

Translates of Functions on the Heisenberg Group and the HRT Conjecture

B. Currey and V. Oussa

Abstract. We prove that the HRT (Heil, Ramanathan, and Topiwala) Conjecture is equivalent to the conjecture that co-central translates of square-integrable functions on the Heisenberg group are linearly independent.

1 Preliminaries

Given $x, y \in \mathbb{R}$, define unitary operators T_x and M_y on $L^2(\mathbb{R})$ by

$$T_x\phi(t) = \phi(t-x), \quad M_y\phi(t) = e^{2\pi i t y}\phi(t), \quad \phi \in L^2(\mathbb{R}).$$

Let Γ be a countable subset of \mathbb{R}^2 and let $\phi \in L^2(\mathbb{R})$. The time-frequency system

 $\mathcal{G}(\phi,\Gamma) = \{M_{\gamma}T_{x}\phi: (x,y)\in\Gamma\}$

is called a Gabor system. There is an extensive literature devoted to Gabor systems that are orthonormal bases, frames, and Riesz bases of $L^2(\mathbb{R})$; for expositions of the basic theory and examples, see [4,10].

A fundamental open question is whether or not a Gabor system $\mathcal{G}(\phi, \Gamma)$ is necessarily linearly independent in the vector space $L^2(\mathbb{R})$. It is not known whether there is a nonzero vector ϕ and a finite set $\mathcal{F} \subset \mathbb{R}^2$ such that $\mathcal{G}(\phi, \mathcal{F})$ is linearly dependent. By comparison with time-scale systems, the existence of a scaling function in multiresolution analysis shows that there are functions $\phi \in L^2(\mathbb{R})$, and finite sets of translations and *dilations*, for which the resulting system is linearly dependent. Thus, the apparent independence of time-frequency systems is a bit surprising and motivates the so-called HRT conjecture, which first appeared in the literature about twenty years ago in the paper by Chris Heil, Jay Ramanathan, and Pankaj Topiwala [13].

Conjecture 1.1 (The HRT conjecture) Let $\phi \in L^2(\mathbb{R})$, $\phi \neq 0$, and let \mathcal{F} be a finite subset of \mathbb{R}^2 . Then the set $\mathfrak{G}(\phi, \mathcal{F})$ is linearly independent in $L^2(\mathbb{R})$.

Partial results on the HRT conjecture are numerous and varied; a sampling is [1–3, 11,12,14,20]. Generally, partial results show that $\mathcal{G}(\phi, \mathcal{F})$ is linearly independent under various conditions on ϕ , or on \mathcal{F} . For example, in [15], Linnell proves that for nonzero $\phi \in L^2(\mathbb{R})$, $\mathcal{G}(\phi, \mathcal{F})$ is linearly independent when \mathcal{F} is a subset of a full-rank lattice in the time-frequency plane. A detailed compilation of examples and partial results for the HRT conjecture is found in [14]. The purpose of this paper is to establish the

Received by the editors August 21, 2019; revised January 17, 2020.

Published online on Cambridge Core February 3, 2020.

AMS subject classification: 42C40, 43A80, 22E25.

Keywords: Heisenberg group, HRT conjecture, Gabor system, time-frequency system.

relationship between the HRT Conjecture and translation systems on the Heisenberg group. Our main result provides an affirmative answer to a question asked at the HRT workshop at Saint Louis University in 2016 [18].

Observe that

$$(1.1) T_x M_y = e^{-2\pi i x y} M_y T_x$$

holds for all $x, y \in \mathbb{R}$. This means that the family $\{M_y T_x : (x, y) \in \mathbb{R}^2\}$ of timefrequency operators generates a three-dimensional subgroup \mathbb{H} of the group of all unitary operators on $L^2(\mathbb{R})$. Let $\mathbb{T} = \{\tau \in \mathbb{C} : |\tau| = 1\}$. Then the Heisenberg group \mathbb{H} consists of all operators of the form $\tau M_y T_x$, where $\tau \in \mathbb{T}$, $y, x \in \mathbb{R}$. Letting

$$(\tau, y, x) = \tau M_{y} T_{x}, \quad \tau \in \mathbb{T}, (x, y) \in \mathbb{R}^{2};$$

the group product in \mathbb{H} is given by

$$(\tau_1, y_1, x_1)(\tau_2, y_2, x_2) = (\tau_1 \tau_2 e^{-2\pi i x_1 y_2}, y_1 + y_2, x_1 + x_2).$$

Let \mathbb{H} have the usual topology as the product $\mathbb{T} \times \mathbb{R}^2$. The center of the group \mathbb{H} is $\{(\tau, 0, 0) : \tau \in \mathbb{T}\}$. By a slight abuse of notation, we denote the center of \mathbb{H} by \mathbb{T} , and we can write $\tau = (\tau, 0, 0)$. The topological space \mathbb{H} has a natural differentiable structure with respect to which we define the vector spaces of smooth functions and compactly supported smooth functions as $C^{\infty}(\mathbb{H})$, and $C_c^{\infty}(\mathbb{H}) = C_c(\mathbb{H}) \cap C^{\infty}(\mathbb{H})$, respectively. Moreover, the Schwartz space $\mathcal{S}(\mathbb{H})$ is defined by

$$\mathbb{S}(\mathbb{H}) = \{ F \in C^{\infty}(\mathbb{H}) \colon (y, x) \longmapsto F(\tau, y, x) \in \mathbb{S}(\mathbb{R}^2), \forall \tau \in \mathbb{T} \},\$$

where $S(\mathbb{R}^2)$ is the Schwartz space on \mathbb{R}^2 . Let \mathbb{T} have the measure $d\tau$ given by $\int_{\mathbb{T}} g(\tau) d\tau = \int_0^1 g(e^{2\pi i t}) dt$, and let \mathbb{H} have the measure given by

$$\int_{\mathbb{H}} F = \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{T}} F(\tau, y, x) d\tau dy dx, \quad F \in C_{c}(\mathbb{H}).$$

Thus, for each $1 \le p < \infty$, we have the space $L^p(\mathbb{H})$ containing $C_c^{\infty}(\mathbb{H})$ and $S(\mathbb{H})$ as dense subspaces. We can also write $h = (\tau, y, x)$ and $dh = d\tau dy dx$.

The partial Fourier transform \wedge_1 of $F \in S(\mathbb{H})$ at $k \in \mathbb{Z}$ is defined by

$$\wedge_1 F(k, y, x) = \int_{\mathbb{T}} F(\tau, y, x) \tau^k d\tau.$$

By extension, we have the unitary isomorphism $\wedge_1: L^2(\mathbb{H}) \to L^2(\mathbb{Z} \times \mathbb{R}^2)$. In particular,

(1.2)
$$||F||^2 = \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}^2} |\wedge_1 F(k, y, x)|^2 dy dx, \quad F \in L^2(\mathbb{H}).$$

For $F \in S(\mathbb{H})$, define $\widehat{F}_k \in S(\mathbb{H})$ by $\widehat{F}_k(\tau, y, x) = \wedge_1 F(k, y, x) \cdot \tau^{-k}$.

Lemma 1.2 The map $P_k: F \mapsto \widehat{F}_k$ extends to an orthogonal projection $P_k: L^2(\mathbb{H}) \to L^2(\mathbb{H})_k$ where $L^2(\mathbb{H})_k$ is the closed subspace defined by

$$L^{2}(\mathbb{H})_{k} = \left\{ F \in L^{2}(\mathbb{H}) : \Lambda_{1}F(j, y, x) = 0, j \neq k \right\}.$$

Moreover, the spaces $L^2(\mathbb{H})_k$ are pairwise orthogonal and $L^2(\mathbb{H}) = \bigoplus_{k \in \mathbb{Z}} L^2(\mathbb{H})_k$.

Proof By (1.2), for $F \in S(\mathbb{H})$,

(1.3)
$$\|P_k F\|^2 = \int_{\mathbb{H}} |\wedge_1 F(k, y, x) \tau^{-k}|^2 dh = \int_{\mathbb{R}^2} \int_{\mathbb{T}} |\wedge_1 F(k, y, x)|^2 d\tau dy dx$$
$$= \int_{\mathbb{R}^2} |\wedge_1 F(k, y, x)|^2 dy dx \le \|F\|^2,$$

so P_k extends to a linear contraction on $L^2(\mathbb{H})$. The fact that P_k is an orthogonal projection follows from the following calculations. First, for $k \in \mathbb{Z}$,

$$\langle P_k F, G \rangle = \int_{\mathbb{R}} \int_{\mathbb{R}} \wedge_1 F(k, y, x) \overline{\wedge_1 G}(k, y, x) dy dx = \langle F, P_k G \rangle,$$

and secondly, for all $j, k \in \mathbb{Z}$,

$$\begin{aligned} \langle P_k F, P_j F \rangle &= \int_{\mathbb{H}} \widehat{F_k} \overline{\widehat{F}_j} = \int_{\mathbb{R}^2} \int_{\mathbb{T}} \tau^{j-k} \wedge_1 F(k, y, x) \overline{\wedge_1 F}(j, y, x) d\tau dy dx \\ &= \begin{cases} \| \widehat{F_k} \|^2, & \text{if } j = k, \\ 0, & \text{if } j \neq k. \end{cases} \end{aligned}$$

Referring to (1.2) and (1.3), we obtain

$$||F||^2 = \sum_{k \in \mathbb{Z}} ||P_k F||^2$$
,

and the lemma follows.

We make the natural identifications: $\mathbb{H}/\mathbb{T} = \mathbb{R}^2$ via $(\tau, y, x)\mathbb{T} = \mathbb{T}(\tau, y, x) = (y, x)$, $C_c^{\infty}(\mathbb{H}/\mathbb{T}) = C_c^{\infty}(\mathbb{R}^2)$, and $\mathbb{S}(\mathbb{H}/\mathbb{T}) = \mathbb{S}(\mathbb{R}^2)$. For each $h = (\tau, y, x) \in \mathbb{H}$, we say that the point $(y, x) \in \mathbb{R}^2$ is the projection of h. For $F \in \mathbb{S}(\mathbb{H})$, observe that $P_0F \in \mathbb{S}(\mathbb{R}^2)$: $P_0F(\tau, y, x) = \wedge_1 F(0, y, x) = \int_{\mathbb{T}} F(\tau, y, x) d\tau$. Accordingly, we identify $L^2(\mathbb{H})_0$ with $L^2(\mathbb{R}^2)$ via P_0 , and put

$$Q = 1 - P_0: L^2(\mathbb{H}) \longrightarrow L^2(\mathbb{R}^2)^{\perp} = \bigoplus_{k \neq 0} L^2(\mathbb{H})_k.$$

We can also write $S(\mathbb{H})_k = P_k(S(\mathbb{H}))$.

2 Translation Systems in $L^2(\mathbb{H})$

For $h \in \mathbb{H}$, define left and right translations (unitary) operators L_h and R_h on $L^2(\mathbb{H})$ by

$$L_h F = F(h^{-1} \cdot), \quad R_h F = F(\cdot h)$$

for $F \in S(\mathbb{H})$. Observe that for all $h_1, h_2 \in \mathbb{H}$,

(2.1)
$$L_{h_1} R_{h_2} = R_{h_2} L_{h_1}$$

With $h_0 = (\tau_0, y_0, x_0)$, we compute that $h_0^{-1} = (\tau_0^{-1} e^{-2\pi i x_0 y_0}, -y_0, -x_0)$, and we find that for each $k \in \mathbb{Z}$,

$$(P_k(L_{h_0}F))(\tau, y, x) = \wedge_1 F(k, y - y_0, x - x_0) (\tau \tau_0^{-1} e^{2\pi i x_0(y - y_0)})^{-k}$$

= $(L_{h_0}P_kF)(\tau, y, x)$

and similarly

$$(P_k(R_{h_0}F))(\tau, y, x) = \wedge_1 F(k, y + y_0, x + x_0) \tau_0^{-k} e^{2\pi i k x y_0}$$

= $(R_{h_0}P_kF)(\tau, y, x).$

In particular, when $P_0F(\tau, y, x) = \wedge_1 F(0, y, x)$ is identified with an element of $L^2(\mathbb{R}^2)$, then left translation by L_{h_0} is just translation by the projection (y_0, x_0) of h_0 in $L^2(\mathbb{R}^2)$:

$$P_0(L_{h_0}F)(\tau, y, x) = L_{h_0}P_0F(\tau, y, x) = \wedge_1 F(0, y - y_0, x - x_0).$$

This shows that

- (a) each of the subspaces $L^2(\mathbb{H})_k$ of $L^2(\mathbb{H})$, and their orthogonal complements, are left and right translation invariant subspaces of $L^2(\mathbb{H})$, and
- (b) in the subspace $L^2(\mathbb{H})_0 = L^2(\mathbb{R}^2)$, translation by $h = (\tau, y, x)$ is just translation by its projection (y, x).

Let \mathcal{E} be a finite subset of \mathbb{H} . For $F \neq 0$ in $L^2(\mathbb{H})$, consider the system of left translates

$$\mathcal{L}(F,\mathcal{E}) = \{L_hF : h \in \mathcal{E}\} \subset L^2(\mathbb{H}).$$

There are two ways to see that such a system is not always linearly independent in $L^2(\mathbb{H})$. First, let τ be any *p*-th root of unity in \mathbb{T} , and let $F \in L^2(\mathbb{H})$, $F \neq 0$. Then

$$G = \sum_{k=1}^{p} L_{\tau^k} F$$

satisfies $L_{\tau}G = G$. Thus, there are non-zero functions $F \in L^2(\mathbb{H})$ with dependent \mathbb{T} -translates. Second, suppose that $h_2 = \tau h_1$ for some $\tau \in \mathbb{T}$, and let $F \in L^2(\mathbb{R}^2)$. Then $L_{h_1}F = L_{h_2}F$. In light of this observation, we will only consider subsets \mathcal{E} whose projections in \mathbb{R}^2 are distinct, that is, sets whose elements satisfy $h \neq h' \implies \mathbb{T}h \neq \mathbb{T}h'$. In this case, we say that \mathcal{E} is *co-central*.

Conjecture 2.1 (The Heisenberg Translate Conjecture (HT)) Let \mathcal{E} be a finite co-central subset of \mathbb{H} and let $F \in L^2(\mathbb{H})$ be non-zero. Then $\mathcal{L}(F, \mathcal{E})$ is linearly independent.

For a subset \mathcal{K} of $L^2(\mathbb{H})$, consider the partial Heisenberg Translate Conjecture:

HT(\mathcal{K}): For each $F \in \mathcal{K}$, and for \mathcal{E} a finite co-central subset of \mathbb{H} , the system $\mathcal{L}(F, \mathcal{E})$ is linearly independent.

Observe that for any closed, left translation-invariant subspace \mathcal{K} of $L^2(\mathbb{H})$, the HT Conjecture is true if and only if both $HT(\mathcal{K})$ and $HT(\mathcal{K}^{\perp})$ are true. More generally, if $L^2(\mathbb{H})$ is an orthogonal direct sum of closed left-invariant subspaces \mathcal{K}_k , then the HT Conjecture is true if and only if $HT(\mathcal{K}_k)$ is true for all k.

It is easy to see that $HT(L^2(\mathbb{H})_0)$ is true. Let \mathcal{E} be a finite co-central subset of \mathbb{H} , and let $F \in L^2(\mathbb{H})_0$, $F \neq 0$. Let \mathcal{T} be the projection of \mathcal{E} in \mathbb{R}^2 , and identify $L^2(\mathbb{H})_0$ with $L^2(\mathbb{R}^2)$ as above. By (a) and (b), the system $\mathcal{L}(F, \mathcal{E})$ is just the translation system corresponding to F and \mathcal{T} . But every translation system in $L^2(\mathbb{R}^2)$ is linearly independent [7, Theorem 1.2], or [12, Theorem 9.18]. We conclude that

874

Conclusion 2.2 The Heisenberg Translate Conjecture is true if and only if $HT(L^2(\mathbb{H})_0^{\perp})$ is true.

3 Irreducible Unitary Representations of **H**

Just as the Fourier transform changes translations to modulations in $L^2(\mathbb{R}^n)$, the operator-valued Plancherel transform for a sufficiently nice locally compact group changes both left and right translations into compositions by irreducible unitary representations.

Recall that a unitary representation π of \mathbb{H} is a homomorphism of \mathbb{H} into the group of unitary operators on some non-zero Hilbert space \mathcal{H} , which is strongly continuous: $h_n \to h$ implies $\pi(h_n)v \to \pi(h)v$ for each $v \in \mathcal{H}$. A unitary representation π acting in \mathcal{H} is *irreducible* means that every non-zero vector v is *cyclic* for π : { $\pi(h)v : h \in \mathbb{H}$ } is dense in \mathcal{H} for each $v \in \mathcal{H}$. Equivalently, the only non-zero closed subspace that is invariant under all $\pi(h), h \in \mathbb{H}$ is \mathcal{H} .

The following lemma allows one to find a list π_k , $k \in \mathbb{Z} \setminus \{0\}$, of irreducible unitary representations of \mathbb{H} , acting in the Hilbert space $L^2(\mathbb{R})$. The proof of the lemma is a consequence of the well-known characterization of closed translation invariant subspaces of $L^2(\mathbb{R})$, and is left to the reader.

Lemma 3.1 Let $\mathcal{I} \subset L^2(\mathbb{R})$ be a closed, non-zero subspace that is invariant under the action of the group of unitary operators generated by T_x and M_y , where $x, y \in \mathbb{R}$. Then $\mathcal{I} = L^2(\mathbb{R})$.

Observe that \mathbb{H} is a subgroup of the group $\mathcal{U}(L^2(\mathbb{R}))$ of unitary operators on $L^2(\mathbb{R})$, and $h_n \to h$ in \mathbb{H} implies $h_n \phi \to h \phi$ in $L^2(\mathbb{R})$. Thus, the inclusion map $\pi_1: \mathbb{H} \to \mathcal{U}(L^2(\mathbb{R}))$ is a unitary representation of \mathbb{H} , and Lemma 3.1 shows that π_1 is irreducible. Slightly more generally, let $k \in \mathbb{Z} \setminus \{0\}$, and for each $(z, y, x) \in \mathbb{H}$, put

$$\pi_k(\tau, y, x) = \tau^k M_{ky} T_x.$$

The relation (1.1) shows that π_k is a homomorphism of \mathbb{H} into the unitary group $\mathcal{U}(L^2(\mathbb{R}))$, and as with π_1, π_k is an irreducible unitary representation of \mathbb{H} . It is also easy to check that if $k_1 \neq k_2$, then π_{k_1} and π_{k_2} are not equivalent.

It turns out that up to a natural notion of equivalence, the π_k , $k \in \mathbb{Z} \setminus \{0\}$, are the only irreducible unitary representations of \mathbb{H} acting in $L^2(\mathbb{R})$. The proof of this fact uses two fundamental results: the Stone-von Neumann Theorem and Schur's Lemma. We omit the proofs here, as we do not need this result in what follows. A self-contained source for this material is the text [5].

The relation between π_k and time-frequency systems in $L^2(\mathbb{R})$ is simple.

Lemma 3.2 Let \mathcal{E} be a finite co-central subset of \mathbb{H} , and let $k \in \mathbb{Z} \setminus \{0\}$. Write $\mathcal{E} = \{h_1, \ldots, h_N\}$ with $h_i = (\tau_i, y_i, x_i)$, and put $\mathcal{F}_k = \{(ky_1, x_1), \ldots, (ky_N, x_N)\} \subset \mathbb{R}^2$. Then for each $\phi \in L^2(\mathbb{R}), \mathcal{G}(\phi, \mathcal{F}_k)$ is independent if and only if $\pi_k(\mathcal{E})\phi$ is independent.

Proof By definition of π_k , for each $1 \le i \le N$, the element $\pi_k(h_i)\phi$ of the system $\pi_k(\mathcal{E})\phi$ is a non-zero complex multiple of the element $M_{k\nu_i}T_{x_i}\phi$ of $\mathcal{G}(\phi, \mathcal{F}_k)$.

We next show that each element of $L^2(\mathbb{H})_0^{\perp} \subset L^2(\mathbb{H})$ has a type of operator-valued Fourier series. Let $F \in S(\mathbb{H})$; for each $k \in \mathbb{Z} \setminus \{0\}$, define a sesquilinear form $s_{F,k}$ on $L^2(\mathbb{R}) \times L^2(\mathbb{R})$ by

$$s_{F,k}:(\phi,\psi)\longmapsto \int_{\mathbb{H}} F(h)\langle \pi_k(h)\phi,\psi\rangle \,dh.$$

Since *F* is integrable on \mathbb{H} , the form $s_{F,k}$ is bounded:

$$|s_{F,k}(\phi,\psi)| \leq ||F||_1 ||\phi||_2 ||\psi||_2$$

and hence defines a bounded linear operator $\pi_k(F)$ on $L^2(\mathbb{R})$ by

$$s_{F,k}(\phi,\psi) = \langle \pi_k(F)\phi,\psi \rangle.$$

In fact, $\pi_k(F)$ is an integral operator. A straightforward calculation shows

$$s_{F,k}(\phi,\psi) = \int_{\mathbb{R}} \int_{\mathbb{R}} \wedge_{1,2} F(k,kt,t-x)\phi(x)\overline{\psi}(t)dxdt,$$

where $\wedge_{1,2}F = \wedge_2 \wedge_1 F$ is the Fourier transform of *F* in the variables τ and *y*. Regarding the Fourier transform \wedge_2 in *y* as a unitary map on $L^2(\mathbb{R}^2)$, we get

$$(3.1) \qquad \int_{\mathbb{R}} \int_{\mathbb{R}} |\wedge_{1,2} F(k,kt,t-x)|^2 dx dt = \frac{1}{|k|} \int_{\mathbb{R}} \int_{\mathbb{R}} |\wedge_{1,2} F(k,t,x)|^2 dx dt$$
$$= \frac{1}{|k|} \int_{\mathbb{R}} \int_{\mathbb{R}} |\wedge_1 F(k,y,x)|^2 dy dt < \infty$$

so the theory of integral operators says that $\pi_k(F)$ is a Hilbert-Schmidt operator given by

$$(\pi_k(F)\phi)(t) = \int_{\mathbb{R}} K_k^F(t,x)\phi(x)dx,$$

where $K_k^F(t, x) = \bigwedge_{1,2} F(k, kt, t-x)$ and the Hilbert–Schmidt norm of $\pi_k(F)$ is given by (3.1). Note that if $P_k F = 0$, that is, if $F \in L^2(\mathbb{H})_k^{\perp}$, then $\pi_k(F) = 0$. In particular, $\pi_k(F) = 0$ holds for all $F \in L^2(\mathbb{H})_0$. Finally, it is easy to check that

(3.2)
$$\pi_k(L_hF) = \pi_k(h)\pi_k(F), \quad \pi_k(R_hF) = \pi_k(F)\pi_k(h)^{-1}.$$

These relations are what is meant by the statement at the beginning of this section; the operators $\pi_k(F)$ are values of the Plancherel transform of F, and left (resp. right) translation of F by $h \in \mathbb{H}$ converts into the composition of $\pi_k(F)$ on the left (resp. on the right) by the unitary operator $\pi_k(h)$ (resp. $\pi_k(h)^{-1}$.) A bit more is said below about the Plancherel transform.

The representations π_k are related to the spaces $L^2(\mathbb{H})_k$ as follows.

Lemma 3.3 Let $F \in S(\mathbb{H})$. Then $\pi_k(F) = \pi_k(P_kF)$. Moreover, $\|\pi_k(F)\|_{\mathbb{HS}}^2 = \frac{1}{|k|} \|P_kF\|^2$.

Proof Observe that $\wedge_1 P_k F(k, y, x) = \wedge_1 F(k, y, x)$, so

$$K_K^{P_kF}(t,x) = \wedge_2(\wedge_1 P_kF)(k,kt,t-x) = \wedge_2(\wedge_1 F)(k,kt,t-x) = K_K^F(t,x),$$

and hence $\pi_k(F) = \pi_k(P_kF)$. The second part is a consequence of (3.1).

https://doi.org/10.4153/S0008439520000107 Published online by Cambridge University Press

Translates of Functions

Denote the Hilbert space of Hilbert–Schmidt operators on $L^2(\mathbb{R})$ by $HS(L^2(\mathbb{R}))$. In light of Lemmas 1.2 and 3.3, the following proposition is almost immediate.

Proposition 3.4 The map $F \mapsto (|k|^{1/2}\pi_k(F))_{k \in \mathbb{Z} \setminus \{0\}}, F \in L^2(\mathbb{H})_0^{\perp} \cap S(\mathbb{H})$, extends to a unitary isomorphism

$$L^{2}(\mathbb{H})_{0}^{\perp} \longrightarrow \bigoplus_{k \in \mathbb{Z} \setminus \{0\}} \mathrm{HS}(L^{2}(\mathbb{R})).$$

Proof Given $F \in L^2(\mathbb{H})_0^{\perp}$, write $F = \sum_{k \neq 0} P_k F$. By Lemma 3.3, $||P_k F||_2^2 = ||k|^{1/2} \pi_k(F)||_{HS}^2$.

The Plancherel transform for the group \mathbb{H} , also called the group Fourier transform, derives from the decomposition $L^2(\mathbb{H}) = \bigoplus_k L^2(\mathbb{H})_k$, and is described as follows. Start with $F \in \mathcal{S}(\mathbb{H})$ and write $F = F_0 + QF$, with $F_0 \in L^2(\mathbb{H})_0$, and $QF \in L^2(\mathbb{H})_0^{\perp}$. Identifying F_0 with a function on \mathbb{R}^2 , the Plancherel transform sends F_0 to its Euclidean Fourier transform, and sends QF to the operator field $(\pi_k(F))_{k\neq 0}$. (The Plancherel measure μ is then defined on $\mathbb{Z}\setminus\{0\}$ by $\mu(\{k\}) = |k|$.)

One can also see that the map defined in Proposition 3.4 gives a Fourier series-type expansion of $F \in L^2(\mathbb{H})^{\perp}_0$. By the polarization identity, for $F_1, F_2 \in L^2(\mathbb{H})^{\perp}_0$, we have

$$\langle F_1, F_2 \rangle = \sum_{k \neq 0} |k| \operatorname{trace} (\pi_k(F_1) \pi_k(F_2)^*).$$

Define the involution on $S(\mathbb{H})$ by $F^*(h) = \overline{F}(h^{-1})$, and the convolution on $S(\mathbb{H})$ by

$$F_1 * F_2(h) = \int_{\mathbb{H}} F_1(g) F_2(g^{-1}h) dg.$$

Then with e = (1, 0, 0), $(F_1 * F_2^*)(e) = \langle F_1, F_2 \rangle$, and hence,

$$(F_1 * F_2^*)(e) = \sum_{k \neq 0} |k| \operatorname{trace}(\pi_k(F_1)\pi_k(F_2)^*).$$

By the factorization theorem of Dixmier–Malliavin [6], every function $F \in C_c^{\infty}(\mathbb{H})$ is a finite sum of functions of the form $F_1 * F_2$. It follows that for $F \in C_c^{\infty}(\mathbb{H})$, $\pi_k(F)$ is actually trace-class, and we have

$$F(e) = \sum_{k\neq 0} |k| \operatorname{trace}(\pi_k(F)),$$

and hence for all $h \in \mathbb{H}$,

$$F(h) = (R_h F)(e) = \sum_{k \neq 0} |k| \operatorname{trace}(\pi_k(F) \pi_k(h)^{-1}).$$

Thus, Proposition 3.4 can be regarded as giving a Fourier series-type expansion of F.

4 The Heisenberg Translate Conjecture and the HRT Conjecture

We have seen that the partial Heisenberg Translate Conjecture $HT(L^2(\mathbb{H})_0)$ for the subspace $L^2(\mathbb{H})_0$ is true. We now exhibit two more subsets \mathcal{K} for which $HT(\mathcal{K})$ is true.

Recall that a unitary representation π of \mathbb{H} acting in a Hilbert space \mathcal{H} is irreducible if every non-zero element in \mathcal{H} is cyclic for π . When a unitary representation is not

irreducible it can still admit a cyclic element. An element $v \in \mathcal{H}$ such that the linear span of $\{\pi(h)v : h \in \mathbb{H}\}$ is dense in \mathcal{H} . In this case, the representation is said to be a *cyclic representation*. Even though the right regular representation is not irreducible, it is cyclic.

Proposition 4.1 The right regular representation of \mathbb{H} is a cyclic representation.

For a proof of Proposition 4.1, we refer the interested reader to a paper of Losert and Rindler [17], which gives a construction of a cyclic element for the regular representation of any first countable locally compact group. A non-constructive proof of Proposition 4.1 can also be found in [9].

Denote by ${\mathbb C}$ the subset of all cyclic elements for the right regular representation of ${\mathbb H}.$

Proposition 4.2 The statement $HT(\mathcal{C})$ is true.

Proof Let $\mathcal{E} = \{h_1, \dots, h_N\}$ be co-central, and let *A* be an operator belonging to the span of $\{L_h : h \in \mathcal{E}\}$. Let $F \in \mathbb{C}$, $F \neq 0$. We must show that if AF = 0, then A = 0. But if AF = 0, then (2.1) shows that AG = 0 for all $G \in \mathcal{R} = \text{span}_{\mathbb{C}} \{R_hF : h \in \mathbb{H}\}$. Since \mathcal{R} is dense, the result follows.

Next we show an example of how Proposition 3.4 can be used together with known partial results for the HRT Conjecture. Fix $x_0 \in \mathbb{R}$ and put $\mathbb{H}(x \le x_0) = \{(\tau, y, x) : x \le x_0\}$. Let $L^2(\mathbb{H}(x \le x_0))$ be the subspace of all $F \in L^2(\mathbb{H})$ with essential support contained in $\mathbb{H}(x \le x_0)$.

Proposition 4.3 The statement $HT(L^2(\mathbb{H}(x \le x_0)))$ is true.

Proof Let $F \in L^2(\mathbb{H}(-\infty, x_0))$, $F \neq 0$, and let $\mathcal{E} \subset \mathbb{H}$ be finite and co-central. Without loss of generality, we can assume that $F \in L^2(\mathbb{H})_0^{\perp}$. Since $F \neq 0$, there exists $k \in \mathbb{Z}\setminus\{0\}$ such that $\pi_k(F) \neq 0$. Since $C_c(\mathbb{R})$ is dense in $L^2(\mathbb{R})$, there exists also $\phi \in C_c(\mathbb{R})$ such that $\pi_k(F)\phi \neq 0$. Choose $a \in \mathbb{R}$ such that $\sup(\phi) \subset [-a, a]$. We claim that $\pi_k(F)\phi$ is necessarily supported on a half-line in $L^2(\mathbb{R})$. First, observe that $F \in L^2(\mathbb{H}(x \leq x_0))$ implies $\sup(\wedge_{1,2}F(k,\cdot,\cdot)) \subset \mathbb{R} \times (-\infty, x_0]$. For each $t \in \mathbb{R}$, put

$$M_{k,t}(x) = K_k^F(t,x)\phi(x) = \wedge_{1,2}F(k,kt,t-x)\phi(x).$$

It follows that

$$\operatorname{supp}(M_{k,t}) \subset [-a,a] \cap [t-x_0,+\infty).$$

Hence, $\pi_k(F)\phi(t) \neq 0$ implies $M_{k,t} \neq 0$, implies $[-a, a] \cap [t - x_0, +\infty) \neq \emptyset$, implies $t < a + x_0$, proving the claim.

Next, let \mathcal{F}_k be the finite subset of \mathbb{R}^2 associated with \mathcal{E} as in Lemma 3.2. By [13, Proposition 3], $\mathcal{G}(\pi_k(F)\phi, \mathcal{F}_k)$ is linearly independent, so by Lemma 3.2, $\pi_k(\mathcal{E})\pi_k(F)\phi$ is linearly independent. But by (3.2),

$$\pi_k(\mathcal{E})\pi_k(F)\phi = \pi_k(\mathcal{L}(F,\mathcal{E}))\phi,$$

and hence $\mathcal{L}(F, \mathcal{E})$ must be independent.

878

Translates of Functions

The following is immediate.

Corollary 4.4 The HT Conjecture holds for all non-zero elements of $L^2(\mathbb{H})$ with bounded essential support.

Proposition 4.5 Let $A: L^2(\mathbb{H}) \to L^2(\mathbb{H})$ be linear injective operator with a bounded inverse, and let \mathcal{K} be a subset of $L^2(\mathbb{H})$. Assume that $AL_h = L_h A$ holds for all $h \in \mathbb{H}$. If $HT(\mathcal{K})$ is true, then $HT(A(\mathcal{K}))$ is true.

Proof Suppose that $HT(\mathcal{K})$ is true. Let $F \in A(\mathcal{K})$ and let $\mathcal{E} \subset \mathbb{H}$ be finite and co-central. Then $A^{-1}: A(L^2(\mathbb{H})) \to L^2(\mathbb{H})$ is linear and $A^{-1}F \in \mathcal{K}$ so $\mathcal{L}(A^{-1}F, \mathcal{E})$ is linearly independent; hence, $\mathcal{L}(F, \mathcal{E}) = A(\mathcal{L}(A^{-1}F, \mathcal{E}))$ is linearly independent.

Finally, we turn to the equivalence of the HRT Conjecture with the HT Conjecture.

Theorem 4.6 The HRT Conjecture is true if and only if the Heisenberg Translate Conjecture is true.

We begin with a proof of a standard result; see also [5, 8, 19].

Lemma 4.7 Fix $k \in \mathbb{Z} \setminus \{0\}$ and let $f, g \in L^2(\mathbb{R})$. Then the function $F_{g,f}: h \mapsto \langle g, \pi_k(h)f \rangle$ is continuous and square-integrable on \mathbb{H} .

Proof The fact that $F_{g,f}$ is continuous is a consequence of the strong continuity of the representation π_k . To see that $F_{g,f}$ is square-integrable on \mathbb{H} , repeat the computation of (1.3): letting *dh* be the left-invariant measure on \mathbb{H} ,

$$\int_{\mathbb{H}} |F_{g,f}(h)|^2 dh = \int_{\mathbb{R}^2} |\langle g, \pi_k(1, y, x)f \rangle|^2 dy dx = \int_{\mathbb{R}^2} |\langle g, M_{ky}T_xf \rangle|^2 dy dx.$$

Now

$$\int_{\mathbb{R}}\int_{\mathbb{R}}\left|\left\langle g,M_{ky}T_{x}f\right\rangle\right|^{2}dxdy=\int_{\mathbb{R}}\int_{\mathbb{R}}\left|\left(\left[M_{-ky}g\right]*f^{*}\right)(x)\right|^{2}dxdy.$$

In the last equality above, * stands for the usual convolution and $f^*(x) = \overline{f(-x)}$. A standard computation shows that the function $x \mapsto ([M_{-ky}g] * f^*)(x)$ is the inverse Fourier transform of

(4.1)
$$\widehat{M_{-kyg}}\widehat{f^*}:\xi\mapsto\widehat{g}(\xi+ky)\overline{\widehat{f}}(\xi).$$

Hence, for each $y \in \mathbb{R}$, $x \mapsto ([M_{-ky}g] * f^*)(x)$ belongs to $L^2(\mathbb{R})$ if the function (4.1) belongs to $L^2(\mathbb{R})$, in which case

$$\int_{\mathbb{R}} |[M_{-ky}g] * f^*(x)|^2 dx = \int_{\mathbb{R}} |\widehat{g}(\xi + ky)\overline{\widehat{f}}(\xi)|^2 d\xi.$$

But

$$\begin{split} \int_{\mathbb{R}} \int_{\mathbb{R}} |\widehat{g}(\xi + ky)\overline{\widehat{f}}(\xi)|^2 d\xi dy &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |\widehat{g}(\xi + ky)|^2 dy \right) |\overline{\widehat{f}}(\xi)|^2 d\xi \\ &= \frac{1}{|k|} \|g\|^2 \|f\|^2. \end{split}$$

We conclude that for a.e. *y*, the function (4.1) does belong to $L^2(\mathbb{R})$, and hence

$$\int_{\mathbb{H}} |F_{g,f}(h)|^2 dh = \int_{\mathbb{R}} \int_{\mathbb{R}} |g(\xi + ky)\overline{\widehat{f}}(\xi)|^2 d\xi dy = \frac{1}{|k|} ||f||^2 ||g||^2 < \infty.$$

It is worth noting that Conjecture 2.1 implies Conjecture 1.1 was also proved in [16, Proposition 1.1].

Proof of Theorem 4.6 Suppose that the Heisenberg Translate Conjecture (Conjecture 2.1) is true. To prove the HRT Conjecture (Conjecture 1.1), let $\phi \in L^2(\mathbb{R})$, $\phi \neq 0$, and let $\mathcal{F} \subset \mathbb{R}^2$ be finite.

Consider $F(h) = F_{\phi,\phi}(h) = \langle \phi, \pi_1(h)\phi \rangle$ and put $\mathcal{E} = \{(1, y, x) : (y, x) \in \mathcal{F}\}$. Clearly, \mathcal{E} is co-central, and by Lemma 4.7, F defines a non-zero element of $L^2(\mathbb{H})$. Observe also that for $h = (\tau, y, x)$, the definition of π_1 implies that $F(\tau, y, x) = \tau^{-1}F(1, y, x)$; thus, $F \in L^2(\mathbb{H})_1$. By our assumption that Conjecture 2.1 is true, $\mathcal{L}(F, \mathcal{E})$ is linearly independent.

Now for each $h \in \mathcal{E}$,

$$L_hF(h) = \langle \phi, \pi(h)^{-1}\pi(h)\phi \rangle = \langle \pi(h)\phi, \pi(h)\phi \rangle,$$

so

$$\mathcal{L}(F,\mathcal{E}) = \{F_{\pi_1(h)\phi,\phi} : h \in \mathcal{E}\}.$$

Hence, $\pi_1(\mathcal{E})\phi$ is linearly independent. By Lemma 3.2, $\mathfrak{G}(\phi, \mathcal{F})$ is independent.

Conversely, suppose that the HRT Conjecture (Conjecture 1.1) is true. Let $F \in L^2(\mathbb{H}), F \neq 0$, and let $\mathcal{E} \subset \mathbb{H}$ finite and co-central. By Conclusion 2.2, we can assume that $F \in L^2(\mathbb{R}^2)^{\perp}$, meaning that $F = \sum_{k \neq 0} F_k$ as above. Choose *k* such that $F_k \neq 0$; by Lemma 3.3, the operator $\pi_k(F) = \pi_k(F_k)$ is non-zero, so there is $\phi \in L^2(\mathbb{R})$ such that $\pi_k(F)\phi$ is a non-zero element of $L^2(\mathbb{R})$. Define the finite subset \mathcal{F}_k of \mathbb{R}^2 , as in Lemma 3.2. By assumption, $\mathcal{G}(\pi_k(F)\phi, \mathcal{F}_k)$ is linearly independent, and hence by Lemma 3.2, $\pi_k(\mathcal{E})\pi_k(F)\phi$ is linearly independent. But then

$$\pi_k(\mathcal{E})\pi_k(F)\phi = \left\{\pi_k(L_hF)\phi : h \in \mathcal{E}\right\} = \pi_k(\mathcal{L}(F,\mathcal{E}))\phi$$

is linearly independent, so $\mathcal{L}(F, \mathcal{E})$ is linearly independent.

References

- R. Balan and I. Krishtal, An almost periodic noncommutative Wiener's lemma. J. Math. Anal. Appl. 370(2010), 339–349. https://doi.org/10.1016/j.jmaa.2010.04.053
- [2] J. J. Benedetto and A. Bourouihiya, *Linear independence of finite gabor systems determined by behavior at infinity*. J. Geom. Anal. 25(2015), 226–254.
- [3] M. Bownik and D. Speegle, Linear independence of time-frequency translates of functions with faster than exponential decay. Bull. Lond. Math. Soc. 45(2013), 554–566. https://doi.org/10.1112/blms/bds119
- [4] O. Christensen, An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis, 7, Birkhäuser Boston, Inc., 2003. https://doi.org/10.1007/978-0-8176-8224-8
- [5] L. Corwin and F. P. Greenleaf, *Representations of nilpotent Lie groups and their applications*. Part I. Basic theory and examples, Cambridge Studies in Advanced Mathematics, 18, Cambridge University Press, Cambridge, 1990.
- [6] J. Dixmier and P. Malliavin, Factorisations de fonctions et de vecteurs indefiniment differentiables. (French) Bull. Sci. Math. (2) 102(1978), 307–330.
- [7] G. A. Edgar and J. M. Rosenblatt, Difference equations over locally compact abelian groups. Trans. Amer. Math. Soc. 253(1979), 273–289. https://doi.org/10.2307/1998197

880

- [8] G. B. Folland, Harmonic analysis in phase space. Annals of Mathematics Studies, 122, Princeton University Press, 1989. https://doi.org/10.1515/9781400882427
- F. P. Greenleaf and M. Moskowitz, Cyclic vectors for representations of locally compact groups. Math. Ann. 190(1971), 265–288. https://doi.org/10.1007/BF01431155
- [10] K. Gročhenig, Foundations of time-frequency analysis. Applied and Numerical Harmonic Analysis, Birkhaüser Boston, Inc., Boston, MA, 2001. https://doi.org/10.1007/978-1-4612-0003-1
- K. Gröchenig, Linear independence of time-frequency shifts? Monatsh. Math. 177(2015), 67–77. https://doi.org/10.1007/s00605-014-0637-z
- [12] C. Heil, Linear independence of finite Gabor systems. In: Harmonic analysis and applications. Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2006. https://doi.org/10.1007/0-8176-4504-7_9
- [13] C. Heil, J. Ramanathan, and P. Topiwala, *Linear independence of time-frequency translates*. Proc. Amer. Math. Soc. 124(1996), 2787–2795. https://doi.org/10.1090/S0002-9939-96-03346-1
- [14] C. Heil and D. Speegle, The HRT conjecture and the zero divisor conjecture for the heisenberg group. Excursions in harmonic analysis, 3, Birkhäuser/Springer, Cham, 2015, pp. 159–176.
- [15] P. Linnell, Von neumann algebras and linear independence of translates. Proc. Amer. Math. Soc. 127(1999), 3269–3277. https://doi.org/10.1090/S0002-9939-99-05102-3
- [16] P. A. Linnell, M. J. Puls, and A. Roman, *Linear dependency of translations and square-integrable representations*. Banach J. Math. Anal. 11(2017), 945–962. https://doi.org/10.1215/17358787-2017-0028
- [17] V. Losert and H. Rindler, *Cyclic vectors for* $L^{p}(G)$. Pacific J. Math. 89(1980), 143–145.
- [18] D. Mixon, dustingmixon.wordpress.com, March 2016.
- [19] C. C. Moore and J. A. Wolf, Square integrable representations of nilpotent groups. Trans. Amer. Math. Soc. 185(1973), 445–462. https://doi.org/10.2307/1996450
- [20] K. A. Okoudjou, Extension and restriction principles for the HRT conjecture. J. Fourier Anal. Appl. 25(2019), 1874–1901. https://doi.org/10.1007/s00041-018-09661-x

Department of Mathematics and Statistics, St. Louis University, St. Louis, MO 63103 e-mail: bradley.currey@slu.edu

Department of Mathematics and Computer Science, Bridgewater State University, Bridgewater, MA 02324 e-mail: voussa@bridgew.edu