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Abstract

This article studies the expected occupancy probabilities on an alphabet. Unlike the
standard situation, where observations are assumed to be independent and identically
distributed, we assume that they follow a regime-switching Markov chain. For this
model, we (1) give finite sample bounds on the expected occupancy probabilities, and
(2) provide detailed asymptotics in the case where the underlying distribution is regu-
larly varying. We find that in the regularly varying case the finite sample bounds are rate
optimal and have, up to a constant, the same rate of decay as the asymptotic result.
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1. Introduction

Let A be a finite or countably infinite set and let X = (Xn)n≥1 be a discrete-time A-valued
stochastic process defined on some probability space (�,F , P). We refer to set A as the alpha-
bet and to elements of A as letters. These letters may represent different things in the context of
different applications. For instance, in linguistics they may represent words in some language,
while in ecology they may represent species in an ecosystem. From a general point of view, the
occupancy problem (or urn scheme) is to describe the repartition of the process (Xn)n≥1 over
the set A. In this context two quantities of interest are

Ln =
n∑

i=1

1{Xi = Xn+1} and Mn,r = P {Ln = r | X1, . . . , Xn}.

These quantities are related by the fact that

P{Ln = r} = E{Mn,r}.

In words, Ln is the number of times that the letter observed at time n + 1 had previously
been observed, and Mn,r is the probability that, given the observations up to time n, the let-
ter observed at time n + 1 will have already been seen r times. We refer to the quantities Mn,r
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as the occupancy probabilities. The quantity Mn,0 is also sometimes called the missing mass.
It corresponds to the probability of seeing a new letter at time n + 1. In certain ecological
contexts, it represents the probability of discovering a new species. While properties of Ln and
Mn,r have been thoroughly studied in the context where X1, X2, . . . are independent and identi-
cally distributed (i.i.d.) random variables, we have seen no work in the literature relating to the
case where they follow a more general stochastic process. In this paper we give such results
for a class of Markov chains that form a regime-switching model. This model expands the
scope of potential applications. Moreover, it is our hope that this paper will stimulate interest
in studying this problem in the context of other, more general, processes.

1.1. Related work

In the i.i.d. setting, the literature on the behavior of Ln, Mn,r, and related quantities is vast;
see, for instance, the classic textbook [15], the survey [11], or the recent contributions in [2, 7].
Applications include fields such as ecology [5, 9, 12, 13], genomics [17], language processing
[6], authorship attribution [8, 23, 25], information theory [1, 19], computer science [24], and
machine learning [4, 14].

We now briefly sketch several key results for the case where the random variables
X1, X2, . . . are i.i.d. with common distribution P = (pa)a∈A on A. In this case, it is readily
shown that

P{Ln = r} = E{Mn,r} =
(

n

r

)∑
a∈A

p1+r
a (1 − pa)n−r.

This expression allows for a precise asymptotic analysis. Following [16], it is understood that
the main ingredients for this analysis are given by the counting measure νP and the counting
function ν. These are defined, respectively, by

νP(du) =
∑
a∈A

δpa (du) (1)

and

ν(ε) = νP([ε, 1]) =
∑
a∈A

1{pa ≥ ε}, 0 ≤ ε ≤ 1. (2)

Next, recall that a function � : (0, +∞) →R is said to be slowly varying at +∞ if, for any
c > 0,

lim
x→+∞

�(cx)

�(x)
= 1.

In this case we write � ∈ SV . With this notation, if ν(ε) = νP([ε, 1]) = ε−α�(1/ε) for some
α ∈ (0, 1) and some � ∈ SV , then, for r ≥ 0,

E{Mn,r} ∼ α�(1 + r − α)

r! n−(1−α)�(n). (3)

This result is discussed, in greater detail, in the appendix. Non-asymptotic results are given in
[7]. The main result of that paper is as follows.
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Lemma 1.1. (Theorem 2.1 of [7].) Let P = (pa)a∈A be a probability measure on A with
counting function ν. For all n ≥ 1, all 0 ≤ r ≤ n − 1, and all 0 ≤ ε ≤ 1,

P{Ln = r} = E{Mn,r} =
(

n

r

)∑
a∈A

p1+r
a (1 − pa)n−r

≤ c(r)ν(ε)

n
+ 21+r

(
n

r

) ∫ ε

0
ν
(u

2

)
ur
(

1 − u

2

)n−r
du,

where

c(r) =
{

e−1 if r = 0,

e(1 + r)/
√

π if r ≥ 1.
(4)

1.2. Regime-switching models

A natural extension of the i.i.d. case is to a class of regime-switching Markov chains or
regime-switching models. In this context the elements in A no longer represent letters, but
entire alphabets. Each a ∈ A represents an alphabet, which we denote by {a} ×N+, where
N+ = {1, 2, . . . }. This alphabet has its own distribution Pa = (pa,k)k≥1, and we assume that
observations from each alphabet are i.i.d. with distribution Pa. However, we randomly perform
transitions between alphabets following a Markov chain with transition operator Q. Formally,
we consider a Markov chain Z = (Zn)n≥1 = (Xn, Kn)n≥1 on the product space A := A ×N+
with transition operator Q defined by

Q((a′, k′), (a, k)) = Q(a′, a)pa,k, a, a′ ∈ A, k, k′ ∈N+. (5)

We refer to (Zn)n≥1 as the regime-switching model and to (Xn)n≥1 as the underlying process.
One important situation is when |A| < ∞. In this case we can use many properties of finite

Markov chains, even though the process of interest is defined on the countably infinite state
space A. Some of our more detailed results are proved under this additional assumption. For
other results, in the interests of generality we not only allow |A| = ∞, but we remove the
assumption that the underlying process is a Markov chain. Nevertheless, our motivation comes
from the case where the transitions are Markovian and |A| < ∞. Such models can be used to
describe a variety of situations, such as:

1. (Classics) A researcher reads documents in an antique library. The documents are writ-
ten in a variety of languages (e.g. Latin, Greek, Hebrew, etc.). Assume that transitions
between documents written in different languages follow a Markov chain. Here, the
regime-switching Markov chain (Zn)n≥1 represents the sequence of ordered pairs com-
prised of the word that the researcher is currently reading and the language that the
current document is written in. In this context, the missing mass represents the proba-
bility that the next word that the researcher encounters will be one that this researcher
has not previously seen and will thus need to look up.

2. (Ecology) An ecologist is observing the animals that are found in a certain plot of a
forest. However, the forest has several states (e.g. time of day, weather, etc.), with tran-
sitions between these following a Markov chain. To understand the differences in the
distribution of species found under different states, the ecologist keeps track of both the
species of the observed animal and the state of the forest.
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3. (Computer science) A server periodically enters a state where there is a serious hacking
attempt. Assume that transitions into and out of this state follow a Markov chain. To
understand the effect of a serious hacking attempt on the number of packets that arrive,
a researcher keeps track of the number of packets that arrive in time increments of, say,
five minutes, along with the state of the server in that time period.

4. (Economics) An economy can be in one of several states, e.g. growth, recession, infla-
tion, etc. One can model transitions between these states using a Markov chain. To
understand the effect of the state of the economy on some economic indicator (e.g. the
number of bank failures in a week), an economist keeps track of both the indicator and
the state of the economy.

1.3. Organization

The main goal of this paper is to extend the results given in (3) and Lemma 1.1 from the i.i.d.
case to the regime-switching model. We begin by giving results for a simple class of Markov
chains, which will drive this model. Toward this end we introduce a useful technical result in
Section 2, and then in Section 3 we consider the case of an ergodic Markov chain on a finite
state space. In Section 4 we formally define the regime-switching model and give extensions
of Lemma 1.1. In the interests of generality, most results in this section do not assume that
transitions between alphabets are Markovian. However, this assumption is needed for the more
detailed results. Then, in Section 5 we extend (3) to the case of the regime-switching model.
Proofs are postposed to Section 6. A brief review of basic properties of regularly varying
distributions on an alphabet is given in the appendix.

1.4. Notation

Before proceeding, we set up some notation. We write 1{·} to denote the indicator function
of event {·}. For a set A, we write |A| to denote the cardinality of A. For real numbers a, b ∈R,
we write a ∨ b or max{a, b} to denote the maximum of a and b, and we write a ∧ b or min{a, b}
to denote the minimum of a and b. For two sequences g(n) and h(n) we write g(n) ∼ h(n) to
mean g(n)/h(n) → 1 as n → ∞. We write �(x) = ∫∞

0 ux−1e−udu for x > 0 to denote the gamma
function.

2. Preliminaries

In this section we introduce a technical result that will be useful later. Toward this end,
fix a finite or countably infinite set A, a Markov transition operator Q on A, and a probability
measure μ on A. Let X = (Xn)n≥1 be an A-valued random process defined on some probability
space (�,F , Pμ) such that X is a Q-Markov chain with initial distribution μ. We write Eμ to
denote the expectation under Pμ. We write Qt to denote the t-step transition operator of the
Markov chain. For all integers n ≥ 1 and a ∈ A, we set

Ln(a) :=
n∑

i=1

1{Xi = a}

to be the local time of Markov chain X in state a, and we set

Ln :=
n∑

i=1

1{Xi = Xn+1} = Ln(Xn+1)

to denote the number of times that the state visited at time n + 1 had been visited up to time n.
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We now give a result that connects the distribution of Ln with that of the local times of
the reversed chain. We assume that the Q-Markov chain (Xn)n≥1 is irreducible, aperiodic, pos-
itive recurrent, and has stationary distribution π = (πa)a∈A. We denote by X̂ = (X̂n)n≥1 the
associated reversed chain, i.e. an A-valued Markov chain with transition operator Q̂ defined by

Q̂(x, y) := π (y)Q(y, x)

π (x)
.

It is easy to check that π is also the stationary distribution of X̂ and that the t-step transition
operator of the reversed chain is given by

Q̂t(x, y) = π (y)Qt(y, x)

π (x)
. (6)

We say that the chain X is reversible when π (x)Q(x, y) = π (y)Q(y, x). In this case, Q̂ = Q
and the chains X and X̂ have the same distribution so long as they both start at the stationary
distribution. We write L̂n(a) to denote the local time of the reversed chain at a, i.e.

L̂n(a) :=
n∑

i=1

1{X̂i = a}.

Lemma 2.1. Let A be a finite or countably infinite set. Suppose X = (Xn)n≥1 is an irreducible,
aperiodic, and positive recurrent Markov chain on A with stationary distribution π and
reversed chain X̂. Let μ and η be arbitrary distributions on A. Then, for any positive function
f and all integers n ≥ 1,

Eμ

[
η(Xn+1)

π (Xn+1)
f (Ln)

]
= Eη

[
μ(X̂n+1)

π (X̂n+1)
f (L̂n+1(X̂1) − 1)

]
,

where, on the right-hand side, it is understood that η is taken as the initial distribution of the
reversed chain, i.e. it is the distribution of X̂1.

Remark 2.1. Note, in particular, that taking μ = η = π in the above formula, and supposing
the chain to be reversible, we get that for any positive f ,

Eπ {f (Ln)} = Eπ {f (Ln+1(X1) − 1)},
so that, under Pπ , Ln has the same distribution as Ln+1(X1) − 1.

3. Finite Markov chains

In this section we provide a bound on Pμ{Ln = r} in the context of an ergodic Markov
chain on a finite state space. This result is interesting in itself, and it will be important in the
following because such models will drive our regime-switching model. Let X = (Xn)n≥1 be
an irreducible and aperiodic Markov chain with finite state space A, transition matrix Q, and
stationary distribution π = (πa)a∈A. This implies that there exists an integer t0 ≥ 1 such that

Qt0 (a, b) > 0 for all a, b ∈ A. (7)

From (6), it follows that Q̂t0 (a, b) > 0 for all a, b ∈ A. Let

� = min
a,b

Qt0 (a, b), �̂ = min
a,b

Q̂t0 (a, b), and λ = |A| min{�, �̂}, (8)
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where |A| is the cardinality of A. Note that 0 < λ ≤ 1, and, for each a ∈ A,

Qt0 (a, ·) ≥ λu( · ) and Q̂t0 (a, ·) ≥ λu( · ), (9)

where u is the uniform distribution on A. By Theorem 8 of [22], this implies that, for every
a ∈ A,

max
B⊂A

|Qn(a, B) − π (B)| ≤ (1 − λ)n/t0−1, n = 1, 2, . . . .

This result continues to hold if Q is replaced by Q̂. In this context, Theorem 2 of [10] gives the
following concentration inequality for Ln(a).

Lemma 3.1. If λ > 0 and t0 are such that (9) holds, then, for any a ∈ A, any γ > 0, and any
initial distribution μ, we have

Pμ{Ln(a) − Eπ [Ln(a)] ≥ nγ } ∨ Pμ{Ln(a) − Eπ [Ln(a)] ≤ −nγ } ≤ exp

(
− n

2

(
λγ

t0
− 2

n

)2)

for n >
2t0
λγ

.

Clearly, the above holds for both the chain X and the reversed chain X̂. Similar concentration
inequalities can be obtained by applying Corollary 2.10 and Remark 2.11 of [20]. Combining
this with Lemma 2.1 gives the following.

Proposition 3.1. For n >
2t0+rλ+λ(1−π∧)

λπ∧ and any initial distribution μ = (μa)a∈A, we have

Pμ{Ln = r} ≤ Pμ{Ln ≤ r} ≤ C exp

(
− n

2

(
λπ∧

t0
− 2 + (r + 1)λ/t0

n

)2)
,

where t0 and λ are as above, π∧ = mina∈A πa, and C = |A| ∧ maxa∈A (μa/πa).

In particular, note that when μ = π the constant C = 1. It is straightforward to check that
the asymptotic behavior of the upper bound is given by

C exp

(
− n

2

(
λπ∧

t0
− 2 + (r + 1)λ/t0

n

)2)
∼ C′ exp

(
− n

λ2π2∧
2t20

)
as n → ∞,

where C′ = C exp (t−2
0 λπ∧(2t0 + (r + 1)λ)).

Remark 3.1. It may be interesting to note that Proposition 3.1 gives a bound with exponen-
tial decay. This holds, in particular, for the special case where X1, X2, . . . are i.i.d. random
variables. In comparison, Corollary 2.1 of [7] focuses on the i.i.d. case and only gives the
bound

Pμ{Ln = r} ≤ c(r)
|A|
n

, 0 ≤ r ≤ n − 1,

where c(r) is given by (4).

The proof of Proposition 3.1 depends heavily on the assumption of a finite alphabet. While
concentration inequalities for the local times of Markov chains in the case of infinite alphabets
are well known and can be found in, e.g., [10, 20], there does not appear to be a simple way to
transform these into bounds on Pμ{Ln = r}. The issue comes from the fact that we need π∧ > 0,
but it is always zero when A is an infinite set. An interesting situation, where we are able to
deal with infinite alphabets, is the regime-switching model. This is the focus of the remainder
of this paper.
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4. The regime-switching model

This section formally introduces the regime-switching model and extends the finite-sample
bounds given in Lemma 1.1 to this case. While we are primarily interested in the case where
transitions between alphabets follow an ergodic Markov chain on a finite state space, our pre-
sentation is given in more generality. Let A be a finite or countably infinite set. For each a ∈ A,
let Pa = (pa,k)k≥1 be a probability distribution on N+. The finite-dimensional distributions of
any discrete-time stochastic process (Yn)n≥1 on A can be described by a family of conditional
distributions R = (Rn)n≥1, where R1(a) = P(Y1 = a) and, for n ≥ 2,

Rn(an | a1, a2, . . . , an−1) = P(Yn = an | Y1 = a1, Y2 = a2, . . . , Yn−1 = an−1).

In the case where P(Y1 = a1, Y2 = a2, . . . , Yn−1 = an−1) = 0, we will take Rn( · | a1,

a2, . . . , an−1) to be an arbitrary probability measure on A.
We now introduce a process on the state space A := A ×N+ defined by the family of condi-

tional distributions given by R= (Rn)n≥1, where R1 satisfies R1((a, k)) = R1(a)pa,k and, for
n ≥ 2,

Rn((an, kn) | (a1, k1), (a2, k2), . . . , (an−1, kn−1)) = Rn(an | a1, a2, . . . , an−1)pan,kn .

Now, let Z = (Zn)n≥1 be an A-valued stochastic process governed by (Rn)n≥1, and let X =
(Xn)n≥1 and K = (Kn)n≥1 denote the first and second coordinate processes of Z, i.e.

Zn = (Xn, Kn), n ≥ 1.

We will refer to the process X as the underlying process. Note, in particular, that X is A-valued,
while K takes values in N+. The next result gives a more explicit description of the dynamics
of the processes X and K.

Lemma 4.1. In the above context, the following statements hold:

(1) The finite-dimensional distributions of the process (Xn)n≥1 are determined by (Rn)n≥1.

(2) For all n ≥ 1 and for all k ≥ 1, with probability 1,

P{Kn = k | X1, . . . , Xn} = pXn,k,

where pXn,k is the random variable equal to pa,k on the event {Xn = a}.
(3) Conditionally on the variables X1, . . . , Xn, the variables K1, . . . , Kn are independent.

In particular, for all i = 1, . . . , n and all k ≥ 1, with probability 1,

P{Ki = Kn+1 | X1, . . . , Xn+1, Kn+1} = pXi,Kn+1 ,

where pXi,Kn+1 is the random variable equal to pa,k on the event {Xi = a, Kn+1 = k}.
Remark 4.1. We are motivated by the case where R = (Rn)n≥1 represents the conditional dis-
tributions of a Markov chain with transition operator Q and initial distribution η. In this case,
we have R1 = η and, for n ≥ 2,

Rn(an | a1, a2, . . . , an−1) = R2(an | an−1) = Q(an−1, an).

It follows that, in this case, R1((a1, k1)) = η(a1)pa1,k1 and, for n ≥ 2,

Rn((an, kn) | (a1, k1), (a2, k2), . . . , (an−1, kn−1)) = Q(an−1, an)pa,k,
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which is the Markov operator denoted by Q in (5). In this case, to emphasize the dependence on
the initial distibution we will write Pη for P and Eη for E. It should be noted that the subscript
refers to the initial distribution of the underlying process X and not of Z.

Our next result establishes a link between the quantities

Ln =
n∑

i=1

1{Zi = Zn+1} and Ln =
n∑

i=1

1{Xi = Xn+1}.

Lemma 4.2. For all n ≥ 1 and all 0 ≤ r ≤ n,

P{Ln = r} = E

[(
Ln

r

) +∞∑
k=1

p1+r
Xn+1,k

(1 − pXn+1,k)Ln−r
]
,

where we take
(Ln

r

)= 0 when Ln < r.

A slight modification of Lemma 4.2 brings us to the main result of this section, which
extends Lemma 1.1 from the i.i.d. case to the regime-switching case. First, we introduce some
notation. For all a ∈ A, we write ν(a, ·) to denote the counting function of Pa = (pa,k)k∈N+ ,
which is defined, for all 0 ≤ ε ≤ 1, by

ν(a, ε) =
∑
k≥1

1{pa,k ≥ ε}. (10)

Theorem 4.1. For any n ≥ 1 and any 0 ≤ r ≤ n − 1, we have

P{Ln = r} ≤ P{Ln = r} sup
a∈A

+∞∑
k=1

p1+r
a,k + inf

0≤ε≤1
{an,r(ε) + bn,r(ε)}, (11)

where

an,r(ε) = c(r) E

[
1{Ln > r}ν(Xn+1, ε)

Ln

]
,

bn,r(ε) = 21+r
∫ ε

0
ur E

[
1{Ln > r}ν

(
Xn+1,

u

2

) (Ln

r

) (
1 − u

2

)Ln−r
]

du,

and where c(r) is as in (4).

Since the formulation of Theorem 4.1 is quite general, an explicit evaluation of the coeffi-
cients an,r(ε) and bn,r(ε) can require cumbersome computations. More tractable formulas can
be provided in a number of situations. We give several examples.

Example 4.1. Consider the situation where all distributions Pa = (pa,k)k≥1 are equal to the
same distribution P = (pk)k≥1, and therefore all counting functions ν(a, ·) are equal to the
counting function ν of P. In this scenario, an elementary reordering of the terms in (11) yields
that, for any ε ∈ [0, 1],

P{Ln = r} ≤
n∑

m=r

Cr,m(ε) P{Ln = m},

where

Cr,r(ε) = Cr,r =
+∞∑
k=1

p1+r
k
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and, for 1 + r ≤ m ≤ n,

Cr,m(ε) = c(r)ν(ε)

m
+ 21+r

(
m

r

) ∫ ε

0
ur ν

(u

2

) (
1 − u

2

)m−r
du,

where c(r) is as in (4).

Example 4.2. Another favorable scenario corresponds to the case where all probabilities Pa =
(pa,k)k≥1 have support contained in {1, . . . , M} for some M < +∞ independent of a ∈ A, i.e.

pa,k = 0 for a ∈ A and k ≥ M + 1.

In this case, taking ε = 0 on the right-hand side of (11), and noticing that ν(a, 0) corresponds
to the size of the support of Pa, yields

P{Ln = r} ≤
n∑

m=r

C′
r,m P{Ln = m},

where

C′
r,r = sup

a∈A

M∑
k=1

p1+r
a,k and C′

r,m = c(r)M

m
for 1 + r ≤ m ≤ n

and where c(r) is as in (4).

We now turn to the important situation where the distribution is regularly varying. In the
i.i.d. case, the corresponding result is given in Corollary 2.2 of [7].

Proposition 4.1. Assume that, for some α ∈ [0, 1] and some non-increasing function � ∈ SV ,
we have

ν(a, ε) ≤ ε−α�(1/ε)

for all a ∈ A and all ε ∈ (0, 1]. In this case,

P{Ln = r} ≤ c1(α, r)E[1{Ln > r}L−(1−α)
n �(Ln)] + c2(α, r)P{Ln = r},

where

c1(α, r) = c(r) + 41+r

r! (1 + r)1+r−αγ

(
1 + r − α,

1

2

)
,

c2(α, r) =
{

1 r = 0,

min{1, pr+1∨ rα�(r) + r−r} r ≥ 1,

p∨ = sup{pa,k}(a,k)∈A, and γ (t, x) = ∫ x
0 ut−1e−udu is the incomplete gamma function.

Remark 4.2. Note that in the case α = 1 and r = 0, the bound in Proposition 4.1 is trivial since

it involves γ
(

0, 1
2

)
= +∞. Even in the i.i.d. case, the bounds given in [7] are not able to deal

with this case.

Remark 4.3. Note that Theorem 4.1 and Proposition 4.1 are quite general and hold no matter
what the underlying process is. However, this generality has a cost. In particular, we still need
to know quite a bit about the underlying process. In the case where the underlying process is a
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finite state space ergodic Markov chain, we can use Proposition 3.1 and related results to get
more explicit formulas.

Corollary 4.1. Assume that |A| < ∞ and that the underlying process is an aperiodic and irre-
ducible Markov chain with transition operator Q, stationary distribution π = (πa)a∈A, and
initial distribution η. Let π∧ = mina∈A πa, let t0 be as in (7), and let λ be as in (8). Assume
further that, for some α ∈ [0, 1] and some non-increasing function � ∈ SV , we have

ν(a, ε) ≤ ε−α�(1/ε), a ∈ A, ε ∈ (0, 1].

For any ε ∈ (0, π∧), if n >
2t0+rλ+λ(1−π∧)

λπ∧ ∨ 2t0+λ(1−π∧)
λ(π∧−ε) , then

Pη{Ln = r} ≤ H(n, ε),

where

H(n, ε) = c1(α, r)(nε)−(1−α)�(nε) + c2(α, r)C exp

(
− n

2

(
λπ∧

t0
− 2 + (r + 1)λ/t0

n

)2)

+ c3(α, r)C exp

(
− n

2

(
λ(π∧ − ε)

t0
− 2 + λ/t0

n

)2)
.

Here, C is as in Proposition 3.1, c1(α, r) and c2(α, r) are as in Proposition 4.1, and

c3(α, r) = c1(α, r)(r + 1)−(1−α)�(r + 1).

It may be interesting to note that for any ε ∈ (0, π∧) we have

H(n, ε) ∼ ε−(1−α)c1(α, r)n−(1−α)�(n) as n → ∞.

5. Asymptotics for the regime-switching model

In this section we extend (3) from the i.i.d. case to the case of the regime-switching model,
where the underlying process is an ergodic Markov chain on a finite state space. We first define
regular variation of P = (pa,k)(a,k)∈A×N+ . For a review of basic facts about regularly varying
distributions on N+ we refer the reader to Appendix A.

Definition 5.1. We say that P = (pa,k)(a,k)∈A×N+ is regularly varying with index α ∈ [0, 1] if
there exists an � ∈ SV and a function C : A �→ [0, ∞), which is not identically zero, such that,
for each a ∈ A,

lim
ε→0

ν(a, ε)

ε−α�(1/ε)
= C(a),

where ν is defined as in (10). In this case we write P ∈ RVα(C, �).

Remark 5.1. It is important to note that we allow C(a) = 0 for some (but not all) a ∈ A. When
C(a) = 0, it means that ν(a, ε) either does not approach infinity as ε → 0, or approaches it but at
a rate that is slower than ε−α�(1/ε). In particular, if P ∈ RVα(C, �) and ν(a1, ε) = ε−α1�1(1/ε)
for some a1 ∈ A, α1 ∈ [0, α), and �1 ∈ SV , then C(a1) = 0.

When α = 0, we additionally assume that there exists an �0 ∈ SV and a function D : A �→
[0, ∞), which is not identically zero, such that, for each a ∈ A,

lim
ε→0

∑
k≥1 pa,k1{pa,k ≤ ε}

ε�0(1/ε)
= D(a). (12)
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For simplicity of notation, for x > 0 set

hα,r(x) =

⎧⎪⎨
⎪⎩

x−1�0(x) α = 0;∫∞
x u−1�(u)du α = 1, r = 0;

x−(1−α)�(x) otherwise.

Propositions A.1 and A.2 imply that if P ∈ RVα(C, �) then

lim
n→∞

(n
r

)∑∞
k=1 pr+1

a,k (1 − pa,k)n−r

hα,r(n)
= F(a, r), (13)

where

F(a, r) =

⎧⎪⎨
⎪⎩

D(a) α = 0;

C(a) α = 1, r = 0;

C(a)α�(r+1−α)
r! otherwise.

(14)

Note that since |A| < ∞ the convergence in (13) is uniform in a. We now give the main result
for this section.

Theorem 5.1. In the context of the regime-switching model, assume that |A| < ∞ and that the
underlying process is an aperiodic and irreducible Markov chain with stationary distribution
π = (πa)a∈A and initial distribution η. Assume further that P ∈ RVα(C, �) with α ∈ [0, 1] (when
α = 0 additionally assume that (12) holds), and that � (or �0 when α = 0) is locally bounded
away from 0 and ∞ on [1, ∞). In this case, for all r ≥ 0 we have

lim
n→∞

Pη{Ln = r}
hα,r(n)

=
∑
a∈A

πα
a F(a, r)

and

lim
n→∞

Pη{Ln = r}
Eη[1{Ln > r}hα,r(Ln)]

=
∑

a∈A πα
a F(a, r)∑

a∈A πα
a

,

where F is given by (14).

This implies that for α ∈ (0, 1) we have, up to a constant, the same asymptotics as for the
upper bound in Corollary 4.1. It may be interesting to note that as part of the proof of the
theorem we show that, for any r ≥ 0,

lim
n→∞

Eη[1{Ln > r}hα,r(Ln)]

hα,r(n)
=
∑
a∈A

πα
a .

6. Proofs

6.1. Proofs for Sections 2 and 3

Proof of Lemma 2.1. Let us first prove that, for any distributions μ and η on A and any
bounded function g : An+1 →R+,

Eμ

[
η(Xn+1)

π (Xn+1)
g(X1, . . . , Xn+1)

]
= Eη

[
μ(X̂n+1)

π (X̂n+1)
g(X̂n+1, . . . , X̂1)

]
, (15)
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where, on the right-hand side, it is understood that η is taken as the initial distribution of the
reversed chain. From the definition of Q̂, we obtain

Eμ

[
η(Xn+1)

π (Xn+1)
g(X1, . . . , Xn+1)

]

=
∑

x1,...,xn+1

η(xn+1)

π (xn+1)
g(x1, . . . , xn+1)Pμ(X1 = x1, . . . , Xn+1 = xn+1)

=
∑

x1,...,xn+1

η(xn+1)

π (xn+1)
g(x1, . . . , xn+1)μ(x1)Q(x1, x2) · · · Q(xn, xn+1)

=
∑

x1,...,xn+1

η(xn+1)

π (xn+1)
g(x1, . . . , xn+1)μ(x1)

π (x2)

π (x1)
Q̂(x2, x1) · · · π (xn+1)

π (xn)
Q̂(xn+1, xn)

=
∑

x1,...,xn+1

μ(x1)

π (x1)
g(x1, . . . , xn+1)η(xn+1)Q̂(xn+1, xn) · · · Q̂(x2, x1)

=
∑

x1,...,xn+1

μ(x1)

π (x1)
g(x1, . . . , xn+1)Pη(X̂1 = xn+1, . . . , X̂n+1 = x1)

= Eη

[
μ(X̂n+1)

π (X̂n+1)
g(X̂n+1, . . . , X̂1)

]
,

which proves (15) . Then, for any positive f ,

Eμ

[
η(Xn+1)

π (Xn+1)
f (Ln)

]
= Eμ

[
η(Xn+1)

π (Xn+1)
f

( n∑
i=1

1{Xi = Xn+1}
)]

= Eη

[
μ(X̂n+1)

π (X̂n+1)
f

( n+1∑
i=2

1{X̂i = X̂1}
)]

= Eη

[
μ(X̂n+1)

π (X̂n+1)
f

( n+1∑
i=1

1{X̂i = X̂1} − 1

)]

= Eη

[
μ(X̂n+1)

π (X̂n+1)
f (L̂n+1(X̂1) − 1)

]
,

where the second line follows by applying identity (15) with

g(x1, . . . , xn+1) = f

( n∑
i=1

1{xi = xn+1}
)

.

This completes the proof. �
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Proof of Proposition 3.1. Fix r ≥ 0 and observe that the assumption on n implies that π∧ >
r
n . As a result, since Eπ Ln(a) = nπa, we deduce from Lemma 3.1 that

Pμ{Ln(a) ≤ r} = Pμ{Ln(a) − nπa ≤ −n(πa − r/n)}
≤ Pμ{Ln(a) − nπa ≤ −n(π∧ − r/n)}

≤ exp

(
− n

2

(
λπ∧

t0
− 2 + rλ/t0

n

)2)

when n > 2t0/(λ(π∧ − r/n)), which is equivalent to n > (2t0 + rλ)/(λπ∧). From here, we pro-
vide two bounds on Pμ{Ln ≤ r}, which, when combined, give the desired result. First, note
that

Pμ{Ln ≤ r} =
∑
a∈A

Pμ{Xn+1 = a, Ln ≤ r}

≤
∑
a∈A

Pμ{Ln(a) ≤ r}

≤ |A| exp

(
− n

2

(
λπ∧

t0
− 2 + rλ/t0

n

)2)
. (16)

Next, using Lemma 2.1 with f (u) = 1{u ≤ r}, it follows that

Pμ{Ln ≤ r} = Eπ

[
μ(X̂n+1)

π (X̂n+1)
1{L̂n+1(X̂1) ≤ r + 1}

]

≤ max
b∈A

μ(b)

π (b)
Pπ {L̂n+1(X̂1) ≤ r + 1}

= max
b∈A

μ(b)

π (b)

∑
a∈A

π (a)Pa{L̂n+1(a) ≤ r + 1},

where Pa is the probability measure that corresponds to the case where the initial distribution
is a point mass at a. Hence, once again using Lemma 3.1 and the fact that the stationary
distribution of the reversed chain is the same as for the original chain, it follows that

Pμ{Ln ≤ r} ≤ max
b∈A

μb

πb
exp

(
− n + 1

2

(
λπ∧

t0
− 2 + (r + 1)λ/t0

n + 1

)2)
, (17)

provided n + 1 > (2t0 + (r + 1)λ)/(λπ∧), or equivalently n > (2t0 + rλ + λ(1 − π∧))/(λπ∧).
The desired result follows by combining (16) and (17). �

6.2. Proofs for Section 4

For convenience, we sometimes denote Y1→ m = (Y1, . . . , Ym) for a given process (Yn)n≥1.
Proof of Lemma 4.1.

(1) The statement follows easily from the structure of R. Let p1 and p2 be the functions
defined, for (a, k) ∈A, by p1(a, k) = a and p2(a, k) = k. We have

P(X1 = a) =
∑
k≥1

P(Z1 = (a, k)) =
∑
k≥1

R1((a, k)) =
∑
k≥1

R1(a)pa,k = R1(a).
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Further, for any n ≥ 1 and any bounded f : A �→R,

E[ f (Xn+1) | X1→n] = E[E[ f ◦ p1(Zn+1) | Z1→n] | X1→n].

From here, the fact that

E[ f ◦ p1(Zn+1) | Z1→n] =
∑
a∈A

∑
k∈N+

Rn+1((a, k) | Z1, Z2, . . . , Zn)f ◦ p1(a, k)

=
∑
a∈A

∑
k≥1

Rn+1(a | X1, X2, . . . , Xn)pa,k f (a)

=
∑
a∈A

Rn+1(a | X1, X2, . . . , Xn) f (a)

implies that

E[ f (Xn+1) | X1→n] =
∑
a∈A

Rn+1(a | X1, X2, . . . , Xn)f (a).

In particular, taking f (a) = 1{a = a′} gives

P(Xn+1 = a′ | X1→n) = Rn+1(a′ | X1, X2, . . . , Xn),

which proves the claim.

(2) For all n ≥ 2, all kn ≥ 1, and all a1, . . . , an ∈ A satisfying P{X1 = a1, . . . , Xn = an} > 0,

P{Kn = kn | X1 = a1, . . . , Xn = an} =
∑

k1,...,kn−1

P{Zn = (an, kn), . . . , Z1 = (a1, k1)}
P{X1 = a1, . . . , Xn = an} . (18)

Using point (1) it follows that

P{X1 = a1, . . . , Xn = an} = R1(a1)R2(a2 | a1) · · · R(an | a1, a2, . . . , an−1),

and that

P{Zn = (an, kn), . . . , Z1 = (a1, k1)} =
R1(a1)R2(a2 | a1) · · · R(an | a1, a2, . . . , an−1)pa1,k1 pa2,k2 · · · pan,kn .

Combining these two identities with (18), we deduce that

P{Kn = kn | X1 = a1, . . . , Xn = an} = pan,kn

∑
k1,...,kn−1

pa1,k1pa2,k2 . . . pan−1,kn−1

= pan,kn ,

where the last identity follows from the fact that
∑

k pa,k = 1. The case where n = 1 is similar.
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(3) For any k1, . . . kn ∈N+ and any a1, . . . , an ∈ A satisfying P{X1 = a1, . . . , Xn = an} > 0,

P{K1 = k1, . . . , Kn = kn | X1 = a1, . . . , Xn = an} =
n∏

i=1

pai,ki =
n∏

i=1

P{Ki = ki | X1 = a1, . . . , Xi = ai},

where the first identity follows by arguments similar to those used in the proof of point (2) and
the second follows directly from point (2). Finally, the proof that, for i = 1, 2, . . . , n,

P {Ki = Kn+1 | X1, . . . , Xn+1, Kn+1} = pXi,Kn+1

is very similar and is omitted for brevity. �

Proof of Lemma 4.2. Fix n ≥ 1 and 0 ≤ r ≤ n. Since {Ln = r} ⊂ {Ln ≥ r}, we have

P{Ln = r} = P{Ln ≥ r,Ln = r}.
Noticing that the variable Ln is σ (X1→ n+1)-measurable by construction, we obtain

P{Ln = r} = P

{
Ln ≥ r,

n∑
i=1

1{Xi = Xn+1, Ki = Kn+1} = r

}

= E

[
1{Ln ≥ r}P

( n∑
i=1

1{Xi = Xn+1, Ki = Kn+1} = r | Kn+1, X1→ n+1

)]
.

Conditionally on Kn+1 and X1→ n+1 the variables K1, . . . , Kn are, according to point (3) of
Lemma 4.1, independent and satisfy

P{Ki = Kn+1 | X1→ n+1, Kn+1} = pXi,Kn+1 .

As a result, conditionally on Kn+1 and X1→ n+1, the variable

n∑
i=1

1{Xi = Xn+1, Ki = Kn+1}

follows a binomial distribution with parameters Ln and pXn+1,Kn+1 . Hence, we obtain

P{Ln = r} = E

[
1{Ln ≥ r}

(
Ln

r

)
pr

Xn+1,Kn+1
(1 − pXn+1,Kn+1 )Ln−r

]

= E

[
1{Ln ≥ r}

(
Ln

r

)
E
[
pr

Xn+1,Kn+1
(1 − pXn+1,Kn+1 )Ln−r | X1→ n+1

]]

= E

[
1{Ln ≥ r}

(
Ln

r

)∑
k≥1

p1+r
Xn+1,k

(1 − pXn+1,k)Ln−r
]
,

where the last line follows from point (2) of Lemma 4.1. �
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Proof of Theorem 4.1. From Lemma 4.2 it follows that

P{Ln = r} = E

[
1{Ln = r}

(
Ln

r

)∑
k≥1

p1+r
Xn+1,k

(1 − pXn+1,k)Ln−r
]

+ E

[
1{Ln > r}

(
Ln

r

)∑
k≥1

p1+r
Xn+1,k

(1 − pXn+1,k)Ln−r
]

=: A1(n) + A2(n).

Note that

A1(n) = E

[
1{Ln = r}

∑
k≥1

p1+r
Xn+1,k

]
≤ P{Ln = r} sup

a∈A

+∞∑
k=1

p1+r
a,k .

Now, using Lemma 1.1 inside the expectation yields

A2(n) ≤ E

[
1{Ln > r} inf

0≤ε≤1
{αn,r(ε) + βn,r(ε)}

]
,

where we have denoted

αn,r(ε) = c(r)ν(Xn+1, ε)

Ln
,

βn,r(ε) = 21+r
(

Ln

r

) ∫ ε

0
ν
(

Xn+1,
u

2

)
ur
(

1 − u

2

)Ln−r
du.

Finally, observing the fact that

A2(n) ≤ E

[
inf

0≤ε≤1
{1{Ln > r}αn,r(ε) + 1{Ln > r}βn,r(ε)}

]

≤ inf
0≤ε≤1

{
E
[
1{Ln > r}αn,r(ε)

]+ E
[
1{Ln > r}βn,r(ε)

]}
≤ inf

0≤ε≤1

{
an,r(ε) + bn,r(ε)

}
gives the result. �

Proof of Proposition 4.1. By Lemma 4.2, we have

P{Ln = r} = E

[
1{Ln > r}

(
Ln

r

)∑
k≥1

p1+r
Xn+1,k

(1 − pXn+1,k)Ln−r
]

+ E

[
1{Ln = r}

∑
k≥1

p1+r
Xn+1,k

]

=: E1 + E2.

Corollary 2.2 from [7] implies that

E1 ≤ c1(α, r)E[1{Ln > r}L−(α−1)
n �(Ln)].

https://doi.org/10.1017/jpr.2020.33 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.33


Regime-switching model 69

From here, the results follows in the case where r = 0 from the fact that
∑

k≥1 pXn+1,k = 1.
Now, assume that r ≥ 1. Taking ε = 1/r in (2.4) of [7] implies that

E2 ≤
(

pr+1∨ rα�(r) + r−r
)

P{Ln = r}.
On the other hand, since

∑
k≥1 p1+r

Xn+1,k
≤∑k≥1 pXn+1,k = 1, we also have

E2 ≤ P{Ln = r}.
This completes the proof. �

Proof of Corollary 4.1. Fix ε ∈ (0, π∧), let

A(n) = {r + 1 ≤ Ln < nε} and B(n) = {Ln ≥ (nε) ∨ (r + 1)},
and note that A(n) ∪ B(n) = {r + 1 ≤ Ln}. We can write

Eη

[
1{Ln > r}L−(1−α)

n �(Ln)
]
= Eη

[
1A(n)L

−(1−α)
n �(Ln)

]
+ Eη

[
1B(n)L

−(1−α)
n �(Ln)

]
= E1 + E2.

Now note that

E1 ≤ (r + 1)−(1−α)�(r + 1)Pη{r + 1 ≤ Ln < nε}
and

E2 ≤ (nε)−(1−α)�(nε)Pη{Ln ≥ nε}.
Combining this with Proposition 4.1 gives

Pη{Ln = r} ≤ inf
ε∈(0,π∧)

{
c1(α, r)(nε)−(1−α)�(nε)Pη{Ln ≥ nε} + c2(α, r)Pη{Ln = r}

+ c3(α, r)Pη{r + 1 ≤ Ln < nε}}.
From here, the result follows by applying Proposition 3.1. �

6.3. Proofs for Section 5

To prove Theorem 5.1, we begin with two technical results.

Lemma 6.1. Let (Xn)n≥1 be an irreducible and aperiodic Markov chain on a finite state
space A and with stationary distribution π = (πa)a∈A. Let π∧ = mina∈A πa and let Ln =∑n

k=1 1{Xk = Xn+1}.
1. For any β ∈R, any ε ∈ [0, π∧), any r > 0, and any initial distribution η, we have

lim
n→∞ nβPη

{
Ln

n
≤ ε

}
= 0

and
lim

n→∞ nβPη{Ln = r} = 0.
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2. If α ∈ [0, 1] and � ∈ SV , then, with probability 1,

lim
n→∞

(
L−(1−α)

n �(Ln)

n−(1−α)�(n)
− π

−(1−α)
Xn+1

)
= 0 (19)

and, for any r ≥ 0 and any initial distribution η,

lim
n→∞

Eη[1{Ln > r}L−(1−α)
n �(Ln)]

n−(1−α)�(n)
=
∑
a∈A

πα
a .

Proof. The first part follows immediately from the exponential bound in Proposition 3.1.

We now turn to the second part. For ease of notation, set h(x) = x−(1−α)�(x). Since the
Markov chain is irreducible and aperiodic on a finite state space, it is recurrent and hence
limn→∞ Ln = ∞ with probability 1. Further, it satisfies the strong law of large numbers, which
means that for each a ∈ A, if Ln(a) =∑n

k=1 1{Xk = a} then limn→∞ Ln(a)/n = πa with proba-
bility 1. Since A is a finite set, with probability 1, this convergence can be taken to be uniform
in a. Let �0 ⊂ � with Pη(�0) = 1, such that for any ω ∈ �0 we have limn→∞ Ln(ω) = ∞ and
for any ε > 0 there exists an N′

ε(ω) such that if n ≥ N′
ε(ω) then

∣∣∣∣Ln(ω)

n
− πXn+1(ω)

∣∣∣∣< ε.

Now fix ε > 0 and ω ∈ �0. There exists an Nε(ω) > 0 such that if n ≥ Nε(ω) then∣∣∣Ln(ω)
n − πXn+1(ω)

∣∣∣< 0.5π∧ and

∣∣∣∣∣π−(1−α)
Xn+1(ω) −

(
Ln(ω)

n

)−(1−α)
∣∣∣∣∣< ε/2.

Further, by the uniform convergence theorem for regularly varying functions, see e.g.
Proposition 2.4 of [21], there is a Tε such that, for any x ∈ (0.5π∧, 1] and any t ≥ Tε ,

∣∣∣∣h(xt)

h(t)
− x−(1−α)

∣∣∣∣< ε/2.

Since Ln
n ≤ 1, it follows that, for n ≥ max{Nε(ω), Tε},

∣∣∣∣h
(Ln(ω)

n n
)

h(n)
− π

−(1−α)
Xn+1(ω)

∣∣∣∣≤
∣∣∣∣h
(Ln(ω)

n n
)

h(n)
−
(

Ln(ω)

n

)−(1−α)∣∣∣∣
+
∣∣∣∣π−(1−α)

Xn+1(ω) −
(

Ln(ω)

n

)−(1−α)∣∣∣∣< ε,

which proves (19).
We now turn to the last part. Fix ε ∈ (0, π∧) and let

A(n) = {r + 1 ≤ Ln < nε} and B(n) = {Ln ≥ (nε) ∨ (r + 1)}.
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Note that A(n) ∪ B(n) = {r + 1 ≤ Ln}. We can write

Eη[1{Ln > r}L−(1−α)
n �(Ln)]

n−(1−α)�(n)

= Eη[1A(n)L
−(1−α)
n �(Ln)]

n−(1−α)�(n)
+ Eη[1B(n)L

−(1−α)
n �(Ln)]

n−(1−α)�(n)

=: EA(n) + EB(n).

Fix δ > 0; by the Potter bounds (see, e.g., Theorem 1.5.6 of [3]), there exists a Kδ > 0 such that

EA(n) ≤ KδEη

[
1A(n)

(
Ln

n

)−(1−α)−δ]
≤ KδPη(A(n))n1−α+δ → 0,

where the convergence follows by the first part of this lemma. Similarly,

1B(n)L
−(1−α)
n �(Ln)

n−(1−α)�(n)
≤Kδ1B(n)

(
Ln

n

)−(1−α)−δ

≤ Kδε
−(1−α)−δ .

Combining this with the fact that π
−(1−α)
Xn+1

is bounded means that we can use dominated
convergence to get

lim
n→∞ EB(n) = lim

n→∞ (EB(n) + Eη[π−(1−α)
Xn+1

] − Eη[π−(1−α)
Xn+1

])

= Eη

[
lim

n→∞

(
1B(n)L

−(1−α)
n �(Ln)

n−(1−α)�(n)
− π

−(1−α)
Xn+1

)]
+ lim

n→∞ Eη[π−(1−α)
Xn+1

]

= lim
n→∞ Eη[π−(1−α)

Xn+1
] = Eπ [π−(1−α)

X1
] =

∑
a∈A

πα
a ,

where the third equality follows from (19) and the fact that, with probability 1, there exists a
(random) N such that 1B(n) = 1 for all n ≥ N, and the fourth equality follows by the fact that the
distribution of Xn converges weakly to π , Skorokhod’s representation theorem, and dominated
convergence. �
Lemma 6.2. Let |A| < ∞ and let P ∈ RVα(C, �). When α = 0 assume, in addition, that (12)
holds.

1. Let (Xn)n≥1 be any sequence of A-valued random variables and let (Nn)n≥1 be a
sequence of N-valued random variables such that, with probability 1, Nn → ∞ as
n → ∞. With probability 1,

lim
n→∞

((Nn
r

)∑∞
k=1 pr+1

Xn+1,k
(1 − pXn+1,k)Nn−r

hα,r(Nn)
− F(Xn+1, r)

)
= 0.

2. Let X = (Xk)k≥1 be an irreducible and aperiodic Markov chain with state space
A and stationary distribution π = (πa)a∈A. If Ln =∑n

k=1 1{Xk = Xn+1}, then, with
probability 1,

lim
n→∞

((Ln
r

)∑∞
k=1 p1+r

Xn+1,k
(1 − pXn+1,k)Ln−r

hα,r(n)
− π

−(1−α)
Xn+1

F(Xn+1, r)

)
= 0.
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Note that in the first part the sequences (Xn) and (Nn) may be dependent or independent.

Proof. We begin with the first part. Let �0 ∈F be a set with P(�0) = 1 such that, for any
ω ∈ �0, Nn(ω) → ∞. Fix ε > 0 and ω ∈ �0. Since (13) holds uniformly in a, it follows that
there is an Mε > 0 such that for all m ≥ Mε and all n ≥ 1 we have∣∣∣∣∣

(m
r

)∑∞
k=1 pr+1

Xn+1(ω),k(1 − pXn+1(ω),k)m−r

hα,r(m)
− F(Xn+1(ω), r)

∣∣∣∣∣< ε.

Now let M′
ε(ω) > 0 be a number such that if n ≥ M′

ε(ω) then Nn(ω) ≥ Mε . For all such n, the
above holds with Nn(ω) in place of m. From here, the first part follows.

For the second part, we have(Ln
r

)∑∞
k=1 p1+r

Xn+1,k
(1 − pXn+1,k)Ln−r

hα,r(n)
− π

−(1−α)
Xn+1

F(Xn+1, r)

=
(

hα,r(Ln)

hα,r(n)
− π

−(1−α)
Xn+1

)((Ln
r

)∑∞
k=1 p1+r

Xn+1,k
(1 − pXn+1,k)Ln−r

hα,r(Ln)
− F(Xn+1, r)

)

+ π
−(1−α)
Xn+1

((Ln
r

)∑∞
k=1 p1+r

Xn+1,k
(1 − pXn+1,k)Ln−r

hα,r(Ln)
− F(Xn+1, r)

)

+ F(Xn+1, r)

(
hα,r(Ln)

hα,r(n)
− π

−(1−α)
Xn+1

)
.

Since the Markov chain X is irreducible on a finite state space, all of its states are recurrent
and hence limn→∞ Ln = ∞ with probability 1. Thus, by the first part of this lemma, the fact
that maxa∈A F(a, r) < ∞, and the fact that π

−(1−α)
Xn+1

≤ (mina πa)
−(1−α), it suffices to show that,

with probability 1,

lim
n→∞

(
hα,r(Ln)

hα,r(n)
− π

−(1−α)
Xn+1

)
= 0,

which holds by Lemma 6.1. �
Proof of Theorem 5.1. Note that, by Lemma 4.2,

Pη{Ln = r} = Eη

[
1{Ln > r}

(
Ln

r

)∑
k≥1

p1+r
Xn+1,k

(1 − pXn+1,k)Ln−r
]

+ Eη

[
1{Ln = r}

∑
k≥1

p1+r
Xn+1,k

]
=: E1 + E2.

We begin with E2. Since
∑

k≥1 p1+r
Xn+1,k

≤∑k≥1 pXn+1,k = 1, it follows that

E2

hα,r(n)
=

Eη

[
1{Ln = r}∑k≥1 p1+r

Xn+1,k

]
hα,r(n)

≤ Pη{Ln = r}
hα,r(n)

→ 0,

where the convergence follows by Lemma 6.1. We next turn to E1. Note that (13), the fact
that |A| < ∞, and the fact that hα,r is locally bounded imply that there is a constant K′ > 0
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depending only on r with(Ln
r

)∑
k≥1 p1+r

Xn+1,k
(1 − pXn+1,k)Ln−r

hα,r(n)
≤ K′ hα,r(Ln)

hα,r(n)

≤ HδK′
(

Ln

n

)−(1−α)−δ

for any δ > 0 and some Hδ > 1. Here, the second inequality follows by the Potter bounds; see,
e.g., Theorem 1.5.6 of [3]. For simplicity, set Kδ = K′Hδ . Fix ε ∈ (0, π∧) and let

A(n) = {r + 1 ≤ Ln < nε} and B(n) = {Ln ≥ (nε) ∨ (r + 1)}.
Note that A(n) ∪ B(n) = {r + 1 ≤ Ln}. We can write

E1 = Eη

[
1A(n)

(
Ln

r

)∑
k≥1

p1+r
Xn+1,k

(1 − pXn+1,k)Ln−r
]

+ Eη

[
1B(n)

(
Ln

r

)∑
k≥1

p1+r
Xn+1,k

(1 − pXn+1,k)Ln−r
]

=: E1A + E1B.

By Lemma 6.1, we have

E1A

hα,r(n)
≤ KδEη

[
1A(n)

(
Ln

n

)−(1−α)−δ ]
≤ KδPη(A(n))n1−α+δ → 0.

Similarly,

1B(n)
(Ln

r

)∑
k≥1 p1+r

Xn+1,k
(1 − pXn+1,k)Ln−r

hα,r(n)
≤ Kδ1B(n)

(
Ln

n

)−(1−α)−δ

≤ Kδε
−(1−α)−δ .

Combining this with the fact that π
−(1−α)
Xn+1

F(Xn+1, r) is bounded for fixed r means that we can
use dominated convergence to get

lim
n→∞

E1B

hα,r(n)
= Eη

[
lim

n→∞

(
1B(n)

(Ln
r

)∑
k≥1 p1+r

Xn+1,k
(1 − pXn+1,k)Ln−r

hα,r(n)

− π
−(1−α)
Xn+1

F(Xn+1, r)

)]

+ lim
n→∞ Eη[π−(1−α)

Xn+1
F(Xn+1, r)]

= lim
n→∞ Eη[π−(1−α)

Xn+1
F(Xn+1, r)] = Eπ [π−(1−α)

X1
F(X1, r)] =

∑
a∈A

πα
a F(a, r),

where the second equality follows from Lemma 6.2 and the fact that, with probability 1, there
exists a (random) N such that 1B(n) = 1 for all n ≥ N. The third equality follows from the fact
that the distribution of Xn converges weakly to π , Skorokhod’s representation theorem, and
dominated convergence. This gives the first part of Theorem 5.1. The second part follows from
the first and Lemma 6.1. �
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Appendix A. Regular variation

In this appendix we briefly review several basic facts about regularly varying distribu-
tions on N+. First, we recall that for a probability measure P = (pk)k∈N+ on N+, the counting
measure νP is defined by (1) and the counting function ν is defined by (2).

Definition A.1. A probability distribution P = (pk)k≥1 with counting function ν is said to be
regularly varying, with exponent α ∈ [0, 1], if

lim
ε→0

ν(ε)

ε−α�(1/ε)
= 1

for some � ∈ SV . In this case, we write P ∈ RVα(�).
To motivate this definition, we recall the following fact from [11]. For α ∈ (0, 1), we have

P ∈ RVα(�) if and only if pk = k−1/α�∗(k) for some �∗ ∈ SV , which is, in general, different
from �. When α = 0, a sufficient condition for P ∈ RVα(�) is that there exists an �0 ∈ SV with

∫
[0,ε]

xνP(dx) =
∑
k≥1

pk1{pk ≤ ε} ∼ ε�0(1/ε) as ε → 0. (20)

In this case, we necessarily have

�(x) ∼
∫ x

1
u−1�0(u)du as x → ∞

and �0(x)/�(x) → 0 as x → ∞; see Proposition 15 of [11]. We will generally assume that (20)
holds in this case.

Proposition A.1. Let P = (pk)k≥1 ∈ RVα(�). If α ∈ (0, 1) then, for all r ≥ 0,

lim
n→∞

(n
r

)∑∞
k=1 pr+1

k (1 − pk)n−r

nα−1�(n)
= α�(r + 1 − α)

r! . (21)

If α = 0 and (20) holds then, for every r ≥ 0,

lim
n→∞

(n
r

)∑∞
k=1 pr+1

k (1 − pk)n−r

n−1�0(n)
= 1.

If α = 1 then for every r ≥ 1 the result in (21) holds. If α = 1 and r = 0 then

lim
n→∞

∑∞
k=1 pk(1 − pk)n

�1(n)
= 1,

where �1(x) = ∫∞
x u−1�(u)du for x > 1 is a function with �1 ∈ SV and �(x)/�1(x) → 0

as x → ∞.

Proof. For α ∈ (0, 1) this is Proposition 7 of [18]. For α = 1 the result follows by combining
Proposition 18 of [11] with Lemma 2 of [14]. Similarly, for α = 0 the result follows by com-
bining Proposition 19 of [11] with Lemma 2 of [14]. The facts about �1 are given in Proposition
14 of [11]. �
Proposition A.2. Fix α ∈ [0, 1] and � ∈ SV . When α �= 0 assume that

lim
ε→0

ν(ε)

ε−α�(1/ε)
= 0,
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and when α = 0 assume that

lim
ε→0

∫
[0,ε] xνP(dx)

ε�(1/ε)
= 0.

If α ∈ [0, 1) then, for all r ≥ 0,

lim
n→∞

(n
r

)∑∞
k=1 pr+1

k (1 − pk)n−r

nα−1�(n)
= 0. (22)

If α = 1 then for all r ≥ 1 the result in (22) holds. If α = 1 and r = 0 then

lim
n→∞

∑∞
k=1 pk(1 − pk)n

�1(n)
= 0,

where �1(x) is derived from � as in Proposition A.1.

Proof. Let q = r + 1, let ν
q
P(dx) = xqνP(dx), let �q(n) = nq

q!
∑∞

k=1 pq
ke−npk , and note that

�q(n) = nq

q!
∫ 1

0
e−nxν

q
P(dx).

A standard application of Fubini’s theorem gives

ν
q
P([0, s]) =

∫
[0,s]

xqνP(dx) = q
∫ s

0
uq−1ν(u)du − sqνP((s, 1]).

Fix δ > 0. For α �= 0, the assumptions imply that for small enough s we have ν(s) ≤ δs−α�(1/s).
It follows that for α ∈ (0, 1) or α = 1 and q ≥ 2 we have

lim
s→0+

ν
q
P([0, s])

sq−α�(1/s)
= lim

s→0+
q
∫ s

0 uq−1ν(u)du

sq−α�(1/s)
≤ δ lim

s→0+
q
∫ s

0 uq−1−α�(1/u)du

sq−α�(1/s)

= δ lim
s→0+

q
∫∞

1/s u−(q+1−α)�(u)du

sq−α�(1/s)
= q

q − α
δ,

where the last equality follows by Karamata’s theorem (Proposition 1.5.10 in [3]). Hence,

lim
s→0+

ν
q
P([0, s])

sq−α�(1/s)
= 0.

Similarly, when α = 1 and q = 1 we have

lim
s→0+

ν1
P([0, s])

�1(1/s)
= lim

s→0+

∫ s
0 ν(u)du

�1(1/s)
≤ δ lim

s→0+

∫ s
0 u−1�(1/u)du

�1(1/s)

= δ lim
s→0+

∫∞
1/s u−1�(u)du

�1(1/s)
= δ lim

s→0+
�1(1/s)

�1(1/s)
= δ,

and hence

lim
s→0+

ν1
P([0, s])

�1(1/s)
= 0.
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When α = 0 we have

ν
q
P([0, s]) =

∫
[0,s]

xq−1ν1
P(dx) ≤ sq−1ν1([0, s]),

and hence

lim
s→0+

ν
q
P([0, s])

sq�(1/s)
≤ lim

s→0+
sq−1ν1

P([0, s])

sq�(1/s)
= lim

s→0+
ν1

P([0, s])

s�(1/s)
= 0.

From here a version of Karamata’s Tauberian theorem (Theorem 1.7.1′ in [3]) implies that for
α ∈ [0, 1) or α = 1 and q ≥ 2,

lim
n→∞

�q(n)

nα�(n)
=
∫ 1

0 e−nxν
q
P(dx)

q!nα−q�(n)
= 0

and that the corresponding result holds for the case α = 1 and q = 1. From here, since (n +
1)α−1�(n + 1) ∼ nα−1�(n) and �1(n + 1) ∼ �1(n), we can use Lemma 2 of [14] to complete the
result. �
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