameters corresponding to ωa and ωb,
respectively.

In effect, the difference between even and odd N can be summarized by the fact
that for even N , periodic points of period T/2 = π are possible, which results in large
parabolic islands, whereas for odd N , the shortest period of such periodic points is T .
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(a) (b) (c) (d)

Figure 8. Illustration of the dynamical mixing properties of the two-dimensional blinking
tumbler for parameter values ωa =2/3, ωb = 4/3, δ0a = 0.05, δ0b =0.1, L = 1 and N = 4. The
images of the initial black and grey regions shown in (a) are shown after 5 iterations in
(b), 10 in (c), and 100 in (d).

This is in agreement with the common observation that the largest islands correspond
to periodic points with the shortest period.

2.4. Mixing properties of two-dimensional rotating tumblers

It is well-known that islands (both elliptic and parabolic) form barriers to mixing
in area-preserving dynamics, and that the size of such islands can be gleaned from
Poincaré sections such as those in figures 5 and 6. However, Poincaré sections give a
picture of the structure of the dynamics only in the limit as time goes to infinity; they
do not reveal much information about dynamical mixing properties for finite time.

Figure 8 shows the evolution of two initially separated blobs after 0 (i.e. the initial
conditions), 5, 10 and 100 iterations of the map. The parameter values are (as in
figures 5 and 6) ωa = 2/3, ωb = 4/3, δ0a =0.05, δ0b = 0.1, L =1, with N = 4. We take
104 black and 104 grey dots and plot their final positions after these numbers of
iterations. After 5 and 10 iterations the black and grey are still largely separated, with
the boundary between being eroded by lobe-like structures which are typical of the
stretching and folding associated with the encroachment of chaotic dynamics. Mixing
across the entire domain could be said to be poor, owing to the large unmixed
regions of black and grey. After 100 iterations the region is well mixed, with the
exception of the rectangular unmixed regions corresponding to the parabolic islands
we predict and discuss in § 2.3 (see figure 5 with N = 4). It is clear that in spite
of the streamline crossing in the system, the mechanism of chaotic mixing is very
inefficient, in the sense that mixing in the chaotic sea requires many iterations to be
achieved. Although the principles of linked twist map theory described in Sturman
et al. (2006) do not give any information about the rate at which the mixed state is
approached, the inefficiency (both in terms of the number of iterations needed and
the spatial extent) of the chaotic mixing mechanism in this two-dimensional system
can be understood heuristically: the condition of transversality required by the linked
twist map principles is far from being satisfied, which results in inefficient mixing. We
are currently working on quantifying the speed of mixing of a linked twist map.

2.5. Segregation experiments in two dimensions

It is tempting to think that the best experimental companion to a formalism applied
to mixing in granular flows is a mixing experiment: identify a region of particles,
distinguishable in some way, for example, by colour, and watch as they mix according
to some mixing protocol. However, as indicated in § 1, the reverse is actually true:
the simplest experiment, one that can be repeated over and over, is a segregation
experiment. The experimental evidence is considerable. Start with two classes of
particles and start a mixing protocol; the system will segregate with one class of
particles mimicking the placement of islands (Meier et al. 2006). We use the linked
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twist map formalism on a kinematical model of the flow. Is the underlying flow
a good approximation of reality? As we will try to show below, there is a good
match between the segregated experimental results and global aspects, such as island
placement, predicted by the kinematical model.

Granular materials tend to segregate based on size or density (Hill et al. 1999;
Duran 2000; Ottino & Khakhar 2000; Ristow 2000). When particles vary in size
(S-systems), the small particles segregate from the large particles by percolating in the
flowing layer through the interstitial spaces between the large particles (Bridgwater,
Sharpe & Stocker 1969; Cantelaube & Bideau 1995; Clément, Rajchenbach & Duran
1995; Dury & Ristow 1997). Percolation results in the small particles drifting to the
bottom of the flowing layer, pushing the large particles to the top. When particles vary
in density (D-systems), the heavy particles segregate from the light particles in the
flowing layer owing to buoyancy differences (Ristow 1994, Jain et al. 2005a, b). The
heavy particles sink to the bottom of the flowing layer, pushing the light particles to the
top. Once the particles leave the flowing layer, they are fixed in the bed of solid body
rotation until they re-enter the flowing layer. When the tumbler has a circular cross-
section and the rotation rate is steady, this segregation results in a radial core pattern
of small or heavy particles surrounded by large or light particles. However, when the
flow is made time-periodic, either through a polygonal tumbler geometry (Hill et al.
1999; Cisar et al. 2006; Meier et al. 2006) or through time-periodic modulation of
the rotation rate (Fiedor & Ottino 2005), lobed segregation patterns form. Figures 9
and 10 show segregation patterns formed in half-full quasi-two-dimensional circular
tumblers forced with the blinking protocol (equation (2.21)). For even frequency
modulation (figure 9), the segregation patterns have lobes that coincide with islands
in the corresponding Poincaré sections. We observe pattern capturing for both S-
systems (figure 9(ii), (iii)) and D-systems (figure 9(iv)). For odd frequency modulation
(figure 10), the connection between the experimental segregation patterns and the
computational Poincaré sections is somewhat more complicated.

Segregation based on density can be simulated using a constitutive model for
segregation coupled with the continuum equations (equations (2.3)–(2.5)) (Hill et al.
1999; Cisar et al. 2006) as shown by figure 9(v). The constitutive model treats the
two particle types as interpenetrating continua that drift relative to one another until
the particle types are segregated into phases rich in each type based on density. In
the simulations, the ratio of the minimum to maximum rotation rates is 1:3. The
computational patterns shown are formed after 10 tumbler revolutions.

2.5.1. Experimental details

The quasi-two-dimensional tumbler is made of acrylic with a diameter of 280 mm
and a thickness of 9 mm. The endwalls are made of clear acrylic. The tumbler rotates
about its axis, driven with a Parker–Hannifin 34 frame stepper motor. The angular
distance, velocity and acceleration are preprogrammed in Visual C++ before being
sent by a computer to the motor through an indexer and drive. In the experiments, the
minimum rotation rate is 1 r.p.m. (revolutions per minute) and the maximum rotation
rate is 3 r.p.m.. Images were taken after 10 tumbler revolutions using a Canon digital
camera.

The tumbler is half-filled with the mixture of granular material. In the S-system
experiments, the small painted black glass particles are 1.19 ± 0.05 mm in diameter
with a density of 2.3 g cm−3 and the large clear glass particles are 3.03 ± 0.03 mm in
diameter with a density of 2.4 g cm−3. In the D-system experiments, the heavy chrome
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N = 4 N = 6 N = 8

(i)

(ii)

(iii)

(iv)

(v)

Figure 9. Even frequency experimental segregation patterns in two-dimensional systems
capture the patterns and symmetries of computational Poincaré sections. (i) Poincaré sections
for even frequency modulated tumblers with N = 4, 6 and 8. (ii) S-system experiments with
a mixture of 10 % by volume small 1 mm painted black glass particles and 90 % by volume
3 mm clear glass particles. (iii) S-system experiments with a mixture of 30 % by volume small
1 mm painted black glass particles and 70 % by volume large 3 mm clear glass particles.
(iv) D-system experiments with a mixture of 30 % by volume 2 mm chrome steel beads and
70 % by volume 2 mm clear glass particles. (v) D-system simulations of 600 heavy particles
(ratio of particle radius to tumbler radius 1:50).

steel beads are 2.37 ± 0.01mm in diameter with a density of 7.5 g cm−3, and the light
clear glass particles are 1.92 ± 0.11 mm with a density of 2.4 g cm−3.

2.5.2. Even frequency modulation

In figure 9, the small particles (in S-systems) or dense particles (in D-systems)
form lobes that coincide with the locations of the islands in the computational
Poincaré sections for even frequency modulation. As discussed earlier, even frequency
modulation results in N/2 islands for half-full tumblers. For N =4, there are two
large islands in the Poincaré section and two lobes of small glass particles in the two
S-system experimental patterns (10 % by volume small glass particles and 30 % by
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N = 3 N = 5

(i)

(ii)

(iii)

(iv)

Figure 10. Odd frequency experimental segregation patterns do not directly capture the
patterns and symmetries of computational Poincaré sections. (i) Poincaré sections for odd
frequency modulated tumblers with N = 3 and 5. (ii) S-system experiments with 10% by
volume small 1 mm painted black glass particles and 90 % by volume 3 mm clear glass
particles. (iii) S-system experiments with 30 % by volume small 1 mm painted black glass
particles and 70 % by volume 3 mm clear glass particles. Images in (ii) and (iii) were taken
after 10 tumbler revolutions. (iv) Long time averaged segregation experiments. N =3 image
includes over 1000 images taken once every half tumbler revolution. N = 5 image includes
8700 images taken once every half tumbler revolution.

volume small glass particles). In the D-system experimental pattern (30 % by volume
heavy steel particles), two lobes of heavy steel particles are present. For N = 6, there
are three islands in the Poincaré section and three lobes of small or heavy particles
in the segregation patterns. In the N =8 case, there are four islands in the Poincaré
section and four lobes of small or dense particles in the segregation patterns.

2.5.3. Odd frequency modulation

Interpretation of odd frequency segregation patterns and Poincaré sections is more
complicated than that for the even frequency modulation case. As mentioned earlier,
the number of large islands in a Poincaré section for odd frequency modulation
in a half-full tumbler is N rather than N/2. As shown in figure 10(i), the N = 3
Poincaré section shows three large islands (two in the bulk located approximately
halfway radially between the tumbler centre and the tumbler wall and one in the
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flowing layer). The N = 5 Poincaré section shows five islands (four in the bulk located
approximately halfway radially between the tumbler centre and the tumbler wall and
one in the flowing layer). In both Poincaré sections, smaller islands are visible between
the tumbler centre and the large islands. In the N = 3 case, there is one small inner
island. In the N = 5 case, there are two small inner islands.

As shown by the S-system results, in figure 10(ii) and (iii), segregation patterns in
odd frequency modulated experiments do not form lobes which coincide with the
location of islands. In the 10 % by volume small particle experiment (figure 10(ii))
for N =3, there is one large lobe of segregated small particles stretching to the lower
right-hand region of the tumbler. Three other small lobes also emerge from the
segregated core of small particles. However, in the 10 % by volume small particle
experiment for N =5, the segregated small particles appear to form two lobes that
coincide with the location of the inner two islands in the N =5 Poincaré section.

At the higher concentration (30 % by volume small particles), shown in figure 10(iii),
the segregated small particle pattern for N = 3 does not coincide with the location of
the parabolic islands in the corresponding Poincaré section. The 30 % small particle
pattern is similar to that of the 10 % small particle case with a large lobe stretching
toward the bottom right-hand portion of the tumbler. There are two other lobes, one
stretching toward the bottom left-hand portion of the tumbler and one in the flowing
layer. In the N = 5 case, the segregated small particle pattern for 30 % small particles
shows several lobes that do not coincide with islands in the corresponding Poincaré
section.

These results for odd frequency modulation are similar to observations by Fiedor &
Ottino (2005) for sinusoidal forcing. They suggested that lobe formation is reinforced
in even frequency modulation, but not in odd frequency modulation. Using long
time averaging of images of the segregation pattern obtained over thousands of
revolutions, Fiedor & Ottino (2005) captured the lobes in odd frequency segregation
patterns. Figure 10(iv) shows the long time averaging result for N = 3 and N =5 with
the blinking protocol. As shown for N =3, three lobes appear after averaging images
taken with a computer-controlled Kodak digital camera once every half revolution for
over 500 tumbler revolutions. The locations of the lobes correspond to the locations
of the large islands in the N =3 Poincaré section. In the case of N = 5, segregation
pattern lobes do not appear even after averaging the images taken once every half
revolution for over 4300 tumbler revolutions. A radially segregated core is present
instead. However, this segregation pattern does capture the overall pattern of the
Poincaré section near the five islands. In this case, the five islands are too close
together for individual lobes to appear in the segregation pattern.

3. Rotating tumbler mixers in three dimensions
The study of three-dimensional granular mixers is in its early stages. However, it

is important to note that one of the most commonly studied granular systems is
a three-dimensional long rotating cylindrical tumbler containing a bidisperse size-
varying mixture (Hill, Caprihan & Kakalios 1997; Fiedor & Ottino 2003; Khan,
Tokaruk & Morris 2004; Khan & Morris 2005). Axial transport in this case produces
alternating bands of large and small particles. However, it has been proposed that
the axial transport is due to differences between the angles of repose of the different
particle types or of mixed and pure phases of particles (Donald & Roseman 1962;
Bridgwater et al. 1969; Dasgupta, Khakhar & Bhatia 1991) rather than advective axial
flow. Measurements of the surface flow in long cylindrical tumblers of monodisperse
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Figure 11. (a) The rotating spherical tumbler showing the z = constant invariant planes.
(b) The flow in a z =constant plane and the geometry associated with the construction of
action–action–angle variables. (c) Top view of the surface velocity profile.

mixtures show that the streamwise velocity at the midlength of the free surface is a
linear function of the cross-sectional flowing layer half-length, L (where L =L(z)) and
that the transverse velocity in the axial direction is negligibly small compared to the
streamwise velocity (Pohlman et al. 2006a). Exceptions occur near the endwalls where
endwall friction results in boundary-layer effects (Pohlman et al. 2006b). This result
suggests that the underlying flow in each cross-section of a long rotating tumbler is
two-dimensional (neglecting the small endwall regions).

We consider a situation where advective fully three-dimensional flow is generated.
Relevant examples come from Elperin & Vikhansky. They proposed a model for
flow in an ellipsoidal tumbler rotated about its main axis that is wobbled (Elperin
& Vikhansky 2000). Later, they used level-set methods to define the free surface
of granular flows in various three-dimensional tumblers (Elperin & Vikhansky
2002). Rocking/rotating cylindrical tumblers have also been studied experimentally
by Wightman and colleagues (Wightman et al. 1998, 1995; Wightman & Muzzio
1988a, b) and Fiedor, Umbanhowar & Ottino (2006). A rocking/rotating spherical
tumbler was studied experimentally and computationally with a continuum
model (Gilchrist & Ottino 2003).

Granular flow in a spherical tumbler is an ideal system for the application of a
three-dimensional continuum model because experimental measurements show that
the surface flow at the midlength is a linear function of cross-sectional tumbler
geometry (Pohlman et al. 2006a). Since the endwall area goes to zero at the poles of
the spherical tumbler, boundary-layer effects that appear in long-rotating cylindrical
tumblers are not present. Therefore, the two-dimensional continuum model presented
earlier can be applied to these flows treating each cross-sectional slice as an independ-
ent two-dimensional flow scaling with the cross-sectional tumbler geometry (figure 11).
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1 2

t

ω1

t

ω2

x

z

x

z

(a) (b)

(i) (ii)

(c) (i) (ii) (iii) (iv)
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Figure 12. (a) The blinking protocol for a spherical mixer. Axes 1 and 2 are orthogonal
to each other and intersect at the origin of the sphere. (b) Top view of the surface velocity
profiles due to rotation around (i) axis 1 and (ii) axis 2. (c) (i) The flow in a fixed cross-section
for clockwise rotation around axis 1. (ii) Reorientation of free surface back to horizontal
by gently rotating counterclockwise around axis 1. (iii) The flow in a fixed cross-section for
counterclockwise rotation around axis 2. (iv) Reorientation of free surface back to horizontal
by gently rotating clockwise around axis 2.

3.1. Spherical tumbler mixers with constant angular velocity

Three-dimensional granular tumblers, and in particular spherical tumblers were
analysed in Pohlman et al. (2006a). Here we present the continuum model for
granular flow in the continuous-flow (rolling) regime in a spherical tumbler rotated
about two orthogonal axes labelled 1 and 2 in figure 12(a). A thorough derivation of
the continuum model for this case is presented in Meier et al. (2007).

3.1.1. Rotation about axis 1

In this section, we extend the system defined in § 2 to the case of three-dimensional
flow in a half-full sphere of radius R rotating at a constant rate, ω1, about axis 1 with
flow in a rapidly flowing free-surface layer orthogonal to the axis of rotation and at
an angle with respect to the horizontal (defined by the 1,2 plane) referred to as the
dynamic angle of repose. The coordinate system of the flow in the case of rotating
about axis 1 is defined with the direction of flow labelled as the x-direction with
the transverse direction labelled as the z-direction (parallel to axis 1) as shown in
figure 12(b) (i). The key assumption here is that particles have no velocity component
parallel to the axis of rotation. Thus in Cartesian coordinates, the velocity components
of particles in the bulk (bed of solid-body rotation) are given by

ẋ = ω1y =
∂ψb

∂y
,

ẏ = −ω1x = −∂ψb

∂x
,

ż = 0,

where

ψb =
1

2
ω1(x

2 + y2).
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As in the two-dimensional case, particles are exchanged between the bulk (bed of
solid-body rotation) and a rapidly flowing free-surface layer. In the flowing layer, the
streamwise (positive x-direction) velocity varies linearly with depth in the layer with
a maximum at the free surface. The linear variation with depth or shear rate, γ̇1, is
taken as constant with respect to the streamwise position, γ̇1 �= γ̇1(x). In this case, the
shape of the flowing layer is given in Cartesian coordinates with the origin centred at
the midpoint between the tumbler walls in the direction of flow (that is, at the centre
of a half-full sphere) by:

δ1(x, z) = δ0

√
1 − x2

L2
=

√
ω1

γ̇1

√
R2 − x2 − z2, (3.1)

since we have L =L(z) =
√

R2 − z2 and δ0 =
√

ω1/γ̇1L(z) (recall § 2.1).
The velocity field in the flowing layer is given by

ẋ = γ̇1 (δ1(x, z) + y) =
∂ψf

∂y
,

ẏ =
ω1 x y

δ1(x, z)
= −∂ψf

∂x
,

ż = 0,

where

ψf = γ̇1

(
δ1(x, z)y + 1

2
y2
)
. (3.2)

3.1.2. Rotation about axis 2

We will be interested in alternating rotation at constant velocity about two different
axes (figure 12a). For clarity, we give here the equations of motion for rotation at
rate ω2 about axis 2. For rotation about axis 2, the direction of flow is labelled by
the positive z-direction (at an angle with respect to the horizontal defined by the 1,2
plane) and the transverse direction is labelled by the x-direction (parallel to axis 2).
The boundary of the flowing layer is given by

δ2(x, z) =

√
ω2

γ̇2

√
R2 − x2 − z2.

Note that if ω1/γ̇1 = ω2/γ̇2 then δ1(x, z) = δ2(x, z) . In the bulk, we have the velocity
field

ẋ = 0,

ẏ = −ω2z = −∂ψb

∂z
,

ż = ω2y =
∂ψb

∂y
,

where
ψb = 1

2
ω2(y

2 + z2),

while in the flowing layer the motion is described by

ẋ = 0,

ẏ =
ω2 z y

δ2(x, z)
= −∂ψf

∂z
,

ż = γ̇2 (δ2(x, z) + y) =
∂ψf

∂y
,
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where the streamfunction in the flowing layer for the flow generated by rotation about
axis 2 is that corresponding to the streamfunction in the flowing layer generated by
rotation about axis 1 (equation (3.2)), i.e.

ψf = γ̇2

(
δ2(x, z)y + 1

2
y2
)
.

In between rotating around each of the axes, we reorient the free surface back to
parallel with the 1,2 plane, as shown in figure 12(c). This eliminates complications
associated with the free surface being at an angle with respect to the 1,2 plane at the
beginning of each of the flows. With the reorientations, the flows can be considered
as maps owing to rotations with respect to the z-axis and x-axis. To simplify the
discussion from this point on, we refer to rotations with respect to the z- and x-axes.

3.1.3. Characterizing particle kinematics by a three-dimensional twist map:
action–action–angle variables for the spherical tumbler rotating with constant velocity
about an axis

For constant rotation rate about a fixed axis (which we will take as the z-axis
for definiteness), we can construct a three-dimensional generalization of action–angle
variables, which we refer to as action–action–angle variables (see Mezic & Wiggins
1994), in which the velocity field takes a simple form and leads to a straightforward
analysis of the kinematics of particle trajectories. The key connection to the two-
dimensional setting comes from noting that since ż = 0, the flow occurs entirely in the
planes z = constant. Therefore, in each such plane we can transform to action–angle
variables using the standard two-dimensional coordinate transformation derived in
§ 2.1.1, and the ‘second action’ is the coordinate z.

In order to describe the global streamfunction we must define carefully the domains
of the two different flows. The flowing layer is defined by:

Df,δ0
= {(x, y, z) | − R � x � R, −R � z � R, 0 � y < −δ(x, z)} ,

where the thickness of the flowing layer is given by (3.1). Outside the flowing layer,
the particles undergo solid-body rotation. We refer to this region as ‘the bulk’, and it
is defined by:

Db,δ0
= {(r, θ, z) | 0 � r � R, 0 � θ < π, −R � z � R} − Df,δ0

.

The boundary between Df,δ0
and Db,δ0

, denoted ∂f,b is therefore given by

∂f,b = {(x, y, z) | − R � x � R, y = −δ(x, z), −R � z � R} ,

and the domain of the flow is Df,δ0
∪ Db,δ0

. We define the flow on each region
separately, and a matching condition for the streamlines at the boundary in exactly
the same way as described following equation (2.9), giving the streamfunction

ψ(x, y, z) =

{
ψf (x, y, z) on Df,δ0

,

ψb(x, y) on Db,δ0
.

As before, we can define the transformation to the action, action and angle
coordinates, and describe their relationship to the geometry of closed streamlines
in z = constant planes. Let C(z) denote a reference curve on the z = constant plane
which is a straight line connecting (0, −δ1(0, z), z) to (0, −L, z) = (0, −

√
R2 − z2, 0)

(see figure 11b). C(z) will be the starting point of trajectories on the z = constant
plane. We represent C(z) in parametric form as follows:

C(z) = {
(
0, y0(z), z

)
∈ �3 | −δ1(0, z) � y0(z) � −L},
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and trajectories starting on C(z) by (x(t, z), y(t, z), z) where x(0, z) = 0 and
y(0, z) = y0(z). Let (x, y, z) be an arbitrary point on a closed streamline traced
out by the trajectory (x(t, z), y(t, z), z) and let t = t(x, y, z) be the time taken for
the trajectory starting at (0, y0(z), z) to flow to (x, y, z). We denote the period of
each closed trajectory on a z = constant plane defined by ψ(x, y, z) =ψ = constant by
T (ψ, z). The angle variable on the z = constant plane, φ(x, y, z), is now defined as:

φ(x, y, z) =
2π

T (ψ, z)
t(x, y, z),

where (x, y, z) ∈ ψ =constant.
The area enclosed by any closed streamline in the z = constant plane is clearly

constant in time (since ż = 0). This is used to define one action variable, denoted ρ(z),
as:

ρ(z) =
1

2π

∮
ψ

x dy, (3.3)

where ψ labels the closed streamline in the z = constant plane defined by
ψ(x, y, z) =ψ = constant. Just as in the two-dimensional situation, it should be clear
from (3.3) that the action variable for a closed streamline is a function of ψ , which
we explicitly denote as:

ρ(z) = ρ(ψ, z),

and that this relationship can be inverted (for z held constant) as a result of the
one-to-one relationship between closed streamlines and the area they enclose:

ψ = ψ(ρ, z).

We can also label the period of each closed streamline in a z = constant plane by
either ρ or ψ .

In summary, we have defined coordinates (ρ, φ, z) on a region of closed streamlines
on any z = constant plane such that the velocity field is given by

ρ̇ = 0,

φ̇ =
2π

T (ρ, z)
≡ Ω(ρ, z), (3.4)

ż = 0,

where Ω(ρ, z) is the frequency associated with the closed streamline having action ρ

in the z = constant plane. The trajectories of (3.4) are easily obtained as:

ρ(t) = ρ0 = constant,

φ(t) =
2π

T (ρ, z)
t + φ0 ≡ Ω(ρ, z)t + φ0,

z(t) = z0 = constant.

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

The same argument given in Wiggins (2003) for the two-dimensional case shows
that restricted to a z = constant plane, the Jacobian of the transformation (with
respect to x and y) to action–angle coordinates is identically one, which implies that
area is preserved under the action–angle transformation, and that the ‘Hamiltonian
structure’ (with respect to the x and y coordinates) is also preserved under action–
angle transformations. This latter point means that if we take the streamfunction in the
original (x, y, z) coordinates and transform the x and y components to action–angle
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coordinates, then the velocity field in action–action–angle coordinates is obtained from
this transformed streamfunction in the usual way. More importantly, the transformed
streamfunction is a function of just the ρ and z variables.

As in the two-dimensional case, we consider the motion of particles in terms of a
map. The map is constructed from the trajectories (3.5), and is obtained by considering
the evolution of particles for a fixed interval of time, which we will take to be t = τ1.
Therefore, the mapping of points is given by

P (ρ, φ, z) = (ρ, φ + Ω(ρ, z)τ1, z) .

This is a three-dimensional generalization of a twist map since the Ω(ρ, z) is a mono-
tonic function of ρ, for each fixed z, which is responsible for shearing, or ‘twisting’ of
a line of initial conditions transverse to the streamlines. These types of maps, subject
to perturbations, have been studied in Wiggins & Holmes (1987), Mezic & Wiggins
(1994) and Mezic (2001).

3.2. Alternating axes of rotation: the blinking spherical tumbler as a three-dimensional
linked twist map

A three-dimensional blinking mixer can be created by alternating rotation about axis
1 with rotation about axis 2. It is important to note that the free surface is parallel
to the horizontal at the beginning of each rotation. For example, after generating the
flow due to rotation around axis 1 (figure 12c(i)), the free surface is brought back to
parallel with the horizontal by gently rotating the tumbler without generating surface
flow in reverse around axis 1 (figure 12c(ii)) before rotating the tumbler around axis
2 (figure 12c(iii)). Similarly, after generating the flow due to rotation around axis 2,
the free surface is brought back to parallel with the horizontal by gently rotating
the tumbler in reverse around axis 2 (figure 12c(iv)) without generating surface flow
before rotating the tumbler around axis 1. As mentioned at the end of § 3.1.2, by
reorienting the free surface back to horizontal between rotations on each axis, the
flows can be considered as maps due to rotations with respect to the z- and x-axes.

In terms of action–action–angle coordinates, the blinking spherical mixer can be
described as a linked twist map by the composition of the map

Px(ρx, φx, z) = (ρx, φx + Ωx(ρx, z)τ1, z),

which represents rotation about the z-axis with frequency Ωx , and the map

Pz(x, ρz, φz) = (x, ρz, φz + Ωz(ρz, x)τ2),

which represents rotation about the x-axis with frequency Ωz. As for the two-
dimensional blinking tumbler, to formally compose these maps we require a nonlinear
change of variable transformation V to write the linked twist map Q as

Q = V−1 ◦ Pz ◦ V ◦ Px. (3.6)

3.3. Dynamical properties of the three-dimensional linked twist map

Now we begin our studies of the mixing properties of the blinking spherical
tumbler by studying the dynamics of the associated three dimensional linked twist
map. We begin by stating some very general results, with the details relegated to
appendices.

Theorem 3.1. The integrable twist map Px has a surface of period-one points in the
bulk, Σ1, having the form of a ‘bowl’ which is part of a prolate spheroid (see figure 13),
with the semi-major axis parallel to the z-axis. Similarly, the integrable twist map Pz
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y

x

z

Σ1

Σ2

Figure 13. The intersecting prolate spheroids Σ1 and Σ2.

also has a surface of period-one points in the bulk, Σ2, having the form of a bowl which
is also part of a prolate spheroid, with the semi-major axis parallel to the x-axis. The
surfaces Σ1 and Σ2 intersect in four curves which are period-one points for the linked
twist map Q. Moreover, these curves alternate in stability type, with two being normally
elliptic and two being normally hyperbolic.

Details of the proof of this result are given in Appendices C, D and E. We note
that it is shown in Appendix C that these spheroids are completely defined in terms
of the parameters ω1, ω2, γ̇1, γ̇2, R, τ1 and τ2. In general, period-one points are
significant because they give rise to the largest islands, i.e. regions of fluid that do
not mix with the surroundings. In this three-dimensional setting, we see something
different: ‘islands’ whose ‘centres’ are not elliptic periodic points, but normally elliptic
invariant curves. These normally elliptic invariant curves are surrounded by ‘KAM
tubes’, which are barriers to mixing. The normally hyperbolic invariant curves have
two-dimensional stable and unstable manifolds (Wiggins 1994). More background
on the implications of these three-dimensional structures on mixing can be found
in Mezic & Wiggins (1994), but we emphasize that these types of three-dimensional
structures have received little attention in realistic examples.

If the ratio of angular rotation rate to shear rate is the same for both rotations,
particle trajectories are constrained to a single surface that depends on the initial
condition, and transport throughout the entire hemispherical domain does not occur.
More interesting dynamics, and in particular transport throughout the hemisphere,
will be possible if the rotations have different angular velocities. Here, we state the
result where particles are constrained to lie on a fixed surface (depending on the
initial condition of the particle).

Theorem 3.2. The motion of a particle acting under rotations about the z- and x-axis
alternately, when ω1/γ̇1 = ω2/γ̇2, is constrained to a single surface, determined by the
initial position of the particle, given by a hemispherical bowl formed from paths through
the bulk, with a ‘lid’ formed from paths through the flowing layer. In particular, this
result is not dependent on the amount of time for which each rotation acts.

This theorem effectively follows from the fact that if ω1/γ̇1 = ω2/γ̇2, then δ1(x, z) =
δ2(x, z), which gives a symmetry to the flowing-layer dynamics. The details of the
proof are given in Appendix B.
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3.4. The symmetric case

In the case that ω1 = ω2 and γ̇1 = γ̇2, theorem 3.2 shows that the dynamics is
constrained to a single hemispherical surface, dependent on the initial condition.
Properties of the dynamics within that surface can be found by considering periodic
points of the map. Consider the map Px(ρx, φx, z) = (ρx, φx + Ωx(ρx, z)τ1, z), the time-
τ1 map of rotation with respect to the z-axis. A period-one point for Px is a point
which returns after one iteration of Px , that is, a point whose period in the flow is
τ1. In Appendix C, we compute this period analytically. This shows that period-one
points lie on the surface Σ1 given by

Σ1 : x2 + y2 + c1z
2 = c2,

where c1 and c2 are constants, c1 = c1(ω1, γ̇1, τ1) and c2 = c2(R, ω1, γ̇1, τ1) given
explicitly in Appendix C. Similarly, period-one points for the map Pz(x, ρz, φz) =
(x, ρz, φz + Ωz(ρz, x)τ2) lie on the surface Σ2 given by

Σ2 : c3x
2 + y2 + z2 = c4,

where c3 and c4 are constants, c3 = c3(ω2, γ̇2, τ2) and c4 = c4(R, ω2, γ̇2, τ2). Two such
surfaces (prolate spheroids) are shown in figure 13. Period 1 points of the linked
twist map Q are thus given by the intersection of Σ1 with Σ2, given by ∆ =Σ1

⋂
Σ2.

When τ1 = τ2 there is a further symmetry relating Σ1 to Σ2, and ∆ consists of a pair
of curves ∆xz > 0 and ∆xz < 0 which intersect at x = z = 0. In this case, c1 = c3 = c̄ and
c2 = c4 = ĉ. See Appendix D for details. The stability of these period-one points can
be determined by a symmetry argument, detailed in Appendix E. We have that ∆xz > 0

is a curve of unstable (hyperbolic) points (i.e. a normally hyperbolic invariant curve),
while ∆xz < 0 is a curve of stable (elliptic) points (i.e. a normally elliptic invariant
curve).

The main features of the dynamics are thus given by the intersection of the invariant
hemisphere Hr : x2 +y2 +z2 = r2 with ∆. In figure 14, we show orbits of 104 iterations
of carefully chosen initial conditions to illustrate the different possible dynamics. In
each of these figures, we plot only those iterations for which y < −δ(x, z) (i.e. we
do not plot points in the flowing layer), and we show the image as a projection
in (x, z)-space (effectively looking at the hemisphere from below). The parameter
values are ω1 = ω2 = 0.5, γ̇1 = γ̇2 = 50.0, τ1 = τ2 = 6.0, R = 1. If r is sufficiently small, or
sufficiently large, the intersection H∩∆ is empty. In this case, there are no period-one
periodic points, and the dynamics has no significant islands. Such dynamics are shown
in figures 14(a) and 14(f ), for r =0.1 and r = 0.8, respectively. The lowest point of
Σ1 and Σ2 (that is, ∆xz > 0 ∩∆xz < 0) occurs at (x, y, z) = (0, −√

c2 = −0.16222, 0). Thus
when r = 0.16222, Hr touches ∆ tangentially. At this point, the period-one point
is a parabolic point. This behaviour is shown in figure 14(b). As r increases from
this point, H ∩ ∆ has four points, a pair of elliptic points and a pair of hyperbolic
points. Two examples of such dynamics are shown in figures 14(c) and 14(d), for
r = 0.18 and r = 0.2, respectively. Finally, figure 14(e) shows the dynamics when the
periodic points have reached the boundary of H. This occurs when r = 2c̄/(1 +
ĉ) ≈ 0.279.

3.5. Experiments in three dimensions

The physics operating in experiments in three dimensions is the same as in two dimen-
sions. There are some experimental difficulties, however, with respect to comparison
with the two-dimensional case. The most important is that in two-dimensional
experiments, visualization is easy, but not so in three dimensions owing to the
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(a) r = 0.1 (b) r = 0.16222 (c) r = 0.18

(d) r = 0.2 (e) r = 0.279 (f ) r = 0.8

Figure 14. Dynamics of the three-dimensional blinking spherical mixer. We plot 104 iterations
of a single initial condition in each figure. For clarity we plot a plan view and plot only iterations
in the bulk. Parameter values are ω1 = ω2 = 0.5, γ̇1 = γ̇2 = 50.0, τ1 = τ2 = 6.0, R = 1. Since the
parameters are the same for each rotation, the dynamics is constrained to a hemispherical
surface x2 +y2 +z2 = r2. The particular hemispherical surface is chosen by the initial condition.

non-transparency of granular materials. The interior of three-dimensional systems
can be examined using several techniques such as MRI (Nakagawa et al. 1993;
Metcalfe & Shattuck 1996; Fukushima 1999). Such techniques are still not routine
and here we resort to other methods.

In the three-dimensional experiment presented here, tracer particles are advected
by the flow. The resulting pattern reveals the dynamics of the underlying flow. The
spherical tumbler is made of clear acrylic with a radius of 68 mm. The tumbler
is half-filled with granular material. The fluorescent yellow tracer particles (which
appear pale grey in figure 15) are 1.94 ± 0.11 mm painted glass particles (density of
2.3 g cm−3), while the bulk particles are 1.07 ± 0.04 mm black basalt glass particles
(density of 2.6 g cm−3). This mixture has a dynamic angle of repose of approximately
26◦. The tumbler rotates about two axes driven by Compumotor 34 frame stepper
motors. Angular distance, velocity and acceleration are preprogrammed in Visual
C++ and sent by a computer to the motors via an indexer and drives. The angular
velocity is 2 r.p.m.. The experimental images shown in figure 15(c) were taken using
a Canon digital camera.

As shown in figure 15, experiments reveal the hemispherical dynamics predicted by
the three-dimensional continuum model. In this example, the following protocol is
used. First, the tumbler rotates until the surface flow begins and then rotates one full
rotation clockwise around axis 1 resulting in flow in the flowing layer in the positive
x-direction. The flow is considered steady after 12◦ of tumbler rotation (Pohlman
et al. 2006a). The flow in the surface layer occurs at an angle to the horizontal, the
dynamic angle of repose. Once the full rotation around axis 1 is complete, the tumbler
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Initial condition

1 period

2 periods

3 periods

4 periods

(a) (b) (c)

(d)

Figure 15. Comparison of a simulation using the three-dimensional continuum model without
and with diffusion and an experiment. In both the simulation and experiment, tracer particles
(appearing grey) are seeded in a blob at the bottom of a half-full spherical tumbler. In all
cases, the spherical tumbler is viewed from the bottom. (a) The evolution of the pattern
over four periods of the two-axis protocol using the continuum model without diffusion.
(b) The evolution of the pattern over four periods of the two-axis protocol using the continuum
model with diffusion added to the velocity equations in the flowing layer in both the x- and
z-directions. (c) The experimental result of a half-full sphere containing 1 mm black basalt
glass particles and 2 mm fluorescent yellow (appearing pale grey) glass tracer particles. (d) The
corresponding Poincaré section for the three-dimensional flow. It is plotted for 500 periods,
with the initial condition consisting of 19 points located in the x = −z plane at r = 0.95R. The
first three columns of this figure are adapted with permission from Meier et al. (2007, c© 2007
Taylor & Francis).

is gently rotated counterclockwise around axis 1 to bring the free surface back to
horizontal. Next, the tumbler rotates until the surface flow begins and then rotates
one full rotation counterclockwise around axis 2 resulting in flow in the flowing layer
in the positive z-direction. Finally, the tumbler is gently rotated clockwise around axis
2 to bring the free surface back to horizontal. The protocol then repeats.

For the computational results shown in figure 15(a, b), the shear rate is matched to
that for the experiment (γ̇ = 50|ω|) (Pohlman et al. 2006a). The hemisphere of interest
in figure 15 is close to the tumbler wall (r = 0.95R) so that a visual comparison can
be made between the computational results and the experimental patterns. While
the medium is assumed to be monodisperse in the continuum model simulation, two
slightly different sized particles are used in the experiment. By using tracer particles
larger than the bulk particles, the tracer particles preferentially occupy the uppermost
portion of the flowing layer. When particles in the uppermost portion of the flowing
layer enter the bed of solid-body rotation, they reside in the outermost portion near
the tumbler wall (outermost hemisphere). (See Clément et al. (1995) and Duran (2000)
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(a) (b) (c)

z

x x x

z z

Figure 16. Sketch of the intersection of the prolate spheroids Σ1 ∩ Σ2 in x, z space.
(a) τ1 >τ2. (b) τ1 = τ2. (c) τ1 <τ2.

for similar experiments in quasi-two-dimensional tumblers.) If the tracer particles and
the bulk particles were exactly the same size and density, the tracer particles would
diffusively move through the depth of the flowing layer and may not appear on the
outermost hemisphere near the tumbler wall, making visualization of the dynamics
near the tumbler wall difficult. As shown by the comparison between the model
and experimental results, the continuum model simulation provides an accurate
representation of the dynamics of the mixing, particularly when the simulation
includes diffusion in both the x- and z-directions in the flowing layer. The chaotic
dynamics are evident in the stretching and folding of the ‘blob’ of tracer particles
as evident after three periods of the protocol. Moreover the fold created has a
strong correlation with the location of an island in the Poincaré section shown in
figure 15(d). Note that according to the analysis of § 3.4 we have, for these parameter
values, c1 = c2/R

2 ≈ 0.021. This implies there is no intersection between ∆ and the
hemisphere r =0.95R, and so the visible islands are not period-one islands.

3.5.1. Non-symmetric cases

The simplest way to break the symmetry of Σ1 and Σ2 is by allowing τ1 �= τ2, whilst
retaining ω1 = ω2 and γ̇1 = γ̇2. In this case, theorem 3.2 still applies, and dynamics
are still constrained to a hemisphere, but now the intersection ∆ need not be a pair
of intersecting lines. Instead, the intersection forms a pair of curves (details given
in Appendix D) which depend on c1, c2, c3 and c4. These curves are hyperbolas,
with the direction of the semi-major axis depending on the sign of c2 − c4. Figure 16
shows a sketch in (x, z)-space of the intersection ∆. Figure 16(a) shows the situation
for τ1 > τ2, which gives ∆ to be the hyperbolas x2(1 − c3) + z2(c1 − 1) = (c2 − c4),
where 1 − c3 > 0, c1 − 1 < 0 and c2 − c4 > 0. Stable (elliptic) points are shown as a
solid line and unstable (hyperbolic) points are shown as a dotted line. Figure 16(b)
shows the symmetric case τ1 = τ2 discussed above, in which ∆ forms the straight
lines x = ± z. Finally, in figure 16(c), we have τ1 < τ2 and ∆ is the hyperbolas
x2(c3 − 1) + z2(1 − c1) = (c4 − c2), where c3 − 1 < 0, 1 − c1 > 0 and c4 − c2 > 0. In
the language of dynamical systems, these figures could be described as a pair of
saddle-node bifurcations (figure 16a) approaching each other as τ1 approaches τ2

from above, passing through a transcritical bifurcation (figure 16b) as τ1 = τ2, and
a pair of saddle-node bifurcations separating (figure 16c) as τ1 decreases away
from τ2.

The symmetry of the system could also be broken by allowing ω1 �= ω2. In this
case, periodic points are still given by the intersection of Σ1 with Σ2, but for general
points, theorem 3.3 does not apply, and so trajectories are not restricted to a single
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invariant hemispherical surface. Several questions are immediately raised, which we
choose not to address in the present paper. For example, how can the behaviour
in the vicinity of a periodic point best be characterized and observed? What is the
effect of breaking the symmetry on transport throughout the hemisphere? What are
the consequences of this for the mixing properties of the system? How is segregation
affected?

3.6. The δ → 0 limit

The limit of a flowing layer of zero width allows us to make connections with some
interesting mathematical tools and formalisms in the area of piecewise isometries.
This allows us to understand a fundamental difference between granular mixing in
two and three dimensions. We first begin by explaining the physical meaning of this
limit.

Consider a half-full circular tumbler of radius R rotating at a rate ω. According to
the continuum model, a particle on the free surface of the flowing layer experiences
a streamwise velocity as a function of its streamwise position, x, given, using (2.4),
by

usurf (x) =
√

ωγ̇
√

R2 − x2.

where γ̇ = ωR2/δ2
0 is the shear rate or variation of the streamwise velocity with depth

in the flowing layer. The average velocity this particle will experience while travelling
the full length of the surface of the flowing layer is given by

uav
surf =

1

2R

∫ R

−R

usurf (x) dx =
π R

4

√
ωγ̇ .

In the bulk, a particle that was on top of the free-surface will reside against the
tumbler wall. The velocity in the bulk is given by

vθ = ω.

The time the particle spends in the free-surface flow is given by 2R/uav
surf , while the

time spent in the bulk is given by −π/vθ :

Time in flowing layer

Time in bulk
=

8

π2

√
ω

γ̇
.

As the ratio of the shear rate to the rotation rate becomes very large, the ratio of
the time spent in the flowing layer to the time spent in the bulk becomes very small.
In the limit γ̇ /ω → ∞ (recalling that γ̇ /ω =R2/δ0 means that this limit is equivalent
to δ0 → 0), the ratio of the time spent in the flowing layer to the time spent in the
bulk goes to zero.

3.6.1. Piecewise isometries

Investigating the behaviour of the three-dimensional system in the limit as δ → 0 is
interesting not only because it describes the dynamics of a tumbler filled with granular
material which avalanches quickly, but also because it gives a physical example of a
system in which complex behaviour is possible in the absence of the stretching and
folding usually found in chaotic mixing devices. More precisely, the model system
in the δ → 0 limit is an example of a piecewise isometry. These are discontinuous
systems which can exhibit complicated fractal structures. The behaviour of piecewise
isometries (PWIs) has been studied in some detail in recent years (e.g. Goetz 1998,
1999, 2000, 2001; Buzzi 2001; Ashwin & Fu 2002). Some applications of this type of
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system have been described in Deane (2006), although most engineering applications
to date have been concentrated on digital systems in signal processing.

The blinking flow for the three-dimensional spherical tumbler in the limit as δ → 0
can be viewed as a PWI on a curved surface. The dynamics of PWIs on a spherical
surface were investigated in Scott, Holmes & Milburn (2001). The PWI can be
understood by letting the time to cross the flowing layer tend to zero, while the depth
of the flowing layer also tends to zero, or can be given explicitly by the following.

Consider a map HP defined on the lower hemispherical shell (of radius l) Hl given
by

Hl = {(x, y, z)|x2 + y2 + z2 = l2, z < 0}.
We define the map by composing two rigid rotations. First, define a rigid rotation FP

about the x-axis, so that particle paths are constrained to sheets of constant x. Then,
this rotation can be described by defining polar coordinates r and θ measured from
(x, 0, 0):

r2 = y2 + z2,

tan θ = z/y,

where θ takes values in [0, π] for negative z (i.e. it θ increases from 0 in the clockwise
direction). Then, the map FP is given by

FP (x, r, θ) = (x, r, θ + A (mod π)),

where the (mod π) indicates that when a trajectory reaches the z = 0 plane at
(x ′, −y ′, 0) (leaving the lower hemisphere travelling upwards) it is ‘reinjected’ at
(x ′, y ′, 0) (that is, the circular surface forming the lid of the hemisphere is cut in two
and the two halves identified along the line y = 0, z = 0). The dynamics of the map
FP can be described as a collection of periodic or quasi-periodic curves depending
on whether A is rational or irrational.

Similarly define a map GP by considering corresponding coordinates (y, ρ, φ),
where ρ and φ are polar coordinates centred on (0, y, 0) in Cartesian coordinates,
given by

GP (y, ρ, φ) = (y, ρ, φ + B (mod π)).

This is a similar rigid rotation about the y-axis, although the periodic identification
of the lid of the hemisphere is different.

Finally, we compose these maps to form the piecewise isometry HP = GP ◦ FP .
Formally, this can be written with the change of coordinates:

(y, ρ, φ) = W(x, r, θ) = (r cos θ,
√

x2 + r2 sin2 θ, tan−1(r sin θ)/x)

giving

HP (x, r, θ) = W−1 ◦ GP ◦ W ◦ FP (x, r, θ). (3.7)

It is straightforward to see that the dynamics of HP remain on a hemispherical shell,
since it is composed of a pair of rotations about orthogonal axes.

An example of some of the rich dynamics in a PWI is shown in figure 17. In
figure 17(a) we show a plan view of four trajectories with initial conditions on the
hemisphere x2+y2+z2 = 0.49 for the PWI HP with A= B = π/4. This type of intricate
fractal pattern is typical of PWIs, and similar dynamics can be seen in many of the
cited references. Figures 17(b) to 17(d) show sample trajectories for the equivalent
three-dimensional spherical mixer system, with ω1 = ω2 = 0.5 and τ1 = τ2 = π/2. To
show the dynamics tending to the PWI dynamics, we choose γ̇1 = γ̇2 in these figures
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(a) PWI (b) γ
.
/ω =107

(a) γ
.
/ω = 104 (b) γ

.
/ω =102

Figure 17. An example of how increasing the rate at which particles cross the flowing layer
creates dynamics increasingly like that of a piecewise isometry. (a) The dynamics of a PWI
with A =B = π/4 on the hemisphere x2 + y2 + z2 = 0.49. (b–d) The corresponding map HP

with ω1 = ω2 = 0.5 and τ1 = τ2 = π/2 and varying values for γ̇ .

so that in figure 17(b), γ̇ /ω =107, in figure 17(c), γ̇ /ω =104 and in figure 17(d),
γ̇ /ω = 102.

This illustrates an interesting feature of the behaviour of the spherical tumbler.
Complex behaviour in the three-dimensional system does not come solely from the
shearing in different directions in the flowing layer associated with stretching and
folding, but also from the rigid rotations on a curved surface. Note that a similar
statement for the two-dimensional case does not hold – in the δ → 0 limit in this
case, the dynamics simply reduces to quasi-periodic or periodic dynamics, depending
whether the angle rotated through is irrational or rational.

3.7. Mixing properties of three-dimensional rotating tumblers

In § 2.4, we illustrated the mixing properties of a two-dimensional blinking tumbler.
In this section, we contrast these results with the corresponding numerical experiment
for the three-dimensional system. We again consider the evolution of two initial blobs
(consisting of 16 × 104 points). Here, we begin by dividing a hemispherical shell into
grey on the left and black on the right. Figures 18(a), 18(f) and 18(k) illustrate these
initial conditions, viewing the hemisphere from below. Figures 18(b), 18(c), 18(d) and
18(e) show the images of the initial sets after 2, 4, 10 and 100 iterations respectively,
of the piecewise isometry HP (recall (3.7)), with angles A= 3π/4 and B =3π/4. Note
that mixing in this system is caused by a different mechanism from that in the
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(a) (b) (c) (d) (e)

(f ) (g) (h) (i) ( j )

(k) (l) (m) (n) (o)

Figure 18. Comparison of the dynamical mixing properties of the piecewise isometry with
the three-dimensional blinking tumbler. The images under the piecewise isometry HP of the
initial black and grey regions shown in (a) are shown after (b) 2, (c) 4, (d) 10 and (e) 100
iterations. The images in the middle and bottom rows are the same iteration of the same initial
regions for the three-dimensional system Q with γ̇1,2 = 1000ω1,2 (middle row) and γ̇1,2 = 100ω1,2

(bottom row).

two-dimensional case. Here the discontinuities in the system cause the initial blobs to
be cut and shuffled. There are no positive Lyapunov exponents and no stretching is
involved. For small numbers of iterations it can be seen that mixing appears much
more efficient than in the two-dimensional case (compare with figure 8). After 100
iterations the sets have become intricately intermingled, although some significant
unmixed regions remain.

Figure 18(g–j ) shows the images of the initial sets under the same numbers of
iterations as the row above, for the three-dimensional system Q (recall (3.6)) for
which the piecewise isometry is an idealization. That is, we take parameters τ1,2 = π/2,
ω1,2 = 3/2 and γ̇1,2 = 1000ω1,2. Figure 18(l–o) are again the same iterations, taking
γ̇1,2 = 100ω1,2. This final set of figures represent physically realizable parameters. For
small numbers of iterations, it is clear that the three-dimensional system Q shares
common features with the piecewise isometry. In particular, mixing begins to occur
as a result of sets being divided across the flowing layer. After 10 iterations, two
mixing mechanisms are apparent: cutting and shuffling due to PWI-like dynamics,
and striated layers due to exponential stretching in the flowing-layer intersection. After
100 iterations, the exponential stretching dominates, and the mixed state displays a
familiar chaotic sea punctuated by elliptic islands are periodic points. These figures
are only a brief sample of the rich dynamical behaviour possible in this system, but
they suggest that an understanding of the dynamics of the PWI will play a crucial
role in the understanding of the three-dimensional blinking tumbler.
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4. Outstanding problems, future directions and conclusions
The study of mixing of fluids benefited from the adoption of tools from nonlinear

dynamics and its connection with chaos. The connection between the physical system,
experiments, numerics and theory has now an established framework in which to
study common issues across various problems. A natural question is whether or not
a similar framework can be established in the field of granular mixing.

The work presented here aims to cover only part of this territory, that of mixing in
systems undergoing motions driven by tumbling. We make the case for the application
of recently developed theory to the study of a model flow of mixing of granular
materials in rotated tumblers. Application to the two-dimensional case – a half-
filled quasi-two-dimensional circular drum – can be analysed in terms of the existing
mathematical formalism of linked twist maps. Conversely, the three-dimensional
case – a half-filled sphere rotated among two orthogonal axes – does not benefit
from an existing mathematical formalism. It is apparent that the mathematics of the
three-dimensional case – a system we call a three-dimensional linked twist map –
contains considerably more complexity, and opens an array of new questions. We
initiate the study by showing some analytical results, two of them expressible as
theorems. However, a number of open questions can immediately be proposed.

(i) Three-dimensional transport throughout the hemisphere. In the case of symme-
tric parameters we have shown that each trajectory remains on a particular
hemispherical shell. To what extent is this true in the physical system? How should
this be quantified? For non-symmetric parameters, the model allows a trajectory to
leave its initial hemispherical shell. How efficient is transport in three dimensions in
this case? Are there conditions in three dimensions where the mixing is ‘ergodic and
chaotic’?

(ii) Does a deeper understanding of the dynamics of piecewise isometries shed
light on the kinematics of mixing for the three-dimensional spherical mixer?

(iii) We have described two different mechanisms for mixing in the three-
dimensional spherical tumbler, one based on exponential stretching and folding
characterized by positive Lyapunov exponents, the other on cutting and shuffling
characterized by zero Lyapunov exponents. What is the relationship between the two
mixing mechanisms? How can the mixing process be measured? What is the effect
of each of these mechanisms on segregation?

There are also questions that clearly exceed the bounds of this paper. Here, we
are taking it as an empirical fact that the segregated structures mimic the placement
of islands in the system. We may imagine that, under the assumption that the flow
affects segregation but segregation does not affect the flow, it is possible that such a
state is an attractor in this dynamical system.

We recognize that the material presented here provides tools to ‘solve’ some
problems, e.g. mixing in two-dimensional systems, but also opens a multitude of
questions in the three-dimensional case, some of which may require the development
of new mathematics.

We started these concluding remarks by asserting that the study of mixing of fluids
had benefited from the adoption of tools from nonlinear dynamics and its connection
with chaos. In the case of fluids, there has been, over the last two decades, a balance
between experiments and theory. A perfect balance, however, is hard to achieve and
we may argue that at various times, theory has been ahead of experiments and,
at others, experiments have been ahead of the theory. The case of granular mixing
and segregation in three-dimensional systems presents several immediate challenges
and many of them lie on the experimental side – theory is ahead of experiments.
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L

y

(0, y∗)

(0, y0)

x
α

ω

(x2, y2)

(x1, y1)

t1

t2

Figure 19. Geometry associated with the computation of the period of a point, i.e. the time
required for a particle to make one complete revolution around the tumbler.

New experiments are required that are capable of studying systems undergoing non-
symmetric motions on two axes. Two of the challenges are to design new devices, and
to develop imaging techniques that allow for the visualization of the inner structure
of the partially mixed structures.
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Appendix A. Computation of the period in two dimensions, constant rotation
rate

We compute the time taken for an arbitrary particle initially at (0, y0) in Cartesian
coordinates to return to its original position. This calculation is most conveniently
carried out by taking taking (0, y0) to be in the bulk, i.e. y0 ∈ (−δ0, −L). Figure 19
describes the geometry associated with the calculation.

At the intersection of bulk and flowing layer, (x1, y1), the particle lies on the
intersection of the curves

y2
0 = x2

1 + y2
1 ,

y1 = −δ(x1) = −
√

ω/γ̇

√
L2 − x2

1 .

The solution of these equations for a particle entering the flowing layer from the bulk
(which means that we choose the negatively signed of the two solutions of each of
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these equations) gives

x1 = −

√
L2ω − γ̇ y2

0

ω − γ̇
, (A 1)

y1 = −

√
ω(y2

0 − L2)

ω − γ̇
. (A 2)

Since in the bulk ẋ = ωy, and the particle moves along the curve given by x2 +y2 = y2
0 ,

we can use these two expressions to derive an integral, which can be evaluated, for
the time taken for the point (0, y0) to reach the boundary of the flowing layer:

t1 =
1

ω

∫ x1

0

dx√
y2

0 − x2

=

[
1

ω
tan−1

(
x√

y2
0 − x2

)]x1

0

, where we substitute (A 1) for the upper limit,

=
1

ω
tan−1

(√
L2ω − γ̇ y2

0

ω(y2
0 − L2)

)

=
1

ω
tan−1

(
x1

y1

)
.

After the particle reaches (x1, y1) it continues along the streamline given by ψf (x,

y) = const, with ψf (x, y) given in (2.8), and where we have used the relation

δ =
√

ω
γ̇

√
L2 − x2. The constant is evaluated by requiring the level set of the stream-

function to have the value that it assumes at (x1, y1):

γ̇

(√
ω

γ̇

√
L2 − x2 +

y

2

)
y = γ̇

(√
ω

γ̇

√
L2 − x2

1 +
y1

2

)
y1.

Substituting (A 1) for x1 and (A 2) for y1 into this expression leads to the further
simplification: (√

ω

γ̇

√
L2 − x2 +

y

2

)
y =

−ω(y2
0 − L2)

2(ω − γ̇ )
.

Next we solve this expression for y in terms of x, substitute the result into ẋ = γ̇ (δ(x)+
y) to obtain a first-order ordinary differential equation in x. Integrating this equation
from x = x1 to x =0, allows us to compute the time a particle requires to go from
(x1, y1) to (0, y∗), i.e. the time to cross half the flowing layer. After some algebra and
integration, this is found to be given by the following simple expression:

t2 =
π

2
√

ωγ̇
.

Therefore, t1 + t2 is the time required to complete half a circuit around the tumbler,
and so by symmetry the period of the particle is

T =
2

ω
tan−1

(√
L2ω − γ̇ y2

0

ω
(
y2

0 − L2
)
)

+
π√
ωγ̇

.

It is a simple matter to use these formulae and calculations to obtain the angle
variable defined in (2.10).
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Appendix B. Proof of theorem 3.2
We will show that a particle always remains a constant distance r fom the origin

whenever it is in the bulk. It should be clear that after entering the flowing layer,
if the axis of rotation does not change during its passage through the flowing layer,
then it exits the flowing layer and enters the bulk at the same radius from the origin.
This follows from the fact that the particle remains on the same streamline so long
as the axis of rotation is not changed. Therefore, we must show that if the axis of
rotation is changed while the particle is in the flowing layer, then it exits the flowing
layer at the same radial distance from the origin as when it entered the flowing layer.

We will prove our result in the case ω1 = ω2 = ω and γ̇1 = γ̇2 = γ̇ for simplicity,
although the same argument holds with only ω1/γ̇1 = ω2/γ̇2 (with considerably more
algebra).

We begin by considering an initial point (x0, y0, z0) satisfying x2
0 + y2

0 + z2
0 = r2,

and let x2
0 + y2

0 = r2 − z2
0 = λ2. Suppose, without loss of generality, that rotation is

initially about the z-axis. Then z = z0 is fixed and motion is along the curve given by
ψb = ω(x2 + y2)/2 = const. Hence, ω(x2 + y2)/2 = C1 = ω(x2

0 + y2
0 )/2 = ωλ2/2 and thus

any (x, y, z0) on this streamline in the bulk satisfies x2 + y2 + z2 = λ2 + z2
0 = r2. A

similar argument holds for rotation about the x-axis.
Now suppose that rotation about the z-axis continues until the particle enters the

flowing layer (otherwise, we would apply the same argument to rotation about the
x-axis until the particle entered the flowing layer). At the intersection of the bulk and
flowing layer, denoted by the point (x1, y1, z1 = z0), the particle lies on the intersection
of the curves

λ2 = x2
1 + y2

1 ,

y1 = −δ1(x1, z0),

where δ1(x1, z0) is defined in (3.1). These equations can be solved for x1 and y1 (where
we take the negatively signed solution of each equation which corresponds to the
location of a particle entering the flowing layer) to give:

x1 = −

√
λ2γ̇ − ω

(
R2 − z2

0

)
γ̇ − ω

,

y1 = −
√

ω

γ̇

√
−γ̇

(
− R2 + z2

0 + λ2
)

γ̇ − ω
.

These values are used to determine the constant which defines the streamline along
which the particle will travel through the flowing layer, satisfying the streamfunction
given by

ψf = γ̇ (δ1(x, z)y + y2/2) = const = C2 =
−γ̇ ω

(
R2 − z2

0 − λ2
)

2(γ̇ − ω)
.

Now suppose that rotation about the z-axis stops at an arbitrary point
(x2, y2, z2 = z0) within the flowing layer, and then we begin rotating about the x-
axis. This fixes x = x2, and motion now is along the streamline in the flowing layer
given by

ψf = γ̇ (δ2(x, z)y + y2/2) = const = C3.

Note that by symmetry C2 = C3 as a consequence of our assumption that ω1 = ω2 = ω

and γ̇1 = γ̇2 = γ̇ , but this is not necessarily the case if ω1 �= ω2 and γ̇1 �= γ̇2. Finally,
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suppose that the particle follows this streamline under rotation about the x-axis until
it reaches the boundary of the bulk and the flowing layer at the point (x3 = x2, y3, z3),
where y3 and z3 are the solutions of:

y3 = −δ2(x2, z3),

C3 = γ̇
(
δ(x2, z3)y3 + y2

3/2
)
.

These equations can be solved to give:

y3 = −

√
−

ω
(
R2 − z2

0 − λ2
)

ω − γ̇
, (B 1)

z3 =

√
R2 − x2

2 +
γ̇
(
R2 − z2

0 − λ2
)

ω − γ̇
. (B 2)

Finally, we must verify that the particle exits the flowing layer at the same radial
distance from the origin as when it first entered the flowing layer. This is accomplished
by using (B 1) and (B 2) in the following calculation of the radial distance of the exiting
particle from the origin:

x2
3 + y2

3 + z2
3 = x2

2 −
ω
(
R2 − z2

0 − λ2
)

ω − γ̇
+ R2 − x2

2 +
γ̇
(
R2 − z2

0 − λ2
)

ω − γ̇

= R2 −
(ω − γ̇ )

(
R2 − z2

0 − λ2
)

(ω − γ̇ )

= λ2 + z2
0

= r2.

Appendix C. Computation of surface of period-one points for twist map
corresponding to the rotation about one axis

We will derive conditions in terms of the parameters for which an integrable twist
map, obtained from the steady velocity field corresponding to rotation with constant
angular velocity about a single axis, has an ‘ellipsoidal bowl’ of period-one points in
the bulk. Without loss of generality, we consider rotation about the z-axis.

A similar calculation to that in Appendix A for three dimensions gives the period
of a point initially at (0, y0, z) under rotation about the z-axis to be

T (y0, z) =
2

ω1

tan−1

(√
ω1(R2 − z2) − γ̇1y

2
0

ω1

(
y2

0 + z2 − R2
)
)

+
π√
ω1γ̇1

, (C 1)

since L2 = R2 − z2. We assume that the map acts along trajectories for a time τ1.
Setting T = τ1 in (C 1), and inverting the result gives the necessary initial depth y0 of
a particle starting at (0, y0, z) to complete precisely one circuit around the tumbler in
time τ1:

y0 = −

√√√√√√√
ω1(R

2 − z2)

(
1 + tan2

[
ω1

2

(
τ1 − π√

ω1γ̇1

)])

ω1 tan2

[
ω1

2

(
τ1 − π√

ω1γ̇1

)]
+ γ̇1

. (C 2)
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Now, for rotation about the z-axis, particle trajectories lie on the curves x2 +
y2 = const= y2

0 . Substituting the expression for y0 given in (C 2) into this equation
gives

x2 + y2 + c1z
2 = c2, (C 3)

where, writing φ = ω1

2
(τ1 − π√

ω1γ̇1
),

c1 = c1 (ω1, γ̇1, τ1) =
ω1

(
1 + tan2 φ

)
ω1 tan2 φ + γ̇1

, (C 4)

c2 = c2 (R, ω1, γ̇1, τ1) =
R2ω1

(
1 + tan2 φ

)
ω1 tan2 φ + γ̇1

. (C 5)

Hence, we have shown that the period-one points of the twist map corresponding
to a constant rotation rate about the z-axis lie on this ellipsoidal (actually part of a
prolate spheroid) surface. Note that c2 = R2c1, and so, in the case of a unit sphere
(R = 1), we have c1 = c2.

Appendix D. Intersection of prolate spheroids of period-one points
In Appendix 3, we showed that the period-one points of the twist map

corresponding to rotation about the z-axis lie on an ‘ellipsoidal bowl’. Similarly,
by the same argument, it can be show that the twist map corresponding to rotation
about the x-axis also lies on an ‘ellipsoidal bowl’. In this section, we will describe the
intersection of these two bowls.

In Appendix 3, we have shown that period-one points for rotation about the z-axis
lie on the surface given by (C 3). Similarly, periodic points for rotation about the
x-axis lie on the surface

c3x
2 + y2 + z2 = c4,

where c3 and c4 have the corresponding expressions to (C 4) and (C 5), respectively.
First, if τ1 = τ2, ω1 = ω2 and γ̇1 = γ̇2, then c1 = c3 = c̄ and c2 = c4 = ĉ, and these surfaces
intersect along the following sets:

x2 + y2 + c̄z2 = ĉ

c̄x2 + y2 + z2 = ĉ

⎫⎬
⎭ =⇒ x2 + c̄z2 = c̄x2 + z2 =⇒ x = ±z,

(since c̄ �= 1).
In the non-symmetric case, we have

x2(1 − c3) + z2(c1 − 1) = (c2 − c4),

which defines a pair of hyperbolas (as shown in figure 16). Suppose without loss of
generality that c2 >c4 (e.g. τ1 >τ2 or ω1 >ω2); then the hyperbolas have semi-major
axis (c2 − c4)/(1 − c3) and semi-minor axis (c2 − c4)/(1 − c1).

Appendix E. Stability of curves of periodic points (sketch of the hyperbolic
points for the symmetric case)

Consider a point (x, y, z) ∈ ∆xz > 0 and take a coordinate system (α, β, γ ) where α

lies in Σ1, β lies in ∆xz > 0, and γ lies in Σ1. This is sketched in figure 20, which shows
a section of the surfaces Σ1 and Σ2 for constant y, and the intersections ∆ which
should be imagined extending in the vertical direction. The point (x, y, z) is specified
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(x′, y′, z′)

(x, y, z)

β′

α′

α

β

γ

γ′ ∆xz > 0 

∆xz < 0 

∆xz > 0 

∆xz < 0 

Σ1

Σ2

x

z

Figure 20. Illustration of coordinate systems and symmetries used in the stability of periodic
points in Appendix E.

in the positive x and z quadrant, but the same argument applies in the opposite
∆xz > 0 quadrant. The coordinate directions α, β , γ are shown as thick lines, and the
direction of motion across the flowing layer is depicted by triple arrows.

Let J1 be the Jacobian matrix for rotation for time τ1 about the z-axis in this
coordinate system. Since α and β lie within Σ1, perturbations in these directions are
fixed under rotation for time τ1 about z. Thus, J1 takes the form

J1 =

⎛
⎜⎝

1 0 ε1

0 1 ε2

0 0 ε3

⎞
⎟⎠,

where ε1, ε2, ε3 are three constants whose sign could be deduced from careful
consideration of the dynamics. Now consider the same point under rotation about
the x-axis using the same coordinate system. Here, perturbations in the β and γ

directions are fixed, and, by symmetry, the Jacobian matrix J2 for rotation about the
x-axis takes the form

J2 =

⎛
⎜⎝

ε3 0 0

ε2 1 0

ε1 0 1

⎞
⎟⎠.

Stability of such a point (x, y, z) is then given by the eigenvalues of
(MJ2M

−1)(MJ1M
−1) = MJ2J1M

−1, where M is the appropriate change of coordinate
matrix (since (α, β, γ ) do not form an orthonormal set of directions). Note that since
det(MJ2J1M

−1) = det(J2J1) and tr(MJ2J1M
−1) = tr(J2J1) (by cyclic permutation of
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the matrices), it is sufficient to inspect the eigenvalues of

J2J1 =

⎛
⎜⎝

ε3 0 ε1ε3

ε2 1 ε2(1 + ε3)

ε1 0 ε2
1 + ε3

⎞
⎟⎠ .

Clearly one eigenvalue is 1. Computing the determinate det(J2J1) = ε2
3 implies that

ε3 = ± 1, since the map is area-preserving, which leaves the other pair of eigenvalues

λ+,− = (2 + ε2
1 ±

√
ε2
1 (ε

2
1 + 4))/2. Hence, we have λ+ > 1, λ− < 1 and (x, y, z) is

hyperbolic.
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