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We are concerned with the solvability of nonlinear second-order elliptic partial
differential equations with nonlinear boundary conditions. We study the generalized
Steklov–Robin eigenproblem (with possibly singular weights) in which the spectral
parameter is both in the differential equation and on the boundary. We prove the
existence of solutions for nonlinear problems when both nonlinearities in the
differential equation and on the boundary interact, in some sense, with the
generalized spectrum. The proofs are based on variational methods and a priori
estimates.

1. Introduction

We are concerned with the existence of (weak) solutions to the following nonlinear
elliptic boundary-value problem:

−∆u + c(x)u = f(x, u) in Ω,

∂u

∂ν
+ σ(x)u = g(x, u) on ∂Ω,

⎫⎬
⎭ (1.1)

where the nonlinear reaction-function f(x, u) and the nonlinearity on the boundary
g(x, u) interact, in some sense, with the generalized Steklov–Robin spectrum of the
following linear problem (with possibly singular (m, ρ)-weights)

−∆u + c(x)u = µm(x)u in Ω,

∂u

∂ν
+ σ(x)u = µρ(x)u on ∂Ω.

⎫⎬
⎭ (1.2)

Unlike previous results in the literature, what sets our results apart is that we com-
pare both the reaction nonlinearity f in the differential and the boundary nonlin-
earity g with higher eigenvalues of the spectrum of problem (1.2), which we describe
herein (for the first time, to the best of our knowledge), where the spectral parame-
ter is both in the differential equation and on the boundary (with weights). Several
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138 N. Mavinga

works have been devoted to the study of the solvability of the elliptic boundary-
value problem (1.1) and (1.2). We refer the interested reader to [1,2,4,8,9,11,12,18]
and the references therein.

Concerning the eigenproblem (1.2), results have been obtained by many authors.
We mention the paper by Steklov [23], who initiated the problem (with m ≡ 0)
on a disc in 1902, then Bandle [3] and Auchmuty [2] extended Steklov’s results to
higher dimensions. We refer also to Amann [1] who discussed only the existence of
the first eigenvalue of the spectrum for this problem under somewhat strong regu-
larity conditions on the data. We shall show the existence of the entire generalized
Steklov–Robin spectrum for problem (1.2). This spectrum includes the Steklov,
Neumann and Robin spectra. The present approach differs from that carried out
in [1,2]. The arguments in [2] involved maximization of the boundary functional on
bounded closed convex subsets of H1(Ω). In [1], the techniques used the theory of
positive operators (Krein–Rutman theorem), which, of course, does not apply when
trying to obtain higher eigenvalues. Here we use the minimization of the (energy)
functional on an appropriate subspace of H1(Ω), which is derived herein. We also
discuss some properties of the spectrum, such as the principality of the least posi-
tive eigenvalue of this problem, which was not treated in [2]. Our results generalize
those recently obtained in [2], where only the case in which m ≡ 0 and ρ �≡ 0 was
discussed, and the principality of the first eigenvalue was not treated. Moreover,
they extend to the existence of higher eigenvalues a result obtained in [1], where
only the existence of the first eigenvalue is discussed.

Concerning the nonlinear problem (1.1), there are some (scattered) existence
results in the literature; we refer the reader to [1,17] and references therein. To the
best of our knowledge, little work has been carried out on this problem, especially
in the framework of the generalized Steklov–Robin spectrum that we describe here.
A few results on a disc (n = 2) were obtained in the case of the Steklov spectrum
by Cushing [6] and Klingelhöfer [13]. (The results in [13] were significantly gen-
eralized to higher dimensions in [1] in the framework of sub- and super-solutions
method as aforementioned.) We also refer to Klingelhöfer [14], where monotonicity
methods were used for nonlinearities near the first eigenvalue. Recently, Nkashama
and Mavinga [17] proved the non-resonance results for problem (1.1) in which the
nonlinearities interact, in some sense, only with either the Steklov or the Neu-
mann spectrum. It is our purpose in this paper to prove the existence results for
problem (1.1) in which both nonlinearities in the differential equation and on the
boundary interact, in some sense, with the generalized Steklov–Robin spectrum.
Of particular interest are the non-resonance results below the first (generalized)
Steklov–Robin eigenvalue as well as between two consecutive (generalized) Steklov–
Robin eigenvalues.

This paper is organized as follows. Section 2 is devoted to the generalized Steklov–
Robin eigenproblem (1.2). In § 3 the existence results for the nonlinear problem (1.1)
are stated. These results are proved in § 4. We conclude the paper with some remarks
that show (among other things) how our results can be extended to problems with
variable coefficients.

Throughout the paper we will assume that Ω is a bounded domain in R
n, n � 2,

with boundary ∂Ω of class C0,1, ∂/∂ν is the (unit) outward normal derivative on
∂Ω. Note that the eigenproblem (1.2) includes as special cases the weighted Steklov
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eigenproblem (when m ≡ 0 and ρ �≡ 0) that was considered in [2, 3, 23] as well as
the weighted Robin–Neumann eigenproblem (when ρ ≡ 0 and m �≡ 0); the latter
is also referred to in the literature as the Neumann or regular oblique derivative
boundary condition (see, for example, [1, 7, 16] and the references therein).

By a weak solution of equation (1.1), we mean a function u ∈ H1(Ω) such that∫
∇u∇v +

∫
c(x)uv +

∮
σ(x)uv =

∫
f(x, u)v +

∮
g(x, u)v for all v ∈ H1(Ω).

(1.3)
Throughout this paper, H1(Ω) denotes the usual real Sobolev space of functions
on Ω endowed with the (c, σ)-inner product defined as

(u, v)(c,σ) =
∫

∇u∇v +
∫

c(x)uv +
∮

σ(x)uv (1.4)

with the associated norm denoted by ‖u‖(c,σ). This norm is equivalent to the stan-
dard H1(Ω)-norm.

The functions c : Ω → R, σ : ∂Ω → R, f : Ω̄ × R → R and g : Ω̄ × R → R satisfy
the following conditions.

(C1) c ∈ Lp(Ω) with p � 1
2n when n � 3 (p > 1 when n = 2) and σ ∈ Lq(∂Ω)

with q � n − 1 when n � 3 (q > 1 when n = 2) with (c, σ) > 0; that is,

c(x) � 0 almost everywhere (a.e.) on Ω

and

σ(x) � 0 a.e. on ∂Ω such that
∫

c(x) dx +
∮

σ(x) dx > 0,

where, throughout this paper,
∫

denotes the (volume) integral on Ω and
∮

denotes the (surface) integral on ∂Ω.

(C2) f ∈ C(Ω̄ × R) and g ∈ C(Ω̄ × R).

(C3) There exist constants a1, a2 > 0 such that

|g(x, u)| � a1 + a2|u|s with 0 � s <
n

n − 2
.

(C3′) There exist constants b1, b2 > 0 such that

|f(x, u)| � b1 + b2|u|s with 0 � s <
n + 2
n − 2

.

2. Generalized Steklov–Robin eigenproblems

In this section we will first study the generalized spectrum that will be used for
the comparison with the nonlinearities in equation (1.1). This spectrum includes
the Steklov, Neumann and Robin spectra. We therefore generalize the results in
[1–3,23].
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Consider the linear problem

−∆u + c(x)u = µm(x)u in Ω,

∂u

∂ν
+ σ(x)u = µρ(x)u on ∂Ω,

⎫⎬
⎭ (2.1)

where (m, ρ) ∈ Lp(Ω) × Lq(∂Ω) with p � 1
2n and q � n − 1 when n � 3 (p, q > 1

when n = 2) and (m, ρ) > 0; that is,

m(x) � 0 a.e. on Ω,

ρ(x) � 0 a.e. on ∂Ω such that
∫

m(x) dx +
∮

ρ(x) dx > 0.

⎫⎪⎬
⎪⎭ (2.2)

(We stress the fact that the weight functions m and ρ may vanish on subsets of
positive measure.)

The (generalized) Steklov–Robin eigenproblem is to find a pair (µ, ϕ) ∈ R ×
H1(Ω) with ϕ �≡ 0 such that

∫
∇ϕ∇v +

∫
c(x)ϕv +

∮
σ(x)ϕv

= µ

( ∫
m(x)ϕv +

∮
ρ(x)ϕv

)
for all v ∈ H1(Ω). (2.3)

Picking v = ϕ, we see that, if there is such an eigenpair, then

µ > 0 and
∫

m(x)ϕ2 +
∮

ρ(x)ϕ2 > 0.

(Otherwise, ϕ would be a constant function; which would contradict the assump-
tions imposed on c(x) and σ(x). Note that if c ≡ 0 and σ ≡ 0, then µ = 0 is
an eigenvalue of equation (2.1) with eigenfunction ϕ ≡ 1 on Ω.) It is therefore
appropriate to consider the closed linear subspace of H1(Ω) defined by

V(m,ρ)(Ω) :=
{

u ∈ H1(Ω) :
∫

m(x)u2 +
∮

ρ(x)u2 = 0
}

, (2.4)

and to look for the eigenfunctions associated with equation (2.1) in the (c, σ)-
orthogonal complement [V(m,ρ)(Ω)]⊥ = H1

(m,ρ)(Ω) of this subspace in H1(Ω). Note
that if we set Ω(m) := {x ∈ Ω : m(x) > 0} and ∂Ω(ρ) := {x ∈ ∂Ω : ρ(x) > 0},
then

V(m,ρ)(Ω) = {u ∈ H1(Ω) : u = 0 a.e. in Ω(m) and Γu = 0 a.e. in ∂Ω(ρ)},

where Γu denotes the trace of u on ∂Ω. Observe that if m ≡ 0 in Ω and ρ(x) > 0
a.e. on ∂Ω, then the subspace V(m,ρ)(Ω) reduces simply to H1

0 (Ω), whereas, for
m(x) > 0 a.e. in Ω and ρ ≡ 0 on ∂Ω, V(m,ρ)(Ω) reduces to the trivial set {0}.
Thus, one can split the Hilbert space H1(Ω) as a direct (c, σ)-orthogonal sum in
the following way:

H1(Ω) = V(m,ρ)(Ω) ⊕ H1
(m,ρ)(Ω). (2.5)
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Note also that if (µ, ϕ) ∈ R × H1(Ω) is an eigenpair, then it follows from the
definition of V(m,ρ)(Ω) that∫

∇ϕ∇v +
∫

c(x)ϕv +
∮

σ(x)ϕv = 0 for all v ∈ V(m,ρ)(Ω);

that is, ϕ ∈ H1
(m,ρ)(Ω).

Besides the Sobolev space H1(Ω), we shall make use in what follows of the real
Lebesgue spaces Lq(∂Ω) for 1 � q � ∞, and of the continuity and compactness of
the trace operator

Γ : H1(Ω) → Lq(∂Ω) for 1 � q <
2(n − 1)
n − 2

(see, for example, [15, 19] and the references therein). Sometimes we will just use
u in place of Γu when considering the trace of a function on ∂Ω. Throughout this
paper we denote the L2(∂Ω)-inner product by (u, v)∂ =

∮
uv and the associated

norm by ‖u‖∂ . We also set

(u, v)(m,ρ) :=
∫

m(x)uv +
∮

ρ(x)uv and ‖u‖2
(m,ρ) :=

∫
m(x)u2 +

∮
ρ(x)u2

for u, v ∈ H1(Ω).
Using the Hölder inequality, the continuity of the trace operator, the Sobolev

embedding theorem and the lower semicontinuity of ‖ · ‖(c,σ), we deduce that ‖·‖(c,σ)
(see, for example, (1.4)) is equivalent to the standard H1(Ω)-norm. This observation
enables us to prove the existence of an unbounded and discrete spectrum for the
Steklov–Robin eigenproblem (2.1), and discuss some of its properties.

Theorem 2.1. Assume that c, σ satisfy condition (C1) and that (m, ρ) ∈ Lp(Ω) ×
Lq(∂Ω) with (m, ρ) > 0 (see (2.2)). Then we have the following.

(i) The Steklov–Robin eigenproblem (2.1) has a sequence of real eigenvalues

0 < µ1 < µ2 � · · · � µj � · · · → ∞ as j → ∞, (2.6)

each eigenvalue has a finite-dimensional eigenspace.

(ii) The eigenfunctions ϕj corresponding to the eigenvalues µj form an (c, σ)-
orthogonal and (m, ρ)-orthonormal family in H1

(m,ρ)(Ω) (a closed linear sub-
space of H1(Ω)).

(iii) The normalized eigenfunctions provide a complete (c, σ)-orthonormal basis of
H1

(m,ρ)(Ω). Moreover, each function u ∈ H1
(m,ρ)(Ω) has a unique representa-

tion of the form

u =
∞∑

j=1

cjϕj with cj :=
1
µj

(u, ϕj)(c,σ) = (u, ϕj)(m,ρ),

‖u‖2
(c,σ) =

∞∑
j=1

µj |cj |2.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.7)
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In addition,

‖u‖2
(m,ρ) =

∞∑
j=1

|cj |2. (2.8)

Proof. 1. We wish to prove the existence of a sequence of real eigenvalues {µj} and
the eigenfunctions ϕj corresponding to the eigenvalues µj that form an orthogonal
family in H1

(m,ρ)(Ω).
Let us define the functionals

P (u) =
∫

|∇u|2 +
∫

c(x)u2 +
∮

σ(x)u2,

Q(u) =
∫

m(x)u2 +
∮

ρ(x)u2 − 1

⎫⎪⎪⎬
⎪⎪⎭ (2.9)

for u ∈ H1(Ω). P and Q are C1-functional with

P ′(u)v = 2
[ ∫

∇u∇v +
∫

c(x)uv +
∮

σ(x)uv

]
,

Q′(u)v = 2
[ ∫

m(x)uv +
∮

ρ(x)uv

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.10)

for u, v ∈ H1(Ω). Now we shall prove that P attains its minimum on the con-
straint set W = {u ∈ H1

(m,ρ)(Ω) : Q(u) = 0}. Let η = infu∈W P (u). Then, using the
continuity of the trace operator, the Sobolev embedding theorem and the lower
semicontinuity of ‖ · ‖(c,σ), one can show that there exists ϕ1 such that P (ϕ1) = η.
Hence, P attains its minimum at ϕ1 and ϕ1 satisfies the Euler–Lagrange equation∫

∇ϕ1∇v +
∫

c(x)ϕ1v +
∮

σ(x)ϕ1v = µ1

( ∫
m(x)ϕ1v +

∮
ρ(x)ϕ1v

)
(2.11)

for the Lagrange multiplier µ1 and for all v ∈ H1(Ω). We see that (µ1, ϕ1) satisfies
(2.3) and ϕ1 ∈ H1

(m,ρ)(Ω). If we take v = ϕ1 in (2.11), we obtain that the eigenvalue
µ1 is the infimum η = P (ϕ1) = µ1. This means that we could define µ1 by the
Rayleigh quotient

µ1 = inf
u∈H1

u �=0

‖u‖2
(c,σ)∫

m(x)u2 +
∮

ρ(x)u2 . (2.12)

Clearly, µ1 = P (ϕ1) � 0. In fact, if P (ϕ1) = 0, then |∇ϕ1| = 0 on Ω, hence ϕ1
must be a constant that contradicts the assumptions imposed on c(x) and σ(x).
Thus, µ1 > 0.

Now we shall prove the existence of higher eigenvalues. Define

W1 = {u ∈ H1
(m,ρ)(Ω) : (u, ϕ1)(m,ρ) = 0}.

Since W1 is the nullspace of the continuous functional (·, ϕ1)(m,ρ) on H1
(m,ρ)(Ω), W1

is a closed subspace of H1
(m,ρ)(Ω), and it is therefore a Hilbert space itself under

the same inner product (·, ·)(c,σ). We can now define

µ2 = inf{P (u) : u ∈ W1 and ‖u‖(m,ρ) = 1} = inf
u∈W1
u �=0

‖u‖2
(c,σ)∫

m(x)u2 +
∮

ρ(x)u2 , (2.13)
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since W1 ⊂ W , one has µ1 � µ2. Moreover, we can repeat the above arguments to
show that µ2 is achieved at some ϕ2 ∈ H1

(m,ρ)(Ω).
Proceeding inductively, we let

Wj = {u ∈ H1
(m,ρ)(Ω) : (u, ϕi)(m,ρ) = 0 for i = 1, . . . , j}

and

µj+1 = inf{P (u) : u ∈ Wj and ‖u‖(m,ρ) = 1} = inf
u∈Wj

u �=0

‖u‖2
(c,σ)∫

m(x)u2 +
∮

ρ(x)u2 .

(2.14)
In this way, we generate a sequence of eigenvalues

0 < µ1 � µ2 � · · · � µj � · · · (2.15)

whose associated ϕj are (c, σ)-orthogonal and (m, ρ)-orthonormal in H1
(m,ρ)(Ω).

2. We wish to prove that µj → ∞ as j → ∞ and each eigenvalue µj has a finite-
dimensional eigenspace. Suppose by contradiction that the sequence µj is bounded
above by a constant. Therefore, the corresponding sequence of eigenfunctions ϕj is
bounded in H1(Ω). By the Rellich–Kondrachov theorem and the compactness of
the trace operator, there is a Cauchy subsequence (which we again denote by ϕj)
such that

‖ϕj − ϕk‖2
(m,ρ) → 0. (2.16)

Since the ϕj are (m, ρ)-orthonormal, we get that

‖ϕj−ϕk‖2
(m,ρ) = ‖ϕj‖2

(m,ρ)+‖ϕk‖2
(m,ρ) = 2 > 0 if j �= k, which contradicts (2.16).

Thus, µj must tend to ∞. As a consequence of µj → ∞, we have that each µj

occurs only finitely many times.

3. We wish to prove that the normalized eigenfunctions provide a complete orthonor-
mal basis of H1

(m,ρ)(Ω). Let ψj = 1/
√

µjϕj , so that ‖ψj‖(c,σ) = 1. We shall prove
that the sequence {ψj} is a maximal (c, σ)-orthonormal family of H1

(m,ρ)(Ω). Sup-
pose by contradiction that the sequence {ψj} is not maximal. Then there exists a
ξ ∈ H1

(m,ρ)(Ω) such that ‖ξ‖(c,σ) = 1 and (ξ, ψj)(c,σ) = 0. Therefore, (ξ, ψj)(m,ρ) =
0. We have that ξ ∈ Wj for all j � 1. It follows from the definition of µj in (2.14)
that

µj

( ∫
m(x)ξ2 +

∮
ρ(x)ξ2

)
� ‖ξ‖2

(c,σ) = 1 for all j � 1.

Since µj → ∞, we get that ‖ξ‖(m,ρ) = 0. Hence, ξ = 0, which contradicts the
definition of ξ. Thus, the sequence {ψj} provides a complete orthonormal basis of
H1

(m,ρ)(Ω); that is, for any u ∈ H1
(m,ρ)(Ω),

u =
∞∑

j=1

αjψj with αj = (u, ψj)(c,σ),

‖u‖2
(c,σ) =

∞∑
j=1

|αj |2.
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Therefore,

u =
∞∑

j=1

cjϕj and ‖u‖2
(c,σ) =

∞∑
j=1

µj |cj |2 (2.17)

with

cj =
1

µj(u, ϕj)(c,σ)
= (u, ϕj)(m,ρ).

Now we shall show that

‖u‖2
(m,ρ) =

∞∑
j=1

|cj |2.

Indeed, from the characterization of µ1 in (2.12) and (2.17), we have that

‖u −
k∑

j=1

cjϕj‖2
(m,ρ) → 0 as k → ∞.

Then, by the continuity of ‖ · ‖(m,ρ) and the (m, ρ)-orthonormality of ϕj , we get
that

‖u‖2
(m,ρ) =

∞∑
j=1

|cj |2.

The proof is complete.

The following result gives a variational characterization of the eigenvalues and a
splitting of the space H1

(m,ρ)(Ω) (and, hence, of H1(Ω)) which will be needed in
the proofs of the results on nonlinear problems.

Corollary 2.2. Assume that c and σ satisfy condition (C1) and (m, ρ) ∈ Lp(Ω)×
Lq(∂Ω) with (m, ρ) > 0 (see (2.2)). Then we have the following.

(i) For all u ∈ H1(Ω),

µ1

( ∫
m(x)u2 +

∮
ρ(x)u2

)
�

∫
|∇u|2 +

∫
c(x)u2 +

∮
σ(x)u2, (2.18)

where µ1 > 0 is the least Steklov–Robin eigenvalue for equation (2.1). If equal-
ity holds in (2.18), then u is a multiple of an eigenfunction of equation (2.1)
corresponding to µ1.

(ii) For every v ∈
⊕

i�j E(µi), and w ∈
⊕

i�j+1 E(µi), we have that

‖v‖2
(c,σ) � µj‖v‖2

(m,ρ) and ‖w‖2
(c,σ) � µj+1‖w‖2

(m,ρ), (2.19)

where E(µi) is the µi-eigenspace and
⊕

i�j E(µi) is the span of eigenfunctions
associated to eigenvalues up to µj.
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Proof. If u = 0, then the inequality (2.18) holds. Otherwise, if 0 �= u ∈ H1(Ω),
then u = u1 + u2, where u1 ∈ H1

(m,ρ) and u2 ∈ V(m,ρ). Therefore, by the (c, σ)-
orthogonality, and the characterization of µ1 in (2.12), we get that

‖u1‖2
(c,σ) + ‖u2‖2

(c,σ) � µ1

( ∫
m(x)u2

1 +
∮

ρ(x)u2
1 +

∫
m(x)u2

2 +
∮

ρ(x)u2
2

)

= µ1

( ∫
m(x)u2 +

∮
ρ(x)u2

)
.

Thus, the inequality (2.18) holds. The inequalities (2.19) follow from (2.6)–(2.8).

The following proposition shows the principality of the first eigenvalue µ1.

Proposition 2.3. The first eigenvalue µ1 is simple, and its associated eigenfunc-
tion ϕ1 is strictly positive (or strictly negative) in Ω.

Proof. We first show that ϕ1 does not change sign in Ω. Indeed, suppose it does,
and let ϕ+

1 = max{ϕ1, 0} and ϕ−
1 = min{ϕ1, 0}, we know that ϕ+

1 and ϕ−
1 ∈ H1(Ω)

(see [10]).
By the characterization of µ1 it follows that (ϕ1, ϕ1)(c,σ) = µ1(ϕ1, ϕ1)(m,ρ).
Therefore,

0 � (ϕ+
1 , ϕ+

1 )(c,σ) + (ϕ−
1 , ϕ−

1 )(c,σ)

− µ1(ϕ+
1 , ϕ+

1 )(m,ρ) − µ1(ϕ−
1 , ϕ−

1 )(m,ρ)

= (ϕ1, ϕ1)(c,σ) − µ1(ϕ1, ϕ1)(m,ρ)

= 0.

It follows immediately that ϕ+
1 and ϕ−

1 are also eigenfunctions corresponding
to µ1. From [5, 22] we get that ϕ+

1 > 0 a.e. in Ω and ϕ−
1 < 0 a.e. in Ω, which is

impossible. Thus, ϕ1 does not change sign in Ω.
Next, we claim that µ1 is simple if and only if ϕ1 does not changes sign. Indeed,

if ϕ1 changes sign, then ϕ+
1 and ϕ−

1 are also eigenfunctions corresponding to µ1 and
they are linearly independent. Hence, µ1 is not simple. On the other hand, suppose
that µ1 is not simple and let ϕ and ψ be two eigenfunctions corresponding to µ1;
they are linearly independent. If ϕ or ψ changes sign, then the claim is proved.
Otherwise, supposing without loss of generality that ϕ and ψ are positive, we will
prove that there exists a ∈ R such that the eigenfunction (corresponding to µ1)
ϕ + aψ changes sign. Indeed, suppose that, for all α ∈ R, ϕ + αψ does not change.
Let the function h : R → R be defined by

h(α) =
∫

ϕ + α

∫
ψ.

Since h is continuous, there exists a ∈ R such that

h(a) =
∫

ϕ + a

∫
ψ = 0.

Hence, ϕ = −aψ, which contradicts the fact that ϕ and ψ are linearly independent.
Thus, ϕ + aψ changes sign. The proof is complete.
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Remark 2.4. Note that if we have smooth data and ∂Ω ∈ C2 in proposition 2.3,
then the eigenfunction ϕ1(x) > 0 on ∂Ω as well, by the boundary point lemma (see,
for example, [10]).

3. Non-resonance problems

In this section we take up the nonlinear problem (1.1). We obtain the existence
results, which consist of non-resonance with respect to the first Steklov–Robin eigen-
value, and then subsequently with respect to two consecutive higher Steklov–Robin
eigenvalues.

Theorem 3.1 (non-resonance below the first Steklov–Robin eigenvalue).
Suppose that the assumptions (C1)–(C3′) are met. Let the potentials

F (x, u) =
∫ u

0
f(x, s) ds and G(x, u) =

∫ u

0
g(x, s) ds

be such that the following conditions hold.

(C4) There exist λ, µ ∈ R such that

lim sup
|u|→∞

2F (x, u)
u2 � λm(x) and lim sup

|u|→∞

2G(x, u)
u2 � µρ(x)

uniformly for x ∈ Ω̄, where

max(λ, µ) < µ1. (3.1)

Then, equation (1.1) has at least one solution u ∈ H1(Ω).

In the next result, we are concerned with the case of non-resonance between two
consecutive Steklov–Robin eigenvalues. We impose conditions on the asymptotic
behaviour of the nonlinearities f(x, u) and g(x, u). (These conditions imply similar
ones on the asymptotic behaviour of the potentials F (x, u) and G(x, u).)

Theorem 3.2 (non-resonance between consecutive Steklov–Robin eigenvalues).
Suppose that assumptions (C1)–(C3′) are met, and that the following conditions
hold.

(C5) There exist constants a, b, α, β ∈ R such that

αm(x) � lim inf
|u|→∞

f(x, u)
u

� lim sup
|u|→∞

f(x, u)
u

� βm(x)

and

aρ(x) � lim inf
|u|→∞

g(x, u)
u

� lim sup
|u|→∞

g(x, u)
u

� bρ(x),

uniformly for x ∈ Ω, where

µj < min(a, α) � max(b, β) < µj+1. (3.2)

Then, equation (1.1) has at least one solution u ∈ H1(Ω).
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Unlike previous results in the literature, what sets our existence results apart
here is that we compare both the nonlinearities in the differential equation and on
the boundary with higher eigenvalues of the generalized Steklov–Robin spectrum
of problem (1.2) in which the spectral parameter is both in the differential equation
and on the boundary.

4. Proofs of non-resonance theorems

Our approach to problem (1.1) is variational and uses the saddle-point theorem and
its variants proved in [21]. The functional associated with our problem (1.1) is

I(u) = 1
2

[ ∫
|∇u|2 +

∫
c(x)u2 +

∮
σ(x)u2

]
−

∫
F (x, u) −

∮
G(x, u).

It follows from assumptions (C1)–(C3′) that this functional is of class C1 in H1(Ω)
with

I ′(u)v =
∫

∇u∇v +
∫

c(x)uv +
∮

σ(x)uv

−
∫

f(x, u)v −
∮

g(x, u)v for every v ∈ H1(Ω)

(see, for example, [17] for the proofs of this claim). Clearly, the critical points of I
are precisely the (weak) solutions of equation (1.1).

Proof of theorem 3.1. Observe that condition (C4) implies that, for every ε > 0,
there is r = r(ε) > 0 such that

2G(x, u)
u2 � µρ(x) + ε and

2F (x, u)
u2 � λm(x) + ε (4.1)

for all x ∈ Ω̄ and all u ∈ R with |u| > r. Combining (4.1) with (C3) and (C3′),
there exists a constant Mε > 0 such that

G(x, u) � 1
2 (µρ(x) + ε)u2 + Mε,

F (x, u) � 1
2 (λm(x) + ε)u2 + Mε,

∀x ∈ Ω̄, ∀u ∈ R,

⎫⎪⎬
⎪⎭ (4.2)

To prove that equation (1.1) has at least one solution, it suffices, according to [21,
p. 8, theorem 2.7], to show that the functional I is bounded below and that it sat-
isfies the Palais–Smale condition (that is, any sequence {un} in H1(Ω) such that
{I(un)} is bounded, and limn→∞ I ′(un) = 0, be precompact). Under the assump-
tions of theorem 3.1, we shall prove that the functional I is coercive on H1(Ω);
that is,

I(u) → ∞ as ‖u‖(c,σ) → ∞. (4.3)

Then it will follow that I is bounded below and that it satisfies the Palais–Smale.
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From (4.2) we obtain that

I(u) � 1
2‖u‖2

(c,σ) − 1
2

∫
(λm(x) + ε)u2 − 1

2

∮
(µρ(x) + ε)u2 − C

� 1
2‖u‖2

(c,σ) − 1
2κ

[ ∫
m(x)u2 +

∮
ρ(x)u2

]
− 1

2ε

[ ∫
u2 +

∮
u2

]
− C,

where κ = max(λ, µ). Using the inequality (2.18), the Sobolev embedding of H1(Ω)
into L2(Ω), and the continuity of the trace operator from H1(Ω) into L2(∂Ω), we
have that

I(u) � 1
2

(
1 − κ

µ1
− εK

)
‖u‖2

(c,σ) − C

Since κ < µ1, it follows that 1− (κ/µ1)− εK > 0 for sufficiently small ε. Therefore,
we get that I(u) → ∞ as ‖u‖(c,σ) → ∞. Thus, I is coercive. It follows immediately
that I is bounded from below and that it satisfies the Palais–Smale condition.
From [21, theorem 2.7, chapter 2], we get that I has a critical point u ∈ H1(Ω),
that is, I ′(u) = 0. Thus, equation (1.1) has at least one solution. The proof is
complete.

Proof of theorem 3.2. Under the assumptions of theorem 3.2 we need to show that
the conditions of the saddle-point theorem are fulfilled. First we decompose the
space H1(Ω) as

H1(Ω) = W ⊕(c,σ) X, (4.4)

where

W =
⊕
i�j

E(µi), X = Y ⊕(c,σ) V(m,ρ)(Ω) with Y =
⊕

i�j+1

E(µi).

We need to prove that there exists a constant r > 0 such that

sup
∂D

I < inf
X

I, (4.5)

where D = {v ∈ W : ‖u‖(c,σ) � r}. Assuming that this is the case, and that the
Palais–Smale condition is satisfied, we deduce by the saddle-point theorem [21] that
I has a critical point. Therefore, equation (1.1) has at least one solution.

Now we shall show that the functional I|X and (−I)|W are coercive, which would
imply that (4.5) is satisfied by choosing r > 0 sufficiently large.

Observe that condition (C5) implies a similar condition on the potential G; that
is, there exist constants again called a, b, α, β ∈ R such that, for all x ∈ Ω̄,

aρ(x) � lim inf
|u|→∞

2G(x, u)
u2 � lim sup

|u|→∞

2G(x, u)
u2 � bρ(x), (4.6)

αm(x) � lim inf
|u|→∞

2F (x, u)
u2 � lim sup

|u|→∞

2F (x, u)
u2 � βm(x). (4.7)
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Combining (C3), (C3′), (4.6) and (4.7), we get that, for all ε > 0, all x ∈ Ω̄ and
all u ∈ R,

1
2 (aρ(x) − ε)u2 − C � G(x, u) � 1

2 (bρ(x) + ε)u2 + C, (4.8)

1
2 (αm(x) − ε)u2 − C � F (x, u) � 1

2 (βm(x) + ε)u2 + C, (4.9)

where C is a positive constant.
On the one hand, for every u ∈ W , we have that

I(u) � 1
2‖u‖2

(c,σ) − 1
2

∫
(αm(x) − ε)u2 − 1

2

∮
(aρ(x) − ε)u2 + C̃

� 1
2‖u‖2

(c,σ) − 1
2κ1

[ ∫
m(x)u2 +

∮
ρ(x)u2

]
+ 1

2ε

[ ∫
u2 +

∮
u2

]
+ C

� 1
2‖u‖2

(c,σ) − 1
2κ1

[ ∫
m(x)u2 +

∮
ρ(x)u2

]
+ 1

2εK‖u‖2
(c,σ) + C,

where κ1 = min(a, α). It follows from (2.19) that

I(u) � 1
2‖u‖2

(c,σ) − 1
2

κ1

µj
‖u‖2

(c,σ) + 1
2εK‖u‖2

(c,σ) + C

=
1
2

(
1 − κ1

µj
+ εK

)
‖u‖2

(c,σ) + C.

Since κ1 > µj , it follows that 1 − (κ1/µj) + εK < 0 for ε sufficiently small, and we
obtain that

I(u) → −∞ as ‖u‖(c,σ) → ∞. (4.10)

On the other hand, for every u ∈ X, it follows from (4.4) that u = v + ū, where
v ∈ V(m,ρ)(Ω) and ū ∈ Y . Taking into account the (c, σ)-orthogonality of ū and v
in H1(Ω), we have that

I(u) � 1
2‖v‖2

(c,σ) + 1
2‖ū‖2

(c,σ) − 1
2

∫
(βm(x) + ε)u2 − 1

2

∮
(bρ(x) + ε)u2 − C̃

� 1
2‖v‖2

(c,σ) + 1
2‖ū‖2

(c,σ) − 1
2κ2

[ ∫
m(x)u2 +

∮
ρ(x)u2

]
− 1

2εK‖u‖2
(c,σ) − C̃,

where κ2 = max(b, β). Since v ∈ V(m,ρ)(Ω) we have that

∫
m(x)v2 +

∮
ρ(x)v2 = 0 and

∫
m(x)vū +

∮
ρ(x)vū = 0.

Therefore,

I(u) � 1
2‖v‖2

(c,σ) + 1
2‖ū‖2

(c,σ) − 1
2κ2‖ū‖(m,ρ) − 1

2εK‖u‖2
(c,σ) − C̃.
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It follows from (2.19) that

I(u) � 1
2‖v‖2

(c,σ) +
1
2

(
1 − κ2

µj+1

)
‖ū‖(c,σ) − 1

2εK‖u‖2
(c,σ) − C̃

� 1
2

(
1 − κ2

µj+1

)
(‖ū‖(c,σ) + ‖v‖2

(c,σ)) − 1
2εK‖u‖2

(c,σ) − C̃

=
1
2

(
1 − κ2

µj+1
− εK

)
‖u‖2

(c,σ) − C̃.

Since κ2 < µj+1, it follows that 1− (κ2/µj+1)− εK > 0 for ε sufficiently small, and
we obtain that

I(u) → ∞ as ‖u‖(c,σ) → ∞. (4.11)

Therefore, I is coercive on X, ϑ = infX I(u) > −∞ is attained. Now, we take δ < ϑ.
By (4.10) there exists r > 0 such that I(u) � δ for all u ∈ W with ‖u‖(c,σ) � r.
Therefore, (4.5) holds.

It remains to prove that the functional I satisfies the Palais–Smale condition. It
suffices to show that, for any sequence {un} in H1(Ω) such that {I(un)} is bounded
and limn→∞ I ′(un) = 0, we have that {un} is bounded (see, for example, [17, 21]).

Note that condition (C5) implies that, for every ε > 0, there exists r > 0 such
that, for |u| � r,

aρ(x) − ε � g(x, u)
u

� bρ(x) + ε for all x ∈ Ω̄. (4.12)

Let us define γ̃ : Ω̄ × R → R by

γ̃(x, u) =

⎧⎪⎪⎨
⎪⎪⎩

g(x, u)
u

for |u| � r,

g(x, r) + g(x,−r)
2r2 u +

g(x, r) − g(x,−r)
2r

for |u| < r.

The function γ̃ is continuous in Ω̄ × R since g is. Moreover, by (4.12) one has

aρ(x) − ε � γ̃(x, u) � bρ(x) + ε for all u ∈ R and for all x ∈ Ω̄. (4.13)

Define h̃ : Ω̄ × R → R by

h̃(x, u) = g(x, u) − γ̃(x, u)u. (4.14)

Then it follows from the continuity of g and γ that |h̃(x, u)| � K for all (x, u) ∈
Ω̄ × R, where K > 0 is a constant.

Using a similar decomposition for the function f , we get that

h̄(x, u) = f(x, u) − γ̄(x, u)u, (4.15)

where γ̄ and h̄ satisfy

αm(x) − ε � γ̄(x, u) � βm(x) + ε and |h̄(x, u)| � K, (4.16)

for all (x, u) ∈ Ω̄ × R, where K > 0 is a constant.
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Now, let {un} ⊂ H1(Ω) be such that {I(un)} is bounded and limm→∞ I ′(un) = 0.
Since un ∈ H1(Ω), we have that un = wn + xn, where wn ∈ W and xn ∈ X with
xn = vn + yn, where vn ∈ V(m,ρ) and yn ∈ Y .

Since limn→∞ I ′(un) = 0, it follows that, for every ε > 0, there exists N > 0 such
that, for all n � N ,

sup
ϕ �=0

|I ′(un)ϕ|
‖ϕ‖(c,σ)

< ε.

Set ϕ = xn − wn for n large. Then I ′(un)(xn − wn) < ε‖xn − wn‖(c,σ). Taking into
account the (c, σ)-orthogonality of xn and wn in H1(Ω), (4.14) and (4.15), we obtain
from the definition of I ′ that

‖xn‖2
(c,σ) − ‖wn‖2

(c,σ) −
∫

γ̄(x, un)x2
n +

∫
γ̄(x, un)w2

n

−
∮

γ̃(x, un)x2
n +

∮
γ̃(x, un)w2

n

< ε(‖xn‖(c,σ) + ‖wn‖(c,σ)) +
∫

h̄(x, un)xn −
∫

h̄(x, un)wn

+
∮

h̃(x, un)xn −
∮

h̃(x, un)wn.

By using (4.13)–(4.16), the continuity of the trace operator, and the fact that
min(a, α) = κ1, max(b, β) = κ2 and xn = vn + yn with vn ∈ V(m,ρ) and yn ∈ Y , we
obtain that

‖vn‖2
(c,σ) + ‖yn‖2

(c,σ) − ‖wn‖2
(c,σ) − κ2‖yn‖2

(m,ρ) + κ1‖wn‖2
(m,ρ)

− εC(‖xn‖2
(c,σ) + ‖wn‖2

(c,σ)) < (ε + K̃)(‖xn‖(c,σ) + ‖wn‖(c,σ)).

It follows from (2.19) that

‖vn‖2
(c,σ) + ‖yn‖2

(c,σ) − ‖wn‖2
(c,σ) − κ2

1
µj+1

‖yn‖2
(c,σ) + κ1

1
µj

‖wn‖2
(c,σ)

− εC(‖xn‖2
(c,σ) + ‖wn‖2

(c,σ)) < (ε + K̃)(‖xn‖(c,σ) + ‖wn‖(c,σ)).

Therefore,

‖vn‖2
(c,σ) +

(
1 − κ2

µj+1

)
‖yn‖2

(c,σ) +
(

κ1

µj
− 1

)
‖wn‖2

(c,σ)

− εC(‖xn‖2
(c,σ) + ‖wn‖2

(c,σ)) < (ε + K̃)(‖xn‖(c,σ) + ‖wn‖(c,σ)).

Hence, for ε sufficiently small,

δ(‖xn‖2
(c,σ) + ‖wn‖2

(c,σ)) < (ε + K̃)(‖xn‖(c,σ) + ‖wn‖(c,σ)),

where δ = min{1, (κ1/µj) − 1, 1 − (κ2/µj+1)}. Therefore,

‖un‖2
c < K̃0‖un‖c,

which implies that {un} is bounded in H1(Ω). Thus, I satisfies the Palais–Smale
condition.
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Remark 4.1.

(i) Note that, in theorem 3.1, we impose conditions on the potential of the non-
linearities rather than on the nonlinearities themselves, as was the case in
previous papers. In this case, we do not require a (one-sided) linear growth
condition on f and g as was done in [1,11,13,14]. Nonlinearities may also be
superlinear at infinity. For illustration purposes, take n = 3 and consider the
nonlinearities

f(x, u) =

{
u4 + A(x) if u < 0,

−u4 + A(x) if u � 0,

g(x, u) =

{
u2 + B(x) if u < 0,

−u2 + B(x) if u � 0,

where A(x), B(x) ∈ C(Ω). We see that the nonlinearities f(x, u) and g(x, u)
satisfy conditions (C3) and (C3′), and that the potentials F (x, u) and G(x, u)
generated by f and g satisfy condition (C4).

(ii) Because of the non-resonance condition (C5), the nonlinearities considered in
theorem 3.2 are at most linear at infinity.

Remark 4.2. Our results remain valid if one replaces the functions f(x, u) and
g(x, u) with f(x, u) + A(x) and g(x, u) + B(x) respectively, where A ∈ L2(Ω) and
B ∈ L2(∂Ω).

If f(x, 0) = 0 for x ∈ Ω and g(x, 0) = 0 for x ∈ ∂Ω, then generally additional
conditions on the behaviour of the ratios f(x, u)/u and g(x, u)/u near zero are
imposed to ensure the existence of non-trivial solutions of problem (1.1) (see, for
example, [11] for the case near the first eigenvalue).

Remark 4.3. Our non-resonance results remain valid if one considers nonlinear
equations with a more general linear part (in divergence form) with variable coef-
ficients.

−
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+ c(x)u = f(x, u) in Ω,

∂u

∂ν
+ σ(x)u = g(x, u) on ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.17)

where σ ∈ L∞(∂Ω) with σ(x) � 0 a.e. on ∂Ω, and ∂/∂ν := ν · A∇ is the (unit)
outward conormal derivative. The matrix A(x) := (aij(x)) is symmetric with aij ∈
L∞(Ω) such that there is a constant γ > 0 such that, for all ξ ∈ R

n,

〈A(x)ξ, ξ〉 � γ|ξ|2 a.e. on Ω.

Remark 4.4. Note that, when c ≡ 0 and σ ≡ 0, the first (generalized) Steklov–
Robin eigenvalue µ1 = 0 with the corresponding eigenfunction constant (see, for
example, [2, 6, 20]).
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