
Robotica (2013) volume 31, pp. 295–310. © Cambridge University Press 2012
doi:10.1017/S0263574712000276

Dynamic control of a reconfigurable stair-climbing
mobility system
R. Morales†, J. Somolinos‡∗ and J. Cerrada§
†Department of Electrical, Electronics and Automation Engineering, University of Castilla-La Mancha, Albacete 02071,
Spain
‡Department of Oceanic Systems, Universidad Politécnica de Madrid, Madrid 28040, Spain
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SUMMARY
Electric-powered wheelchairs improve the mobility of people
with physical disabilities, but the problem to deal with certain
architectural barriers has not been resolved satisfactorily.
In order to solve this problem, a stair-climbing mobility
system (SCMS) was developed. This paper presents a
practical dynamic control system that allows the SCMS
to exhibit a successful climbing process when faced with
typical architectural barriers such as curbs, ramps, or
staircases. The implemented control system depicts high
simplicity, computational efficiency, and the possibility of an
easy implementation in a microprocessor-/microcontroller-
based system. Finally, experiments are included to support
theoretical results.

KEYWORDS: Electric-powered wheelchairs; Stair-
climbing devices; Dynamic modeling; Dynamic control;
Mechatronics.

List of Symbols

Symbol Description
li [m] Lengths of the bars of the

mechanical system.
θ1, θ2 (rad) Front and rear angles of joints of a

chair structure.
θ̇1, θ̇2 (rad/s) Front and rear angular velocities

of joints of a chair structure.
θ̈1, θ̈2 (rad/s2) Front and rear angular

accelerations of joints of a chair
structure.

f(θ4), f(θ3) (m) Position of axles of front and rear
wheels.

z1, z2 (m) Instantaneous length of front and
rear racks.

ż1, ż2 (m/s) Velocity of front and rear racks.
z̈1, z̈2 (m/s2) Acceleration of front and rear

racks.
PC1, PC2 (m) Position of contact points of racks.

* Corresponding author. E-mail: joseandres.somolinos@upm.es

Pg (m) Center of mass position.
γ (rad) Inclination of chair seat.
γ̇ (rad/s) Angular velocity of chair seat.
γ̈ (rad/s2) Angular acceleration of chair seat.
β1, β2 (rad) Slopes of front and rear racks.
r = [r1, r2]T (rad) Vector of generalized coordinate

variables.
ṙ = [ṙ1, ṙ2]T (rad/s) Angular velocity of generalized

coordinate variables.
r̈ = [r̈1, r̈2]T (rad/s2) Angular acceleration of

generalized coordinate
variables.

τ = [τ1, τ2]T (N · m) Torques exerted in the center of
gravity of the mechanism.

1. Introduction
Independent mobility is crucial for the development of
physical, cognitive, communicative, and social skills.1 The
development of technology that facilitates the rehabilitation
of people with severe or multiple handicaps in every day
life is desirable. Conventional Electric-Powered Wheelchairs
(EPWs) are the principal means of mobility for a large
percentage of people with physical disabilities, and it is
unquestionable that EPWs greatly improve the mobility of
these people.2 Nevertheless, architectural barriers still exist
in many cities and buildings, and it is expensive and time-
consuming, if not impossible, to eliminate all such barriers.
New tendencies have arisen with the development of stair-
climbing mobility systems (SCMSs), which are capable of
negotiating architectural barriers in order to provide people
with walking difficulties with more autonomy and to reduce
the amount of labor-intensive manhandling of patients by
care workers.3 SCMSs are currently rated by the Food and
Drug Administration (FDA) as “class III” high-risk devices,
defined as “life-sustaining or life-supporting, implanted in
the body, or present an unreasonable risk of illness or injury.”4

The provision of acceptable stability at all times for a SCMS
is therefore essential for safety during stair climbing, and,
additionally, a constant seat angle is usually desired. Stair-
climbing devices are usually of three types: a crawler type,
a wheel type, and a legged type. The crawler-type5devices
shows high terrain adaptivity and robustness but they present
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Fig. 1. Designed prototype.

low locomotion efficiency in barrier-free environments. In
the wheeled-type devices, the energy efficiency when moving
on flat terrain is higher than in other types but has problems
when there appear rarchitectural barriers. A commonly used
solution is based on several wheels arranged in a rotating
link (clusters).3 Its drawback is that it relies on complicated
dynamic controllers to maintain the upright position and there
are motion phases during climbing or descent obstacles that
the system is standing on just two wheels with a common
axis. Alternative designs that use clusters have good rolling
efficiency and conceptual simplicity but present a high
actuating cluster torque and a high number of wheels that
must be driven and braked.6 The legged-type devices have
the highest adaptivity to rough terrain7 but have the following
disadvantages: load, weight, energy efficiency, and speed of
motion. Then, the best way to solve architectural barriers is by
means of mixed systems. These devices combine legs (high
terrain adaptability) and wheels (high efficiency and payload
capability),8 and some models have been designed with
the objective of providing mobility to people with physical
disabilities but present problems in the step-climbing process
as a result of a large variation in the chair inclination angle.9

There is a limited amount of literature concerning the
modeling of SCMSs, and one of the reasons for this is
that these models are not required for a simple control law
commonly adopted by commercial EPWs. In the case of stair-
climbing devices the definition of a mathematical model is
extremely important because it will be necessary to achieve
advanced controllers that improve the stair-climbing process.
Some authors have proposed simplified models based on a
kinematic model10 and its corresponding kinematic feedback
control laws.11 These control schemes are justified because

the prototype moves at low speeds, high precision is not
necessary, and the control law is easier to implement
(reduction in the amount of computation resources, cost,
and sensorial system). The most important limitation is that
kinematic control is not robust to perturbations in the system,
error modeling, and environmental uncertainties.12 The
definition of the dynamics model of the stair-climbing device
and the design of a control law based on its dynamics model
will help to reduce the effect of these error sources.13 In order
to achieve a successful stair-climbing process, the SCMS
presented in this paper (Fig. 1) must change its configuration
(see refs. [14 and 15] to obtain a detailed description about
the mechanical system of the prototype). This implies that
the dynamics model must be defined by including all the
possible configurations. On the other hand, the control law
based on the dynamics model must include an additional
device in charge of the selection of appropriate configuration.
In this work, based on the dynamics model of the SCMS and
taking into account all its possible configurations, it has been
developed by the necessary control law to obtain a successful
behavior when the prototype confronts architectural barriers
such as curbs, ramps, or staircases. The proposed control
law is divided into two different modules. First, we have
created a behavior diagram that selects correct configuration
to overcome a particular obstacle; and second, to maintain
the passenger comfort, reduce the perturbation effects, and
eliminate the possibility of turning over, a control law based
on a proportional-derivative (PD) controller with nonlinear
compensation of gravitational terms has been included. The
stability analysis of this control scheme is analyzed by using
the Lyapunov procedure as in refs. [16] and [17]. These kind
of control schemes have a widespread use in commercial
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Fig. 2. General kinematic scheme when the SCMS is supported (a) on four wheels; (b) on rear rack and front wheels.

industrial robots but they have seldom been used on SCMSs.
Finally, the whole scheme has been experimentally tested
with highly encouraging results as the prototype ascends a
staircase.

The paper is organized as follows: Section 2 is devoted
to derive the direct kinematic model of SCMS taking
into account all the different configurations of the system
during a stair-climbing/descent process. Section 3 proposes
a dynamics model for SCMS in generalized coordinate
variables. Section 4 describes relations between generalized
articular variables and system variables in all the possible
configurations of SCMS. Section 5 explains the adopted
solution for the control of the system. Section 6 presents
the experimental results obtained to validate the proposed
control algorithm, and finally, Section 7 is devoted to the
conclusions of the paper as well as proposals for future work.

2. Direct Kinematic Model
The kinematic model15 and the trajectory generation18 allow
full motion of the degrees of freedom of the whole system,
and can be adapted to a continuous smooth profile or a
discontinuous profile consisting of a flat floor and a staircase.
Furthermore, the choice of an appropriate movement strategy
influences the verticality of the chair frame, the passenger
comfort (the SCMS will usually carry a passenger with
physical disabilities), and the power consumption. In this
section, the direct kinematic model presented in ref [18] is
described briefly, since this will clarify the relation between
the articular variables of the dynamics model presented
in Section 3 and the system variables in all the possible
configurations of the prototype illustrated in Section 4. The
use of a complex notation greatly facilitates any dealings
with kinematic models for SCMS, since the expression of
rotations is simplified, leading to more compact equations
and a simplification of computer resources and control.
The horizontal variable (defined as Re[z]) and the vertical
variable (defined as Im[z]) are the real and the imaginary
components of a complex number. In the direct kinematic
model, there are the angles of the joints of the chair structure
(θ1 and θ2) and the position of axles of front and rear wheels in
the complex plane (given by f(θ4) and f(θ3), respectively, and
θ3 is the turn angle of the rear wheels) or the instantaneous

lengths of the racks (z1 and z2) and their corresponding
contact points (PC1 and PC2), depending on the configuration.
These data are used to obtain the center of mass position
(Pg) and the inclination of the SCMS seat (γ ). The direct
kinematic model for each of the different configurations of
SCMS is now briefly presented.

2.1. SCMS supported on four wheels
In this configuration, the SCMS is supported on four wheels
(see Fig. 2(a)). It is assumed that the rear and front axles
are rolling on a flat terrain and the angles μi are defined
to find geometrical connection between vectors comprising
the general kinematic scheme. Following are the initial
expressions that define the current position of SCMS:

Pg = f (θ3) + l6ej(γ+ π
2 +μ6) + l4ej(γ+ 3π

2 −θ2) + l5ej(γ+ π
2 +μ5),

(1)

Pg = f (θ4) + l1ej(γ+ π
2 +μ1) − l3ej(γ+ π

2 +θ1) + l5ej(γ+ π
2 +μ5),

(2)

where, using the notation depicted in ref. [18], l1 and l3 are
the lengths that correspond with the front axle, l4 and l6 are
the lengths that correspond with the rear axle, and l5 is the
length from the frame to the center of mass, Pg .

2.2. SCMS supported on the rear rack and the front wheels
In this configuration, the SCMS is supported on the rear rack
and the front wheels (see Fig. 2(b)). It is assumed that the
front axle is rolling on a flat terrain and the rear rack is
moving with a slope of β2 = π

2 − δ2. The initial expressions
that define the current position of the SCMS are shown here:

Pg = f (θ4) + l1ej(γ+ π
2 +μ1) − l3ej(γ+ π

2 +θ1) + l5ej(γ+ π
2 +μ5),

(3)

Pg = PC2 + z2ej(γ+ π
2 −δ2) + l6ej(γ+ π

2 +μ6) + l4ej(γ+ 3π
2 −θ2)

+l5ej(γ+ π
2 +μ5), (4)

where δ2 is the inclination angle of the rear rack, which
composes the rear climbing mechanism.
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Fig. 3. General kinematic scheme when the SCMS is supported (a) on front rack and rear wheels, (b) on two racks.

2.3. SCMS supported on the front rack and the rear wheels
In this configuration, the SCMS is supported on the front rack
and the rear wheels (see Fig. 3(a)). It is assumed that the rear
axle is rolling on flat terrain and the front rack is moving with
a slope of β1 = π

2 − δ1. Following are the initial expressions
that define the current position of the SCMS:

Pg = f (θ3) + l6ej(γ+ π
2 +μ6) + l4ej(γ+ 3π

2 −θ2) + l5ej(γ+ π
2 +μ5),

(5)

Pg = PC1 + z1ej (γ+ π
2 −δ1) + l1ej(γ+ π

2 +μ1) − l3ej(γ+ π
2 +θ1)

+l5ej(γ+ π
2 +μ5), (6)

where δ1 is the inclination angle of the front rack, which
composes the front climbing mechanism.

2.4. SCMS supported on two racks
In this configuration, the SCMS is supported on two racks
(see Fig. 3(b)). The rear and front racks are moving with
the corresponding slopes β1 = π

2 − δ1 and β2 = π
2 − δ2. The

initial expressions that define the current position of the
SCMS are shown here:

Pg = PC2 + z2ej (γ+ π
2 −δ2) + l6ej(γ+ π

2 +μ6) + l4ej(γ+ 3π
2 −θ2)

+l5ej(γ+ π
2 +μ5), (7)

Pg = PC1 + z1ej (γ+ π
2 −δ1) + l1ej(γ+ π

2 +μ1) − l3ej(γ+ π
2 +θ1)

+l5ej(γ+ π
2 +μ5). (8)

3. Dynamics Model
The derivation of the dynamics model of a SCMS plays an
important role in the simulation of motion, the mechanism
structure analysis, and the design of control algorithms. The
dynamics model chosen must be precise enough to describe
different behaviors of the mechanism and simple enough to
include it in the control law.19 In our case, the dynamics
model of the SCMS expressed in terms of generalized
coordinates is the same for all prototype configurations.
However, the relation between the generalized coordinates
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Fig. 4. Definition of generalized coordinate variables of SCMS.

and the system coordinates in each particular configuration
are different and this must be considered in order to adapt
different equations to different system configurations.

The first step consists of obtaining expressions of forces
that appear in the mechanism in terms of the generalized
coordinate variable, r = [r1, r2]T . Figure 4 shows the
notation used to obtain the dynamics model. With this
notation, the position of the end effector is given by the
following result:

OPg =
[
x

y

]
=

[
(l1 + l5) Cr1 + l3C(r1+r2)

(l1 + l5) Sr1 + l3S(r1+r2)

]
, (9)

where Sri
= sin ri and Cri

= cos ri . The expressions for
velocities in the articular coordinate frame can be obtained
by differentiating Eq. (9),

˙OPg =
[
ẋ

ẏ

]
=

[− (l1 + l5) Sr1 ṙ1 − l3S(r1+r2) (ṙ1 + ṙ2)
(l1 + l5) Cr1 ṙ1 + l3C(r1+r2) (ṙ1 + ṙ2)

]
.

(10)

Using the same procedure, the expressions for accelerations
in the articular coordinate frame can be obtained by
differentiating Eq. (10),

¨OPg = [
ẍ ÿ

]T
, (11)
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where

ẍ = −(l1 + l5)[Cr1 ṙ
2
1 + Sr1 r̈1] − l3[C(r1+r2) (ṙ1 + ṙ2)2

+S(r1+r2)(r̈1 + r̈2)], (12)

ÿ = (l1 + l5)[−Sr1 ṙ
2
1 + Cr1 r̈1] + l3[−S(r1+r2)(ṙ1 + ṙ2)2

+C(r1+r2)(r̈1 + r̈2)]. (13)

The forces that appear in the center of mass Pg of the
mechanism, FM , are achieved from expression (11), and are
given by the following result,

FM = m · ¨OPg = m · [ẍ ÿ]T , (14)

where m is the mass of the whole system (passenger +
prototype). It is important to note that the mass of the system
does not change during the process of movement and it
can be measured with a sensor mounted on the prototype.
Moreover, taking into account the mechanical stability
demonstrated in ref. [18], the position of center of mass of
the prototype barely changes during the climbing/descending
process (it is assumed that since the climbing/descending
process is a delicate task, the user will not make abrupt
movements).

The gravity is defined as g = [0, −g]T . Then the forces
owing to the gravity effect are obtained as

FGxy = m[0 − g]T . (15)

If the results of the forces given by expressions (14)
and (15) are grouped, and the Newton’s Second Law is
applied, the generalized forces exerted in the center of
mass of the mechanism, FPg

, are given by the following
expressions:

FPg
= m ·

[
A1 ·

[
r̈1

r̈2

]
+ A2 ·

[
ṙ1

ṙ2

]
+

[
0

g

]]
, (16)

A1 =
[−[(l1 + l5)Sr1 + l3S(r1+r2)] −l3S(r1+r2)

[(l1 + l5)Cr1 + l3C(r1+r2)] l3C(r1+r2)

]
,

A2

=
[−[(l1 + l5)Cr1 + l3C(r1+r2)]ṙ1 −l3C(r1+r2)(2ṙ1 + ṙ2)

−[(l1 + l5)Sr1 + l3S(r1+r2)]ṙ1 −l3S(r1+r2)(2ṙ1 + ṙ2)

]
.

It is well known that under quasi-static conditions, the
relation between the torques exerted in the joints and
the forces and torques exerted in the center of gravity of
the mechanism are related by the following expression:

τ = JT (r)FPg
, (17)

where the Jacobian, J(r), is obtained directly from Eq. (9) as
follows:

J(r) =

⎡
⎢⎣

∂x

∂r1

∂x

∂r2
∂y

∂r1

∂y

∂r2

⎤
⎥⎦

=
[−[(l1 + l5)Sr1 + l3S(r1+r2)] −l3S(r1+r2)

(l1 + l5) Cr1 + l3C(r1+r2) l3C(r1+r2)

]
. (18)

Upon substituting Eq. (18) in Eq. (17), and after certain

algebraic manipulations, the following dynamics model for
the SCMS is obtained:

τ = B(r)r̈ + C(r, ṙ)ṙ + G(r), (19)

where the values of the matrices B(r), C(r, ṙ), and G(r) are

given by the following expressions:

B(r)

= m

[
(l1 + l5)2 + l2

3 + 2l3 (l1 + l5) Cr2 l2
3 + l3 (l1 + l5) Cr2

l2
3 + l3 (l1 + l5) Cr2 l2

3

]
,

(20)

C(r, ṙ) = m

[
0 − l3 (l1 + l5) Sr2 (2ṙ1 + ṙ2)

l3 (l1 + l5) Sr2 ṙ1 0

]
,

(21)

G(r) = mg

[
(l1 + l5) Cr1 + l3C(r1+r2)

l3C(r1+r2)

]
. (22)

The computation of articular variables and their

corresponding derivatives (r = [r1, r2]T , ṙ = [ṙ1, ṙ2]T ,
and r̈ = [r̈1, r̈2]T ) expressed in terms of the system
variables (q = [θ1, θ2, θ3, z1, z2]T , q̇ = [θ̇1, θ̇2, θ̇3, ż1, ż2]T ,
and q̈ = [θ̈1, θ̈2, θ̈3, z̈1, z̈2]T ) will depend on the particular
configuration of the mechanism. It is therefore necessary to
find a relation between the articular variables and the system
variables for all the possible configurations and to use the
model given by Eq. (19) in order to obtain a new model as a
function of q rather than r, i.e.,

τ = B(q)q̈ + C(q, q̇)q̇ + G(q). (23)

4. Relation between articular variables and system
variables in all the possible configurations
By using the dynamics model defined in Section 3, the special
system geometry (l1 = l6, l3 = l4, and μ1 = μ6 = μ5 = 0)
and taking advantage of the fact that in the positioning
mechanism the frames of the front and rear axles do not
rotate with regard to the main frame, the following relations
are obtained (see Fig. 3):

r1 = π

2
+ γ ; r2 = π + θ1. (24)
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In the same manner, by differentiating the above expressions,
following are the relations for velocities and accelerations:

ṙ1 = γ̇ ; ṙ2 = θ̇1 r̈1 = γ̈ ; r̈2 = θ̈1. (25)

This system property makes it necessary to obtain
mathematical relations between articular variables and
control variables of the actuated degrees of freedom of SCMS
for all possible configurations. This will be dealt with in the
following subsections.

4.1. Relation between articular variables and control
variables when the SCMS is supported on four wheels
Expressions (1) and (2) define the current position of
this SCMS configuration. Computing the difference of
expressions (1) and (2), and defining the complex variable
f(θ3) − f(θ4) = |f(θ3) − f(θ4)|ej	1 yields

|f (θ3) − f (θ4)| ej	1 + l3

(
ej(γ+ π

2 +θ1) + ej(γ+ 3π
2 −θ2)

)
= 0.

(26)

If both sides of expression (26) are multiplied by the
magnitude e−j (γ+ π

2 +θ1) and certain algebraic manipulations
are carried out, the following expression is reached:

|f (θ3) − f (θ4)| ej(	1−γ+ π
2 −θ1) = l3

(
1 + ej (π−θ1−θ2)

)
. (27)

The unknown variables are 	1, |f(θ3) − f(θ4)|, and γ .
Moreover, although the complex magnitude f(θ3) − f(θ4) is
not known, it can be seen that its imaginary part, (Im[f(θ3) −
f(θ4)]), has a known constant value. Taking into account
the previous considerations and separating expression (27)
into its corresponding equations of modulus and phases, the
following results are obtained (expressed in the order of
calculation):

|f (θ3) − f (θ4)| = l3|1 + ej (π−θ1−θ2)|, (28)

	1 = arcsin

(
Im [f (θ3) − f (θ4)]

|f (θ3) − f (θ4)|
)

, (29)

γ = 	1 + π

2
− θ1 − phase

[(
1 + ej (π−θ1−θ2))] . (30)

Considering the geometrical relations and taking the
imaginary part, the values of variables γ̇ and γ̈ are reached by
using expressions (1) and (2). The following result is yielded:

Im [f (θ4) − f (θ3)] = l3

[
S(γ+ 3π

2 −θ2) + S(γ+ π
2 +θ1)

]
. (31)

Upon differentiating Eq. (31) and after certain algebraic
manipulations, the following expression is obtained for γ̇ :

γ̇ = −S(θ1+γ )θ̇1 + S(θ2−γ )θ̇2

S(θ1+γ ) + S(θ2−γ )
(32)

Finally, by differentiating Eq. (32), and after certain algebraic
manipulations, the expression for γ̈ is written as:

γ̈ = num1

den1
, (33)

where

num1 = −C(θ1+γ )(θ̇1 + γ̇ )2 + C(θ2−γ )(θ̇2 − γ̇ )2

−S(θ1+γ )θ̈1 + S(θ2−γ )θ̈2, (34)

den1 = S(θ1+γ ) + S(θ2−γ ). (35)

The remaining relations for each configurations are obtained
by following the similar procedure.

4.2. Relation between articular variables and control
variables when the SCMS is supported on rear rack and
front wheels
The relations for this configuration are shown next:

|PC2 − f (θ4)| = ∣∣z2e−j (δ2+θ1) + l3
(
1 + ej (π−θ1−θ2))∣∣ ,(36)

	2 = arcsin

(
Im [PC2 − f (θ4)]

|PC2 − f (θ4)|
)

, (37)

γ = 	2 + π

2
− θ1 − phase

[
z2e−j (δ2+θ1)

+l3
(
1 + ej (π−θ1−θ2))] , (38)

γ̇ = −l3
(
S(θ1+γ )θ̇1 − S(θ2−γ )θ̇2

) + ż2C(δ2−γ )

l3
(
S(θ1+γ ) + S(θ2−γ )

) − z2S(δ2−γ )
, (39)

γ̈ = num2

den2
, (40)

num2 = l3
[ − C(θ1+γ )(θ̇1 + γ̇ )2 + C(θ2−γ )(θ̇2 − γ̇ )2

]
+l3

[−S(θ1+γ )θ̈1 + S(θ2−γ )θ̈2
]

+ (
z̈2 − z2γ̇

2
)
C(δ2−γ ) + 2ż2γ̇ S(δ2−γ ), (41)

den2 = l3
(
S(θ1+γ ) + S(θ2−γ )

) − z2S(δ2−γ ). (42)

4.3. Relation between articular variables and control
variables when the SCMS is supported on front rack and
rear wheels
The relations for this configuration are illustrated next:

|f (θ3) − PC1| = ∣∣z1e−j (δ1+θ1) − l3
(
1 + ej (π−θ1−θ2))∣∣ , (43)

	3 = arcsin

(
Im [f (θ3) − PC1]

|f (θ3) − PC1|
)

, (44)

γ = 	3 − π

2
− θ1 − phase

[
z1e−j (δ1+θ1)

−l3
(
1 + ej (π−θ1−θ2))] , (45)

γ̇ = −l3
(
S(θ1+γ )θ̇1 − S(θ2−γ )θ̇2

) − ż1C(δ1−γ )

l3
(
S(θ1+γ ) + S(θ2−γ )

) + z1S(δ1−γ )
, (46)

γ̈ = num3

den3
, (47)
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Fig. 5. Control Scheme of the reconfigurable SCMS.

num3 = l3
[ − C(θ1+γ )(θ̇1 + γ̇ )2 + C(θ2−γ )(θ̇2 − γ̇ )2

]
+ l3

[−S(θ1+γ )θ̈1 + S(θ2−γ )θ̈2
]

− (
z̈1 − z1γ̇

2
)
C(δ1−γ ) + 2ż1γ̇ S(δ1−γ ), (48)

den3 = l3
(
S(θ1+γ ) + S(θ2−γ )

) + z1S(δ1−γ ). (49)

4.4. Relation between articular variables and control
variables when the SCMS is supported on both racks
The relations for this configuration are as follows:

	4 = arcsin

(
Im [PC2 − PC1]

|PC2 − PC1|
)

, (50)

γ = 	4 − π

2
− θ1 − phase

[
(z1 − z2) e−j (δ+θ1)

+l3
(
1 + ej (π−θ1−θ2))] ,

γ̇ = −l3
(
S(θ1+γ )θ̇1 − S(θ2−γ )θ̇2

) − (ż1 − ż2) C(δ−γ )

l3
(
S(θ1+γ ) + S(θ2−γ )

) + (z1 − z2) S(δ−γ )
, (51)

γ̈ = num4

den4
, (52)

num4 = −l3
[
C(θ1+γ )(θ̇1 − γ̇ )2 + C(θ2−γ )(θ̇2 − γ̇ )2

]
− l3

[
S(θ1+γ )θ̈1 − S(θ2−γ )θ̈2

]
− 2 (ż1 − ż2) γ̇ S(δ1−γ )

− (
z̈1 − z̈2 + (z1 − z2) γ̇ 2

)
C(δ−γ ), (53)

den4 = l3
(
S(θ1+γ ) + S(θ2−γ )

) + (z1 − z2) S(δ−γ ). (54)

5. Control Scheme
With regard to the mechanical structure, modularity was a
key factor in the system design. The SCMS-driven degrees of
freedom are split into two categories: the first concerning the
locomotion itself (traction and step ascent), and the second

concerning the position and verticality of the chair frame.
Both categories will be dealt with together in the control
scheme.

The objective of the control scheme is to obtain an accurate
robot posture. This achievement implies improvement in
passenger comfort when it is evaluated as a reduction
of vibrations and accelerations of SCMS during the
climbing/descent process. For this purpose, the control
architecture of the system has been decomposed into
several modules. Each individual module is in charge
of carrying out one particular job that corresponds with
different configurations (or behaviors) of SCMS that may
appear during the climbing/descent process. This approach
is a vertical decomposition of navigation problem and
behaves correctly in dynamic environments in which the
knowledge of the terrain is not perfectly known.20 At
each instant of navigation, the control architecture of the
SCMS prototype extracts the sensor information (ultrasounds
and wheel-switches) from the local robot environment.
Under certain sensor values, the corresponding transition
between two configurations is achieved, and then the
controller activates appropriate behavior, which provides
the center of mass trajectories and the null inclination
of the chair frame (p∗ = [x∗, y∗, γ ∗ = 0]T ). The inverse
kinematic model presented in ref. [15[ allows us to obtain
reference trajectories in charge of the movement of the
actuated degrees of freedom (q∗ = [θ∗

1 , θ∗
2 , θ∗

3 , z∗
1, z

∗
2]T ) of

SCMS in each possible configuration. Then a control system
is used to control the posture of the SCMS prototype.
Taking advantage of the excellent properties of the proposed
mechanical design, the control system of the prototype will be
divided into two different parts: (a) selection of appropriate
SCMS configuration; and (b) design of a feedback control
law for each SCMS configuration to maintain passenger
comfort and control posture of SCMS. Figure 5 illustrates
the general control scheme of the SCMS prototype, and a
detailed description of each part of the control system will
be explained in the following subsections.
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Fig. 6. Behavior diagram of the reconfigurable SCMS.

5.1. Selection of SCMS configuration
In order to solve the selection of appropriate SCMS config-
uration, based on the knowledge of current configuration
and information that comes from the sensor system (see
Fig. 5), a behavior diagram has been developed, which is
depicted in Fig. 6. This diagram greatly helps to understand
transitions of the prototype from one configuration to the next
when the SCMS is working to overcome an architectural
barrier. The diagram is similar to an addressed state-
transition diagram with additional information. The nodes
show different prototype behaviors or configurations and are
used to point out the current behavior of the SCMS prototype.
The diagram arrows are behavior transitions. If one of the
transitions from the current state is activated, the current
behavior will change to a new behavior, which is pointed
out by the end of the transition arrow. Finally, meanings
of all behaviors and all transitions that appear during the
climbing/descent process (see Fig. 6) are defined as follows:

1. Behaviors: These correspond to different SCMS
configurations that may appear during the staircase
climbing/descent process.

I. SCMS supported on four wheels.
II. SCMS supported on rear rack and front wheels.

III. SCMS supported on front rack and rear wheels.
IV. SCMS supported on both racks.

2. Transitions: The information that comes from the internal
sensorial system (switches that indicate the end position
of wheels) and the external sensorial system (ultrasound
sensors).

A. The distance between the front wheel axle and the step
is lower than a predefined threshold.

B. The distance between the rear wheel axle and the step
is lower than a predefined threshold.

C. Front wheels completely overcome the obstacle.
D. Rear wheels completely overcome the obstacle.

5.2. Design of a nonlinear feedback controller
In order to follow a methodological approach that is
consistent with control design, it is necessary to treat the
control problem in the context of nonlinear multivariable
systems. This approach will obviously account for the SCMS
dynamics model and lead to find a nonlinear centralized
control law, whose implementation is needed for a better
prototype dynamic performance. In our particular case, to
fulfil the passenger comfort requirements, the SCMS has

to move at very low velocities (‖ q̇ ‖≤ c with c small) and
the control of the posture of the SCMS can be solved using
static principles.21 For this reason, a control law based on
PD linear action and nonlinear gravity compensation term
has been designed. Defining q∗ as the vector of desired
joint variables, q̃ = q∗ − q represents the error between the
desired and the actual posture, [q̃T q̇T ]T is defined as the
system state, and KP and KD are (n × n) diagonal and
positive definite matrix of the PD linear controller, and the
input control τ that stabilizes the system around equilibrium
posture is given by the following expression:

τ = G(q) + KP q̃ − KDq̇. (55)

Remark. Let a constant equilibrium posture be assigned
for the system as the vector of desired joint variables q∗.
It is desired to find the structure of the controller that
ensures global asymptotic stability of the above posture. The
determination of the control input that stabilizes the system
around the equilibrium posture is based on the Lyapunov
control theory. We define vector [q̃T q̇T ]T as the system state,
where q̃ = q∗ − q represents the error between the desired
and the actual postures, and we choose the following positive
definite quadratic form as the Lyapunov function candidate:

V (q̃, q̇) = 1

2
q̇T B(q)q̇ + 1

2
q̃T KP q̃ > 0, ∀q̇, q̃ �= 0. (56)

An energy-based interpretation of Eq. (56) reveals that
the first term expresses the system kinetic energy (B(q)
is symmetric and positive definite matrix) and the second
term expresses the potential energy stored in the system of
equivalent stiffness KP provided by the n position feedback
loops. A plausible policy to attain the desired condition,
q̃ ≡ 0, is to adopt action for the control input τ , which results
in a strict decrease of function V (q̃, q̇). This can be achieved
by influencing the system in such a manner that the speed of
variation of V (q̃, q̇) will be strictly negative. In other words,

d

dt
V (q̇, q̃) < 0. (57)

By differentiating Eq. (56) and recalling that q∗ is constant,
yields

V̇ = q̇T B(q)q̈ + 1

2
q̇T Ḃ(q)q̇ − q̇T KP q̃. (58)

Solving Eq. (23) for B(q) · q̈ and substituting it in Eq. (56)
gives

V̇ = 1

2
q̇T (Ḃ(q) − 2C(q, q̇))q̇ + q̇T (τ − G(q) − KP q̃) .

(59)

The first term on the right-hand side is null, since the
matrix N = Ḃ − 2C is a skew-matrix22 and satisfies the
property wT N(q, q̇)w = 0 for any vector wn×1. The second
term is negative-definite diagonal matrix, assuming perfect
cancelation of terms and using in Eq. (59) the following
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Table I. Some prototype specifications.

Max. passenger weight 100 kg
Vehicle plus battery weight 40 + 50 kg = 90 kg
Power source (battery) 12 V 56 AH x 2
Operating range (time)
Barrier free operation 6.4 h
Stair operation 3.7 h
Stair-climbing speed (max.) 3 steps per min.
Speed on the flat (max.) 2 km/h
Max. height step 215 mm
Max. slope allowable 45o

Angle of the climbing mechanisms (δ1 and δ2) 35o

control input choice,

τ = G(q) + KP q̃ − KDq̇, (60)

which corresponds to a nonlinear compensation action of
gravitational term, G(q), with a linear PD action. In fact,
substituting Eq. (60) into Eq. (59) gives

V̇ = −q̇T KDq̇, (61)

which, in accordance with Eq. (57) and the function candidate
V, decreases as long as q̇ �= 0 for all system trajectories. It
can be shown that the system reaches an equilibrium posture.
To find such a posture, note that V̇ ≡ 0 only if q̇ ≡ 0. The
system dynamics under nominal control (60) is given by

B(q)q̈ + C(q, q̇)q̇ + G(q) = G(q) + KP q̃ − KDq̇. (62)

At the equilibrium (q̇ ≡ 0, q̈ ≡ 0) it is

KP q̃ = 0, (63)

and then

q̃ = q∗ − q ≡ 0 (64)

in the sought equilibrium posture. The above derivation
rigorously shows that the SCMS equilibrium posture is
globally asymptotically stable under a controller with a PD
linear action and a nonlinear gravity compensating action.
Stability is ensured for any choice of KP and KD as long
as these are positive definite matrices. The resulting control
block was shown in Fig. 5. Finally, we have to note that the
control law requires the on-line computation of term G(q),
and the case of a non-perfect gravity term compensation will
be arranged in Section 6.

6. Experimental Results
In this section, the experimental results performed to validate
the dynamic control of the SCMS prototype are described.
The geometrical parameters, the working environment, and
some specifications of the real prototype are illustrated in
Fig. 7 and Table I. Upon study Table I, it is noted that
the speed in flat mode (SCMS supported on wheels) is
slower than commercial EPWs. The reason for this is that the
purpose of this first prototype was to overpass architectural
barriers. All the motors were therefore selected with high
gearheads.

Fig. 7. Geometrical parameters and work environment (dimensions
in mm).

At present, this has been obtained by a complete
knowledge of different requirements, and the value of
gearheads of the wheel drive motors could be reduced
without collateral problems in the rest of the system. The
same power consumption can thus be maintained while the
velocity is increased. In order to verify the SCMS control
system validation, the real prototype behavior is studied
while it climbs a three-step staircase. The considered step
dimensions are 180 mm (height) and 300 mm (width). In
all the experiments, the mass m is known, and the profile
trajectory of the center of mass (Pg) of the prototype consists
of straight lines with the same slope as the racks (when the
SCMS is in a mixed configuration or supported on both racks)
or horizontal lines (when the SCMS is supported on wheels).
This particular profile was chosen because the control system
is substantially simplified and the power consumption is
decreased (see ref. [18]). Furthermore, the movements had
to satisfy the following three conditions: (a) Maintain the
seat inclination; (b) accurate tracking trajectory of the center
of mass; and (c) maintenance of passenger comfort. This
third constraint implies that the movement of the SCMS will
consist of two stages – one to accelerate the SCMS, and
the other to decelerate it. More information about comfort
trajectories of the SCMS can be found in ref. [23].

The experimental results have been split into two modules:
(a) Climbing a staircase using a PD control scheme without
compensation of gravitational terms; and (b) climbing a
staircase using a PD control with the addition of a nonlinear
compensation of gravitational terms. Taking into account all
previous considerations, the results obtained using the real
prototype are described next.

6.1. Control of SCMS using a PD control without
compensation of gravitational terms
Figures 8 and 9 illustrate the evolution of total articular
torques, τ1 and τ2, when the SCMS climbs a staircase
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Fig. 8. (Colour online) Evolution of total articular torque τ1 when the SCMS climbs a staircase using a PD control without compensation
of gravitational terms.

using a PD control without compensation of gravitational
terms. Note that a constant error between theoretical and
experimental trajectories of total articular torques, τ1 and τ2,
appears during all the experiment. This error can be computed
by means of the control system analysis explained in
Section 5. Considering that the gravity compensation term is
not used, the achievement of the equilibrium posture (q̇ ≡ 0
and q̈ ≡ 0) gives a small error between the desired and the
actual posture q̃ that is modeled as

q̃ = K−1
P G(q) = K−1

P JT g, (65)

where G(q) = JT g, g is the gravity acceleration, J is the
geometric Jacobian in terms of system variables, and the
matrices KP and KD have been designed to obtain the fastest
possible response without any overshooting and saturation

Table II. Gain matrix of the control scheme.

KP = diag(257.5631, 257.5593, 258.4746, 258.4833, 258.4805)

KD = diag(7.644, 7.683, 8.632, 8.691, 8.602)

(under small amplitude step signal inputs). Table II illustrates
the real values used in the experimental platform. The
obtained high values of matrix KP ensures very small errors
according to Eq. (65). Considering that the values of J are
fenced, and the fact that the diagonal definite positive matrix
KP has been designed with high gain values (see Table
II), upon substituting values in Eq. (65) a small value of
‖ q̃ ‖≈ 0.05 [rad] is achieved. In the following section, the
magnitude of error q̃ will be reduced by adding the nonlinear
compensation of gravitational terms into the control scheme.
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Fig. 9. (Colour online) Evolution of total articular torque τ2 when the SCMS climbs a staircase using a PD control without compensation
of gravitational terms.
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Fig. 10. (Colour online) Evolution of total articular torque τ1 when the SCMS climbs a staircase using a PD control with compensation of
gravitational terms.

6.2. Control of SCMS using a PD control with nonlinear
gravitational compensation terms
By using the compensation of gravitational terms in the
control law (see Fig. 5) the error value between the
desired and the actual posture (q̃) is reduced substantially.
To demonstrate the effect of the addition of the gravity
compensation term in the control law, the on-line
computation of the matrix G(q) are carried out (obtained)
from

Ĝ(q) = JT ˆ(g), (66)

where ĝ is the estimation of the gravity acceleration. Now
assuming that the system dynamics is under control, it can
be found that at equilibrium (q̇ ≡ 0, q̈ ≡ 0) the error q̃ is
expressed by the following expression:

q̃ = K−1
P

[
G(q) − Ĝ(q)

] = K−1
P JT (g − ĝ). (67)

Note that the minimum error between theoretical and
experimental trajectories of total articular torques, τ1 and τ2,
occurred when the estimation of gravitational terms coincide
with real gravitational terms of the prototype. The desired
equilibrium posture q̃ ≡ 0 is thus obtained with very small
errors, thanks to the computation of an accurately on-line
estimation of term Ĝ(q). The experimental results reported
illustrate that the addition of the nonlinear gravitational
compensation term Ĝ(q) into the control scheme improves
the obtention of equilibrium posture. Figures 10 and 11
depict the evolution of the total articular torques (τ1 and
τ2) when the SCMS climbs a staircase using a PD control
with compensation of gravitational terms. In order to show
a quantitative comparison between the trajectories of total
articular torques with and without gravity compensation,
evolution of relative error of total articular torques has been
included. Figures 12 and 13 illustrate the achieved results.
It is observed that the agreement between reference and
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Fig. 11. (Colour online) Evolution of total articular torque τ2 when the SCMS climbs a staircase using a PD control with compensation of
gravitational terms.
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Fig. 12. (Colour online) Evolution of relative error of the total articular torque erelτ1 when the SCMS climbs a staircase using a PD control
with and without compensation of gravitational terms.

experimental trajectories of both variables (in both
experiments) is very good, giving small relative error values
of total articular torques. Moreover, Figures 12 and 13 depict
better behavior of the prototype when the SCMS is controlled
by using the compensation of gravitational terms. A direct
consequence of the improvement obtained in the tracking
trajectory of the desired posture is a benefit for tracking
evolution of the center of mass and therefore in passenger
comfort. On the one hand, Fig. 14 illustrates the evolution of
the center of mass trajectory using both control algorithms.
A smoother and a more accurate tracking evolution is
observed when the SCMS implements the algorithm with
compensation of gravitational terms. On the other hand, to
study the problem of comfortability, it has used the criteria
developed in ref. [24]. Basically, the criteria evaluates
the tolerance of the human body when it is exposed to
vibrations, and interprets the existent data. In a particular case

of SCMSs, depending on passenger position, the vibrations
could be transmitted to feet, behind, or back. The criteria
measures the vibration intensity as root mean square (rms) of
acceleration. If the peak factor (relation between maximum
acceleration and vibration intensity) is less than 1, the system
is in a situation of ideal comfort intervals. When the peak
factor is less than 1, passenger comfort begins to decrease.
Peak factor values that are more than 1 and less than 3 imply
acceptable vibration tolerance values and acceptable comfort
values. Finally, peak factor values of more than 6 imply that
the maximum limit of tolerance vibration has surpassed,
and damage to passenger start to appear. The estimation of
vibration intensity value (rms) was selected according to
ref. [25] and is approximately 2.5 m/s2. A comfortability
comparison between both versions of control algorithm is
depicted in Fig. 15. The comfortability values are maintained
within comfortability margins throughout the experiments

0 50 100 150 200 250 300
−4

−2

0

2

4

6

t (s)

e re
l τ

2(%
)

 

 

e
rel τ

2

 No gravity compensated

e
rel τ

2

 Gravity compensated

Fig. 13. (Colour online) Evolution of relative error of the total articular torque erelτ2 when the SCMS climbs a staircase using a PD control
with and without compensation of gravitational terms.
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Fig. 14. (Colour online) Trajectory evolution of the center of mass when the SCMS climbs a staircase using a PD control with and without
compensation of gravitational terms.
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Fig. 15. (Colour online) Peak factor evolution of the center of mass when the SCMS climbs a staircase using a PD control with and without
compensation of gravitational terms.
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Fig. 16. (Colour online) Sequence of a climbing process (part A).

in both cases. However, the peak factor values when using
the control algorithm without gravity compensation are
slightly higher, which demonstrates that the use of control
algorithm with compensation of gravitational terms reports
increase of comfortability. Finally, a visual sequence of the
climbing process is illustrated in Figs. 16 and 17, showing
different configurations of SCMS and maintenance of seat’s
verticality.

7. Conclusions
In order to obtain a successful stair-climbing process, an
improvement to passenger comfort, and an accurate robot
posture, it is necessary to incorporate the dynamics model
within the feedback control law. A high reliability between
model-experiment has been obtained by using a control
system based on the SCMS transition diagram and a linear
PD action with a nonlinear compensation of gravitational
terms. These control schemes have had a widespread use in
several commercial industrial robots, but it has seldom been

used on SCMS. The planned trajectories were consistent and
agreed with experimental results, and illustrate an accurate
tracking of the desired posture of a robotized system by the
incorporation of nonlinear gravity term within the control
law. The tests demonstrated that the SCMS design is capable
to climb stairs while guaranteeing stability and passenger
comfort. Moreover, the proposed control scheme and the
compensation of gravitational terms improved the behavior
of SCMS as (a) response to perturbations in the system,
error modeling, and environmental uncertainties; (b) better
steady state response; (c) improvement of passenger comfort
and achievement of smoother configuration changes; and (d)
adaptation of gravity compensation, G(q), is immediately
computed when the mass of the passenger is known, and this
can be obtained when a sensorial system detects a passenger
on the prototype. Finally, an additional advantage is that the
method implemented in this work demonstrates that it is a
simple control strategy, computationally efficient, and easily
implementable in a microprocessor-/microcontroller-based
system.

https://doi.org/10.1017/S0263574712000276 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574712000276


Dynamic control of a reconfigurable stair-climbing mobility system 309

Fig. 17. (Colour online) Sequence of a climbing process (part B).

In future work, based on more than satisfactory results
obtained in this research, different experimental branches
are the focus of our attention. They are detailed as follows:
(a) Improve the design of climbing mechanisms to reduce
the prototype’s geometry and obtain a system that is capable
of confronting obstacles with more varied geometries; and
(b) study different control strategies and new trajectory
generations, taking advantage of additional degrees of
freedom of positioning mechanisms to increase the level of
passenger comfort.
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