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Translates of Functions on the Heisenberg
Group and the HRT Conjecture

B. Currey and V. Oussa

Abstract. We prove that the HRT (Heil, Ramanathan, and Topiwala) Conjecture is equivalent to the
conjecture that co-central translates of square-integrable functions on the Heisenberg group are
linearly independent.

1 Preliminaries

Given x , y ∈ R, deûne unitary operators Tx and My on L2(R) by
Txϕ(t) = ϕ(t − x), Myϕ(t) = e2πityϕ(t), ϕ ∈ L2(R).

Let Γ be a countable subset of R2 and let ϕ ∈ L2(R). he time-frequency system

G(ϕ, Γ) = {MyTxϕ ∶ (x , y) ∈ Γ}
is called a Gabor system. here is an extensive literature devoted to Gabor systems
that are orthonormal bases, frames, and Riesz bases of L2(R); for expositions of the
basic theory and examples, see [4, 10].
A fundamental open question is whether or not a Gabor system G(ϕ, Γ) is neces-

sarily linearly independent in the vector space L2(R). It is not knownwhether there is
a nonzero vector ϕ and a ûnite set F ⊂ R2 such that G(ϕ,F) is linearly dependent. By
comparison with time-scale systems, the existence of a scaling function in multireso-
lution analysis shows that there are functions φ ∈ L2(R), and ûnite sets of translations
and dilations, for which the resulting system is linearly dependent. hus, the appar-
ent independence of time-frequency systems is a bit surprising and motivates the so-
called HRT conjecture, which ûrst appeared in the literature about twenty years ago
in the paper by Chris Heil, Jay Ramanathan, and Pankaj Topiwala [13].

Conjecture 1.1 (he HRT conjecture) Let ϕ ∈ L2(R), ϕ ≠ 0, and let F be a ûnite
subset of R2. hen the set G(ϕ,F) is linearly independent in L2(R).

Partial results on the HRT conjecture are numerous and varied; a sampling is [1–3,
11,12,14,20]. Generally, partial results show thatG(ϕ,F) is linearly independent under
various conditions on ϕ, or onF. For example, in [15], Linnell proves that for nonzero
ϕ ∈ L2(R), G(ϕ,F) is linearly independent when F is a subset of a full-rank lattice
in the time-frequency plane. A detailed compilation of examples and partial results
for the HRT conjecture is found in [14]. he purpose of this paper is to establish the
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relationship between the HRT Conjecture and translation systems on the Heisenberg
group. Ourmain result provides an aõrmative answer to a question asked at the HRT
workshop at Saint Louis University in 2016 [18].

Observe that

(1.1) TxMy = e−2πix yMyTx

holds for all x , y ∈ R. his means that the family {MyTx ∶ (x , y) ∈ R2} of time-
frequency operators generates a three-dimensional subgroup H of the group of all
unitary operators on L2(R). Let T = {τ ∈ C ∶ ∣τ∣ = 1}. hen the Heisenberg group H
consists of all operators of the form τMyTx , where τ ∈ T, y, x ∈ R. Letting

(τ, y, x) = τMyTx , τ ∈ T, (x , y) ∈ R2;

the group product in H is given by

(τ1 , y1 , x1)(τ2 , y2 , x2) = (τ1τ2e−2πix1 y2 , y1 + y2 , x1 + x2).
Let H have the usual topology as the product T × R2. he center of the group H is
{(τ, 0, 0) ∶ τ ∈ T}. By a slight abuse of notation, we denote the center of H by T,
and we can write τ = (τ, 0, 0). he topological space H has a natural diòerentiable
structure with respect to which we deûne the vector spaces of smooth functions and
compactly supported smooth functions as C∞(H), and C∞c (H) = Cc(H) ∩ C∞(H),
respectively. Moreover, the Schwartz space S(H) is deûned by

S(H) = {F ∈ C∞(H)∶ (y, x) z→ F(τ, y, x) ∈ S(R2),∀τ ∈ T},

where S(R2) is the Schwartz space on R2. Let T have the measure dτ given by
∫T g(τ)dτ = ∫

1
0 g(e2πit)dt, and let H have the measure given by

∫
H
F = ∫

R
∫
R
∫
T
F(τ, y, x)dτdydx , F ∈ Cc(H).

hus, for each 1 ≤ p < ∞, we have the space Lp(H) containing C∞c (H) and S(H) as
dense subspaces. We can also write h = (τ, y, x) and dh = dτdydx.

he partial Fourier transform ∧1 of F ∈ S(H) at k ∈ Z is deûned by

∧1F(k, y, x) = ∫
T
F(τ, y, x)τkdτ.

By extension, we have the unitary isomorphism ∧1∶ L2(H) → L2(Z × R2). In
particular,

(1.2) ∥F∥2 = ∑
k∈Z
∫
R2

∣ ∧1 F(k, y, x)∣2dydx , F ∈ L2(H).

For F ∈ S(H), deûne F̂k ∈ S(H) by F̂k(τ, y, x) = ∧1F(k, y, x) ⋅ τ−k .

Lemma 1.2 he map Pk ∶ F ↦ F̂k extends to an orthogonal projection Pk ∶ L2(H) →
L2(H)k where L2(H)k is the closed subspace deûned by

L2(H)k = {F ∈ L2(H) ∶ Λ1F( j, y, x) = 0, j ≠ k}.

Moreover, the spaces L2(H)k are pairwise orthogonal and L2(H) = ⊕k∈ZL2(H)k .
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Proof By (1.2), for F ∈ S(H),

∥PkF∥2 = ∫
H
∣∧1 F(k, y, x)τ−k ∣2dh = ∫

R2 ∫T
∣∧1 F(k, y, x)∣

2dτdydx

= ∫
R2

∣∧1 F(k, y, x)∣
2dydx ≤ ∥F∥2 ,

(1.3)

so Pk extends to a linear contraction on L2(H). he fact that Pk is an orthogonal
projection follows from the following calculations. First, for k ∈ Z,

⟨PkF ,G⟩ = ∫
R
∫
R
∧1F(k, y, x)∧1G(k, y, x)dydx = ⟨F , PkG⟩,

and secondly, for all j, k ∈ Z,

⟨PkF , PjF⟩ = ∫
H
F̂k F̂ j = ∫

R2 ∫T τ j−k ∧1 F(k, y, x)∧1F( j, y, x)dτdydx

=
⎧⎪⎪⎨⎪⎪⎩

∥F̂k∥2 , if j = k,
0, if j ≠ k.

Referring to (1.2) and (1.3), we obtain

∥F∥2 = ∑
k∈Z

∥PkF∥2 ,

and the lemma follows. ∎

Wemake the natural identiûcations: H/T=R2 via (τ, y, x)T=T(τ, y, x)= (y, x),
C∞c (H/T) = C∞c (R2), and S(H/T) = S(R2). For each h = (τ, y, x) ∈ H, we say that
the point (y, x) ∈ R2 is the projection of h. For F ∈ S(H), observe that P0F ∈ S(R2):
P0F(τ, y, x) = ∧1F(0, y, x) = ∫T F(τ, y, x)dτ. Accordingly, we identify L2(H)0 with
L2(R2) via P0, and put

Q = 1 − P0∶ L2(H) Ð→ L2(R2)⊥ = ⊕k≠0L2(H)k .

We can also write S(H)k = Pk(S(H)).

2 Translation Systems in L2(H)
For h ∈ H, deûne le� and right translations (unitary) operators Lh and Rh on L2(H)
by

LhF = F(h−1⋅), RhF = F(⋅h)
for F ∈ S(H). Observe that for all h1 , h2 ∈ H,

(2.1) Lh1Rh2 = Rh2Lh1 .

With h0 = (τ0 , y0 , x0), we compute that h−1
0 = (τ−1

0 e−2πix0 y0 ,−y0 ,−x0), and we ûnd
that for each k ∈ Z,

(Pk(Lh0F))(τ, y, x) = ∧1F(k, y − y0 , x − x0)(ττ−1
0 e2πix0(y−y0))−k

= (Lh0PkF)(τ, y, x)

https://doi.org/10.4153/S0008439520000107 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000107


874 B. Currey and V. Oussa

and similarly

(Pk(Rh0F))(τ, y, x) = ∧1F(k, y + y0 , x + x0)τ−k
0 e2πikx y0

= (Rh0PkF)(τ, y, x).
In particular, when P0F(τ, y, x) = ∧1F(0, y, x) is identiûed with an element of
L2(R2), then le� translation by Lh0 is just translation by the projection (y0 , x0) of
h0 in L2(R2):

P0(Lh0F)(τ, y, x) = Lh0P0F(τ, y, x) = ∧1F(0, y − y0 , x − x0).
his shows that
(a) each of the subspaces L2(H)k of L2(H), and their orthogonal complements, are

le� and right translation invariant subspaces of L2(H), and
(b) in the subspace L2(H)0 = L2(R2), translation by h = (τ, y, x) is just translation

by its projection (y, x).
Let E be a ûnite subset of H. For F ≠ 0 in L2(H), consider the system of le�

translates
L(F ,E) = {LhF ∶ h ∈ E} ⊂ L2(H).

here are two ways to see that such a system is not always linearly independent in
L2(H). First, let τ be any p-th root of unity in T, and let F ∈ L2(H), F ≠ 0. hen

G =
p

∑
k=1

LτkF

satisûes LτG = G. hus, there are non-zero functions F ∈ L2(H) with dependent
T-translates. Second, suppose that h2 = τh1 for some τ ∈ T, and let F ∈ L2(R2).
hen Lh1F = Lh2F. In light of this observation, we will only consider subsets Ewhose
projections in R2 are distinct, that is, sets whose elements satisfy h ≠ h′ Ô⇒ Th ≠
Th′. In this case, we say that E is co-central.

Conjecture 2.1 (he Heisenberg Translate Conjecture (HT)) Let E be a ûnite
co-central subset of H and let F ∈ L2(H) be non-zero. hen L(F ,E) is linearly
independent.

For a subset K of L2(H), consider the partial Heisenberg Translate Conjecture:

HT(K): For each F ∈K, and for E a ûnite co-central subset ofH, the systemL(F ,E)
is linearly independent.

Observe that for any closed, le� translation-invariant subspace K of L2(H), the HT
Conjecture is true if and only if both HT(K) and HT(K⊥) are true. More generally,
if L2(H) is an orthogonal direct sum of closed le�-invariant subspaces Kk , then the
HT Conjecture is true if and only if HT(Kk) is true for all k.

It is easy to see that HT(L2(H)0) is true. Let E be a ûnite co-central subset of H,
and let F ∈ L2(H)0, F ≠ 0. Let T be the projection of E in R2, and identify L2(H)0
with L2(R2) as above. By (a) and (b), the system L(F ,E) is just the translation sys-
tem corresponding to F and T. But every translation system in L2(R2) is linearly
independent [7, heorem 1.2], or [12, heorem 9.18]. We conclude that
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Conclusion 2.2 heHeisenberg Translate Conjecture is true if and only ifHT(L2(H)⊥0)
is true.

3 Irreducible Unitary Representations of H

Just as the Fourier transform changes translations to modulations in L2(Rn), the
operator-valued Plancherel transform for a suõciently nice locally compact group
changes both le� and right translations into compositions by irreducible unitary rep-
resentations.

Recall that a unitary representation π ofH is a homomorphism ofH into the group
of unitary operators on some non-zeroHilbert spaceH, which is strongly continuous:
hn → h implies π(hn)v → π(h)v for each v ∈ H. A unitary representation π acting
inH is irreduciblemeans that every non-zero vector v is cyclic for π: {π(h)v ∶ h ∈ H}
is dense in H for each v ∈H. Equivalently, the only non-zero closed subspace that is
invariant under all π(h), h ∈ H is H.

he following lemma allows one to ûnd a list πk , k ∈ Z/{0}, of irreducible uni-
tary representations ofH, acting in the Hilbert space L2(R). he proof of the lemma
is a consequence of the well-known characterization of closed translation invariant
subspaces of L2(R), and is le� to the reader.

Lemma 3.1 Let I ⊂ L2(R) be a closed, non-zero subspace that is invariant under the
action of the group of unitary operators generated by Tx and My , where x , y ∈ R. hen
I = L2(R).

Observe that H is a subgroup of the group U(L2(R)) of unitary operators on
L2(R), and hn → h in H implies hnϕ → hϕ in L2(R). hus, the inclusion map
π1∶H ↪ U(L2(R)) is a unitary representation of H, and Lemma 3.1 shows that π1
is irreducible. Slightly more generally, let k ∈ Z/{0}, and for each (z, y, x) ∈ H, put

πk(τ, y, x) = τkMkyTx .

he relation (1.1) shows that πk is a homomorphism of H into the unitary group
U(L2(R)), and as with π1, πk is an irreducible unitary representation of H. It is also
easy to check that if k1 ≠ k2, then πk1 and πk2 are not equivalent.

It turns out that up to a natural notion of equivalence, the πk , k ∈ Z/{0}, are
the only irreducible unitary representations of H acting in L2(R). he proof of this
fact uses two fundamental results: the Stone-von Neumann heorem and Schur’s
Lemma. We omit the proofs here, as we do not need this result in what follows. A
self-contained source for this material is the text [5].

he relation between πk and time-frequency systems in L2(R) is simple.

Lemma 3.2 Let E be a ûnite co-central subset of H, and let k ∈ Z/{0}. Write E =
{h1 , . . . , hN} with h i = (τ i , y i , x i), and put Fk = {(ky1 , x1), . . . , (kyN , xN)} ⊂ R2.
hen for each ϕ ∈ L2(R), G(ϕ,Fk) is independent if and only if πk(E)ϕ is independent.

Proof By deûnition of πk , for each 1 ≤ i ≤ N , the element πk(h i)ϕ of the system
πk(E)ϕ is a non-zero complex multiple of the element Mky i Tx i ϕ of G(ϕ,Fk). ∎
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We next show that each element of L2(H)⊥0 ⊂ L2(H) has a type of operator-valued
Fourier series. Let F ∈ S(H); for each k ∈ Z/{0}, deûne a sesquilinear form sF ,k on
L2(R) × L2(R) by

sF ,k ∶ (ϕ,ψ) z→ ∫
H
F(h)⟨πk(h)ϕ,ψ⟩ dh.

Since F is integrable on H, the form sF ,k is bounded:

∣sF ,k(ϕ,ψ)∣ ≤ ∥F∥1∥ϕ∥2∥ψ∥2 .

and hence deûnes a bounded linear operator πk(F) on L2(R) by
sF ,k(ϕ,ψ) = ⟨πk(F)ϕ,ψ⟩.

In fact, πk(F) is an integral operator. A straightforward calculation shows

sF ,k(ϕ,ψ) = ∫
R
∫
R
∧1,2F(k, kt, t − x)ϕ(x)ψ(t)dxdt,

where∧1,2F = ∧2∧1F is the Fourier transform of F in the variables τ and y. Regarding
the Fourier transform ∧2 in y as a unitary map on L2(R2), we get

∫
R
∫
R
∣ ∧1,2 F(k, kt, t − x)∣2dxdt = 1

∣k∣ ∫R ∫R ∣ ∧1,2 F(k, t, x)∣2dxdt

= 1
∣k∣ ∫R ∫R ∣ ∧1 F(k, y, x)∣2dydt < ∞,

(3.1)

so the theory of integral operators says that πk(F) is aHilbert-Schmidt operator given
by

(πk(F)ϕ)(t) = ∫
R
KF

k (t, x)ϕ(x)dx ,

where KF
k (t, x) = ∧1,2F(k, kt, t−x) and the Hilbert–Schmidt norm of πk(F) is given

by (3.1). Note that if PkF = 0, that is, if F ∈ L2(H)⊥k , then πk(F) = 0. In particular,
πk(F) = 0 holds for all F ∈ L2(H)0. Finally, it is easy to check that

(3.2) πk(LhF) = πk(h)πk(F), πk(RhF) = πk(F)πk(h)−1 .

hese relations are what is meant by the statement at the beginning of this section;
the operators πk(F) are values of the Plancherel transform of F, and le� (resp. right)
translation of F by h ∈ H converts into the composition of πk(F) on the le� (resp. on
the right) by the unitary operator πk(h) (resp. πk(h)−1.) A bit more is said below
about the Plancherel transform.

he representations πk are related to the spaces L2(H)k as follows.

Lemma 3.3 Let F ∈ S(H). hen πk(F) = πk(PkF). Moreover,

∥πk(F)∥2
HS =

1
∣k∣ ∥PkF∥2 .

Proof Observe that ∧1PkF(k, y, x) = ∧1F(k, y, x), so

KPkF
K (t, x) = ∧2(∧1PkF)(k, kt, t − x) = ∧2(∧1F)(k, kt, t − x) = KF

K(t, x),
and hence πk(F) = πk(PkF). he second part is a consequence of (3.1). ∎
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Denote the Hilbert space of Hilbert–Schmidt operators on L2(R) byHS(L2(R)).
In light of Lemmas 1.2 and 3.3, the following proposition is almost immediate.

Proposition 3.4 he map F ↦ (∣k∣1/2πk(F))k∈Z/{0}, F ∈ L2(H)⊥0 ∩ S(H), extends
to a unitary isomorphism

L2(H)⊥0 Ð→ ⊕
k∈Z/{0}

HS(L2(R)).

Proof Given F ∈ L2(H)⊥0 , write F = ∑k≠0 PkF. By Lemma 3.3, ∥PkF∥2
2 =

∥∣k∣1/2πk(F)∥2
HS. ∎

hePlancherel transform for the groupH, also called the group Fourier transform,
derives from the decomposition L2(H) = ⊕kL2(H)k , and is described as follows.
Start with F ∈ S(H) and write F = F0 + QF, with F0 ∈ L2(H)0, and QF ∈ L2(H)⊥0 .
Identifying F0 with a function on R2, the Plancherel transform sends F0 to its
Euclidean Fourier transform, and sends QF to the operator ûeld (πk(F))k≠0. (he
Plancherel measure µ is then deûned on Z/{0} by µ({k}) = ∣k∣.)

One can also see that themap deûned in Proposition 3.4 gives a Fourier series-type
expansion of F ∈ L2(H)⊥0 . By the polarization identity, for F1 , F2 ∈ L2(H)⊥0 , we have

⟨F1 , F2⟩ = ∑
k≠0

∣k∣ trace(πk(F1)πk(F2)∗).

Deûne the involution on S(H) by F∗(h) = F(h−1), and the convolution on S(H) by

F1 ∗ F2(h) = ∫
H
F1(g)F2(g−1h)dg .

hen with e = (1, 0, 0), (F1 ∗ F∗2 )(e) = ⟨F1 , F2⟩, and hence,

(F1 ∗ F∗2 )(e) = ∑
k≠0

∣k∣ trace(πk(F1)πk(F2)∗).

By the factorization theorem of Dixmier–Malliavin [6], every function F ∈ C∞c (H) is
a ûnite sum of functions of the form F1 ∗ F2. It follows that for F ∈ C∞c (H), πk(F) is
actually trace-class, and we have

F(e) = ∑
k≠0

∣k∣ trace(πk(F)),

and hence for all h ∈ H,
F(h) = (RhF)(e) = ∑

k≠0
∣k∣ trace(πk(F)πk(h)−1).

hus, Proposition 3.4 can be regarded as giving a Fourier series-type expansion of F.

4 The Heisenberg Translate Conjecture and the HRT Conjecture

We have seen that the partial Heisenberg Translate Conjecture HT(L2(H)0) for the
subspace L2(H)0 is true. We now exhibit two more subsets K for which HT(K) is
true.

Recall that a unitary representation π ofH acting in aHilbert spaceH is irreducible
if every non-zero element in H is cyclic for π. When a unitary representation is not
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irreducible it can still admit a cyclic element. An element v ∈ H such that the linear
span of {π(h)v ∶ h ∈ H} is dense in H. In this case, the representation is said to be a
cyclic representation. Even though the right regular representation is not irreducible,
it is cyclic.

Proposition 4.1 he right regular representation ofH is a cyclic representation.

For a proof of Proposition 4.1, we refer the interested reader to a paper of Losert
and Rindler [17], which gives a construction of a cyclic element for the regular repre-
sentation of any ûrst countable locally compact group. A non-constructive proof of
Proposition 4.1 can also be found in [9].
Denote by C the subset of all cyclic elements for the right regular representation

ofH.

Proposition 4.2 he statement HT(C) is true.

Proof Let E = {h1 , . . . , hN} be co-central, and let A be an operator belonging to the
span of {Lh ∶ h ∈ E}. Let F ∈ C, F ≠ 0. We must show that if AF = 0, then A = 0. But
if AF = 0, then (2.1) shows that AG = 0 for all G ∈ R = spanC{RhF ∶ h ∈ H}. Since R
is dense, the result follows. ∎

Next we show an example of how Proposition 3.4 can be used together with known
partial results for the HRT Conjecture. Fix x0 ∈ R and put H(x ≤ x0) = {(τ, y, x) ∶
x ≤ x0}. Let L2(H(x ≤ x0)) be the subspace of all F ∈ L2(H) with essential support
contained in H(x ≤ x0).

Proposition 4.3 he statement HT(L2(H(x ≤ x0))) is true.

Proof Let F ∈ L2(H(−∞, x0)), F ≠ 0, and let E ⊂ H be ûnite and co-central. With-
out loss of generality, we can assume that F ∈ L2(H)⊥0 . Since F ≠ 0, there exists
k ∈ Z/{0} such that πk(F) ≠ 0. Since Cc(R) is dense in L2(R), there exists also
ϕ ∈ Cc(R) such that πk(F)ϕ ≠ 0. Choose a ∈ R such that supp(ϕ) ⊂ [−a, a]. We
claim that πk(F)ϕ is necessarily supported on a half-line in L2(R). First, observe that
F ∈ L2(H(x ≤ x0)) implies supp(∧1,2F(k, ⋅, ⋅)) ⊂ R × (−∞, x0]. For each t ∈ R, put

Mk ,t(x) = KF
k (t, x)ϕ(x) = ∧1,2F(k, kt, t − x)ϕ(x).

It follows that
supp(Mk ,t) ⊂ [−a, a] ∩ [t − x0 ,+∞).

Hence, πk(F)ϕ(t) ≠ 0 implies Mk ,t ≠ 0, implies [−a, a] ∩ [t − x0 ,+∞) ≠ ∅, implies
t < a + x0, proving the claim.

Next, let Fk be the ûnite subset of R2 associated with E as in Lemma 3.2. By
[13, Proposition 3], G(πk(F)ϕ,Fk) is linearly independent, so by Lemma 3.2,
πk(E)πk(F)ϕ is linearly independent. But by (3.2),

πk(E)πk(F)ϕ = πk(L(F ,E))ϕ,

and hence L(F ,E) must be independent. ∎
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he following is immediate.

Corollary 4.4 he HT Conjecture holds for all non-zero elements of L2(H) with
bounded essential support.

Proposition 4.5 Let A∶ L2(H) → L2(H) be linear injective operator with a bounded
inverse, and let K be a subset of L2(H). Assume that ALh = LhA holds for all h ∈ H. If
HT(K) is true, then HT(A(K)) is true.

Proof Suppose that HT(K) is true. Let F ∈ A(K) and let E ⊂ H be ûnite and
co-central. hen A−1∶A(L2(H)) → L2(H) is linear and A−1F ∈ K so L(A−1F ,E) is
linearly independent; hence, L(F ,E) = A(L(A−1F ,E)) is linearly independent. ∎

Finally, we turn to the equivalence of theHRTConjecture with theHTConjecture.

heorem 4.6 he HRT Conjecture is true if and only if the Heisenberg Translate
Conjecture is true.

We begin with a proof of a standard result; see also [5, 8, 19].

Lemma 4.7 Fix k ∈ Z/{0} and let f , g ∈ L2(R). hen the function Fg , f ∶ h ↦
⟨g , πk(h) f ⟩ is continuous and square-integrable on H.

Proof he fact that Fg , f is continuous is a consequence of the strong continuity of
the representation πk . To see that Fg , f is square-integrable on H, repeat the compu-
tation of (1.3): letting dh be the le�-invariant measure on H,

∫
H
∣Fg , f (h)∣2dh = ∫

R2
∣⟨g , πk(1, y, x) f ⟩∣2dydx = ∫

R2
∣⟨g ,MkyTx f ⟩∣2dydx .

Now

∫
R
∫
R
∣⟨g ,MkyTx f ⟩∣

2 dxdy = ∫
R
∫
R
∣([M−ky g] ∗ f ∗)(x)∣

2 dxdy.

In the last equality above, ∗ stands for the usual convolution and f ∗(x) = f (−x). A
standard computation shows that the function x ↦ ([M−ky g] ∗ f ∗)(x) is the inverse
Fourier transform of

(4.1) M̂−ky g f̂ ∗∶ ξ ↦ ĝ(ξ + ky) f̂ (ξ).

Hence, for each y ∈ R, x ↦ ([M−ky g]∗ f ∗)(x) belongs to L2(R) if the function (4.1)
belongs to L2(R), in which case

∫
R
∣[M−ky g] ∗ f ∗(x)∣2dx = ∫

R
∣ĝ(ξ + ky) f̂ (ξ)∣2dξ.

But

∫
R
∫
R
∣ĝ(ξ + ky) f̂ (ξ)∣2dξdy = ∫

R
(∫

R
∣ĝ(ξ + ky)∣2dy)∣ f̂ (ξ)∣2dξ

= 1
∣k∣ ∥g∥

2∥ f ∥2 .
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We conclude that for a.e. y, the function (4.1) does belong to L2(R), and hence

∫
H
∣Fg , f (h)∣2dh = ∫

R
∫
R
∣g(ξ + ky) f̂ (ξ)∣2dξdy = 1

∣k∣ ∥ f ∥
2∥g∥2 < ∞. ∎

It is worth noting that Conjecture 2.1 implies Conjecture 1.1 was also proved in
[16, Proposition 1.1].

Proof of Theorem 4.6 Suppose that the Heisenberg Translate Conjecture (Conjec-
ture 2.1) is true. To prove the HRT Conjecture (Conjecture 1.1), let ϕ ∈ L2(R), ϕ ≠ 0,
and let F ⊂ R2 be ûnite.
Consider F(h)= Fϕ ,ϕ(h)= ⟨ϕ, π1(h)ϕ⟩ and putE={(1, y, x) ∶ (y, x) ∈ F}. Clearly,

E is co-central, and by Lemma 4.7, F deûnes a non-zero element of L2(H). Observe
also that for h = (τ, y, x), the deûnition of π1 implies that F(τ, y, x) = τ−1F(1, y, x);
thus, F ∈ L2(H)1. By our assumption that Conjecture 2.1 is true, L(F ,E) is linearly
independent.

Now for each h ∈ E,
LhF(h) = ⟨ϕ, π(h)−1π(h)ϕ⟩ = ⟨π(h)ϕ, π(h)ϕ⟩,

so
L(F ,E) = {Fπ1(h)ϕ ,ϕ ∶ h ∈ E}.

Hence, π1(E)ϕ is linearly independent. By Lemma 3.2, G(ϕ,F) is independent.
Conversely, suppose that the HRT Conjecture (Conjecture 1.1) is true. Let

F ∈ L2(H), F ≠ 0, and let E ⊂ H ûnite and co-central. By Conclusion 2.2, we can
assume that F ∈ L2(R2)⊥, meaning that F = ∑k≠0 Fk as above. Choose k such that
Fk ≠ 0; by Lemma 3.3, the operator πk(F) = πk(Fk) is non-zero, so there is ϕ ∈ L2(R)
such that πk(F)ϕ is a non-zero element of L2(R). Deûne the ûnite subset Fk of R2,
as in Lemma 3.2. By assumption, G(πk(F)ϕ,Fk) is linearly independent, and hence
by Lemma 3.2, πk(E)πk(F)ϕ is linearly independent. But then

πk(E)πk(F)ϕ = {πk(LhF)ϕ ∶ h ∈ E} = πk(L(F ,E))ϕ

is linearly independent, so L(F ,E) is linearly independent. ∎
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