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Linear stability of slip pipe flow
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We investigated the linear stability of pipe flow with anisotropic slip length at the wall by
considering streamwise and azimuthal slip separately as the limiting cases. Our numerical
analysis shows that streamwise slip renders the flow less stable but does not cause
instability. The exponential decay rate of the least stable mode appears to be ∝ Re−1 when
the Reynolds number is sufficiently large. Azimuthal slip can cause linear instability if
the slip length is sufficiently large. The critical Reynolds number can be reduced to a
few hundred given large slip lengths. In addition to numerical calculations, we present a
proof of the linear stability of the flow to three-dimensional yet streamwise-independent
disturbances for arbitrary Reynolds number and slip length, as an alternative to the
usual energy analysis. Meanwhile we derived analytical solutions to the eigenvalue and
eigenvector, and explained the structure of the spectrum and the dependence of the leading
eigenvalue on the slip length. The scaling of the exponential decay rate of streamwise
independent modes is shown to be rigorously ∝ Re−1. Our non-modal analysis shows
that overall streamwise slip reduces the non-modal growth, and azimuthal slip has the
opposite effect. Nevertheless, both slip cases still give the Re2-scaling of the maximum
non-modal growth and the most amplified disturbances are still streamwise rolls, which
are qualitatively the same as in the no-slip case.
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1. Introduction

The classic pipe flow with no-slip boundary condition has been proved linearly stable to
axisymmetric perturbations (Herron 1991, 2017), and numerical studies suggest that the
flow is linearly stable to any perturbations at arbitrary Reynolds numbers (Meseguer &
Trefethen 2003). The recent work of Chen, Wei & Zhang (2019) presented a rigorous
proof of the linear stability of the flow to general perturbations at high-Reynolds-number
regime. Therefore, transition to turbulence in pipe flow is subcritical via finite-amplitude
perturbations (see e.g. Eckhardt et al. 2007; Avila et al. 2011).
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However, velocity slip of viscous fluid can occur on superhydrophobic surfaces
(Voronov, Papavassiliou & Lee 2008; Rothstein 2010), for which slip boundary condition
instead of the classic no-slip condition should be adopted for the momentum equations,
and the slip boundary condition can potentially influence the stability of the flow. A
simplified and widely used slip boundary condition is the Navier slip boundary condition,
which has been shown to apply to many flow problems and is frequently adopted for
linear stability studies (Vinogradova 1999; Lauga & Cossu 2005; Min & Kim 2005; Gan
& Wu 2006; Ren, Chen & Zhu 2008; Ghosh, Usha & Sahu 2014; Seo & Mani 2016;
Chattopadhyay, Usha & Sahu 2017, to list a few). For pipe geometry, although many
studies have investigated the linear stability of immiscible and miscible multifluid flows
with either no-slip or Navier slip boundary condition (Hu & Joseph 1989; Joseph 1997;
Li & Renardy 1999; Selvam et al. 2007; Sahu 2016; Chattopadhyay et al. 2017, etc.), far
fewer studies were dedicated to the linear stability of single-phase pipe flow with slip
boundary condition. Průša (2009) investigated this problem and showed that, subject to
Navier slip boundary condition, pipe flow becomes less stable compared with the no-slip
case, however, the destabilization effect is constrained to small Reynolds numbers and is
not sufficient to render the flow linearly unstable. Their results indicated that the stability
property of pipe flow is not qualitatively affected by the slip boundary condition, regardless
of the slip length. For its counterpart in plane geometry, i.e. channel flow, on the contrary,
Min & Kim (2005) and Lauga & Cossu (2005) reported a stabilizing effect of velocity slip
on the linear stability.

Usually, slip length is assumed homogeneous and isotropic, i.e. independent of position
and direction at the wall in stability analysis. However, anisotropy in the effective
slip length can be incurred by anisotropy in the texture pattern on superhydrophobic
surfaces, such as parallel periodic slats, grooves and grates (Lecoq et al. 2004; Bazant
& Vinogradova 2008; Ng & Wang 2009; Belyaev & Vinogradova 2010; Asmolov &
Vinogradova 2012; Pralits, Alinovi & Bottaro 2017). For example, Ng & Wang (2009)
reported a ratio of down to approximately 0.25 between the transverse slip length (in the
direction perpendicular to the slats) and longitudinal slip length (parallel to the slats).
The linear stability of channel flow with anisotropic slip caused by parallel micrograves
was analysed by Pralits et al. (2017) using the tensorial formulation of slip boundary
condition proposed by Bazant & Vinogradova (2008). Their results showed possibilities
of linear instability using special alignment of the micrograves. Recently, Chai & Song
(2019) studied the linear stability of single-phase channel flow subject to anisotropy in
slip length by considering streamwise and azimuthal slip separately as the limiting cases,
which can potentially be realized or approximated by using specially designed surface
texture, e.g. specially aligned microgrates/graves, according to Bazant & Vinogradova
(2008). Their results showed that streamwise slip mainly stabilizes the flow (with increased
critical Reynolds number), although it surprisingly destabilizes the flow slightly in a small
Reynolds number range, and that azimuthal slip can greatly destabilize the flow and reduce
the critical Reynolds number given sufficiently large slip length. The critical Reynolds
number can be reduced to a few hundred with a dimensionless azimuthal slip length
of O(0.1), in contrast to Recr = 5772 for the no-slip case. Their study also indicated
that Squire’s theorem (Squire 1933) ceases to apply when the wall-normal velocity and
vorticity are coupled via the slip boundary condition, such that the leading instability
becomes three-dimensional (3-D) rather than two-dimensional (2-D) when slip length is
sufficiently large, in agreement with Pralits et al. (2017). The stability of 3-D perturbations
was not considered by Min & Kim (2005) and Lauga & Cossu (2005) in which Squire’s
theorem was seemingly assumed.
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Differing from channel flow, linear instability is absent at arbitrary Reynolds numbers
in classic pipe flow. This raises the question of whether the anisotropy in slip length can
also cause linear instability in pipe flow. To our knowledge, this problem has not been
studied in pipe geometry. The pseudospectrum analysis of classic pipe flow of Schmid
& Henningson (1994) and Meseguer & Trefethen (2003) suggests that, despite the linear
stability, at sufficiently large Reynolds numbers, a small perturbation to the linear operator
associated with the governing equation can possibly change the stability of the system.
The slip boundary condition can be thought of as a perturbation to the linear operator
with no-slip boundary condition. However, Průša (2009) showed that homogeneous and
isotropic slip does not change the spectrum qualitatively no matter how large the slip
length (i.e. operator perturbation) is. Following Chai & Song (2019), in this work, we
still consider anisotropic slip length in the limiting cases and explore the possibility of
linear instability for pipe flow. Aside from the critical Reynolds number as focused on by
Chai & Song (2019), here we also investigate the effects of the slip on the spectrum and
on the scaling of the leading eigenvalues with Reynolds number. In addition to numerical
calculations, we also perform analytical studies on the eigenvalues and eigenvectors of
the 3-D yet streamwise-independent modes, and discuss their structure as well as their
dependence on the slip length on a theoretical basis, which to our knowledge has not been
reported in the literature.

2. Numerical methods

The non-dimensional incompressible Navier–Stokes equations read

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u, ∇ · u = 0, (2.1)

where u denotes velocity and p denotes pressure. For pipe geometry, cylindrical
coordinates (r, θ, x) are considered, where r, θ and x denote the radial, azimuthal and
streamwise coordinates, respectively. Velocity components ur, uθ and ux are normalized
by 2Ub where Ub is the bulk speed (the average of the streamwise velocity on the pipe
cross-section), length by pipe radius R and time by R/Ub. The Reynolds number is defined
as Re = UbR/ν where ν is the kinematic viscosity of the fluid. In order to eliminate
the pressure and impose the incompressibility condition, we adopt the velocity–vorticity
formulation of Schmid & Henningson (1994), with which the governing equations of
disturbances reduce to only two equations about the wall-normal velocity ur and
wall-normal vorticity ω. With a Fourier-spectral-Chebyshev-collocation discretization,
considering perturbations of the form of {ur, ω} = {ûr(r), ω̂(r)} exp(−i(αx + nθ)), the
governing equations in the Fourier spectral space read

Lq + ∂

∂τ
Mq = 0, (2.2)

where

L =

⎛
⎜⎜⎜⎝

iαReUΓ + i
αRe

r

(
U′

k2r

)′
+ Γ (k2r2Γ ) 2αn2ReΓ

− iU′

r
+ 2α

Re
Γ iαRek2r2U + φ

⎞
⎟⎟⎟⎠ , (2.3)

M =
(

Γ 0

0 k2r2

)
, (2.4)
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where τ = t/Re is the scaled time and unknowns are

q =
(

Φ̂

Ω̂

)
=
⎛
⎝ −irûr

αrûθ − nûx

nRek2r2

⎞
⎠ =

⎛
⎝ −irûr

ω̂

inRek2r

⎞
⎠ . (2.5)

The real number α is the axial wavenumber and n, which is an integer, is the azimuthal
wavenumber. The base flow is denoted as U, k2 = α2 + n2/r2, i = √−1 and the prime
denotes the derivative with respect to r. The operators Γ and φ are defined as

Γ = 1
r2 − 1

r
d
dr

(
1

k2r
d
dr

)
(2.6)

and

φ = k4r2 − 1
r

d
dr

(
k2r3 d

dr

)
. (2.7)

The other two velocity components ûx and ûθ can be calculated as

ûx = − α

k2r
∂Φ̂

∂r
− n2rΩ̂, ûθ = − n

k2r2
∂Φ̂

∂r
+ αnrReΩ̂. (2.8a,b)

We use the Robin-type Navier slip boundary condition at the pipe wall for streamwise
and azimuthal velocities separately, i.e.(

lx
∂ux

∂r
+ ux

)∣∣∣∣
r=1

= 0,

(
lθ

∂uθ

∂r
+ uθ

)∣∣∣∣
r=1

= 0, (2.9a,b)

where lx � 0 and lθ � 0 are streamwise and azimuthal slip lengths, respectively, and are
independent of each other. In spectral space, these boundary conditions apply identically
to ûx and ûθ given the homogeneity of the slip length. We use the no-penetration condition
for the wall-normal velocity component at the wall, i.e. ur(1, θ, x, t) = 0. Lauga & Cossu
(2005) and Chai & Song (2019) considered the same boundary conditions for slip channel
flow. Note that in the isotropic slip case considered by Průša (2009), lx and lθ are related
as lθ = lx/(1 + lx), which gives lθ ≈ lx for small slip lengths. With boundary condition
(2.9a,b), given that we impose the same volume flux as in the no-slip case, i.e.∫ 1

0
Ux(r)r dr = 1

4
, (2.10)

the velocity profile of the constant-volume-flux base flow reads

U(r) = 1 − r2 + 2lx
1 + 4lx

x̂, (2.11)

where x̂ represents the unit vector in the streamwise direction. Note that the base flow is
independent of lθ . Converting to the (Ω̂, Φ̂) system, the boundary condition (2.9a,b) reads

α

k2
∂Φ̂

∂r
+ n2ReΩ̂ + lx

(
n2Re

∂Ω̂

∂r
+ α

k2
∂2Φ̂

∂r2 + α
n2 − α2

(n2 + α2)2
∂Φ̂

∂r

)
= 0 (2.12)

and

αnReΩ̂ − n
n2+α2

∂Φ̂

∂r
+lθ

(
αnReΩ̂+αnRe

∂Ω̂

∂r
− n

n2+ α2
∂2Φ̂

∂r2 + 2nα2

(n2 + α2)2
∂Φ̂

∂r

)
= 0.

(2.13)
It can be seen that Ω̂ and Φ̂, i.e. ûr and ω̂, are coupled via the slip boundary condition.
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Figure 1. Spectrum of the flow at Re = 3000 with lx = 0.005 (circles), 0.05 (triangles) and 0.5 (squares).
(a) The mode (α, n) = (0, 1). (b) The mode (α, n) = (0.5, 1).

In order to avoid the singularity at the pipe centre, i.e. r = 0, the domain [0, 1] is
extended to [−1, 1] and an even number of Chebyshev grid points over [−1, 1] are
used such that there is no grid point at r = 0. This extension also allows us to use the
Chebyshev collocation method for the discretization in the radial direction and the resulted
redundancy is circumvented by setting proper parity conditions on Φ̂ and Ω̂ with respect
to r (Trefethen 2000; Meseguer & Trefethen 2003). In this way, no explicit boundary
condition is imposed at the pipe centre.

To determine whether a mode (α, n) is linearly stable or not, one only needs to calculate
the eigenvalues of the operator −M−1L and check if any eigenvalue has a positive real part,
λr, which determines the asymptotic growth/decay rate of the corresponding eigenvector
as t → ∞.

3. Streamwise slip

We consider the case of lx /= 0 and lθ = 0 as the limiting case of streamwise slip being
significant and azimuthal slip being negligible.

The effect of the slip on the spectrum is investigated for Re = 3000 and is shown
in figure 1 for the modes (α, n) = (0, 1) and (0.5, 1). First, figure 1(a) shows that the
eigenvalues of the (α, n) = (0, 1) mode visually all fall on the λi = 0 line (λi denotes
the imaginary part of the eigenvalue) and in the left half-plane, which suggests that the
eigenvalues are all real and negative. Meseguer & Trefethen (2003) reported the same
finding for the no-slip case in a large Reynolds number range up to 107. In fact, the
eigenvalues being real and negative can be rigorously proved, see our proof in § 5.1.
Second, as lx increases, it can be observed that there are two groups of eigenvalue, one
of which remains constant and the other of which shifts to the right, see the two insets in
figure 1(a). Specifically, as lx is increased to 0.5, the left eigenvalue in the left inset has
moved from the circle to the triangle and finally to the square while the right eigenvalue
remains constant. Nonetheless, the rightmost eigenvalue increases as lx increases (see
the right inset) which indicates that the flow becomes less stable. In § 5.2, we will show
that the former group corresponds to disturbances with Φ 	≡ 0, i.e. ur 	≡ 0 and the latter
group, on the contrary, is associated with disturbances with Φ ≡ 0, i.e. ur ≡ 0 and, the
rightmost eigenvalue belongs to the latter group. Figure 1(b) shows the case for the mode
(α, n) = (0.5, 1). The slip does not qualitatively change the shape of the spectrum. As
lx increases, the eigenvalues overall move to the right. In addition to a horizontal shift
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Figure 2. The maximum eigenvalue, max λr, as a function of α, for Re = 3000 (a,b) and 104 (c,d). For each
Reynolds number, azimuthal wavenumbers n = 0, 1, 2, 3, 4 and slip lengths lx = 0.1 and 1.0 are shown.

there is a shift in the vertical direction and, meanwhile, the spectrum is compressed in
the vertical direction, see the comparison between the lx = 0.5 and the other two cases.
Using the term of Schmid & Henningson (1994) and Meseguer & Trefethen (2003), the
horizontal branch of the spectrum (the part with λr � −600) corresponds to mean modes,
the upper branch corresponds to wall modes and the lower branch to centre modes. Note
that the speed of a wave is given by (−λi)/αRe in our formulation. It has been known
that the wave speed of the mean modes follows the mean velocity of the ‘2-D’ axial base
flow, i.e.

∫ 1
0 Ux(r) dr in pipe flow (see e.g. Drazin & Reid 1981), which gives 2/3 in the

no-slip case (Schmid & Henningson 1994). In our case, the wave speed of the mean modes
is decreased by the slip, reducing to 0.5559 for lx = 0.5 (833.868/(0.5 × 3000), see the
eigenvalue in table 1) which is very close to 5/9 given by

∫ 1
0 Ux(r) dr with the base flow

shown in (2.11). The wall modes, which are located close to the wall, move at lower speed
than the centre modes, which are located close to the pipe centre and move at speeds
close to the centreline velocity. Since we fix the volume flux of the flow while the slip
length is varied, the speed of the base flow close to the wall increases as lx increases,
whereas the speed near the pipe centre decreases, i.e. the velocity profile becomes flatter,
see the base flow given by (2.11). Therefore, it can be expected that as lx increases, the
speed of the wall modes increases and that of the centre modes decreases, and all three
types of modes move at closer speeds. This is exactly what the compression in the vertical
direction of the spectrum reveals. The other noticeable effect is that the slip brings the
adjacent eigenvalues associated with the mean modes closer as the slip length increases,
causing a seeming degeneracy of the spectrum, see figure 1(b).

Figure 2 shows the maximum of the real part of the eigenvalue, max λr, as a function of
the streamwise wavenumber, α, for Re = 3000 and 104. For each Re, slip lengths lx = 0.1
and 1.0, and azimuthal wavenumbers n = 0, 1, 2, 3 and 4, are considered. The trend shown
in the figure suggests that, for both Reynolds numbers, α = 0 is nearly the least stable
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Figure 3. The influence of streamwise slip on max λr of n = 1 modes for (a) Re = 3000 and (b) Re = 104.
Slip lengths of lx = 0.005 (thin black), 0.05 (blue) and 0.5 (bold red) are shown. The insets show the close-up
of the regions with very small α.

mode, i.e. the slowest decaying mode given that all max λr are negative, regardless of the
slip length. At small α, where max λr is largest, the results suggest that n = 1 is always
the least stable one. At larger α, however, n = 1 is still the least stable when lx is small,
see the case of lx = 0.1 in figure 2(a,c), but is not in a range of α around α = 1, see the
case of lx = 1.0 in figure 2(b,d). Nevertheless, in this range, max λr is much smaller than
that in the small α regime. Therefore, as we are most interested in the least stable mode,
in the following, we will focus on the n = 1 modes. In fact, for the α = 0 modes, we can
rigorously prove that n = 1 is the least stable azimuthal wavenumber, see appendix B.

Figure 3 shows max λr as a function of α of the n = 1 modes for (a) Re = 3000 and
(b) Re = 104. For each Re, overall max λr increases as lx increases, i.e. the n = 1 modes
decay more slowly as lx increases. The insets show the close-up of the small α region, in
which the dependence of max λr on α is not monotonic, with the maximum appearing at
some small but finite α instead of α = 0. Nevertheless, the difference between the peak
value and the value for α = 0 is very small, i.e. α = 0 is nearly the least stable mode, as
aforementioned. In fact, the dependence on lx is not fully monotonic either, see the very
small region around α = 0.03 for the lx = 0.005 (the thin black line) and lx = 0.05 (the
blue line) cases as shown in the inset in figure 3(a) and around α = 0.01 in the inset in
figure 3(b). However, for α = 0 and in most range of α, our results show a monotonic
increase of max λr as lx increases.

Figure 4 illustrates the dependence of max λr of the n = 1 modes on lx in a broader range
of lx. For each Re, α = 0, 0.1, 0.5, 1 and 2 are shown. The trend shows that as lx keeps
increasing, max λr seems to asymptotically approach a plateau with a negative value, i.e.
all the modes shown in the figure appear to be linearly stable, for both Reynolds numbers.

The above results suggest that, with streamwise slip, the flow is linearly stable to
any perturbations, regardless of the slip length. In order to show evidence in a broader
parameter regime, we numerically searched for the global maximum of max λr over α and
n and explored a wider range of lx up to 10 and of Re up to 106. Practically, based on
our analysis, we only need to search in a small range of α immediately above zero (see
the insets in figure 3) while setting n = 1. Specifically, we search the range of [0, 1.2]
at Re = 100, and the range is decreased as Re−1 for higher Reynolds numbers. Then we
plotted the global maximum of max λr, still denoted as max λr, as a function of lx, for a
few Reynolds numbers ranging from 102 to 106 in figure 5(a).
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Figure 4. The max λr of n = 1 modes with α = 0, 0.1, 0.5, 1.0 and 2.0 as a function of lx for (a) Re = 3000
and (b) Re = 104.
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Figure 5. (a) The global maximum of max λr, i.e. the maximum of max λr over α and n, for Re = 100, 1000,
1 × 104, 1 × 105 and 1 × 106 (symbols). The bold black line shows the maximum max λr of the α = 0 modes,
which is associated with the (α, n) = (0, 1) mode and is independent of Re. The dashed line marks the value
for the (α, n) = (0, 1) mode in the no-slip case (Meseguer & Trefethen 2003). The inset shows the close-up at
lx = 0.005. (b) The product of Re and αmaxλr (the α at which max λr takes the maximum) plotted against Re.

It is interesting to note that our data for high Reynolds numbers all collapse over the
whole lx range investigated, see the cases with Re above 1 × 104 in figure 5, suggesting that
the maximum eigenvalue of the system is independent of Re. At lower Reynolds numbers,
e.g. Re = 100 and 103 in the figure, there is almost a collapse for small lx (� 0.1) but
a small deviation from the high Reynolds number cases can be seen, see the inset that
shows the close-up at lx = 0.005. As lx increases further, the maximum eigenvalue for
Re = 100 and 103 approaches that of α = 0 modes, which is strictly Re-independent (see
the proof in § 5.1). In addition, the figure also shows that the global maximum of max λr
is slightly larger than the maximum of the α = 0 modes over the whole lx range and the
difference is most significant at small lx. We did not explore further larger lx considering
that the range we investigated is already much larger than the slip length that can be
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Figure 6. Spectrum of the flow at Re = 3000 with lθ = 0.005 (circles), 0.05 (triangles) and 0.5 (squares).
(a) The mode (α, n) = (0, 1). (b) The mode (α, n) = (0.5, 1).

encountered in applications (� 0.1 in set-ups with characteristic length of one millimetre
or larger, because so far the maximum slip length achieved in experiments is O(100) µm,
see Lee, Choi & Jim (2008), Voronov et al. (2008) and Lee & Jim (2009)). Nevertheless,
the S-shaped trend as lx increases suggests that the flow remains stable no matter how large
the slip length is. In fact, as lx → ∞, the full-slip boundary condition is recovered, and the
velocity profile of the base flow will be completely flat and no mean shear exists, in which
case linear stability can be expected for any perturbations. Figure 5(b) shows the product
of Re and the α at which max λr maximizes globally, denoted as αmaxλr . Interestingly, it
seems that this product is a constant when lx is small (� 0.1) for all the Re investigated,
and approaches a constant as Re is sufficiently high (� 104) if lx � 0.1. This indicates that
αmaxλr scales as Re−1 for either not very large lx or in high-Reynolds-number regime. It
should be noted that we observed a non-monotonic dependence of αmaxλr · Re on the slip
length, which minimizes at around lx = 0.1.

That the global max λr is Re-independent, as our results suggest, indicates that the
slowest exponential decay rate (referred to as decay rate for simplicity hereafter) of
perturbations scales as Re−1 given that the scaled time τ = t/Re is used in our formulation,
see (2.2). The same scaling was observed by the calculation of Meseguer & Trefethen
(2003) for the (α, n) = (0, 1) mode of the classic pipe flow. Therefore, our results suggest
that, as Re → ∞, the decay rate of perturbations asymptotically approaches zero and
remains negative, i.e. the flow is linearly stable at arbitrary Reynolds number. The
Re−1-scaling of the slowest decay rate can be rigorously proved for the α = 0 modes,
see § 5.1.

In a word, in the pure streamwise slip case, we did not observe any linear instability in
the large ranges of lx and Re that we considered, and based on the data shown in figure 5,
we propose that streamwise slip destabilizes the flow but does not cause linear instability,
regardless of the slip length and Reynolds number. A similar destabilizing effect was
reported by Průša (2009) for the isotropic slip case.

4. Azimuthal slip

We consider the case of lθ /= 0 and lx = 0 as the limiting case of azimuthal slip being
significant and streamwise slip being negligible.

The effect of azimuthal slip on the spectrum is investigated for Re = 3000 and is shown
in figure 6 for the modes (α, n) = (0, 1) and (0.5, 1). Similar to the streamwise slip case,
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Figure 7. The max λr maximized over α, still denoted as max λr, as a function of lθ . Modes with n = 0, 1, 2,
3 and 4 are shown for Re = 3000.

the eigenvalues of the α = 0 mode also fall on the λi = 0 line and in the left half-plane,
see figure 6(a). This suggests that the eigenvalues of streamwise-independent modes are all
real and negative. We provide a rigorous proof of this observation in § 5.1. As lθ increases,
similar to the streamwise slip case, we also observed two groups of eigenvalues. One group
remains constant as the azimuthal slip length changes and the other shifts to the right, see
the inset in figure 6(a). As we theoretically show in §§ 5.2 and 5.3, the former group is
associated with the disturbances with Φ ≡ 0 and is independent of lθ , and the latter group
is associated with the disturbances with Φ 	≡ 0. The rightmost eigenvalue belongs to the
former group for lθ < 1 and can only be overtaken by the latter group if lθ > 1 (the two
groups precisely overlap when lθ = 1), i.e. the rightmost eigenvalue can only increase
with lθ if lθ > 1. For the α = 0.5 and n = 1 mode, the mean mode branch overall does not
show either a vertical or horizontal shift, but adjacent eigenvalues are brought closer by the
increasing slip length, and for lθ = 0.5 there is almost an eigenvalue degeneracy (see the
inset in figure 6b). The centre mode branch is nearly unchanged as lθ increases. However,
the wall mode branch is significantly affected. As lθ increases, the wall mode overtakes
the centre mode and becomes the least stable perturbation, and as lθ is sufficiently large,
the rightmost eigenvalue appears in the right half-plane, indicating the onset of a linear
instability. In contrast to the streamwise slip case, the wave speed of the mean modes
does not change because the speed follows

∫ 1
0 Ux(r) dr, as aforementioned, and the base

flow U(r) is not affected by the azimuthal slip. The speed of the centre modes is also not
affected, whereas the wave speed of the wall modes is considerably decreased by the slip.
This is reasonable because the slip boundary condition should mostly affect the flow close
to the wall and should not affect significantly the flow far from the wall.

Figure 7 shows max λr maximized over α (over [0, 2] in practice), still denoted as
max λr, as a function of lθ for n = 0, 1, 2, 3 and 4 at Re = 3000. Overall, max λr increases
monotonically as lθ increases, while the n = 0 case seems to remain constant until it starts
to increase at around lθ = 0.4. In the small lθ regime, all modes are linearly stable. As lθ
is increased to around 0.1, max λr of the n = 1 mode becomes positive, indicating a linear
instability. As lθ increases further, n = 2 and 3 also become unstable. In the whole range
of lθ investigated, n = 1 is the least stable/most unstable one, which is also the case for
other Reynolds numbers we investigated. Therefore, in the following, we mainly discuss
the n = 1 modes.
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Figure 8. (a) The max λr of modes α = 0.1, 0.5, 1.0 and 2.0 for Re = 3000 and n = 1 as a function of lθ .
(b) The details in the small lθ regime.
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Figure 9. The max λr of the n = 1 modes as a function of α for Re = 3000. The data for lθ = 0, 0.005, 0.05,
0.1 and 0.5 are plotted. Note that the curves for lθ = 0 (the black bold dotted line) and lθ = 0.005 (the green
thin solid line) coincide.

Figure 8 shows max λr of modes α = 0.1, 0.5, 1.0 and 2.0 for Re = 3000 and n = 1
as a function of lθ . The results show that when lθ is small, overall max λr decreases as α

increases. As lθ is increased, some moderate α turns to be the least stable/most unstable
mode, see the crossover of α = 0.1 (cyan thin line) and 0.5 (red dashed line) cases in the
figure. Figure 8(b) shows the small lθ range, in which it appears that max λr first remains
nearly unchanged and then starts to increase, and the trend shows that the larger α, the
later max λr starts to increase as lθ is increased. The same behaviour is also observed for
α = 0 modes and we will show a rigorous proof of this behaviour in § 5.3. Interestingly,
the case of α = 2 seems to remain unchanged up to lθ = 2.0.

The dependence of max λr on α is more comprehensively shown in figure 9. The
smallest lθ = 0.005 shows a monotonic decrease with increasing α, which completely
collapses onto the curve for lθ = 0, i.e. the classic no-slip case. However, as lθ increases,
max λr significantly increases in the region of 0 < α � 1 such that a bump appears in
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Figure 10. Visualization of the most unstable mode (α, n) = (0.383, 1) for Re = 3000 with lθ = 0.1:
(a) the r–θ cross-section and (b) the x–r cross-section. In both panels, the streamwise velocity is plotted as
the colourmap with red colour representing positive and blue representing negative values with respect to the
base flow. In panel (a), the in-plane velocity field is plotted as arrows.
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Figure 11. (a) The neutral stability curves for Re = 3000 and n = 1, 2 and 3 in the lθ –α plane. (a) The neutral
stability curves for n = 1 and Re = 3000, 5000 and 7000. (b) The critical Reynolds number Recr as a function
of lθ .

the curves, see those for lθ = 0.05, 0.1 and 0.5. At a certain point, the bump reaches
max λr = 0 and the flow starts to become linearly unstable if lθ increases further, see
the cases of lθ = 0.1 and 0.5. As observed in figure 8 for the α = 2 case, the results
suggest that max λr of sufficiently large α seems unaffected by azimuthal slip in the lθ
range investigated, see the collapse of all curves above α � 1.2 in figure 9. It should be
noted that as lθ becomes larger, the bump widens up, i.e. max λr is affected by the slip in
a wider range of α.

Figure 10 shows the velocity field of the most unstable perturbation of mode (α, n) =
(0.383, 1) for Re = 3000 with lθ = 0.1. Figure 10(a) shows the in-plane velocity field in
the r − θ pipe cross-section and figure 10(b) shows the pattern of the streamwise velocity
in the x − r cross-section. The patterns shown suggest that the flow manifests with a pair
of helical waves. The flow structures are mostly located near the wall (r � 0.5), indicating
that the most unstable mode is a wall mode, which can also been seen in figure 6(b).

Obviously, azimuthal slip can cause linear instability given sufficiently large slip length.
We can search in the lθ–α plane to obtain the neutral stability curve for given Re and n.
Figure 11(a) shows the neutral stability curves for Re = 3000 and n = 1, 2 and 3 (n = 4
and higher are all stable, see figure 7). It can be seen that, as n increases, the unstable
region shifts to the right and upward. However, as the results in figure 7 show, n = 1
is the most unstable based on the eigenvalue maximized over α and, therefore, we only
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Figure 12. The neutral stability curve in the Re − α plane for lθ = ∞ and n = 1.

investigate the n = 1 case in the following. Figure 11(b) shows the neutral stability curves
for n = 1 and Re = 3000, 5000 and 7000. As Re increases, the neutral stability curve
moves towards the smaller lθ region, indicating that, for a given lθ , the flow becomes more
unstable as Re increases, as expected. The data show that the wavelength of the unstable
modes is comparable or significantly larger than the pipe diameter, whereas very long
waves (α → 0) and short waves (α � 1.0) are generally stable. That the flow is always
stable to perturbations with α = 0, regardless of the value of lθ and Re, can be rigorously
proved (see § 5.1).

Further, for each lθ , a critical Reynolds number Recr can be determined by searching
the first appearance of a positive max λr in the lθ–α plane by varying Re. Figure 11(c)
shows Recr as a function of lθ . As shown, Recr is a few hundred if lθ is large (lθ � 0.3),
but the trend suggests that it does not reduce to zero if lθ → ∞. Since the classic pipe
flow is linearly stable for arbitrary Reynolds number, there is an explosive increase in Recr
as lθ decreases, which can be expected because the classic pipe flow will be recovered if
lθ → 0. We also explored the limit of lθ → ∞, in which case the boundary condition for
the azimuthal velocity becomes the full slip condition of

∂uθ

∂r
= 0. (4.1)

The neutral stability curve for n = 1 in the Re − α plane is shown in figure 12, which shows
that the unstable modes are still long waves with α approximately between 0 and 0.8. The
critical Reynolds number (the nose of the curve) appears approximately at Recr = 260.

5. Eigenvalues and eigenvectors of streamwise independent modes

We can rigorously prove the linear stability of the base flow to perturbations with α = 0. In
the following, we do not consider the (α, n) = (0, 0) mode, which should be strictly stable
as it is purely dissipative and there can be no energy production mechanism associated with
it. In fact, the stability of the classic pipe flow to streamwise independent perturbations
has already been proved by Joseph & Hung (1971) using an energy analysis. Nevertheless,
here we also account for the effect of the velocity slip and perform analytical studies on
the eigenvalues and eigenvectors of α = 0 modes.

5.1. Proof of linear stability to α = 0 modes
For α = 0, the eigenvalue λ of the operator −M−1L satisfies

Γ (n2Γ )Φ + λΓ Φ = 0 (5.1)
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and
2i

1 + 4lx
Φ + φΩ + λn2Ω = 0, (5.2)

where Φ and Ω compose the eigenvector q associated with λ (see the definition of q in
(2.5)). The boundary conditions (2.12) and (2.13) reduce to

lxΩ ′ + Ω = 0 (5.3)

and
lθΦ ′′ + Φ ′ = 0. (5.4)

It can be seen that for α = 0 modes, Ω and Φ are decoupled in the boundary conditions
(5.3) and (5.4).

We define a space Θ = { f | f ∈ C2[0, 1], f (0) = f (1) = 0} and an inner product
associated with this space

( f1, f2) =
∫ 1

0
r f1 f̄2 dr, (5.5)

where the overbar represents the complex conjugate. Then the operator Γ has the following
two properties:

(a)
(Γ f1, f2) = ( f1, Γ f2), ∀ f1, f2 ∈ Θ, (5.6)

Proof .

(Γ f1, f2) =
∫ 1

0
r
(

f1
r2 − 1

r
d
dr

(
r

n2
d f1
dr

))
f̄2 dr =

∫ 1

0

f1 f̄2
r

dr −
∫ 1

0
f̄2d
(

r
n2

d f1
dr

)

=
∫ 1

0

f1 f̄2
r

dr − f̄2

(
r

n2
d f1
dr

)∣∣∣∣∣
1

0

+
∫ 1

0

r
n2

d f1
dr

df̄2 =
∫ 1

0

f1 f̄2
r

dr +
∫ 1

0

r
n2

df̄2
dr

d f1

(5.7)

and similarly, using integration by parts, it can be derived that

( f1, Γ f2) =
∫ 1

0
r
(

f̄2
r2 − 1

r
d
dr

(
r

n2
df̄2
dr

))
f1 dr=

∫ 1

0

f1 f̄2
r

dr +
∫ 1

0

r
n2

df̄2
dr

d f1 =(Γ f1, f2);
(5.8)

�

(b)
(Γ f , f ) � 0, ∀ f ∈ Θ, (5.9)

Proof . taking f = f1 = f2 in proof 5.1,

(Γ f , f ) =
∫ 1

0

f f̄
r

dr +
∫ 1

0

r
n2

df̄
dr

df =
∫ 1

0

f f̄
r

dr +
∫ 1

0

r
n2

df̄
dr

df
dr

dr � 0. (5.10)

�
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Note that property (5.9) still holds for those f with f (1) /= 0 but satisfies f (1) + bf ′(1) =
0, where b > 0 is a constant, because

(Γ f , f ) =
∫ 1

0

f f̄
r

dr − f
(

r
n2

df̄
dr

)∣∣∣∣∣
1

0

+
∫ 1

0

r
n2

df̄
dr

df

=
∫ 1

0

f f̄
r

dr +
∫ 1

0

r
n2

df̄
dr

df
dr

dr + 1
bn2 f (1)f̄ (1) � 0. (5.11)

First, for the case of Φ ≡ 0 (i.e. the wall-normal velocity component ur ≡ 0) and Ω 	≡
0, (5.2) becomes

φΩ + λn2Ω = 0 (5.12)

and the operators φ and Γ are related as

φ = n4

r2 − 1
r

d
dr

(
n2r

d
dr

)
= n4Γ. (5.13)

Therefore, (5.12) becomes
n4Γ Ω + λn2Ω = 0. (5.14)

Taking the inner product of (5.14) with Ω , we have

(n4Γ Ω, Ω) + (λn2Ω, Ω) = 0. (5.15)

According to property (5.9), (n4Γ Ω, Ω) � 0 given Ω(1) = 0 (without streamwise slip)
or Ω(1) + lxΩ ′(1) = 0 (with streamwise slip), which leads to λ < 0, i.e. the eigenvalue is
real and negative.

Second, we discuss the Φ 	≡ 0 case, i.e. the wall-normal velocity component ur 	≡ 0.
From (5.1), by denoting g = n2Γ Φ + λΦ, we have Γ g = 0, i.e.

n2g = r(rg′)′, (5.16)

from which it can be obtained that

rng = Cr2n + C1, (5.17)

where C and C1 are constants. Note that for n = 2, r2g = n2r2Γ Φ + λr2Φ = n2Φ −
nr(rΦ ′)′ has to vanish at r = 0, because Φ vanishes, and Φ ′ and Φ ′′ are finite at r = 0. The
same applies to n > 2. If n = 1, rg = Φ/r − (rΦ ′)′ + λrΦ = Φ/r − Φ ′ − rΦ ′′ + λrΦ,
which also vanishes when r → 0 (using L’Hôpital’s rule). Therefore, C1 ≡ 0 and rng =
Cr2n, i.e.

n2Γ Φ + λΦ = Crn. (5.18)

5.1.1. The case without azimuthal slip, i.e. lθ = 0
In case of lθ = 0, the boundary condition (2.13) or (5.4) becomes Φ ′ = 0. Taking the inner
product (5.5) of (5.18) and Γ Φ, we have

n2(Γ Φ, Γ Φ) + λ(Φ, Γ Φ) = C(rn, Γ Φ) = C(Γ rn, Φ) = C(0, Φ) = 0. (5.19)

The second equality in (5.19) holds in spite of the fact that rn /∈ Θ and thus, property
(5.6) cannot be applied directly. Nevertheless, as Φ = Φ ′ = 0 at r = 1 in the case of lθ =
0, property (5.6) still holds (this can be seen by taking Φ as f2 and rn as f1 in proof
5.1). What follows is that the eigenvalue λ is real and λ < 0 because (Γ Φ, Γ Φ) > 0 and
(Φ, Γ Φ) > 0.
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5.1.2. The case with azimuthal slip, i.e. lθ /= 0
In the case of lθ /= 0, (5.19) does not hold, except for C = 0, because Φ ′ = 0 at r = 1 does
not necessarily hold and therefore the second equality in (5.19) does not hold either. For
C /= 0, consider the special case of C = 1 (if C /= 1, a rescaling of Φ̃ = Φ/C can easily
convert to this special case), (5.18) can be written as

(n2 + λr2)Φ − r(rΦ ′)′ = (n2 + λr2)Φ − r(Φ ′ + rΦ ′′) = rn+2. (5.20)

As r → 1, (5.20) turns to
− (Φ ′ + Φ ′′) = 1. (5.21)

Further, the azimuthal slip requires

Φ ′(1) + lθΦ ′′(1) = 0, lθ ∈ (0, +∞). (5.22)

It follows that, for lθ = 1, C has to be zero, otherwise (5.21) and (5.22) would conflict with
each other. That C = 0 leads to λ < 0, see (5.19). For lθ /= 1, one can solve for Φ ′(1) from
(5.21) and (5.22) as

Φ ′(1) = lθ
1 − lθ

, (5.23)

which indicates that Φ ′(1) is real and Φ ′(1) ∈ (−∞, −1) ∪ (0, +∞).
It can be verified that (5.20) has a special solution

Φ = rn

λ
(5.24)

and its corresponding homogeneous differential equation is

r2Φ ′′ + rΦ ′ − (n2 + λr2)Φ = 0. (5.25)

From the theory of ordinary differential equations, this equation has two linearly
independent solutions in (0, 1]. One of the two solutions can be represented as a
generalized power series

Φ1 =
∞∑

m=0

Bmrm+ρ (B0 /= 0), (5.26)

in which it can be obtained that ρ = n, B2k+1 = 0 and B2k = (λ/4)k(B0/k!(n + k)!)
using the standard method of undetermined coefficients. Denoting an = B0, (5.26) can
be written as

Φ1 = anrn
∞∑

k=0

(
λ

4

)k r2k

k!(n + k)!
. (5.27)

The other solution of (5.25) has the following form:

Φ2 = Φ1

∫ r

1

1
Φ2

1 (s)
exp

(
−
∫ s

1

1
t

dt
)

ds = Φ1

∫ r

1

1
sΦ2

1 (s)
ds. (5.28)

However, by L’Hôpital’s rule,

lim
r→0

Φ2(r) = lim
r→0

∫ r
1

1
sΦ2

1 (s)
ds

1
Φ1(r)

= lim
r→0

1
rΦ2

1 (r)
Φ ′

1(r)

Φ2
1 (r)

= ∞, (5.29)
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Linear stability of slip pipe flow

which is unphysical, and therefore Φ2 should not appear in the general solution of (5.20),
i.e. the general solution of (5.20) can be solved as

Φ = 1
λ

rn + anrn
∞∑

k=0

(
λ

4

)k r2k

k!(n + k)!
. (5.30)

For simplicity, denoting μ = λ/4 and using the boundary condition Φ(1) = 0, one can
solve for an as

an = − 1
4μ

( ∞∑
k=0

μk

k!(n + k)!

)−1

, (5.31)

consequently,

Φ ′(1) = n
4μ

+ an

∞∑
k=0

μk(n + 2k)
k!(n + k)!

= − 1
4μ

( ∞∑
k=0

μk

k!(n + k)!

)−1 ∞∑
k=0

2kμk

k!(n + k)!
, (5.32)

i.e. μ satisfies
∞∑

k=1

kμk−1

k!(n + k)!
+ 2Φ ′(1)

∞∑
k=0

μk

k!(n + k)!
= 0. (5.33)

In the following, we prove that μ has to be real and μ < 0 given (5.33). For simplicity, let
s = Φ ′(1) and define f (z) as

f (z) =
∞∑

k=0

zk

k!(n + k)!
, (5.34)

where z is complex. Then, (5.33) states that μ is a root of the equation f ′(z) + 2sf (z) = 0.
Note that

(
zn+1f ′(z)

)′ =
( ∞∑

k=1

kzn+k

k!(n + k)!

)′
= zn

∞∑
k=1

zk−1

(k − 1)!(n + k − 1)!

= zn
∞∑

k=0

zk

k!(n + k)!
= znf (z). (5.35)

Then, defining fμ(z) = f (μz), it can be verified that

(zn+1 f ′
μ(z))′ = μzn fμ(z), (5.36)

in which the prime denotes the derivative with respect to z. Further, note that μ̄ is also a
root of (5.33), because the coefficients are all real. That is to say,

(zn+1 f ′
μ̄(z))′ = μ̄zn fμ̄(z), (5.37)
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where fμ̄ = f (μ̄z). Then, the difference between (5.36) multiplied by fμ̄(z) and (5.37)
multiplied by fμ(z), integrated along the real axis from 0 to 1, gives that∫ 1

0
(zn+1 f ′

μ(z))′ fμ̄(z) dz −
∫ 1

0
(zn+1 f ′

μ̄(z))′ f ′
μ(z) dz

= zn+1 f ′
μ(z) fμ̄(z)

∣∣∣1
0

−
∫ 1

0
zn+1 f ′

μ(z)d fμ̄(z) − zn+1 f ′
μ̄(z) fμ(z)

∣∣∣∣∣
1

0

+
∫ 1

0
zn+1 f ′

μ̄(z) d fμ(z)

=
∫ 1

0
zn+1| f ′

μ(z)|2 dz −
∫ 1

0
zn+1| f ′

μ(z)|2 dz + f ′
μ(1) fμ̄(1) − fμ(1) f ′

μ̄(1)

= 2s(μ̄ − μ)| fμ(1)|2 = (μ − μ̄)

∫ 1

0
zn| fμ(z)|2 dz, (5.38)

where the condition f ′(z) + 2sf (z) = 0 is used to derive f ′
μ(z) + 2μs fμ(z) = 0 and

f ′
μ̄(z) + 2μ̄s fμ̄(z) = 0. Then we have

(μ − μ̄)

(∫ 1

0
zn| fμ(z)|2dz + 2s| fμ(1)|2

)
= 0. (5.39)

Similarly, the sum of (5.36) multiplied by fμ̄(z) and (5.37) multiplied by fμ(z),
integrated along the real axis from 0 to 1, gives that

(μ + μ̄)

(∫ 1

0
zn| fμ(z)|2 dz + 2s| fμ(1)|2

)
= −2

∫ 1

0
zn+1| f ′

μ(z)|2 dz, (5.40)

which indicates
∫ 1

0 zn| fμ(z)|2 dz + 2s| fμ(1)|2 /= 0 because the right-hand side is non-zero.
Consequently, (5.39) indicates that μ − μ̄ = 0, i.e. μ is real.

Subsequently, we can deduce that μ < 0 if s ∈ (0, ∞) because the term in the
parentheses and the integral on the right-hand side of (5.40) are all positive. In case of
s ∈ (−∞, −1), if μ were positive, one would obtain

− 2s
∞∑

k=0

μk

k!(n + k)!
=

∞∑
k=1

kμk−1

k!(n + k)!
=

∞∑
k=0

μk

k!(n + k + 1)!
�

∞∑
k=0

μk

k!(n + k)!
(5.41)

and consequently −2s � 1, which would conflict with s ∈ (−∞, −1). Therefore, μ < 0.
Finally, we obtain that μ < 0 for s ∈ (−∞, −1) ∪ (0, +∞), i.e. for any value of lθ /= 1.
Since we have shown before that λ < 0 for lθ = 1 and for lθ = 0, now we reach the
conclusion that λ is real and λ < 0 for any lθ ∈ [0, +∞), regardless of lx, i.e. the flow
is rigorously linearly stable to perturbations with α = 0 with or without velocity slip.

5.2. Analytical solution of the eigenvalue and eigenvector for α = 0 modes
We consider the general case with both streamwise and azimuthal slip. For Φ 	≡ 0, if
C /= 0, we obtain from (5.33) that μ = λ/4 satisfies

(1 − lθ )
∞∑

k=1

kμk−1

k!(n + k)!
+ 2lθ

∞∑
k=0

μk

k!(n + k)!
= 0, (5.42)
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Linear stability of slip pipe flow

where (5.23) is used. The Bessel functions of integer order n and n + 1 read

Jn(z) =
∞∑

k=0

(−1)k

k!(n + k)!

( z
2

)2k+n =
( z

2

)n ∞∑
k=0

1
k!(n + k)!

(
−z2

4

)k

, (5.43)

Jn+1(z) =
∞∑

k=0

(−1)k

k!(n + 1 + k)!

( z
2

)2k+n+1 =
( z

2

)n+1 ∞∑
k=0

1
k!(n + k + 1)!

(
−z2

4

)k

.

(5.44)
Denoting μ = −(η2/4), i.e. the eigenvalue λ = 4μ = −η2, it can be observed that η is a
root of the equation

(1 − lθ )Jn+1(z) + lθ zJn(z) = 0. (5.45)

Next, we show that C /= 0 if lθ /= 1. Assuming C = 0 and lθ /= 1, Φ ′(1) + Φ ′′(1) = 0
and the boundary condition Φ ′(1) + lθΦ ′′(1) = 0 would give Φ ′(1) = Φ ′′(1) = 0. Recall
that the solution to the homogeneous equation (5.25) is

Φ1 = anrn
∞∑

k=0

(
λ

4

)k r2k

k!(n + k)!
, (5.46)

where an is a constant. Using the notation of (5.34),

f (μ) =
∞∑

k=0

μk 1
k!(n + k)!

= 0 (5.47)

results from Φ1(1) = 0 (note that Φ = Φ1 if C = 0), which would indicate that the
corresponding η satisfies Jn(z) = 0. Further, Φ ′(1) = 0 gives

∞∑
k=0

μk n + 2k
k!(n + k)!

= 0. (5.48)

In combination with f (μ) = 0, we would obtain that

∞∑
k=1

μk 1
(k − 1)!(n + k)!

=
∞∑

k=0

μk 1
k!(n + k + 1)!

= 0, (5.49)

which means that η would also be a zero of Jn+1(z), i.e. η would be a zero of both Jn(z)
and Jn+1(z). This would conflict with the fact that there exists no common zero of Jn(z)
and Jn+1(z). Therefore, C /= 0 and η is a root of (5.45) if lθ /= 1.

We have proved before that C = 0 if lθ = 1, which gives Φ = Φ1. Consequently,
Φ(1) = Φ1(1) = 0 gives f (μ) = 0, which means η is a root of Jn(z) = 0, i.e. η is also
a root of (5.45) (note that the first term disappears if lθ = 1). Therefore, η is a root of
(5.45) for any lθ � 0.

For the case of Φ ≡ 0, (5.14) and the corresponding boundary condition Ω(1) +
lxΩ ′(1) = 0 (see (2.13) and (5.3)) imply that the eigenvector Ω has the same form as
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Numerical

Φ ≡ 0

Re = 3000, n = 1
lx = 1.0, lθ = 0
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10−14
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10−12

10−11

10−10

λ

Φ ≡ 0

(b)(a)

Figure 13. Validation of the analytical eigenvalues against the numerical calculation for the case of Re = 3000,
n = 1, lx = 1.0 and lθ = 0. In panel (a) the first 20 eigenvalues are shown as squares and circles, and
the numerical results are shown as crosses. The circles are the first 10 eigenvalues (in descending order) for the
cases with Φ ≡ 0 and the squares are the first 10 eigenvalues (in descending order) for the Φ 	≡ 0 case. The
abscissa shows the indices of the eigenvalues. (b) The relative error ε between the analytical and numerical
ones.

the solution Φ1, and we can deduce that λ = −γ 2, in which γ is a root of

(1 + nlx)Jn(z) − lxzJn+1(z) = 0. (5.50)

For an eigenvalue λ = −η2, the corresponding eigenvector can be solved as

Φ = Jn(ηr) − Jn(η)rn, (5.51)

Ω = bnJn(ηr) + 2i
(1 + 4lx)n2

(
r

2η
Jn+1(ηr) − Jn(η)

η2 rn
)

, (5.52)

where bn is a constant and should be determined by the boundary condition (5.3). For an
eigenvalue λ = −γ 2, the eigenvector can be solved as

Φ ≡ 0, Ω = Jn(γ r). (5.53a,b)

To sum up, there are always two groups of eigenvalues, corresponding to Φ ≡ 0 (given
by (5.50)) and Φ 	≡ 0 (given by (5.45)), respectively. Particularly, for the no-slip case,
(5.45) reduces to Jn+1(z) = 0 and (5.50) reduces to Jn(z) = 0, and it is known that the
zeros of Jn(z) and Jn+1(z) distribute alternately. Therefore, in the no-slip case, these
two groups of eigenvalues distribute alternately. For the streamwise slip case, (5.45)
still reduces to Jn+1(z) = 0, i.e. the Φ 	≡ 0 eigenvalues do not change with lx, whereas
the Φ ≡ 0 eigenvalues will change with lx. However, there cannot be common roots
between Jn+1(z) = 0 and (5.50), otherwise there would be common zeros between Jn(z)
and Jn+1(z), which conflicts with the fact that there are no common zeros between the two.
Therefore, as lx changes, the two groups of eigenvalues distribute in the same alternating
pattern as in the no-slip case and there is no overtaking between the two groups, see
figures 1(a) and 13(a). However, this behaviour is not guaranteed in the azimuthal slip
case as there can be common roots between (5.45) and (5.50) given lx = 0 and lθ = 1.0,
i.e. the roots of Jn(z) = 0. Nonetheless, it should be noted that the common roots can
only exist at lθ = 1.0. This implies that, when eigenvalues change with lθ , an overtaking
between the two groups may occur at precisely lθ = 1.0.

Figure 13 shows the comparison between our analytical solution of the two groups
of eigenvalues and numerical calculation for the streamwise slip case of Re = 3000,
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0 0.5 1.0
r

0 0.5 1.0
r

0

0.05
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Theory
Numerical

–0.1

0

0.1

0.2

0.3

Φ, Ω

Φ

Ω

(b)(a)

Figure 14. Validation of the analytical eigenvectors against the numerical calculation for the case of Re =
3000, n = 1, lx = 1.0 and lθ = 0. (a) The Ω component of the eigenvector associated with the leading
eigenvalue (the leftmost blue circle in figure 13a). The Φ component is zero and is not shown. (b) The Ω

and Φ component of the eigenvector associated with the second largest eigenvalue (the leftmost red square in
figure 13a).

n = 1, lx = 1.0 and lθ = 0. In figure 13(a), blue circles are analytical solutions of the
first 10 largest eigenvalues given by (5.50), i.e. the corresponding eigenvectors all have
Φ ≡ 0, and red squares represent the first 10 largest eigenvalues given by (5.45), i.e. the
corresponding eigenvectors all have Φ 	≡ 0. Clearly, the leading eigenvalue is and will
always be associated with Φ ≡ 0 disturbances because no overtaking between the two
groups of eigenvalues can occur as lx varies, as we concluded in § 5.2. These analytical
solutions agree very well with the numerical calculations (the crosses) with relative
errors of O(10−11) or lower, see figure 13(b). The eigenvector associated with the leading
eigenvalue (the leftmost circle in figure 13a) is plotted in figure 14(a). The black line
shows the analytical solution given by (5.53a,b) and the circles show the numerical
calculation. The Φ part of the eigenvector is not shown because Φ ≡ 0. Figure 14(b) shows
the eigenvector associated with the second largest eigenvalue (the leftmost red square in
figure 13a), which has a non-zero Φ part. The figure shows that, for both Φ and Ω , our
analytical solutions (lines) agree very well with the numerical calculations (symbols). This
comparison validates our theory about the eigenvalue and eigenvector.

The two groups of eigenvalues of the azimuthal slip cases of lθ = 0.05 and 2.0 for Re =
3000, n = 1 and lx = 0 are also shown in figure 15. Again, perfect agreement between
the analytical and numerical ones is observed. We can see that, for lθ = 0.05, the Φ 	≡ 0
group is entirely below the Φ ≡ 0 group, which is independent of lθ , whereas it is entirely
above the Φ ≡ 0 group for lθ = 2.0, indicating that an overtaking indeed occurs between
the two groups as lθ increases. Therefore, for lθ < 1.0, the leading eigenvalue is associated
with Φ ≡ 0 disturbances and does not change with lθ (see also figure 6a), whereas it is
associated with Φ 	≡ 0 disturbances and increases with lθ for lθ > 1.0.

5.3. The dependence of the leading eigenvalue on slip length for α = 0 modes
Denoting F(z, lθ ) = (1 − lθ )Jn+1(z) + lθ zJn(z), it can be obtained that, as z → 0,

Jn(z) ∼ zn

2nn!
, F(z, lθ ) ∼

(
1 − lθ

2n+1(n + 1)!
+ lθ

2nn!

)
zn+1. (5.54a,b)

It can be seen that
1 − lθ

2n+1(n + 1)!
+ lθ

2nn!
> 0 (5.55)
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Numerical
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Φ ≡ 0, lθ = 0.05
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(b)(a) (c)

Figure 15. Eigenvalues for Re = 3000, n = 1 and lx = 0 with lθ = 0.05 and 2.0. The abscissa shows the
indices of the eigenvalues in descending order. In panel (a) analytical eigenvalues are shown as circles
(Φ ≡ 0, for which eigenvalues are independent of lθ ), squares (Φ 	≡ 0 and lθ = 0.05) and triangles (Φ 	≡ 0
and lθ = 2.0), and the numerical calculations are shown as crosses. Panels (b,c) show the close-up of the two
ends of the spectrum shown in panel (a).

for lθ � 0, therefore, F(z, lθ ) is positive for sufficiently small z. Let z1 be the minimum
root of F(z, lθ1) = 0 and z2 be the minimum root of F(z, lθ2) = 0. If lθ1 < lθ2, it can be
derived that

F(z1, lθ2) = (1 − lθ2)Jn+1(z1) + lθ2z1Jn(z1) = (1 − lθ2)Jn+1(z1) − 1 − lθ1

lθ1
lθ2Jn+1(z1)

= lθ1 − lθ2

lθ1
Jn+1(z1) < 0. (5.56)

In (5.56), Jn+1(z) > 0 follows from that, at the minimum positive zero of Jn+1(z), denoted
as z0, we have F(z0, lθ1) < 0 because Jn(z0) < 0. We showed before that F(z, lθ1) > 0 at
sufficiently small z, therefore, the minimum positive zero of F(z, lθ1), z1, should be smaller
than z0 given that F(z, lθ1) is continuous with respect to z, i.e. z1 < z0, and therefore
Jn+1(z1) > 0. Consequently, given F(z1, lθ2) < 0, there must be a zero in (0, z1), i.e. z2 <

z1 because the function F(z, lθ2) is continuous with respect to z. This states that, for the
case of Φ 	≡ 0, the maximum eigenvalue λ, denoted as λ1 in the following, increases as
lθ increases and is independent of lx. Similarly, one can deduce that the minimum root
of (5.50) decreases as lx increases, consequently, the maximum eigenvalue for the Φ ≡ 0
case, denoted as λ2, increases as lx increases and is independent of lθ . For the special
case of lx = 0, (5.50) becomes Jn(z) = 0 and for the case of lθ = 1, (5.45) turns into
zJn(z) = 0. Clearly, these two cases share the non-zero roots, i.e. λ1 = λ2. Therefore, the
minimum root of (5.50) is always greater than that of (5.45), i.e. λ1 > λ2, when lθ < 1.
This explains why, for a given lθ � 1, max λ increases monotonically as lx increases from
zero, whereas for a given lθ > 1, max λ first remains constant and only starts to increase
until lx is increased above a threshold, see figure 16(a). If only azimuthal slip is present,
i.e. lx = 0, max λ first remains constant and only starts to increase precisely at lθ = 1, see
figure 16(b). The data shown in the inset of figure 6(a) also support this conclusion, see
that max λ for lθ = 0.005, 0.05 and 0.5 are identical. It can also be inferred that, given a
fixed lx > 0 and that λ2 increases with lx, max λ can only start to increase as lθ increases
at some lθ > 1.

In summary, the maximum eigenvalue of α = 0 modes is an increasing function of lθ or
lx (may not be strictly increasing, depending on the slip length setting, as figure 16 shows)
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Figure 16. The dependence of max λ on slip length for Re = 3000 and n = 1. (a) Both streamwise and
azimuthal slip are present. The black line shows the dependence on lx given lθ � 1. Symbol lines show two
cases for lθ > 1. (b) The dependence on lθ in case of lx = 0.

and is independent of the Reynolds number, which is obvious as Re does not appear in
(5.45) and (5.50). Nevertheless, the eigenvalues remain negative.

6. Non-modal stability

It has been known that in many shear flows (e.g. pipe, channel and plane-Couette flows),
small disturbances can be transiently amplified due to the non-normality of the linearized
equations, despite their asymptotic linear stability (Schmid & Henningson 1994; Meseguer
& Trefethen 2003; Schmid 2007). This transient amplification is believed to play an
important role in the subcritical transition in shear flows. Here, we also investigated the
effects of the anisotropic slip on the non-modal stability of the flow. The same method for
calculating the transient growth described by Schmid & Henningson (1994) is adopted.
The transient growth at time t for a mode (α, n) is defined as

G(t;α, n) = max
E(0) /= 0

E(t)
E(0)

, (6.1)

where E(t) = ∫
V u(t)2 dV is the kinetic energy of the perturbation u integrated in the

whole flow domain at time t. For linearly stable flow, G will reach the maximum, Gmax, at
a certain time and monotonically decay at larger times. For linearly unstable flow, G can be
either non-monotonic or monotonic at early stages, depending on the competition between
the modal and non-modal growth, and will be dominated by the exponential growth of the
most unstable disturbance at large times.

Figure 17 shows Gmax at Re = 3000 in the lx–α plane (lx = 0) for n = 1 and n = 2 (low
azimuthal wavenumbers are generally most amplified by non-normality). From the contour
lines we can see that streamwise slip reduces Gmax and the decrease is monotonic as lx
increases. Intuitively, streamwise slip reduces the background shear such that the lift-up
mechanism (Brandt 2014) is subdued. Therefore, the transient growth should be reduced
as our results show. The most amplified mode is still the (α, n) = (0, 1) mode (streamwise
rolls) as in the no-slip case (Schmid & Henningson 1994; Meseguer & Trefethen 2003).

Figure 18 shows Gmax for the azimuthal slip case at Re = 3000 in the lθ–α plane.
Azimuthal wavenumbers n = 1 and n = 2 are considered. From the orientation of the
contour lines we can see that azimuthal slip increases Gmax. Presumably, azimuthal
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Figure 17. The maximum transient growth, Gmax, at Re = 3000 plotted in the lx–α plane for n = 1 (a) and
n = 2 (b). Azimuthal slip length lθ =0. The contour level step is 80 in both panels.
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Figure 18. The maximum transient growth, Gmax, at Re = 3000 plotted in the lθ –α plane for n = 1 (a) and
n = 2 (b). Streamwise slip length lx=0. The bold lines enclose the linearly unstable regions.

slip can enhance streamwise vortices because it reduces wall friction and allows finite
azimuthal velocity at the wall, and therefore, the lift-up mechanism can be enhanced
exhibiting increased transient growth as our results show. For n = 1, in the lθ range
investigated, the most amplified mode is still the (α, n) = (0, 1) mode as in the no-slip
case. However, for n = 2, as lθ increases, the most amplified mode is no longer the
streamwise independent one but one with a small finite streamwise wavenumber (long
wavelength), see figure 18(b). For example, the most amplified mode is approximately
α = 0.05 for lθ above approximately 0.1. Similar behaviour has also been reported for
channel flow (Chai & Song 2019). The two bold lines in the figure enclose the linearly
unstable regions in which Gmax is theoretically infinite, therefore, the linearly unstable
region is left blank. Unlike the streamwise slip case where the slip length significantly
reduces the transient growth throughout the α and lx ranges investigated (see figure 17),

910 A35-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

99
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.997


Linear stability of slip pipe flow

20

40

60
80

lx

15

20

70

0 0.2 0.4 0.50 0.2 0.4 0.5

lθ

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

15

20

40
70 100

0 0.5 1.0

lθ

0.5

1.0

1.5

2.0

20

40

40 60
80

100
160

0 0.2 0.4 0.5

lx

0.5

1.0

1.5

2.0

α

100 150

(b)(a) (c) (d )

Figure 19. The time instant when Gmax is reached, tmax, in the lx–α plane for n = 1 (a) and n = 2 (b) and in
the lθ –α plane for n = 1 (c) and n = 2 (d).
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Figure 20. The scaling of global Gmax with Re. (a) Streamwise slip lx = 0.005, 0.05 and 0.5. (b) Azimuthal
slip lθ = 0.005 and 0.02. In both panels, the bold black line shows the scaling for the no-slip case. The inset in
(b) is a close-up around Re = 3000.

azimuthal slip only significantly affects the transient growth for small α and nearly does
not affect that of larger α, see the nearly horizontal contour lines for relatively large α. In
addition, even for small α, Gmax quickly saturates as lθ increases. To sum up, azimuthal
slip only affects the transient growth of the modes with small streamwise wavenumbers
and the effect saturates as the slip length increases.

Figure 19 shows the time instant when Gmax is reached, tmax, for the cases shown in
figures 17 and 18. In the streamwise slip case (figure 19a,b), for both n = 1 and 2, the
slip increases tmax and the effect is more significant for larger α. In the azimuthal slip
case (figure 19c,d), for small α (� 0.2), tmax is also slightly increased by the slip, whereas
for larger α, tmax is slightly decreased by the slip, in contrast to the streamwise slip case.
Overall, for the modes with small α, i.e. most amplified modes due to non-normality, both
streamwise and azimuthal slip only mildly increase tmax.

In the no-slip case, the global Gmax (maximized over α and n) is known to scale as
Re2 when Re is large (Meseguer & Trefethen 2003). In the presence of streamwise and
azimuthal slip, the scaling is also investigated and shown in figure 20. In the streamwise
slip case (figure 20a), the lines for lx = 0.005, 0.05 and 0.5 appear to be parallel to the
no-slip case with a downward vertical shift, suggesting a Re2-scaling for any streamwise
slip length. Similarly, for azimuthal slip, the scaling also seems to be Re2. For this case,
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we only investigated lθ = 0.005 and 0.02 in the linearly stable regime because larger lθ
will cause linear instability.

7. Conclusions and discussions

It has been well established that the classic pipe flow is (asymptotically) linearly stable.
In this paper, we studied the effect of velocity slip on the linear stability of pipe flow.
Our results show that the leading eigenvalue increases with streamwise slip length lx
but remains negative, i.e. streamwise slip renders the flow less stable but does not cause
linear instability, similar to the effect of isotropic slip length on the flow (Průša 2009).
Interestingly, our results suggest that the leading eigenvalue is independent of Re, or
equivalently, the slowest decay rate of disturbances scales as Re−1 (note that time is
scaled by Re−1 in our formulation). It should be pointed out that this scaling holds at
sufficiently high Reynolds numbers (� 104). For relatively low Reynolds numbers (100
and 1000 in our study), there is a very slight deviation from the scaling for lx � 0.1 and
the deviation is substantial at larger lx. The Re−1-scaling of the decay rate is the same as
what was observed for the mode (α, n) = (0, 1) of the classic pipe flow by Meseguer &
Trefethen (2003). In addition, our results show that the streamwise wavenumber at which
the eigenvalue maximizes is not α = 0 but also scales as Re−1. However, if lx is very
large (� 1.0, and note that in applications the slip length is generally much smaller), the
eigenvalue maximizes at α = 0 at relatively low Reynolds numbers (100 and 1000 in our
study) and this scaling also only holds at high Reynolds numbers (� 104).

This destabilizing effect appears to be opposite to the stabilizing effect of streamwise
slip reported for channel flow (the stabilizing effect is mainly observed for 2-D
perturbations) (Lauga & Cossu 2005; Min & Kim 2005; Chai & Song 2019). Here, we only
provide a possible explanation for the least stable/most unstable perturbation (referred to
as the leading perturbation for simplicity) of the two flows. We speculate that the different
flow structures of the leading perturbations of the two flows are responsible. For pipe flow,
we proved that the ur component of the leading perturbation for α = 0 modes vanishes.
The globally leading perturbation has very small α (∼1/Re), which indicates that ur should
be nearly vanishing. Therefore, the production rate of kinetic energy

−
∫

V
urux

dUx

dr
dV (7.1)

should be also very small and the decay rate of disturbances should be dominated by the
dissipation rate. Intuitively, velocity slip reduces the dissipation rate due to the reduced
wall friction, therefore, the decay rate of the least stable perturbation decreases, i.e. the
flow appears to be destabilized. In contrast, for channel flow, the leading perturbations
are 2-D Tollmien–Schlichting waves for small slip length, which have a substantial
wall-normal velocity component (comparable to the streamwise component). Therefore,
the kinetic energy production is significant and even dominant in the variation of the
kinetic energy. Streamwise slip reduces the base shear (dUx/dr) and therefore subdues the
production. If the reduction in the production rate outweighs the decrease in the energy
dissipation rate due to the reduced wall friction, the flow will be stabilized. This is probably
why the stabilizing effect of the streamwise slip on channel flow was observed.

On the contrary, azimuthal slip, given sufficiently large slip length, causes linear
instability, similar to the findings of Chai & Song (2019) for channel flow. Our results
show that azimuthal slip destabilizes helical waves with wavelengths considerably larger
than the pipe diameter, whereas it does not affect the stability of waves with much
shorter wavelengths and in the long wavelength limit, i.e. α → 0. The critical Reynolds
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number decreases sharply as lθ increases and gradually levels off at around a few hundred
as lθ � 0.3 and at approximately 260 as lθ → ∞. A similar destabilizing effect was
reported for channel flow (Chai & Song 2019). Azimuthal slip serves as an example for a
perturbation to the linear operator associated with the linearized Navier–Stokes equations
with the no-slip boundary condition that destabilizes the originally stable system.

Regarding the stability of the classic pipe flow to streamwise independent perturbations,
using an energy analysis, Joseph & Hung (1971) concluded the absolute and global
stability of the flow, i.e. the flow is asymptotically (as t → ∞) stable to such perturbations
with arbitrary amplitude. Here, for the linear case and from a mathematical point of view,
we rigorously proved that the eigenvalues of streamwise independent modes (α = 0) are
real and negative, for arbitrary slip length and arbitrary Reynolds number. In addition, the
eigenvalue of the α = 0 modes is proved to be strictly independent of Reynolds number
in our formulation, in agreement with the numerical calculation by Meseguer & Trefethen
(2003). We derived analytical solutions to the eigenvalue and eigenvector for α = 0 modes
and verified our theory by numerical calculations. We also proved that, the eigenvalues
of α = 0 modes consist of two groups: one group is associated with disturbances with
Φ ≡ 0, i.e. ur ≡ 0, and the other is associated with disturbances with Φ 	≡ 0, i.e. ur 	≡ 0
(see figures 13 and 15). The two groups distribute alternately. For the streamwise slip case,
the latter group remains constant while the former group changes with lx. It is the other way
round for the azimuthal slip case. Interestingly, for the streamwise slip case, the leading
eigenvalue belongs to the Φ ≡ 0 group and does not switch group as lx changes, whereas
for the azimuthal slip case, it switches from the Φ ≡ 0 group to the Φ 	≡ 0 group as lθ
crosses 1.0 from below (see figure 15). When both lx and lθ are non-zero, lx dominates
the leading eigenvalue if lθ < 1. If lθ > 1, the leading eigenvalue first remains constant
and can only start to increase at a threshold as lx increases (see figure 16). Such analytical
solutions might inspire asymptotic analysis in the limit of small streamwise wavenumber.

Non-modal analysis shows that streamwise slip greatly reduces the transient growth,
whereas azimuthal slip significantly increases the transient growth for disturbances with
very small streamwise wavenumbers but nearly does not affect that for disturbances with
larger streamwise wavenumbers, aside from the linear instability caused by the slip. Both
streamwise slip and azimuthal slip give the Re2-scaling of the maximum transient growth,
the same as in the no-slip case (Schmid & Henningson 1994; Meseguer & Trefethen 2003).
Similar effects were observed for channel flow (Chai & Song 2019).

Linear instability caused by anisotropic slip at low Reynolds numbers is of interest
for small flow systems, such as microfluidics, in which the Reynolds number is usually
low but the non-dimensional slip length can be significantly large using advanced
surface texturing techniques. The instability can be exploited to enhance mixing or heat
transfer in applications involving small flow systems. Larger non-modal growth caused
by azimuthal slip can potentially cause earlier subcritical transition to turbulence. In
addition, introducing modal instability into originally subcritical flows may also help to
better understand the transition mechanism in such flows.
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Appendix A. Numerics

First, we briefly explain the implementation of the boundary condition (2.12) and (2.13) in
the eigenvalue problem for the linear system (2.2).

The eigenvalue equation reads

− L−1Mq = λq, (A1)

where q is the unknown vector composed of Φ̂ and Ω̂ , see (2.5). Boundary
conditions (2.12) and (2.13) couple Φ̂ and Ω̂ , unlike in the no-slip case. In our
Fourier-spectral-Chebyshev-collocation discretization, q is a 2N × 1 vector and the
operator −L−1M is discretized as a 2N × 2N matrix, where N is the number of collocation
grid point on the radius. Adopting the Chebyshev differentiation matrix of Trefethen
(2000) which is of spectral accuracy, the matrix is dense and the radial differentiation
of q at a single grid point is calculated using the value of q at all collocation points
on the radius. Given that Φ̂ is known at r = 1, i.e. Φ̂ = 0 at r = 1, the size of the
system can be reduced by one. The boundary conditions (2.12) and (2.13) give two
linear algebraic equations about Φ̂ and Ω̂ at the collocation points, from which we
can further eliminate two unknowns. By doing so, the system size is reduced by three,
i.e. to (2N − 3) × (2N − 3), from which the eigenvalue problem can be solved with the
boundary conditions being taken accounted for.

Second, we show the convergence test of our numerical calculation. We consider the
case of Re = 3000, α = 0.5 and n = 1, as presented in figures 1(b) and 6(b). We change
the number of Chebyshev points and check the convergence of the mean mode, wall mode
and centre mode separately. Tables 1–3 show the resolutions and the eigenvalue of an
arbitrarily selected mean mode and the rightmost eigenvalues corresponding to the wall
mode and centre mode. It can be seen that grid numbers N = 32, 64 and 128 give very
close values of the eigenvalues, which differ only after approximately seven digits after
the decimal point (the relative difference is O(10−11)), for all the slip length of 0.005,
0.05, 0.5 and the case of lθ = ∞. The convergence test shows that, for the calculation of
the rightmost eigenvalues and for calculating the mean mode at Re = 3000, 32 points
are sufficient. Solely for calculating the rightmost eigenvalue, we used 32 points for
Re = 100, 1000 and 10 000, and 64 points for Re = 105 and Re = 106. We checked the
convergence by doubling the number of grid points and found these numbers sufficient. It
should be noted that, although 32 points are sufficient for calculating both of the rightmost
eigenvalue and the spectrum at Re = 3000, more grid points may be needed for accurately
calculating the spectrum than for calculating the rightmost eigenvalue at higher Reynolds
numbers (Trefethen 2000; Meseguer & Trefethen 2003).

Appendix B. The dependence of the leading eigenvalue on the azimuthal
wavenumber n for α = 0

Our numerical calculations in §§ 3 and 4 showed that n = 1 modes are the least stable/most
unstable modes. Here we show the dependence of max λ of α = 0 modes on the azimuthal
wavenumber n and prove that n = 1 is indeed the least stable azimuthal mode. For this
purpose, we only need to prove that the minimum non-zero roots of (5.45) and (5.50) all
increase with n.

Note that the root of (5.45) is independent of lx. Because the zeros of Jn(z) and Jn+1(z)
distribute alternately, it can be easily seen that, if lθ � 1, the minimum positive root of
(5.45) is located between the minimum positive zeros of Jn(z) and Jn+1(z). Therefore, the
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Re = 3000, α = 0.5, n = 1, lx = 0.005 and lθ = 0

N mean mode wall mode
32 −622.180970763082-1006.803438258427i −106.901701568167-600.000309196652i
64 −622.180970617437-1006.803438460110i −106.901701568129-600.000309195248i
128 −622.180970549502-1006.803438403115i −106.901701574121-600.000309193566i
N centre mode
32 −87.144443682906-1299.140360156589i
64 −87.144443682943-1299.140360156482i
128 −87.144443681739-1299.140360155874i

Re = 3000, α = 0.5, n = 1, lx = 0.05 and lθ = 0

N mean mode wall mode
32 −530.922788817816-953.518793751342i −68.522846170133-646.557599422173i
64 −530.922788815748-953.518793737632i −68.522846166147-646.557599425783i
128 −530.922788808102-953.518793754673i −68.522846166147-646.557599425783i
N centre mode
32 −80.309678415026-1203.366029301252i
64 −80.309678415070-1203.366029301237i
128 −80.309678413737-1203.366029300673i

Re = 3000, α = 0.5, n = 1, lx = 0.5 and lθ = 0

N mean mode wall mode
32 −582.2041335894776-833.8681859837275i −32.3669400581618-546.6565442837639i
64 −582.2041335893674-833.8681859850334i −32.3669400570418-546.6565442835596i
128 −582.2041336044291-833.8681859835294i −32.3669400643051-546.6565442852506i
N centre mode
32 −36.8382964038017-757.7599724649968i
64 −36.8382964035955-757.7599724652722i
128 −36.8382963977050-757.7599724664044i

Table 1. The convergence of the eigenvalue corresponding to the mean mode (arbitrarily selected) and the
rightmost wall mode and centre mode as the radial grid number N. The streamwise slip cases of lx = 0.005,
0.05 and 0.5 for Re = 3000, α = 0.5, n = 1 and lθ = 0 are listed.

minimum positive root of (5.45) increases with n because the positive zeros of Jn(z) and
Jn+1(z) all increase with n, i.e. λ1 decreases as n increases if lθ � 1.

If lθ > 1, we need to prove that the minimum positive root of

gn(z) = (1 − lθ )Jn(z) + lθ zJn−1(z) = 0, n � 2 (B1)

is smaller than that of gn+1(z) = 0, i.e. (5.45). We already showed in (5.54a,b) that
F(z, lθ ) > 0 at sufficiently small z, i.e. gn(z) > 0 for sufficiently small z. Denoting the
minimum positive root of (5.45) as z0, we only need to show that gn(z0) < 0. Using the
property of Bessel functions, namely

Jn+1(z) + Jn−1(z) = 2n
z

Jn(z) (B2)

and (5.45), gn(z) can be rewritten as

gn(z0) = (1 − lθ )Jn(z0) + lθ z0

(
2n
z0

− lθ
lθ − 1

z0

)
Jn(z0). (B3)
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Re = 3000, α = 0.5, n = 1, lθ = 0.005 and lx = 0

N mean mode wall mode
32 −878.143428857252-1000.225260064803i −147.212095816072-565.187041064729i
64 −878.143429638119-1000.225258436485i −147.212095816866-565.187041057138i
128 −878.143429646590-1000.225258451813i −147.212095817673-565.187041057973i
N centre mode
32 −88.016026669448-1311.995868654545i
64 −88.016026669520-1311.995868654469i
128 −88.016026668333-1311.995868653794i

Re = 3000, α = 0.5, n = 1, lθ = 0.05 and lx = 0

N mean mode wall mode
32 −818.018362966476-992.813175584590i −30.701258513947-434.347551571943i
64 −818.018361688704-992.813172416195i −30.701258511491-434.347551570607i
128 −818.018361708603-992.813172372158i −30.701258513706-434.347551572422i
N centre mode
32 −88.015855528115-1312.001178576785i
64 −88.015855528186-1312.001178576701i
128 −88.015855526922-1312.001178575825i

Re = 3000, α = 0.5, n = 1, lθ = 0.5 and lx = 0

N mean mode wall mode
32 −794.161410360041-1006.311883474201i 33.866513836957-391.619593748286i
64 −794.161408826090-1006.311880389063i 33.866513839707-391.619593747032i
128 −794.161408715927-1006.311880293383i 33.866513840046-391.619593749138i
N centre mode
32 −88.013747237500-1312.003625793072i
64 −88.013747237549-1312.003625792987i
128 −88.013747236338-1312.003625792171i

Table 2. The convergence of the eigenvalue corresponding to the mean mode (arbitrarily selected) and the
rightmost wall mode and centre mode as the radial grid number N. The azimuthal slip cases of lθ = 0.005,
0.05 and 0.5 for Re = 3000, α = 0.5, n = 1 and lx = 0 are listed.

Re = 3000, α = 0.5, n = 1, lθ = ∞ and lx = 0

N mean mode wall mode
32 –637.771735030362-1019.911762553870i 45.558397965700-383.081240915272i
64 –637.771735090255-1019.911762536828i 45.558397968779-383.081240913500i
128 –637.771735157437-1019.911762419706i 45.558397965363-383.081240919212i
N centre mode
32 –88.013312066798-1312.003902287461i
64 –88.013312066887-1312.003902287400i
128 –88.013312039270-1312.003902226469i

Table 3. The convergence of the eigenvalue corresponding to the mean mode (arbitrarily selected) and the
rightmost wall mode and centre mode as the radial grid number N. The azimuthal slip case of lθ = ∞ for
Re = 3000, α = 0.5, n = 1 and lx = 0 is listed.
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It is easily seen that Jn(z0) > 0, therefore, we need to show that

(1 − lθ ) + lθ z0

(
2n
z0

− lθ
lθ − 1

z0

)
< 0 (B4)

or, equivalently,

z2
0 > (1 − l−1

θ )
(

2n − 1 + l−1
θ

)
, (B5)

in order to prove that gn(z0) < 0, given lθ > 1. Noticing that (1 − l−1
θ )(2n − 1 + l−1

θ ) <

2n − 1 if lθ > 1, we can prove gn(z0) < 0 if we can show that z2
0 > 2n − 1.

In § 5.3 we proved that the minimum positive root of (5.45) decreases as lθ increases,
therefore, z0 is minimized at lθ = +∞. To prove that z2

0 > 2n − 1 for any lθ > 1, we only
need to show that z2

0 > 2n − 1 holds for lθ = +∞, with which (5.45) reduces to Jn+1(z) −
zlθJn(z) = 0. That F(z, lθ ) > 0 at sufficiently small z indicates that Jn+1(z) − zJn(z) < 0
at sufficiently small z given lθ = +∞. Therefore, Jn+1(z0) − z0Jn(z0) = 0 requires that
Jn+1(z) − zJn(z) < 0, i.e. Jn+1(z) < zJn(z) for any z < z0. In fact, we can show that
Jn+1(z) < zJn(z) if 0 < z2 < 2n − 1 such that z0 has to satisfy z2

0 > 2n − 1. Using the
series form of Bessel function, Jn+1(z) < zJn(z) means

+∞∑
k=0

(−1)2

k!
1

(n + k + 1)!

( z
2

)2k+n+1
< z

+∞∑
k=0

(−1)2

k!
1

(n + k)!

( z
2

)2k+n
. (B6)

Because of the absolute convergence of the two infinite series in (B6), we only need to
show that for any positive even number k,

1
k!

1
(n + k + 1)!

( z
2

)2k+n+1 − 1
(k + 1)!

1
(n + k + 2)!

( z
2

)2k+2+n+1

<
z
k!

1
(n + k)!

( z
2

)2k+n − z
(k + 1)!

1
(n + k + 1)!

( z
2

)2k+2+n
, (B7)

if 0 < z2 < 2n − 1. Rearranging (B7), we have

z2 < 4(k + 1)(n + k + 2), (B8)

which obviously holds because z2 < 2n − 1 < 4n + 4k + 8 ≤ 4(k + 1)(n + k + 2). To
sum up, we have proved that Jn+1(z) < zJn(z) if z2 < 2n − 1, therefore, z0, which satisfies
Jn+1(z0) − z0Jn(z0) = 0, must satisfy z2

0 > 2n − 1. Consequently, (B5) and gn(z0) < 0
hold, and thus the minimum positive root of (B1) is smaller than z0, which indicates that
the minimum positive root of (5.45) increases with n, i.e. λ1 decreases with n.

Next, we prove that the minimum positive root of (5.50) also increases with n. The
equation

hn(z) = (1 + nlx)znJn(z) − lxzn+1Jn+1(z) = 0 (B9)

shares the non-zero roots with (5.50), therefore, we only need to prove the same statement
for (B9). Denoting the minimum positive zero of hn−1(z) as z0, we next show that
hn(z) monotonically increases in [0, z0] such that there is no positive root of (B9) in
[0, z0], i.e. the minimum positive root of (B9) increases with n. Using the property of
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Bessel functions, namely (zn+1Jn+1(z))′ = zn+1Jn(z), where ‘′’ denotes the derivative with
respect to z, we take the derivative of hn(z) with respect to z and obtain

h′
n(z) = (1 + nlx)znJn−1(z) − lxzn+1Jn(z) = z

(
hn−1(z) + lxzn−1Jn−1(z)

)
. (B10)

It is easy to see that hn−1(z) is positive at sufficiently small z (the derivation is similar
to that of F(z, lθ ) being positive at sufficiently small z, see (5.54a,b)), consequently,
hn−1(z) > 0 in (0, z0). As z0 is smaller than the minimum positive zero of Jn−1(z), we have
Jn−1(z) > 0 in (0, z0). Therefore, h′

n(z) > 0 in (0, z0), i.e. hn(z) monotonically increases
and there is no positive root of (B9) in (0, z0]. In other words, the minimum positive root of
hn(z) = 0 is always larger than that of hn−1(z) = 0, i.e. the minimum positive root of (5.50)
increases with n, and therefore λ2 decreases with n. Now, we reach the conclusion that
max λ = max{λ1, λ2} decreases with n for α = 0 modes because λ1 and λ2 both decrease
with n.
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