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On a conjecture of Chen and Yui:
Resultants and discriminants
Dongxi Ye
Abstract. In [5], Chen and Yui conjectured that Gross–Zagier type formulas may also exist for
Thompson series. In this work, we verify Chen and Yui’s conjecture for the cases for Thompson series
jp(τ) for �0(p) for p prime, and equivalently establish formulas for the prime decomposition of
the resultants of two ring class polynomials associated to jp(τ) and imaginary quadratic fields and
the prime decomposition of the discriminant of a ring class polynomial associated to jp(τ) and an
imaginary quadratic field. Our method for tackling Chen and Yui’s conjecture on resultants can be
used to give a different proof to a recent result of Yang and Yin. In addition, as an implication, we
verify a conjecture recently raised by Yang, Yin, and Yu.

1 Introduction

Denote by j(τ) the well-known Klein’s modular j-invariant. The value of j(τ) at
an imaginary quadratic point of negative fundamental discriminant −d, known as
singular modulus, is one of the most important objects in algebraic number theory, as
it provides us with explicit constructions of the Hilbert class field overK = Q(

√
−d) as

well as its associated Hilbert class polynomial HK(x) (see, e.g., [7]). As a result, it helps
with characterizing the representability of primes by a binary quadratic form (see,
e.g., [7]). These very deep results have always been motivating many mathematicians
to study various properties of singular moduli. For example, in their seminal work
[9], Gross and Zagier established a remarkable formula for describing the prime
decomposition of the rational norm of the difference of two singular moduli, which
are equivalent to the resultant of two Hilbert class polynomials associated to j(τ) over
different imaginary quadratic fields, and can be equivalently reformulated as

log ∣result(HK1(x), HK2(x))∣ = ∑
[Q1]∈Qd1 /SL2(Z)

∑
[Q2]∈Qd2 /SL2(Z)

log ∣ j(τQ1) − j(τQ2)∣

= − 1
2 ∑

x∈Z
x2<d1 d2

x2≡d1 d2 (mod 4)

∑
n∣ d1 d2−x2

4

ε(n) log n,(1.1)
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where result(p(x), q(x)) denotes the resultant of polynomials p(x) and q(x), −d1
and −d2 are two coprime negative fundamental discriminants, Ki = Q(

√
−d i), Qd

denotes the set of positive definite quadratic forms aX2 + bXY + cY 2 of discriminant
−d, τQ = −b+

√
−d

2a is the unique imaginary quadratic point defined in the upper half
plane induced by the quadratic form Q = aX2 + bXY + cY 2 ∈ Qd , and for primes l
with ( d1 d2

l ) ≠ −1, ε(l) is defined by

ε(l) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(−d1

l
) if (l , d1) = 1,

(−d2

l
) if (l , d2) = 1,

(1.2)

and is extended completely multiplicatively to n. Such a formula also indicates an
upper bound, d1 d2

4 , for the prime factors of the resultant of two Hilbert class poly-
nomials associated to j(τ), and is now called the Gross–Zagier CM value formula.

In view of the resultant interpretation, Gross and Zagier also considered the
discriminant of a Hilbert class polynomial HK(x) associated to the j-invariant and
an imaginary quadratic field K = Q(√−p) with p > 3 a prime number and congruent
to 3 modulo 4, which can be regarded as the complementary case for the “rational
norm” of two singular moduli associated to imaginary quadratic points of the same
fundamental discriminant, and they showed that [9, Corollary 4.8]

log ∣disc(HK(x))∣ = 1
2 ∑

q inert
∑

1≤n≤p−1
∑

[a]∈ClK
[a]≠[OK]

Ra(n)∑
k≥1

R ( p − n
qk ) log q + hK − 1

2
log p,

(1.3)

where disc(p(x)) denotes the discriminant of a polynomial p(x),

Ra(n) = {x ∈ a ∣ N(x)
N(a) = n} and R(n) = 1

2 ∑
[a]∈ClK

Ra(n),

ClK denotes the class group of K, and hK denotes the class number of K. Note that
by the definition of Ra(n), the counting function R(n) is defaulted to be zero for n
nonintegral so that the summation over k ≥ 1 is finite. We now call such a compact
and interesting formula the Gross–Zagier discriminant formula.

On the other hand, representation-theoretically, the modular j-invariant is also
known as the Thompson series of SL2(Z), which indeed belongs to the family of
Thompson series of discrete groups of moonshine [6] (also called the Hauptmoduln
for discrete groups of moonshine in the language of modular forms). Such a fact
also inspires mathematicians in related areas to consider and investigate the values of
Thompson series of discrete groups of moonshine at imaginary quadratic points now
called singular values. For example, Chen and Yui [5] showed that the singular value
of a Thompson series jN(τ) of level N at an imaginary quadratic point of fundamental
discriminant −d generates the ring class field of conductor N over K = Q(

√
−d), and

j(τQ)’s as Q ranges over Qd(N)/�0(N) are exactly the associated Galois conjugates
over K = Q(

√
−d), where Qd(N) denotes the set of positive definite quadratic forms

aX2 + bXY + cY 2 of discriminant−d with (a, N) = 1, and thus the so-called ring class
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polynomial HK,N(x) of conductor N associated with jN(τ) and K is exactly

HK,N(x) = ∏
[Q]∈Qd(N)/�0(N)

(x − jN(τQ)) .(1.4)

At the end of [5], they equivalently computed a large number of examples of

log ∣result(HK1 ,N(x), HK2 ,N(x))∣ and log ∣disc(HK,N(x))∣,(1.5)

and conjectured that Gross–Zagier type formulas should exist for (1.5). In the present
work, we verify Chen and Yui’s conjecture for the cases for �0(p), namely for

jp(τ) = ( η(τ)
η(pτ))

24
p−1

(1.6)

for p ∈ {2, 3, 5, 7, 13}, where η(τ) is the Dedekind eta function, and establish
explicit Gross–Zagier type formulas for both log ∣result(HK1 , p(x), HK2 , p(x))∣ and
log ∣disc(HK, p(x))∣.

The first main result of this work is summarized as follows, which verifies Chen
and Yui’s conjecture on log ∣result(HK1 , p(x), HK2 , p(x))∣.

Theorem 1.1 Let p ∈ {2, 3, 5, 7, 13}. Let−d1 ,−d2 be two coprime fundamental discrim-
inants, write Ki = Q(

√
−d i), and let HKi , p(x) be defined by (1.4). In addition, denote

by hKi the class number of Ki divided by half the size of its group of units, and denote by
χd i (⋅) the quadratic character (−d i

⋅ ) associated to Ki . Also, let ε(⋅) be defined by (1.2).
Then for χd1(p) = −1 or 1, one has that

log ∣result(HK1 , p(x), HK2 , p(x))∣

= −(p − 1 − χd1(p) − χd2(p))
2 ∑

x∈Z
x2<d1 d2

x2≡d1 d2 (mod 4)

∑
n∣ d1 d2−x2

4

ε(n) log n

− (1 + χd1(p))(1 + χd2(p))(2 − χd2(p))
4 ∑

x∈Z
x2<d1 d2

x2≡d1 d2 (mod 4p)

∑
n∣ d1 d2−x2

4p

ε(n) log n

+ 3
(2p − 1 − χd1(p))(2p − 1 − χd2(p))

p − 1
hK1 hK2 log p.

Remark 1.2 Since −d1 ,−d2 are coprime, by symmetry, the case for χd1(p) = 0, i.e.,
p∣d1, is equivalent to the case for χd2(p) = 0, and that is why χd1(p) is only assumed
to be −1 or 1.

Remark 1.3 Recall that for p = 2, χd(2) = (−d
2 ) is defined to be 0, 1, or −1 depending

on whether 2∣d, −d ≡ 1 (mod 8) or −d ≡ 5 (mod 8).

In the following, we give some examples computed using Theorem 1.1. They all
match with the logarithm of the numeric given in [5, Appendix 5, p. 315], in which

https://doi.org/10.4153/S0008414X20000851 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000851


On a conjecture of Chen and Yui: Resultants and discriminants 489

Chen and Yui indeed computed

∏
[Q1]∈Qd1 (p)/�0(p)

∏
[Q2]∈Qd2 (p)/�0(p)

∣ jp(τQ1) − jp(τQ2)∣.

Example 1.4

(1) Take −d1 = −3, −d2 = −11, and p = 2 for which (−d1
p ) = (−d2

p ) = −1. Then
Theorem 1.1 yields that

log ∣result(H
Q(
√
−3),2(x), H

Q(
√
−11),2(x))∣

= −2 + 1
2

(−10 log 2) + 12 × 1
3
× 4 log 2

= log(231).

(2) Take −d1 = −3, −d2 = −7, and p = 2 for which (−d1
p ) = −1 and (−d2

p ) = 1. Then
Theorem 1.1 yields that

log ∣result(H
Q(
√
−3),2(x), H

Q(
√
−7),2(x))∣

= −2 − 1
2

(−2 log 3 − 2 log 5) + 12 × 1
3
× 2 log 2

= log(28 ⋅ 3 ⋅ 5).

(3) Take −d1 = −3, −d2 = −4, and p = 2 for which (−d1
p ) = −1 and p∣d2. Then

Theorem 1.1 yields that

log ∣result(H
Q(
√
−3),2(x), H

Q(
√
−4),2(x))∣

= −2
2
(−2 log 2 − log 3) + 6 log 2

= log(28 ⋅ 3).

(4) Take −d1 = −7, −d2 = −11, and p = 2 for which (−d1
p ) = (−d2

p ) = 1. Then
Theorem 1.1 yields that

log ∣result(H
Q(
√
−7),2(x), H

Q(
√
−11),2(x))∣

= −(2 − 1)
2

(−2 log 7 − 2 log 13 − 2 log 17 − 2 log 19) + 12 × 2 log 2

= log(224 ⋅ 7 ⋅ 13 ⋅ 17 ⋅ 19).

(5) Take −d1 = −7, −d2 = −4, and p = 2 for which (−d1
p ) = 1 and p∣d2. Then

Theorem 1.1 yields that

log ∣result(H
Q(
√
−7),2(x), H

Q(
√
−4),2(x))∣

= 0 − 2
2
(−2 log 3) + 3 × 2 × 3 × 1

2
log 2

= log(2932).
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(6) Take −d1 = −11, −d2 = −8, and p = 7 for which (−d1
p ) = −1 and (−d2

p ) = −1. Then
Theorem 1.1 yields that

log ∣result(H
Q(
√
−11),7(x), H

Q(
√
−8),7(x))∣

= −8
2
(−12 log 2 − 4 log 7 − 2 log 13) + 2 × 72 log 7

= log(2487114138).

(7) Take −d1 = −4, −d2 = −3, and p = 7 for which (−d1
p ) = −1 and (−d2

p ) = 1. Then
Theorem 1.1 yields that

log ∣result(H
Q(
√
−4),7(x), H

Q(
√
−3),7(x))∣

= −7 − 1
2

(−2 log 2 − log 3) + 12 × 1
2
× 1

3
× 7 log 7

= log(2633714).

(8) Take −d1 = −11, −d2 = −7, and p = 7 for which (−d1
p ) = −1 and p∣d2. Then

Theorem 1.1 yields that

log ∣result(H
Q(
√
−11),7(x), H

Q(
√
−7),7(x))∣

= −7
2
(−2 log 7 − 2 log 13 − 2 log 17 − 2 log 19) + 7 × 13 log 7

= log(798137177197).

(9) Take −d1 = −3, −d2 = −7, and p = 7 for which (−d1
p ) = 1 and p∣d2. Then

Theorem 1.1 yields that

log ∣result(H
Q(
√
−3),7(x), H

Q(
√
−7),7(x))∣

= −5
2
(−2 log 3 − 2 log 5) − 0 + 6 × 1

3
× 13 log 7

= log(3555726).

The following corollary follows immediately from Theorem 1.1.

Corollary 1.5 Let p ∈ {2, 3, 5, 7, 13}. Let −d1 ,−d2 be two coprime fundamental dis-
criminants, writeKi = Q(

√
−d i), and let HKi , p(x) be defined by (1.4). Then, any prime

factor of the resultant of HK1 , p(x) and HK2 , p(x) is either p or bounded by d1 d2
4 .

The second main result of the present work is stated as follows, which verifies Chen
and Yui’s conjecture on log ∣disc (HK, p(x))∣.
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Theorem 1.6 Let p ∈ {3, 5, 7, 13}. Let K = Q(
√
−d) be an imaginary quadratic field

of odd discriminant −d < −3, and let HK, p(x) be defined by (1.4). Then one has that

log ∣disc (HK, p(x))∣ = −(p − χd(p))hK

4 ∑
[a]∈ClK(p)
[a]≠[OK]

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pd−1

∑
l=0

∞
∑

X ,Y=−∞
κ(1 − d(2AX + BY p)2 + (dY p − 2Al)2

4Ad
, Bl

d
f (a)1 − 2Al

d
f (a)2 + L(a)p,−)

+ 24
p − 1 ∑

1≤k≤p−1
0≤l≤pd−1

Ck+l≡0 (mod pd)

κ (0, k f (a)2 + L(a)p,−)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where a = [A, B+
√
−d

2 ] with −d = B2 − 4AC, f (a)1 = (−1 B
0 A), f (a)2 = (0 C

1 0) , L(a)p,−

denotes the lattice Z f (a)1 +Zp f (a)2 , and κ(m, φ) is defined in Definition 6.1 and can
be explicitly computed for (p, d) = 1 via Theorem 8.1 given in Section 8.

Remark 1.7 One will see in Definition 6.1 that κ(m, φ) is defined to be 0 for m <
0. Also, it is clear that there are only finitely many integer pairs (X , Y) such that
1 − d(2AX+BY p)2+(dY p−2Al)2

4Ad ≥ 0. Therefore, the inner sum over X , Y is actually a finite
sum.

Remark 1.8 As one can see from the proof of Theorem 1.6 given in Section 7.1, the
case for p = 2 can also be treated similarly, and one can obtain that

log ∣disc (HK,2(x))∣ = −(2 − χd(2))hK

4 ∑
[a]∈ClK(2)
[a]≠[OK]

×

⎡⎢⎢⎢⎢⎢⎢⎣

d−1
∑
l=0

∞
∑

X ,Y=−∞
κ(1 − d(AX + BY)2 + (dY − Al)2

Ad
, Bl

d
f (a)1 − 2Al

d
f (a)2 + L(a)2,−)

+24 ∑
0≤l≤d−1

C+l≡0 (mod d)

κ(0, B(C + l)
d

f (a)1 − 2A(C + l) − d
d

f (a)2 + L(a)2,−)

⎤⎥⎥⎥⎥⎥⎥⎦

.

And similarly, one has to compute the local Whittaker functions related to the
finite place p = 2, whose computations can also be done with the formulas given in
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[13, Theorem 4.4]. For example, for d odd, one may show that

W2(s, m, φ−) = 1 + ∑
2≤k≤a+3

⎛
⎜
⎝
(−1)

εφ− (k)−1
2 εφ−(k)
2

⎞
⎟
⎠

× ψ2 (m2−k − 1 + d
8A

)Char(4Z2) (m23−k − 1 + d
A

) 2−ks ,

where a = ord2(m),

εφ−(k) =
⎧⎪⎪⎨⎪⎪⎩

1 if k ≥ 1 odd
d if k ≥ 2 even,

and ψ2(⋅) is the standard additive character defined on Q2.

Similar to Corollary 1.5, we obtain an upper bound for the prime factors of
the discriminant of the ring class polynomial HK, p(x) associated to jp(τ) and an
imaginary quadratic field K of odd discriminant from Theorems 1.6 and 8.1, which
also verify Chen and Yui’s another conjecture associated with jp(τ) [5, Remark 5.3 (1)].

Corollary 1.9 Let p ∈ {2, 3, 5, 7, 13}. LetK = Q(
√
−d) be an imaginary quadratic field

of odd discriminant −d < −3, and let HK, p(x) be defined by (1.4). Then l ≤ max{d , p}
for any prime l dividing disc(HK, p(x)).

As we will employ different approaches to prove Theorems 1.1 and 1.6, respectively,
in the following, we briefly discuss our methodologies for both cases. Regarding the
proof of Theorem 1.1, by (1.4), one can see that

log ∣result(HK1 ,N(x), HK2 ,N(x))∣

= 1
2 ∑
[Q1]∈Qd1 (N)/�0(N)

∑
[Q2]∈Qd2 (N)/�0(N)

log ∣ jN(τQ1) − jN(τQ2)∣2 ,

and thereby to compute the resultant on the left is equivalent to computing the double
sum on the right. For N = 1, they are exactly the central objects studied in [9] by Gross
and Zagier. In [9], Gross and Zagier gave an analytic proof to (1.1), in which they first
related the automorphic form log ∣ j(z1) − j(z2)∣2 to an automorphic Green function,
and then converted the calculations of the double sum into the computations of the
average value of the automorphic Green function over a 0-cycle of the underlying
modular surface, which could be accomplished by computing the derivative of the
Fourier coefficients of certain nonholomorphic Hilbert Eisenstein series of weight 1
via the so-called holomorphic projection.

In [10] and [18], Gross and Zagier, and the author independently established
similar relationship between log ∣ jp(z1) − jp(z2)∣2 and automorphic Green functions
for �0(p). These results indicate that one may follow Gross and Zagier’s analytic proof
to compute the associated double sum as above. As such, to prove Theorem 1.1, we
follow closely Gross and Zagier’s analytic proof together with taking advantages of
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some results of Gross, Kohnen, and Zagier, and extending a key lemma of Gross and
Zagier to the cases for �0(p).

For the proof of Theorem 1.6, similar to the cases for resultants, by (1.4), one can
see that

log ∣disc(HK,N(x))∣ = − 1
4 ∑
[Q],[Q′]∈Qd(N)/�0(N)

[Q]≠[Q′]

−2 log ∣ jN(τQ) − jN(τQ′)∣2 ,

and thus the computations of the left-hand side can be boiled down to that of the dou-
ble sum on the right. In particular, by the well-known isomorphism Qd(N)/�0(N) ≅
ClK(N) = IK(N)/PK,Z(N), where IK(N) is the multiplicative group generated by
the OK-ideals with norm prime to N, and PK,Z(N) is the subgroup of IK(N)
generated by principal OK-ideals αOK with α ≡ a (mod NOK) for some integer
a coprime to N, one can rewrite the double sum in the language of OK-ideals as

∑
[Q],[Q′]∈Qd(N)/�0(N)

[Q]≠[Q′]

log ∣ jN(τQ) − jN(τQ′)∣2 = ∑
[c],[c′]∈ClK(N)
[c]≠[c′]

log ∣ jN(τc) − jN(τc′)∣2 ,

where τc denotes the imaginary quadratic point associated to the integral ideal c =
[a, b+

√
−d

2 ], i.e., τc = b+
√
−d

2a . One will see in Section 6.3 that the ideal interpretation is
more intrinsic when we realize the index set of points as a small CM 0-cycle than the
quadratic form interpretation. For N = 1, they are the quantities that the Gross–Zagier
discriminant formula (1.3) delicately describes. The original proof of (1.3) given by
Gross and Zagier [9] relies on deep connections between the modular j-invariant and
elliptic curves. In recent work [19], the author of the present work gave a different proof
to (1.3) using the theory of Borcherds lifts. Roughly speaking, as it has been shown that
the automorphic form −2 log ∣ j(z1) − j(z2)∣2 is a Borcherds lift, the double sum can
be viewed as the average value of the associated Borcherds lift over a 0-cycle. Once we
realize the 0-cycle as a so-called small CM 0-cycle, we may compute the average value
using Schofer’s celebrated small CM value formula.

In [21], the author of the present work had shown that the automorphic forms
−2 log ∣ jp(z1) − jp(z2)∣2 are all Borcherds lifts, and these ultimately motivate us to
follow the same idea stated above to extend the Gross–Zagier discriminant formula to
the cases for jp(τ). In the proof of Theorem 1.6, we realize the index set of the double
sum as a small CM 0-cycle that allows us to apply Schofer’s small CM value formula
to the associated Borcherds lifts. After that, we explicitly compute the relevant lattices
and local Whittaker functions that will lead the formula to a concrete form.

Based on the discrepancies between these methodologies, this work is organized
as follows. Sections 2–4 are devoted to proving Theorem 1.1 and its relevant conse-
quences. We first state and prove several preliminary results, and give the proof of
Theorem 1.1 in Section 2. In Sections 3 and 4, we, respectively, show how our method
can be used to give a different proof to a recent result of Yang and Yin [16], which relies
heavily on the theory of Borcherds lifts (see, e.g., [1, 2]), and to verify a conjecture
recently raised by Yang, Yin, and Yu [17].

After Section 4, the remainder consisting of Sections 5–8 is devoted to proving
Theorem 1.6 and Corollary 1.9. We first briefly review the main concepts of the theory
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of Borcherds lifts in the adelic setting, and indicate how the discriminant of the ring
class polynomial HK, p(x) associated to the j-invariant and an imaginary quadratic
field K is related to the values of a Borcherds lift in Section 5. In Section 6, we review
Schofer’s small CM value formula [14] and derive a preliminary version of Theorem
1.6. In Sections 7 and 8, we complete the full picture of Theorem 1.6 by carrying out
the computations of relevant lattices and stating explicit formulas that can be used to
compute the quantity κ(m, φ), respectively. At the end, we conclude by computing
log ∣disc(H

Q(
√
−7),3(x))∣ using Theorem 1.6, which recovers the numeric obtained by

Chen and Yui [5, Appendix 4, p. 306].

2 Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. We first state and prove several
preliminary results that play crucial roles in the proof. The proof of Theorem 1.1 is
given at the end of the section.

The following lemma is equivalently given by Gross, Kohnen, and Zagier [8,
Proposition 2, p. 531] together with the fact that the modular curves associated to
�0(p) for p ∈ {2, 3, 5, 7, 13} are all of genus zero so that the associated spaces of weight
2 cusp forms are trivial.

Lemma 2.1 (Gross, Kohnen, and Zagier) Let p ∈ {2, 3, 5, 7, 13}. Let −d1 ,−d2 be two
coprime negative fundamental discriminants, write Ki = Q(

√
−d i), and define hKi to

be the class number ofKi divided by half the size of its group of units. Let ε(n) be defined
by (1.2). Then one has that

lim
s→1

⎛
⎜⎜⎜⎜⎜⎜
⎝

−2 ∑
n∈Z

n>
√

d1 d2
n2≡d1 d2 (mod 4)

∑
�∣ n2−d1 d2

4

ε(�)Qs−1 (
n√
d1d2

)

+ 4π (hK2 2−sd
s
2
1

ζK1(s)
ζ(2s) + hK1 2

−sd
s
2
2

ζK2(s)
ζ(2s) )

− 4πhK1 hK2 (π
1
2
�(s − 1

2 )
�(s)

ζ(2s − 1)
ζ(2s) + 6

π
)

⎞
⎟⎟⎟⎟⎟⎟
⎠

= − ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 4)

∑
n∣ d1 d2−x2

4

ε(n) log n,

where

Qs−1(t) = ∫
∞

0
(t +

√
t2 − 1 cosh v)

−s
dv
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defined for Re(s) > 0 and t > 1, ζKi (s) is the Dedekind zeta function associated to Ki ,
ζ(s) is the usual Riemann zeta function, and �(s) is the usual Gamma function.

Moreover, assume that (−d i
p ) ≠ −1, and take β i ∈ Z/2pZ such that −d i ≡ β2

i
(mod 4p). Then

lim
s→1

⎛
⎜⎜⎜⎜⎜⎜
⎝

− ∑
n∈Z

∣n∣>
√

d1 d2
n≡β1 β2 (mod 2p)

∑
�∣ n2−d1 d2

4p

ε(�)Qs−1 (
∣n∣√
d1d2

)

+ 4π
p + 1

(hK2 2−sd
s
2
1

ζK1(s)
ζ(2s) + hK1 2

−sd
s
2
2

ζK2(s)
ζ(2s) )

− 4πhK1 hK2

p + 1
(π

1
2
�(s − 1

2 )
�(s)

ζ(2s − 1)
ζ(2s) + 6

π
)

⎞
⎟⎟⎟⎟⎟⎟
⎠

= − ∑
x∈Z

x2<d1 d2
x≡β1 β2 (mod 2p)

∑
n∣ d1 d2−x2

4p

ε(n) log n + 6hK1 hK2(p − 1)
(p + 1)2 log p.

In particular, if χd1(p) = 1 and χd2(p) ≠ −1, one can rewrite the external sum on the
right-hand side using Legendre symbols to get rid of β i , and obtain

lim
s→1

⎛
⎜⎜⎜⎜⎜⎜
⎝

− ∑
n∈Z

∣n∣>
√

d1 d2
n≡β1 β2 (mod 2p)

∑
�∣ n2−d1 d2

4p

ε(�)Qs−1 (
∣n∣√
d1d2

)

+ 4π
p + 1

(hK2 2−sd
s
2
1

ζK1(s)
ζ(2s) + hK1 2

−sd
s
2
2

ζK2(s)
ζ(2s) )

− 4πhK1 hK2

p + 1
(π

1
2
�(s − 1

2 )
�(s)

ζ(2s − 1)
ζ(2s) + 6

π
)

⎞
⎟⎟⎟⎟⎟⎟
⎠

= −2 − χd2(p)
2 ∑

x∈Z
x2<d1 d2

x2≡d1 d2 (mod 4p)

∑
n∣ d1 d2−x2

4p

ε(n) log n + 6hK1 hK2(p − 1)
(p + 1)2 log p.

Proof These closely follow from [8, Proposition 2, p. 531] specialized to m = 1 and
N = p together with the fact [8, Equation (10)] that the spaces of cusp forms of weight 2
for �0(p) for p ∈ {2, 3, 5, 7, 13} are all trivial, so that a1 = 0 in [8, Proposition 2, p. 531].
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The last equality follows from simple relations between the sets

S1 ∶= {x ∈ Z ∶ x2 < d1d2 , x ≡ β1β2 (mod 2p)}

and

S2 ∶= {x ∈ Z ∶ x2 < d1d2 , x2 ≡ d1d2 (mod 4p)},

that is,

S2 =
⎧⎪⎪⎨⎪⎪⎩

S1 ⊔ (−S1) if χd2(p) = 1,
S1 if χd2(p) = 0. ∎

The next lemma can be found in [8, Corollary, p. 516].

Lemma 2.2 (Gross, Kohnen, and Zagier) Let −d1 ,−d2 be two coprime negative
fundamental discriminants, and let ε(n) be defined by (1.2). Let Qd i ,N denote the set of
positive definite quadratic forms aX2 + bXY + cY 2 of discriminant −d i with N ∣a, and
let �0(N) act simultaneously on Qd1 ,N ×Qd2 ,N . Define BΔ(Q1 , Q2) = b1b2 − 2a1c2 −
2a2c1 for Q1 = a1 X2 + b1 XY + c1Y 2 and Q2 = a2 X2 + b2 XY + c2Y 2, and denote by
t(N) the number of prime factors of N. Then the following identity holds.

1
2
∣{(Q1 , Q2) ∈ (Qd1 ,N ×Qd2 ,N) /�0(N)∣BΔ(Q1 , Q2) = −n}∣ = 2t(N) ∑

�∣ n2−d1 d2
4N

ε(�).

The following lemma can be viewed as an extension of Lemma 2.2 in the sense of
binary quadratic forms.

Lemma 2.3 Let p be a prime. Let −d1 ,−d2 be two coprime negative fundamental
discriminants, and let χd i (⋅) = (−d i

⋅ ) be the quadratic character associated toQ(
√
−d i).

Denote by Qd i (p) the set of positive definite binary quadratic forms aX2 + bXY + cY 2

of discriminant −d i with (a, p) = 1. Let BΔ(Q1 , Q2) be defined as in Lemma 2.2, and
let ρp(n) be the counting function defined by

ρp(n) = 1
2
∣{(Q1 , Q2) ∈ (Qd1(p) ×Qd2(p)) /�0(p)∣BΔ(Q1 , Q2) = −n}∣ .

Then, for χd1(p) = −1 or 1, one has that

ρp(n) = (p − 1 − χd1(p) − χd2(p)) ∑
�∣ n2−d1 d2

4

ε(�) + (1 + χd1(p)) ∑
�∣ n2−d1 d2

4p

ε(�).

Remark 2.4 As explained in Remark 1.2, the case for χd1(p) = 0 is excluded by
symmetry.

Proof Denote by Qd , p,β the set of positive definite quadratic forms aX2 + bXY +
cY 2 of discriminant −d with p∣a and b ≡ β (mod 2p). Then one first notes that for
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i ∈ {1, 2}, the set of positive definite binary quadratic forms of discriminant −d i ,

Qd i = Qd i (p) ⊔Qd i , p ,

where

Qd i , p =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∅ if χd i (p) = −1,
Qd i , p,β i ⊔Qd i , p,2p−β i if χd i (p) = 1,
Qd i , p,β i if χd i (p) = 0,

and that �0(p) acts independently on Qd i (p), Qd i , p,β i and Qd i , p,2p−β i , and thus

ρp(n) = 1
2
∣{(Q1 , Q2) ∈ (Qd1 ×Qd2) /�0(p)∣BΔ(Q1 , Q2) = −n}∣

− 1
2
∣{(Q1 , Q2) ∈ (Qd1 ×Qd2 , p) /�0(p)∣BΔ(Q1 , Q2) = −n}∣

− 1
2
∣{(Q1 , Q2) ∈ (Qd1 , p ×Qd2) /�0(p)∣BΔ(Q1 , Q2) = −n}∣

+ 1
2
∣{(Q1 , Q2) ∈ (Qd1 , p ×Qd2 , p) /�0(p)∣BΔ(Q1 , Q2) = −n}∣ .

Then clearly, the modular group SL2(Z) has a well-defined group action onQd1 ×Qd2 ,
and thus by Lemma 2.2 and the assumption that d1 , d2 are coprime, one can see that

1
2
∣{(Q1 , Q2) ∈ (Qd1 ×Qd2) /�0(p)∣BΔ(Q1 , Q2) = −n}∣

= [SL2(Z) ∶ �0(p)] 1
2
∣{(Q1 , Q2) ∈ (Qd1 ×Qd2) /SL2(Z)∣BΔ(Q1 , Q2) = −n}∣

= (p + 1) ∑
�∣ n2−d1 d2

4

ε(�).

For the quantity

1
2
∣{(Q1 , Q2) ∈ (Qd1 ×Qd2 , p) /�0(p)∣BΔ(Q1 , Q2) = −n}∣ ,

one first notes by the definition of Qd i , p that

1
2
∣{(Q1 , Q2) ∈ (Qd1 ×Qd2 , p) /�0(p)∣BΔ(Q1 , Q2) = −n}∣

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if χd2(p) = −1,
1
2
∣{(Q1 , Q2) ∈ (Qd1 ×Qd2 , p,β2) /�0(p)∣BΔ(Q1 , Q2) = −n}∣ if χd2(p) = 1,

+ 1
2
∣{(Q1 , Q2) ∈ (Qd1 ×Qd2 , p,2p−β2) /�0(p)∣BΔ(Q1 , Q2) = −n}∣

1
2
∣{(Q1 , Q2) ∈ (Qd1 ×Qd2 , p,β2) /�0(p)∣BΔ(Q1 , Q2) = −n}∣ if χd2(p) = 0.

Now by the fact (�0(p) × �0(p))/�0(p) = �0(p) × {I}, one may deduce that

https://doi.org/10.4153/S0008414X20000851 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000851


498 D. Ye

∣{(Q1 , Q2) ∈ (Qd1 ×Qd2 , p,β2) /�0(p)∣BΔ(Q1 , Q2) = −n}∣
= ∑
[Q2]∈Qd2 , p,β2 /�0(p)

∑
[Q1]∈Qd1 /�0(p)

∑
γ∈�0(p)

∣{(γ ⋅ Q1 , Q2)∣BΔ(γ ⋅ Q1 , Q2) = −n}∣

= ∑
[Q2]∈Qd2 , p,β2 /�0(p)

∑
[Q1]∈Qd1 /SL2(Z)

∑
γ∈SL2(Z)

∣{(γ ⋅ Q1 , Q2)∣BΔ(γ ⋅ Q1 , Q2) = −n}∣.

By [8, Proposition, p. 505], it is known that

Qd2 , p,β2/�0(p) ≅ Qd2/SL2(Z)

via [Q2] → [Q2]. Therefore, one can deduce that

1
2
∣{(Q1 , Q2) ∈ (Qd1 ×Qd2 , p,β2) /�0(p)∣BΔ(Q1 , Q2) = −n}∣

= 1
2 ∑
[Q2]∈Qd2 /SL2(Z)

∑
[Q1]∈Qd1 / SL2(Z)

∑
γ∈SL2(Z)

∣{(γ ⋅ Q1 , Q2)∣BΔ(γ ⋅ Q1 , Q2) = −n}∣

= 1
2
∣{(Q1 , Q2) ∈ (Qd1 ×Qd2) /SL2(Z)∣BΔ(Q1 , Q2) = −n}∣

= ∑
�∣ n2−d1 d2

4

ε(�).

Therefore, incorporating the values of χd2(p), one indeed has that

1
2
∣{(Q1 , Q2) ∈ (Qd1 ×Qd2 , p) /�0(p)∣BΔ(Q1 , Q2) = −n}∣ = (1 + χd2(p)) ∑

�∣ n2−d1 d2
4

ε(�).

Similarly, one also has that

1
2
∣{(Q1 , Q2) ∈ (Qd1 , p ×Qd2) /�0(p)∣BΔ(Q1 , Q2) = −n}∣ = (1 + χd1(p)) ∑

�∣ n2−d1 d2
4

ε(�).

Finally, by Lemma 2.2, one has that

1
2
∣{(Q1 , Q2) ∈ (Qd1 , p ×Qd2 , p) /�0(p)∣BΔ(Q1 , Q2) = −n}∣ = (1 + χd1(p)) ∑

�∣ n2−d1 d2
4p

ε(�),

and putting all of the above together, one obtains the desired formula for ρp(n). ∎

Remark 2.5 For d divisible by p, one should notice that Qd , p,β = Qd , p,2p−β since β is
either 0 or p.

The proof of the following lemma is straightforward, and is left to the reader.
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Lemma 2.6 Suppose that −d1 ≡ β2
1 (mod 4p) and −d2 ≡ β2

2 (mod 4p) for some
fixed β1 , β2 ∈ Z/2pZ. Then one has that

∑
n∈Z

n>
√

d1 d2
n2≡d1 d2 (mod 4)

∑
�∣ n2−d1 d2

4p

ε(�)Qs−1 (
n√
d1d2

)

= (1 + χd2(p))
2 ∑

n∈Z
∣n∣>
√

d1 d2
n≡β1 β2 (mod 2p)

∑
�∣ n2−d1 d2

4p

ε(�)Qs−1 (
∣n∣√
d1d2

) .

Proofs of the following lemma can be found in [10, Proposition 2.22] and [18,
Proposition 2.1] specializing φ∞,∞(s) to the cases for �0(p) by [11, p. 163].

Lemma 2.7 Let p ∈ {2, 3, 5, 7, 13}, and let jp(τ) be defined by (1.6). Let Gp(z1 , z2; s)
be the automorphic Green function associated to �0(p) defined for z1 ≠ �0(p)z2 by

Gp(z1 , z2; s) = ∑
γ∈�0(p)

gs(z1 , γ ⋅ z2),

where

gs(z1 , z2) = −2Qs−1 (1 + ∣z1 − z2∣2
2Im(z1)Im(z2)

) ,

and Qs−1(z) is defined as in Lemma 2.1. Let Ẽp(τ; s) be the weight 0 nonholomorphic
Eisenstein series associated to the cusp i∞ defined by

Ẽp(τ; s) = ∑
γ∈�∞/�0(p)

Im(γ ⋅ τ)s(2.1)

with �∞ = ⟨(1 1
0 1) ,−I⟩. Then one has that

log ∣ jp(z1) − jp(z2)∣2 = lim
s→1

(Gp(z1 , z2; s) + 4πẼp(z1; s) + 4πẼp(z2; s)

−4π
3
2
�(s − 1

2 )
�(s)

ζ(2s − 1)
ζ(2s)

p − 1
p2s − 1

− 24
p + 1

) .

Remark 2.8 Note that in [10, Proposition 2.22], the limit given on the right-hand side
is represented by the so-called Archimedean height of X0(p) ∶= �0(p)/ (H ∪ P1(Q))
which is actually the same as log ∣ jp(z1) − jp(z2)∣2 for p ∈ {2, 3, 5, 7, 13} by [10, Con-
dition (2.3), p. 237] since for such cases, jp(τ) are uniformizers for X0(p).

Proofs of the following lemmas can be found in [20, Corollaries 3.1 and 3.2],
respectively.
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Lemma 2.9 Let p be a prime, and let Ẽp(τ; s) be defined by (2.1). Let −d be a
negative fundamental discriminant, and denote by Qd(p) the set of positive definite
binary quadratic forms aX2 + bXY + cY 2 of discriminant −d with (a, p) = 1. Write
τQ = −b+

√
−d

2a for the unique imaginary quadratic point defined in the upper half plane
induced by the quadratic form Q = aX2 + bXY + cY 2. Then one has that

∑
[Q]∈Qd(p)/�0(p)

Ẽp(τQ ; s) = 2−sd
s
2
(1 − χd(p)p−s)

(1 + p−s)
ζK(s)
ζ(2s) ,

where χd(p) is quadratic character associated to K = Q(
√
−d), ζK(s) is the Dedekind

zeta function associated to K, and ζ(s) is the Riemann zeta function.

Remark 2.10 Note that in [20, Corollary 3.1] we consider

Ep(z, s) = ∑
(m ,n)≠(0,0)

1p(n)Im(z)s

∣mpz + n∣2s ,

where 1p(⋅) denotes the principal character modulo p, which is related to Ẽp(z, s) via

Ep(z, s) = 2(1 − p−2s)ζ(2s)Ẽp(z, s).

See also [20, Equation (2.1)]. This is where the denominator ζ(2s) comes from.

Lemma 2.11 Let −d be a negative fundamental discriminant, denote by Qd(p) the set
of positive definite binary quadratic forms aX2 + bXY + cY 2 of discriminant −d with
(a, p) = 1, and let χd(⋅) be the quadratic character associated to Q(

√
−d). Write K =

Q(
√
−d), and define hK to be the class number of K divided by half the size of its group

of units. Then one has that

∣Qd(p)/�0(p)∣ = (p − χd(p))hK .

Remark 2.12 Indeed it is shown in [20, Corollary 3.2] that

∣Qd(p)/�0(p)∣ = (p − χd(p)) × ∣OK(p)×∣
∣O×

K
∣ × (class number of K),

where OK and OK(p) are the maximal order and the order of index p of K,
respectively. It is clear that the product ∣OK(p)×∣

∣O×
K
∣ × (class number of K) is the same

as our weighted class number hK.

With the aid of the preliminary results stated above, we are now ready for

Proof of Theorem 1.1 First write hKi (p) for the cardinality ∣Qd i (p)/�0(p)∣. By
Lemma 2.7 and the same argument as that given in [9], one has that
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∑
[Q1]∈Qd1 (p)/�0(p)

∑
[Q2]∈Qd2 (p)/�0(p)

log ∣ jp(τQ1) − jp(τQ2)∣2

= lim
s→1

⎛
⎜⎜⎜⎜⎜⎜
⎝

−2 ∑
n∈Z

n>
√

d1 d2
n2≡d1 d2 (mod 4)

ρp(n)Qs−1 (
n√
d1d2

)

+ 4πhK2(p) ∑
[Q]∈Qd1 (p)/�0(p)

Ẽp(τQ ; s)

+ 4πhK1(p) ∑
[Q]∈Qd2 (p)/�0(p)

Ẽp(τQ ; s)

− 4hK1(p)hK2(p)π
3
2
�(s − 1

2 )
�(s)

ζ(2s − 1)
ζ(2s)

p − 1
p2s − 1

− hK1(p)hK2(p) 24
p + 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

(2.2)

By Lemmas 2.3, 2.6, 2.9, and 2.11, one can further deduce from (2.2) that

∑
[Q1]∈Qd1 (p)/�0(p)

∑
[Q2]∈Qd2 (p)/�0(p)

log ∣ jp(τQ1) − jp(τQ2)∣2

= lim
s→1

⎛
⎜⎜⎜⎜⎜⎜
⎝

(p − 1 − χd1(p) − χd2(p))

⎛
⎜⎜⎜⎜⎜⎜
⎝

−2 ∑
n∈Z

n>
√

d1 d2
n2≡d1 d2 (mod 4)

∑
�∣ n2−d1 d2

4

ε(�)Qs−1 (
n√
d1d2

)

⎞
⎟⎟⎟⎟⎟⎟
⎠

+ (1 + χd1(p))(1 + χd2(p))

⎛
⎜⎜⎜⎜⎜⎜
⎝

− ∑
n∈Z

∣n∣>
√

d1 d2
n≡β1 β2 (mod 2p)

∑
�∣ n2−d1 d2

4p

ε(�)Qs−1 (
∣n∣√
d1d2

)

⎞
⎟⎟⎟⎟⎟⎟
⎠

+ 4π(p − χd2(p))hK2 2−sd
s
2
1
(1 − χd1(p)p−s)

(1 + p−s)
ζK1(s)
ζ(2s)

+ 4π(p − χd1(p))hK1 2
−sd

s
2
2
(1 − χd2(p)p−s)

(1 + p−s)
ζK2(s)
ζ(2s)

− 4hK1 hK2 π
3
2
�(s − 1

2 )
�(s)

ζ(2s − 1)
ζ(2s)

(p − χd1(p))(p − χd2(p))(p − 1)
p2s − 1

− hK1 hK2

24(p − χd1(p))(p − χd2(p))
p + 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

(2.3)
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By the Laurent expansions of 1−χd(p)p−s

1+p−s and 1
p2s−1 at s = 1,

1 − χd(p)p−s

1 + p−s = p − χd(p)
p + 1

+ p(1 + χd(p)) log p
(p + 1)2 (s − 1) + O((s − 1)2)

and
1

p2s − 1
= 1

p2 − 1
− 2 p2 log p

(p2 − 1)2 (s − 1) + O((s − 1)2),

and Lemma 2.1, one can easily simplify (2.3) and show that

∑
[Q1]∈Qd1 (p)/�0(p)

∑
[Q2]∈Qd2 (p)/�0(p)

log ∣ jp(τQ1) − jp(τQ2)∣2

= −(p − 1 − χd1(p) − χd2(p)) ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 4)

∑
n∣ d1 d2−x2

4

ε(n) log n

− (1 + χd1(p))(1 + χd2(p))(2 − χd2(p))
2 ∑

x∈Z
x2<d1 d2

x2≡d1 d2 (mod 4p)

∑
n∣ d1 d2−x2

4p

ε(n) log n

+ 6(1 + χd1(p))(1 + χd2(p))(p − 1)hK1 hK2

(p + 1)2 log p

+ p(p − χd2(p))(1 + χd1(p)) log p
(p + 1)2 lim

s→1
(4πhK1 2

−sd
s
2
1

ζK1(s)
ζ(2s) (s − 1))

+ p(p − χd1(p))(1 + χd2(p)) log p
(p + 1)2 lim

s→1
(4πhK2 2−sd

s
2
2

ζK2(s)
ζ(2s) (s − 1))

+ 2
p2(p − χd1(p))(p − χd2(p)) log p

(p + 1)2(p − 1) lim
s→1

(4hK1 hK2 π
3
2
�(s − 1

2 )
�(s)

ζ(2s − 1)
ζ(2s) (s − 1))

= −(p − 1 − χd1(p) − χd2(p)) ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 4)

∑
n∣ d1 d2−x2

4

ε(n) log n

− (1 + χd1(p))(1 + χd2(p))(2 − χd2(p))
2 ∑

x∈Z
x2<d1 d2

x2≡d1 d2 (mod 4p)

∑
n∣ d1 d2−x2

4p

ε(n) log n

+ 6(1 + χd1(p))(1 + χd2(p))(p − 1)hK1 hK2 log p
(p + 1)2

+ 12p(p − χd2(p))(1 + χd1(p))hK1 hK2 log p
(p + 1)2

+ 12p(p − χd1(p))(1 + χd2(p))hK1 hK2 log p
(p + 1)2
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+ 2
p2(p − χd1(p))(p − χd2(p)) log p

(p + 1)2(p − 1) 12hK1 hK2

= −(p − 1 − χd1(p) − χd2(p)) ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 4)

∑
n∣ d1 d2−x2

4

ε(n) log n

− (1 + χd1(p))(1 + χd2(p))(2 − χd2(p))
2 ∑

x∈Z
x2<d1 d2

x2≡d1 d2 (mod 4p)

∑
n∣ d1 d2−x2

4p

ε(n) log n

+ 6
(2p − 1 − χd1(p))(2p − 1 − χd2(p))

p − 1
hK1 hK2 log p.

Finally, dividing both sides by 2, one obtains the desired formula. ∎

Remark 2.13 Theorem 1.1 considers the logarithm of the resultant, while in the proof
above, we evaluate the logarithm of its square, that is, twice the logarithm of the
resultant.

3 Remark I: a result of Yang and Yin

In this section, we show how to employ our method to give a different proof to a recent
result of Yang and Yin [16].

Let f (τ) be the 24th power of the Weber function defined by

f (τ) = 212 (η(2τ)
η(τ) )

24

= 212

j2(τ) .(3.1)

In [16], Yang and Yin employed the theory of Borcherds lifts and the so-called big CM
value formula [3] to prove the following theorem.

Theorem 3.1 (Yang and Yin) Let −d1 and −d2 be two coprime negative fundamental
discriminants for which χd1(2) = χd2(2) = 1, i.e., −d1 ≡ −d2 ≡ 1 (mod 8), and denote
by Qd i (2) the set of positive definite binary quadratic forms aX2 + bXY + cY 2 of
discriminant −d with (a, 2) = 1. Then one has that

∑
[Q1]∈Qd1 (2)/�0(2)

∑
[Q2]∈Qd2 (2)/�0(2)

log ∣ f (τQ1) − f (τQ2)∣2

= ∑
t= x+

√
d1 d2

2
x2≡d1 d2 (mod 16)

∑
p⊂OF

iner t in E

1 + ordp(tq−2
t )

2
ρ̃(tq−2

t p
−1) log N(p),

where F = Q(
√

d1d2), E = Q(
√
−d1 ,

√
−d2), qt is the unique prime ideal of F above 2

such that ordqt(tOF) ≥ 1, and ρ̃ is a counting function defined for integral ideals a ⊂ OF
by

ρ̃(a) = ∣{U ⊂ OE ∣NE/F(U) = a}∣ .

https://doi.org/10.4153/S0008414X20000851 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000851


504 D. Ye

It is worthwhile to remark that Yang and Yin’s method [16] may give another proof
to our Theorem 1.1, and one may find some related work and ideas in [21].

By [16, Remark 4.1], one can easily see that it is equivalent to the following
reformulation.

Theorem 3.2 Let −d1 and −d2 be two coprime negative fundamental discriminants for
which χd1(2) = χd2(2) = 1, i.e., −d1 ≡ −d2 ≡ 1 (mod 8), and denote by Qd i (2) the set
of positive definite binary quadratic forms aX2 + bXY + cY 2 of discriminant −d with
(a, 2) = 1. Let ε(n) be defined by (1.2). Then one has that

∑
[Q1]∈Qd1 (2)/�0(2)

∑
[Q2]∈Qd2 (2)/�0(2)

log ∣ f (τQ1) − f (τQ2)∣2

= − ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 16)

∑
n∣ d1 d2−x2

16

ε(n) log n.

The proof of Theorem 3.2 is similar to that of Theorem 1.1, and follows from Lemma
2.3 and the following four lemmas.

Lemma 3.3 Let G2(z1 , z2; s) be defined as in Lemma 2.7. Let Ẽ(0)2 (τ; s) be the weight
0 nonholomorphic Eisenstein series associated to the cusp 0 defined by

Ẽ(0)2 (τ; s) = ∑
γ∈�∞/σ�0(2)σ−1

Im (γσ ⋅ τ)s

with �∞ = ⟨(1 1
0 1) ,−I⟩ and σ = ( 0 −1/

√
2√

2 0 ). Then one has that

log ∣ f (z1) − f (z2)∣2 = lim
s→1

(G2(z1 , z2; s) + 4πẼ(0)2 (z1; s) + 4πẼ(0)2 (z2; s)

−4π
3
2
�(s − 1

2 )
�(s)

ζ(2s − 1)
ζ(2s)

1
22s − 1

− 8) .

Proof The proof is essentially the same as that of Lemma 2.7 given in [18]. We omit
the details. ∎

Remark 3.4 By the definition of f (τ), one can see that f (τ) has only a simple pole
at the cusp 0 of the modular curve X0(2) = �0(2)/ (H ∪ P1(Q)), and that is why we
consider the weight 0 nonholomorphic Eisenstein series associated to the cusp 0.

Lemma 3.5 Let −d be a negative fundamental discriminant, write K = Q(
√
−d), and

let Qd(2) be the set of positive definite binary quadratic forms aX2 + bXY + cY 2 of
discriminant −d with (a, 2) = 1. Then one has that

∑
[Q]∈Qd(2)/�0(2)

Ẽ(0)2 (τQ ; s) = 2−sd
s
2

ζK(s)
ζ(2s)

21−2s

1 + 2−s .
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Proof By the definition of Ẽ(0)2 (z; s) and [11, p. 47], one can easily deduce that

Ẽ(0)2 (τ; s) = 2−s ⎛
⎝

′
∑

(m ,n)=1

Im(τ)s

∣mτ + n∣2s −
′
∑

(m ,n)=1

12(n)Im(τ)s

∣m(2τ) + n∣2s
⎞
⎠

= 2−s−1 1
ζ(2s)

⎛
⎝

′
∑

m ,n∈Z

Im(τ)s

∣mτ + n∣2s −
1

1 − 2−2s

′
∑

m ,n∈Z

12(n)Im(τ)s

∣m(2τ) + n∣2s
⎞
⎠

,

where 12(⋅) denotes the principal character modulo 2. Then, by the proof of [20,
Section 3.1], one can easily see that

Ẽ(0)2 (τQ ; s)

= 2−s−1 1
ζ(2s)

⎛
⎜⎜⎜
⎝

2−s+1d
s
2 ∑

B∈[A]
inte gral

1
N(B)s −

1
1 − 2−2s 2−s+1d

s
2 ∑
b∈[aOK]
inte gral

12(N(b))
N(b)s

⎞
⎟⎟⎟
⎠

,

where A = [a, aτQ], [A] denotes the OK-ideal class associated to A, a = [a, a(2τQ)],
and [aOK] denotes the OK-ideal class of conductor 2 associated to aOK, i.e., prime-
to-2 ideal class with respect to prime-to-2 principal ideals subgroup. By the assump-
tion χd(2) = 1, one can note that hK(2) coincides with the ideal class number of K,
and thus the ideal class group of K is isomorphic to the ring class group of conductor
2 of K. Therefore, one can deduce that

∑
[Q]∈Qd(2)/�0(2)

Ẽ(0)2 (τQ ; s) = 2−2sd
s
2

1
ζ(2s)

⎛
⎝

ζK(s) − 1
1 − 2−2s ∑

B⊂OK

12(N(B))
N(B)s

⎞
⎠

= 2−2sd
s
2

1
ζ(2s) (ζK(s) − (1 − 2−s)(1 − χd(2)2−s)

1 − 2−2s ζK(s))

= 2−2sd
s
2

1
ζ(2s) (ζK(s) − (1 − 2−s)2

1 − 2−2s ζK(s))

= 2−sd
s
2

ζK(s)
ζ(2s)

21−2s

1 + 2−s

as desired. ∎

Lemma 3.6 Let ε(n) be defined by (1.2) associated with coprime negative fundamental
discriminants −d1 ,−d2 for which ε(2) = 1. Then one has that for any positive integer k
such that 4k = d1d2 − x2 for some integer x with x2 < d1d2,

∑
n∣k

n odd

ε(n) = 0.

Proof By the assumption on k and the definition of ε(⋅), one can tell that ε(k) = −1
and k is not a square as d1 and d2 are coprime, and thus one can first deduce that
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∑
n∣k

ε(n) = ∑
n∣k

n<
√

k

(ε(n) + ε ( k
n
))

= ∑
n∣k

n<
√

k

(ε(n) − ε(n))

= 0.

On the other hand, by the assumption ε(2) = 1, one can note that

∑
n∣k

ε(n) =
ord2(k)
∑
j=0

∑
2 j ∣k

∑
n∣k

n odd

ε(2 jn)

=
ord2(k)
∑
j=0

∑
2 j ∣k

∑
n∣k

n odd

ε(n)

= (ord2(k) + 1) ∑
n∣k

n odd

ε(n),

and this together with the identity above implies that

∑
n∣k

n odd

ε(n) = 0.
∎

Lemma 3.7 Let −d1 and −d2 be two coprime negative fundamental discriminants for
which χd1(2) = χd2(2) = 1, i.e., −d1 ≡ −d2 ≡ 1 (mod 8), and let ε(n) be defined by
(1.2). Then one has that

∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 4)

∑
n∣ d1 d2−x2

4

ε(n) log n − 2 ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 8)

∑
n∣ d1 d2−x2

8

ε(n) log n

= − ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 16)

∑
n∣ d1 d2−x2

16

ε(n) log n

Proof First of all, by the assumption ε(2) = 1 and the proof of Lemma 3.6, one recalls
that for any positive integer k such that ε(k) = −1,

∑
n∣k

ε(n) log n = (ord2(k) + 1) ∑
n∣k

n odd

ε(n) log n.

This simply leads to

∑
n∣2k

ε(n) log n − 2∑
n∣k

ε(n) log n = −ord2(k) ∑
n∣k

n odd

ε(n) log n

= − ∑
n∣ k

2

ε(n) log n,(3.2)
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where the last equality makes sense since when k is odd, the sum on the right-hand
side is over an empty set, which is defaulted to be 0. Now setting k = d1 d2−x2

8 and
summing both sides of (3.2) over all integers x such that x2 < d1d2, one obtains the
desired identity. ∎

We now present a different proof to Theorem 3.2.

Proof of Theorem 3.2 Write hKi (2) for ∣Qd i (2)/�0(2)∣. By Lemmas 2.1, 2.3, 2.11, 3.3,
3.5, and 3.7, one can deduce that

∑
[Q1]∈Qd1 (2)/�0(2)

∑
[Q2]∈Qd2 (2)/�0(2)

log ∣ f (τQ1) − f (τQ2)∣2

= lim
s→1

⎛
⎜⎜⎜⎜⎜⎜
⎝

−2 ∑
n∈Z

n>
√

d1 d2
n2≡d1 d2 (mod 4)

ρ2(n)Qs−1 (
n√
d1d2

)

+ 4πhK2(2) ∑
[Q]∈Qd1 (2)/�0(2)

Ẽ(0)2 (τQ ; s)

+ 4πhK1(2) ∑
[Q]∈Qd2 (2)/�0(2)

Ẽ(0)2 (τQ ; s)

− hK1(2)hK2(2)(4π
3
2
�(s − 1

2 )
�(s)

ζ(2s − 1)
ζ(2s)

1
22s − 1

+ 8)

⎞
⎟⎟⎟⎟⎟⎟
⎠

= lim
s→1

⎛
⎜⎜⎜⎜⎜⎜
⎝

−

⎛
⎜⎜⎜⎜⎜⎜
⎝

−2 ∑
n∈Z

n>
√

d1 d2
n2≡d1 d2 (mod 4)

∑
�∣ n2−d1 d2

4

ε(�)Qs−1 (
n√
d1d2

)

⎞
⎟⎟⎟⎟⎟⎟
⎠

+ 4

⎛
⎜⎜⎜⎜⎜⎜
⎝

− ∑
n∈Z

∣n∣>
√

d1 d2
n≡β1 β2 (mod 4)

∑
�∣ n2−d1 d2

8

ε(�)Qs−1 (
∣n∣√
d1d2

)

⎞
⎟⎟⎟⎟⎟⎟
⎠

+ 4πhK2 2−sd
s
2
1

ζK1(s)
ζ(2s)

21−2s

1 + 2−s + 4πhK1 2
−sd

s
2
2

ζK2(s)
ζ(2s)

21−2s

1 + 2−s

− 4hK1 hK2 π
3
2
�(s − 1

2 )
�(s)

ζ(2s − 1)
ζ(2s)

1
22s − 1

− 8hK1 hK2

⎞
⎟⎟⎟⎟⎟⎟
⎠
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= ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 4)

∑
n∣ d1 d2−x2

4

ε(n) log n − 2 ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 8)

∑
n∣ d1 d2−x2

8

ε(n) log n

− 5
9

log 2 lim
s→1

(4πhK2 2−sd
s
2
1

ζK1(s)
ζ(2s) + 4πhK1 2

−sd
s
2
2

ζK2(s)
ζ(2s) ) (s − 1)

+ 8
9

log 2hK1 hK2 4π lim
s→1

π
1
2
�(s − 1

2 )
�(s)

ζ(2s − 1)
ζ(2s) (s − 1) + 24hK1 hK2

9
log 2

= ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 4)

∑
n∣ d1 d2−x2

4

ε(n) log n − 2 ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 8)

∑
n∣ d1 d2−x2

8

ε(n) log n

+ hK1 hK2 (−
120
9

log 2 + 96
9

log 2 + 24
9

log 2)

= ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 4)

∑
n∣ d1 d2−x2

4

ε(n) log n − 2 ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 8)

∑
n∣ d1 d2−x2

8

ε(n) log n

= − ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 16)

∑
n∣ d1 d2−x2

16

ε(n) log n.

∎

4 Remark II: a conjecture of Yang, Yin, and Yu

In this section, we give an affirmative answer to a conjecture recently raised by Yang,
Yin, and Yu [17].

Let λ(τ) be the so-called modular λ-invariant, the modular parametrization from
the modular curve X(2) ∶= �(2)/ (H ∪ P1(Q)) to the isomorphism classes of the
elliptic curves in Legendre form over C, defined by

λ(τ) = − 1
16

q−
1
2

∞
∏
n=1

( 1 − qn− 1
2

1 + qn )
8

.

In a recent paper [17], Yang, Yin, and Yu showed that for an negative fundamental
discriminant −d ≡ 5 (mod 8), i.e., χd(2) = −1, the Galois conjugates of λ (−d+

√
−d

2 )
over Q are exactly λ(τQ) as Q ranges over Qd/�(2) = Qd(2)/�(2), and at the end of
[17], they conjectured that

Conjecture 4.1 (Yang, Yin and Yu) The rational norm of λ (−d1+
√
−d1

2 ) −
λ (−d2+

√
−d2

2 ) is a sixth power for any coprime fundamental discriminants
−d1 , −d2 < −3 for which −d1 , −d2 ≡ 5 (mod 8), i.e.,

∏
[Q1]∈Qd1 /�(2)

∏
[Q2]∈Qd2 /�(2)

∣λ(τQ1) − λ(τQ2)∣ = m6

for some m ∈ Z.

We now conclude this part by showing how Theorem 1.1 implies that
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Theorem 4.2 Conjecture 4.1 is true.

We start with the following observations.

Lemma 4.3 Let j2(τ) be defined by (1.6). Then the following identities hold.

(16λ(τ) − 8)2 = j2(τ) + 64,(4.1)

16λ(τ + 1) − 8 = −(16λ(τ) − 8).(4.2)

Proof For (4.1), one first notes that j2(τ) has only a simple pole at the cusp i∞ of

X0(2) = �0(2)/ (H ∪ P1(Q)). Since �0(2)/ ± �(2) = {I, T}, where T = (1 1
0 1) fixes

the cusp i∞, then the cusp i∞ totally ramifies in X(2) of index 2, and thus, as a
modular function for �(2), j2(τ)has only a double pole at the cusp i∞. Since λ(τ)has
only a simple pole at the cusp i∞ of X(2), then j2(τ) must be a quadratic polynomial
in λ(τ), whose coefficients can be easily determined by the principal parts of their
Fourier expansions at the cusp i∞.

For (4.2), since λ(τ + 1) = λ(T ⋅ τ), T stabilizes the cusp i∞, and �(2) is normal in
SL2(Z), then λ(τ + 1) is also a modular function for �(2) with only a simple pole at
the cusp i∞, and thus it must be a linear polynomial in λ(τ). Comparing the principal
parts of their Fourier expansions at the cusp i∞, one obtains the desired relation. ∎
Proof of Theorem 4.2 By (4.1) and (4.2) together with the facts that �0(2) =

�(2)({I} ∪ {T}), where T = (1 1
0 1), and ∣Qd i /�(2)∣ = 2∣Qd i (2)/�0(2)∣ = 6hKi by

Lemma 2.11, one can deduce that

∑
[Q1]∈Qd1 /�(2)

∑
[Q2]∈Qd2 /�(2)

log ∣λ(τQ1) − λ(τQ2)∣

= ∑
[Q1]∈Qd1 /�(2)

∑
[Q2]∈Qd2 /�(2)

log ∣(16λ(τQ1) − 8) − (16λ(τQ2) − 8)∣

− 144hK1 hK2 log 2
= 2 ∑

[Q1]∈Qd1 /�0(2)
∑

[Q2]∈Qd2 /�0(2)
log ∣(16λ(τQ1) − 8) − (16λ(τQ2) − 8)∣

+ ∑
[Q1]∈Qd1 /�0(2)

∑
[Q2]∈Qd2 /�0(2)

log ∣(16λ(τQ1 + 1) − 8) − (16λ(τQ2) − 8)∣

+ ∑
[Q1]∈Qd1 /�0(2)

∑
[Q2]∈Qd2 /�0(2)

log ∣(16λ(τQ1) − 8) − (16λ(τQ2 + 1) − 8)∣

− 144hK1 hK2 log 2
= 2 ∑

[Q1]∈Qd1 /�0(2)
∑

[Q2]∈Qd2 /�0(2)
log ∣(16λ(τQ1) − 8) − (16λ(τQ2) − 8)∣

+ 2 ∑
[Q1]∈Qd1 /�0(2)

∑
[Q2]∈Qd2 /�0(2)

log ∣(16λ(τQ1) − 8) + (16λ(τQ2) − 8)∣
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− 144hK1 hK2 log 2
= 2 ∑

[Q1]∈Qd1 /�0(2)
∑

[Q2]∈Qd2 /�0(2)
log ∣(16λ(τQ1) − 8)2 − (16λ(τQ2) − 8)2∣

− 144hK1 hK2 log 2
= ∑
[Q1]∈Qd1 /�0(2)

∑
[Q2]∈Qd2 /�0(2)

log ∣ j2(τQ1) − j2(τQ2)∣ 2 − 144hK1 hK2 log 2

= −3 ∑
x∈Z

x2<d1 d2
x2≡d1 d2 (mod 4)

∑
n∣ d1 d2−x2

4

ε(n) log n − 48hK1 hK2 log 2,

where the last line follows from Theorem 1.1 specialized to χd1(2) = χd2(2) = −1 under
the conditions −d1 ,−d2 ≡ 5 (mod 8). Clearly, since d1d2 is odd, the multipliers of
log n in the double sum must be all even as x = 0 is not included in the outer sum
and both x and −x for which x ≠ 0 and x2 ≡ d1d2 (mod 4) are included therein.
Therefore, the multipliers of log n involved in

∑
[Q1]∈Qd1 /�(2)

∑
[Q2]∈Qd2 /�(2)

log ∣λ(τQ1) − λ(τQ2)∣

are all multiples of 6, and hence Conjecture 4.1 holds. ∎

5 Adelic formulation of Borcherds lifts

In this section, we briefly review the theory of Borcherds lifts in the adelic setting
[12], and show that the discriminant of the class polynomial HK, p(x) defined by (1.4)
can be expressed in terms of the CM values of a Borcherds lift, which are explicitly
computable via Schofer’s small CM value formula summarized in Section 6.

5.1 Rational quadratic space

Let V be a vector space over Q with the quadratic form Q of signature (n, 2). For a
Q-algebra F, we write V(F) = V ⊗Q F. Let D denote the Grassmannian of oriented
negative 2-planes of V(R). Then D is a symmetric space for O(n, 2) and has a
Hermitian structure. It can be viewed as an open subset Q− of a quadric in P1(V)(C).
Explicitly,

D ≅ Q− ∶= {w ∈ P1(V)(C)∣ (w , w) = 0, (w , w̄) < 0}/C×,

where the isomorphism is given by [x ,−y] → x + iy for a properly oriented basis
[x ,−y], and this gives a complex structure on D. Let H = GSpin(V) be the general
spin group of V. Let A be the adele ring over Q and A f be the associated finite
adele ring. Assume K to be an open compact subgroup of H(A f ) such that H(A) =
H(Q)H(R)+K, where H(R)+ is the identity component of H(R). Define

XK ∶= H(Q)/ (D × H(A f )/K) .

Note that the assumption that H(A) = H(Q)H(R)+K implies that the space XK has
exactly one connected component, and thus is connected. This is the set of complex
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points of a quasi-projective variety rational over Q, and if �K = H(Q) ∩ H(R)+K,
then

XK ≅ �K/D+

via [z, h] → [γ−1z], where D+ ⊂ D is the subset of positively oriented negative 2-
planes, and h = γk for some γ ∈ H(Q)+ and k ∈ K by the assumption.

One can view {w ∈ P1(V)(C)∣ (w , w) = 0, (w , w̄) < 0} as a line bundle L over D,
and it descends to a line bundle LK over XK . Assume that

V(R) = V0 +Re +R f

where e and f are such that Q(e) = Q( f ) = 0 and (e , f ) = 1. Then the signature of V0
is (n − 1, 1) and for the disjoint union of two negative cones

C = {y ∈ V0∣Q(y) < 0},

we have

D ≅H ∶= {z ∈ V0(C)∣ Im(z) ∈ C}.

The isomorphism is given by z → w(z) ∶= e − Q(z) f + z composed with projection to
Q−. The map z → w(z) can be viewed as a holomorphic section of the line bundle L.

Example 5.1 Let V = M2(Q) be the set of 2 × 2 matrices over Q with the quadratic
form Q(x) = det(x) of signature (2, 2). Then one can check that D ≅ H2 ∪H

2
via z =

(z1 −z1z2
1 −z2

) → w(z) = (z1 , z2) and [15, p. 137]

H = {(g1 , g2) ∈ GL2 × GL2∣ det(g1) = det(g2)} ,

acting on V via conjugation (g1 , g2) ⋅ x = g1x g−1
2 . Now take

Kp = {(g1 , g2) ∈ H(Ẑ)∣ g i ≡ (∗ ∗
0 ∗) (mod p)} .

Then one may see that H(Q) ∩ H(R)+Kp = �0(p) × �0(p) and XKp ≅ Y0(p) ×
Y0(p), where Y0(p) = �0(p)/H the open modular curve for �0(p).

Definition 5.1 A modular form on D × H(A f ) of weight k is a function f ∶ D ×
H(A f ) → C meromorphic on D such that
(1) f (z, hk) = f (z, h) for all k ∈ K,
(2) f (γz, γh) = j(γ, z)k f (z, h) for all γ ∈ H(Q), where j(γ, z) is the automorphy

factor induced by the isomorphism w.

5.2 Borcherds lifts

For z ∈ D, let prz ∶ V(R) → z be the projection map, and for x ∈ V(R), let R(x , z) =
−(prz(x), prz(x)). Then we define

(x , x)z = (x , x) + 2R(x , z),
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and our Gaussian for V is the function

φ∞(x , z) = e−π(x ,x)z .

For τ ∈ H with τ = u + iv, let

gτ = (1 u
0 1)(

v 1
2 0

0 v− 1
2
) ,

and g′τ = (gτ , 1) ∈ Mp2(R). Let l = n
2 − 1, G = SL2, and ω be the Weil representation of

the metaplectic cover G′A of GA on S(V(A f )), the Schwartz space of V(A f ), where
we write GA for G(A) = SL2(A). Then, for the linear action of H(A f ), we write
ω(h)φ(x) = ω(h−1x) for φ ∈ S(V(A f )). For z ∈ D and h ∈ H(A f ), we have the linear
functional on S(V(A f )) given by

φ → θ(τ, z, h; φ) ∶= v−
1
2 ∑

x∈V(Q)
ω(g′τ) (φ∞(⋅, z) ⊗ ω(h)φ) (x).

Let L be a lattice of V, and let L′ be the dual lattice of L defined by

L′ = {x ∈ V ∣ (x , L) ⊂ Z}.

Let SL be the subspace of S(V(A f )) consisting of functions with support in L̂′ and
constant on cosets of L̂, where L̂ = L ⊗Z Ẑ. Then

SL = ⊕
η∈L′/L

Cϕη , ϕη = Char(η + L̂).

Let �′ = Mp2(Z) be the full inverse image of SL2(Z) ⊂ G(R) in Mp2(R).

Definition 5.2 Let ωL be the Weil representation associated to SL . A function F⃗ ∶
H→ SL is a weakly holomorphic modular form of weight 1 − n

2 and type ωL for �′ if
(1) F⃗(γ′τ) = (cτ + d)1− n

2 ωL(γ′)F⃗(τ) for all γ′ ∈ �′,
(2) F⃗(τ) has a Fourier expansion

F⃗(τ) = ∑
η∈L′/L

∑
m∈Q(η)+Z

m≫−∞

c(m, η)qm ϕη ,

where the condition m ≡ Q(η) (mod Z) follows from the transformation law

for T ′ → (1 1
0 1).

For the theta function

θ(τ, z, h) = ∑
μ∈L′/L

θ(τ, z, h; ϕμ),

we can pair it with F⃗(τ) by the following C-bilinear pairing

⟨F⃗(τ), θ(τ, z, h)⟩ = ∑
μ∈L′/L

∑
m∈Q(μ)+Z

c(m, μ)qm θ(τ, z, h; ϕμ).
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Using this pairing, we define a regularized integral as in [2] called a Borcherds lift,

Φ(z, h; F⃗) ∶= CT
s=0

{ lim
t→∞∫

Ft

⟨F⃗(τ), θ(τ, z, h)⟩v−2−s dudv} ,

where CT
s=0

denotes the constant term in the Laurent expansion at s = 0 of

lim
t→∞∫

Ft

⟨F⃗(τ), θ(τ, z, h)⟩v−2−sdudv ,

Ft is the truncated fundamental domain defined by

Ft ∶= {τ ∈ F∣ Im(τ) ≤ t},

and F is the usual fundamental domain for the action of SL2(Z) on H. Then the
following theorem is the core result of the theory of Borcherds lifts, which reveal the
connection between Borcherds lifts and modular forms on O(n, 2).

Theorem 5.2 (Borcherds) There is a meromorphic modular form Ψ(z, h; F⃗) of weight
1
2 c(0, 0) on D × H(A f ) such that

Φ(z, h; F⃗) = −2 log ∣Ψ(z, h; F⃗)∣2∣y∣c(0,0) − c(0, 0) (log(2π) + �′(1)) ,(5.1)

where y = Im(z). Such a meromorphic modular form is called the Borcherds form
arising from the Borcherds lift of a modular form F⃗.

A proof of the following theorem can be found in [21, Theorem 1.4].

Theorem 5.3 Let p ∈ {2, 3, 5, 7, 13}, and let jp(τ) be defined by (1.6). Under the iden-
tification XKp ≅ Y0(p) × Y0(p) shown in Example 5.1, the automorphic Green function

−2 log ∣ jp(z1) − jp(z2)∣2 is a Borcherds lift associated to the lattice Lp = ( Z Z

pZ Z
).

Precisely,

−2 log ∣ jp(z1) − jp(z2)∣2 = Φ(z, 1; F⃗p),

where

F⃗p = F⃗p(τ) = ∑
μ∈L′p/Lp

∑
m∈Q(μ)+Z

m≫−∞

c(m, μ)qm

is a weakly holomorphic modular form of weight 0 and type ωLp with

L′p/Lp = {μ l ,k = (0 l/p
k 0 )}

0≤l ,k≤p−1

for which c(−1, μ0,0) = 1, c(m, μ) = 0 for m < 0 and μ ≠ μ0,0, c(0, μ0,k) = 24
p−1 for 1 ≤

k ≤ p − 1, and otherwise, c(0, μ l ,k) = 0.

Throughout the remainder of the work, we write Φ(z; F⃗p) for Φ(z, 1; F⃗p).
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5.3 The discriminant of HK, p(x)

As before, HK, p(x) denotes the ring class polynomial associated to jp(τ) and an
imaginary quadratic field K defined by (1.4). It is known [5] that { jp(τc)}[c]∈ClK(p),
where τc denotes the imaginary quadratic point associated to the integral ideal c =
[a, b+

√
−d

2 ], i.e., τc = b+
√
−d

2a , are all the Galois conjugates of HK, p(x), then one can
easily see that by the group structure of ClK(p),

log ∣disc(HK, p(x))∣ = ∑
[c],[c′]∈ClK(p)
[c]≠[c′]

log ∣ jp(τc) − jp(τc′)∣

= ∑
[a]∈ClK(p)
[a]≠[OK]

∑
[b]∈ClK(p)

log ∣ jp(τab) − jp(τb)∣

= − 1
4 ∑
[a]∈ClK(p)
[a]≠[OK]

∑
[b]∈ClK(p)

−2 log ∣ jp(τab) − jp(τb)∣2

= − 1
8 ∑
[a]∈ClK(p)
[a]≠[OK]

∑
z∈Zp(Ua)

Φ(z; F⃗p),(5.2)

where Zp(Ua) is a 0-cycle of XKp that is identified with

∑
[b]∈ClK(p)

{(τab , τb)} + ∑
[b]∈ClK(p)

{(τab , τb)}(5.3)

under the identification XKp ≅ Y0(p) × Y0(p) indicated in Example 5.1, and (5.2)
follows from Theorem 5.3. Now the whole problem is boiled down to evaluating the
average value of the Borcherds lift Φ(z; F⃗p) over the 0-cycle Zp(Ua), and this can be
done with the aid of Schofer’s celebrated work, which is briefly reviewed in the next
section.

6 Small CM value formula

In this section, we briefly review Schofer’s small CM value formula [14] (see also
Bruinier and Yang’s work [4], which extends Schofer’s work to harmonic weak Maass
forms and has deep applications in the Gross–Zagier arithmetic formula [10]) and
certain related key concepts, such as small CM 0-cycles and Fourier coefficients of an
incoherent Eisenstein series of weight 1.

6.1 Small CM 0-cycles

Assume that we have a rational splitting V = V+ ⊕ U , where V+ is of signature (n, 0)
and U is of signature (0, 2). Then U gives rise to a two-point subset D0 of D. Let
T = GSpin(U) and let K(T) = K ∩ T(A f ). Then there is an embedding T ↪ H and
we have a so-called small CM 0-cycle of XK as U ≅K [15, Chapter 5] as quadratic
spaces for some imaginary quadratic field K,

Z(U)K ∶= T(Q)/ (D0 × T(A f )/K(T)) ↪ XK ,

which is a 0-cycle of XK .
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6.2 Eisenstein series for SL2 and Schofer’s small CM value formula

In this subsection, we will state Schofer’s small CM value formula that is deeply
connected to certain Eisenstein series for SL2, and thus prior to that, we first briefly
review the concepts of these Eisenstein series. One may find more details in [13,
Section 2]. Assume that V is of signature (n, 2) with n ≥ 1. Inside of GA, we have the
subgroups

NA ∶= {n(b)∣ b ∈ A}, n(b) = (1 b
0 1) ,

and

MA ∶= {m(a)∣ a ∈ A×}, m(a) = (a 0
0 a−1) .

Define the quadratic character χ = χV of A×/Q× via the global Hilbert symbol by

χ(x) = ((−1)
n(n−1)

2 det(V), x) ,

where det(V) ∈ Q×/(Q×)2 is the determinant of the matrix for the quadratic form
Q on V. For s ∈ C, let I(s, χ) be the principal series representation of GA. This space
consists of smooth functions Φ(g , s) on GA ×C such that

Φ(n(b)m(a)g , s) = χ(a)∣a∣s+1Φ(g , s).

A section Φ(g , s) ∈ I(s, χ) is called standard if its restriction to K∞K f , where K∞ =
SO(2) and K f = SL2(Ẑ), is independent of s. We let P = MN and define the Eisenstein
series associated to a standard section Φ(g , s) by

E(g , z; Φ) = ∑
γ∈P(Q)/G(Q)

Φ(γg , s).

This series converges for R(s) > 1 and has a meromorphic continuation to the
whole s-plane. In addition, the Archimedean component Φl

∞(g , s) ∶ G(R) ×C→ C

of Φ(g , s) is taken as follows. For l ∈ Z, let χ̃ l be the character of K∞ defined by

χ̃ l(kθ) = e i l θ , kθ = ( cos θ sin θ
− sin θ cos θ) ∈ K∞.

Then let Φl
∞(g , s) ∶ G(R) ×C→ C be the normalized eigenfunction of weight l for

K∞, i.e.,

Φl
∞(gk, s) = χ̃ l(k)Φl

∞(g , s).

Moreover, we have a GA-intertwining map

λ = λV ∶ S(V(A)) → I (n
2

, χ)

such that λ(φ)(g) = (ω(g)φ)(0), and the function λ(φ) has a unique extension
to a standard section Φ(g , s) ∈ I(s, χ) such that Φ(g , n

2 ) = λ(φ). Now, for any φ ∈
S(V(A f )), there is an associated standard section in I(s, χ) given by Φ(g , s) =
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Φl
∞(g , s) ⊗ λ(φ), and by strong approximation, the Eisenstein series E(g , s; Φ) asso-

ciated to such a section Φ is determined by the Eisenstein series

E(τ, s; φ, l) ∶= v−
l
2 E(gτ , s; Φl

∞ ⊗ λ(φ)),

which is a nonholomorphic modular form of weight l on H.

Definition 6.1 Consider V = U of signature (0, 2) and view U ≅ Q(
√
−d) of dis-

criminant −d < 0. Let χd be the quadratic character of Q×A defined via the global
Hilbert symbol by χd(x) = (−d , x)A. For φ ∈ S(U(A f )), let Am(v , s, φ) be the mth
Fourier coefficient of the associated Eisenstein series E(τ, s; φ, 1), i.e.,

E(τ, s; φ, 1) = ∑
m∈Q

Am(v , s, φ)qm .

Then define

κ(m, φ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

lim
v→∞

A′m(v , 0, φ) if m > 0,

lim
v→∞

(A′0(v , 0, φ) − φ(0) log v) if m = 0,

0 if m < 0,

where A′m(v , s, φ) is the derivative of Am(v , s, φ) with respect to s.

Remark 6.1 It is known (see, e.g., [13, Section 7]) that Am(v , s, φ) is holomorphic
and vanishes at s = 0, and thus it is natural to consider A′m(v , 0, φ).

In his brilliant work [14, Corollary 3.5] (see also [4, Theorem 4.7]), Schofer
established the following formula expressing the average value of a Borcherds lift over
a small CM 0-cycle in terms of κ(m, φ), which is now known as Schofer’s small CM
value formula.

Theorem 6.2 (Schofer) Let F⃗ ∶ H→ SL be a weakly holomorphic modular form for ρL
of weight 1 − n

2 with Fourier expansion

F⃗(τ) = ∑
η∈L′/L

∑
m∈Q(η)+Z

c(m, η)qm ϕη

and c(0, 0) = 0. For V = V+ ⊕ U, where V+ = U⊥ of signature (n, 0), write L+ and L−
for L ∩ V+ and L ∩ U, respectively. Let pr± denote the projections of V onto V+ and U,
respectively, and write x± for pr±(x) for x ∈ V. Then

∑
z∈Z(U)K

Φ(z; F⃗)

= 4
vol(K(T)) ∑

λ∈L′/(L++L−)
∑
m≥0

c(−m, λ + L) ∑
�∈λ++L+

κ(m − Q(�), λ− + L−).

Here, by abuse of notation, we mean κ (m, Char(λ− + L− ⊗Z Ẑ)) by κ(m, λ− + L−).
Also, note that here we consider Φ(z; F⃗) instead of log ∣Ψ(z; F⃗)∣, which are related to
(5.1), and thus we have a multiplier of 4

vol(K(T)) instead of − 2
vol(K(T)) on the right.
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6.3 Interpretation of Zp(Ua) as a small CM 0-cycle

In this subsection, we show how the 0-cycle Zp(Ua)defined by (5.3) can be interpreted
as a small CM 0-cycle of the two-dimensional variety XKp considered in Example 5.1.
Recall that V = M2(Q), Q(x) = det(x),

H = {(g1 , g2) ∈ GL2 × GL2∣ det(g1) = det(g2)} ,

and

Kp = {(g1 , g2) ∈ H∣ g i ≡ (∗ ∗
0 ∗) (mod p)} .

Take [a] ∈ ClK(p) − {[OK]} with a = [A, B+
√
−d

2 ], where A > 0 and −d = (B2 −
4AC) for some 0 < C ∈ Z. By the assumption that −d is odd (square-free) and fun-
damental, and the well-known isomorphism ClK(p) ≅ Qd/�0(p), where Qd denotes
the set of primitive positive definite quadratic forms of discriminant −d, one can
always make a choice of a for which (A, d p) = 1. Now we can view K = Q(

√
−d) =

QA+Q B+
√
−d

2 as a rational quadratic space of signature (2, 0) with quadratic form
Qa(x) = N(x)

N(a) =
N(x)

A . Then one can identify (K, Qa) with a (2, 0) subspace (Va =
Qe(a)1 +Qe(a)2 , det(x)) of V, where

e(a)1 = (1 0
0 A) and e(a)2 = ( 0 C

−1 B) ,

via

xA+ y B +
√
−d

2
→ x (1 0

0 A) + y ( 0 C
−1 B) .

Then its orthogonal complement Ua = V⊥a = Q f (a)1 +Q f (a)2 , where

f (a)1 = (−1 B
0 A) and f (a)2 = (0 C

1 0) ,

turns out to be a (0, 2) subspace of V, which can be identified with (K = QA+
Q B+

√
−d

2 ,−N(x)
A ), and gives rise to a two-point subset {z±0 } of D. Under the above

identification given in Example 5.1, one sees that z±0 are of the form

z±0 = (z1 −z1z2
1 −z2

) with ± I(z i) > 0.

Then one must have (z±0 , e(a)1 ) = (z±0 , e(a)2 ) = 0, which imply that

(z1 , z2)± = (B ±
√
−d

2A
, B ±

√
−d

2
) = (τa , τOK

) ∪ (τa , τ
OK

).

By the isomorphism Qd(p)/�0(p) ≅ ClK(p), the OK-ideal class [a] defines a point
on Y0(p) × Y0(p) as above, and thus it is independent of the choice of the represen-
tative a.
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Now, by [15, Lemma 25.2], one sees that Ta = GSpin(Ua) ≅K× = Q(
√
−d)× via

x + y f (a)1 ⊗ f (a)2 → x + y−B +
√
−d

2
.

In addition, according to [15, Section 25.3], one can easily work out the embedding
of Ta into H = GSpin(V) = {(g1 , g2) ∈ GL2 × GL2∣det(g1) = det(g2)}, which yields
that

x + y f (a)1 ⊗ f (a)2 → ((x − By Cy
−Ay x ) ,(x − By ACy

−y x )) .

Under the embedding and the isomorphism Ta ≅K×, one can easily see by
the definition of Kp that Kp(Ta) = Ta(A f ) ∩ Kp ≅ (Ẑ + Ẑp−B+

√
−d

2 )× = ÔK(p)× =
(Ẑ + pÔK)×, and thus one has that

Ta(Q)/Ta(A f )/Kp(Ta) ≅K×/K×f /ÔK(p)× ≅ ClK(p).

Furthermore, by the fact shown above and Shimura’s reciprocity law, one can identify
the small CM 0-cycle Ta(Q)/ ({z±0 } × Ta(A f )/Kp(Ta)) associated to a with

∑
b∈ClK(p)

{(τab , τb)} + ∑
b∈ClK(p)

{(τab , τb)},

which is exactly Zp(Ua) defined as in (5.3). Finally, by Lemma 2.11, one has that

deg(Zp(Ua)) = 2∣ClK(p)∣ = 2(p − χd(p))hK .

The interpretation of Zp(Ua) as a small CM 0-cycle above together with (5.2),
Theorems 5.3 and 6.2 and [4, Lemma 4.4] yield the following proposition.

Proposition 6.3 Let p ∈ {2, 3, 5, 7, 13}. Let K = Q(
√
−d) be an imaginary quadratic

field of odd discriminant−d < −3, and denote by hK the class number ofK, and by χd(⋅)
the quadratic character associated to K. Let HK, p(x) be defined by (1.4). Then one has
that

log ∣disc(HK, p(x))∣ = −(p − χd(p))hK

4 ∑
[a]∈ClK(p)
[a]≠[OK]

×
⎡⎢⎢⎢⎢⎢⎣

∑
λ∈Lp/(L(a)p,+ +L(a)p,− )

∑
x∈λ++L(a)p,+

κ(1 − det(x), λ− + L(a)p,−)

+ 24
p − 1

p−1

∑
k=1

⎛
⎜
⎝

∑
λ∈Lp/(L(a)p,+ +L(a)p,− )

∑
x∈μ0,k ,++λ l ,++L(a)p,+

κ(−det(x), μ0,k ,− + λ l ,− + L(a)p,−)
⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
,

(6.1)

where Lp = ( Z Z

pZ Z
), L(a)p,+ = Lp ∩ Va = Ze(a)1 +Zpe(a)2 , and L(a)p,− = Lp ∩ Ua =

Z f (a)1 +Zp f (a)2 .
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7 Lattice computations

In this section, we explicitly compute the representatives λ that are involved in (6.1),
as well as its projections λ± to complete the presentation of Theorem 1.6.

7.1

Suppose that p is an odd prime. Recall that since −d is an odd fundamental dis-
criminant, by the isomorphism ClK(p) ≅ Qd(p)/�0(p), one can easily see that for
each ideal class [a], there is a representative a = [A, B+

√
−d

2 ] for which (A, d p) = 1.
As shown in Section 6.3, under the isomorphisms of quadratic spaces, (Va , det(x)) ≅
(K, N(x)

A ) and (Ua , det(x)) ≅ (K,−N(x)
A ), one has that L(a)p,+ ≅ a(p) = [A, p B+

√
−d

2 ]
and L(a)p,− ≅ a(p) = [A, p B+

√
−d

2 ] as lattices of the quadratic spaces Va and Ua, respec-
tively. It is known that a(p)′ = 1

p
√
−d

a(p), and one can easily show that a(p)′/a(p) =
{ An

p
√
−d

+ a(p)} for n ∈ Z/p2dZ. Then, under the isomorphism K ≅ Va, one has

An
p
√
−d

+ a(p) → Bn
pd

e(a)1 − 2An
pd

e(a)2 + L(a)p,+ ∈ L(a)
′

p,+ /L(a)p,+.(7.1)

Similarly, under the isomorphism K ≅ Ua, one has

An
p
√
−d

+ a(p) → Bn
pd

f (a)1 − 2An
pd

f (a)2 + L(a)p,− ∈ L(a)
′

p,− /L(a)p,−.

Therefore,

Bn1

pd
e(a)1 − 2An1

pd
e(a)2 + Bn2

pd
f (a)1 − 2An2

pd
f (a)2 + L(a)p,+ + L(a)p,− ∈ L(a)

′

p,+ /L(a)p,+ ⊕ L(a)
′

p,− /L(a)p,−,

where

Bn1

pd
e(a)1 − 2An1

pd
e(a)2 + Bn2

pd
f (a)1 − 2An2

pd
f (a)2

=
⎛
⎜⎜⎜
⎝

−B(n2 − n1)
pd

−2ACn1 + (2AC − B2)n2

pd
−2A(n2 − n1)

pd
−AB(n1 − n2)

pd

⎞
⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

−B(n2 − n1)
pd

−(2AC(n1 − n2)
pd

+ n2

p
)

−2A(n2 − n1)
pd

−AB(n1 − n2)
pd

⎞
⎟⎟⎟
⎠

.

Since Lp/(L(a)p,+ + L(a)p,−) ⊂ L(a)
′

p,+ /L(a)+ ⊕ L(a)
′

p,− /L(a)− and (2A, d p) = 1, then

Bn1

pd
e(a)1 − 2An1

pd
e(a)2 + Bn2

pd
f (a)1 − 2An2

pd
f (a)2
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=
⎛
⎜⎜⎜
⎝

−B(n2 − n1)
pd

−(2AC(n1 − n2)
pd

+ n2

p
)

−2A(n2 − n1)
pd

−AB(n1 − n2)
pd

⎞
⎟⎟⎟
⎠
∈ Lp = ( Z Z

pZ Z
) ,

if and only if n1 ≡ n2 (mod p2d) and n2 ≡ 0 (mod p), and thus in terms of
e(a)1 , e(a)2 , f (a)1 , and f (a)2 , elements l of Lp/(L(a)p,+ + L(a)p,−) are of the form

l = B(pl + p2dm)
pd

e(a)1 − 2A(pl + p2dm)
pd

e(a)2

+ B(pl)
pd

f (a)1 − 2A(pl)
pd

f (a)2 (mod (L(a)p,+ + L(a)p,−)),

where l , m ∈ Z, and thus explicitly,

Lp/(L(a)p,+ + L(a)p,−)

= { Bl
d

e(a)1 − 2Al
pd

(pe(a)2 ) + Bl
d

f (a)1 − 2Al
pd

(p f (a)2 ) + L(a)p,+ + L(a)p,−∣ 0 ≤ l ≤ pd − 1} ,

since (2A, pd) = 1, L(a)p,+ = Ze(a)1 +Z(pe(a)2 ), and L(a)p,− = Z f (a)1 +Z(p f (a)2 ). There-
fore, the projections λ± = λ l ,± are given by

λ l ,+ =
Bl
d

e(a)1 − 2Al
d

e(a)2 , λ l ,− =
Bl
d

f (a)1 − 2Al
d

f (a)2 .(7.2)

In addition, one can also compute and show that

μ0,k ,+ =
BCk

d
e(a)1 − 2ACk

d
e(a)2 , μ0,k ,− =

BCk
d

f (a)1 − (2AC − d)k
d

f (a)2 ,

and thus

μ0,k ,+ + λ l ,+ =
B(Ck + l)

d
e(a)1 − 2A(Ck + l)

d
e(a)2 ,

μ0,k ,− + λ l ,− =
B(Ck + l)

d
f (a)1 − 2A(Ck + l) − dk

d
f (a)2 .(7.3)

Note that since κ(m, φ) = 0 for m < 0, to have κ(−det(x), μ0,k ,− + λ l ,− + L(a)p,−) ≠ 0
for x ∈ μ0,k ,+ + λ l ,+ + L(a)p,+, one must have μ0,k ,+ + λ l ,+ ∈ L(a)p,+ which implies that
pd∣(Ck + l). Therefore, writing Xe(a)1 + Y pe(a)2 for elements of L(a)p,+, any x ∈ λ l .+ +
L(a)p,+ is of the form ( Bl

d + X) e(a)1 + (− 2Al
d + Y p) e(a)2 , and using the relation B2 −

4AC = −d, the formula (6.1) can be written explicitly and simplified as

log ∣disc (HK, p(x))∣ = −(p − χd(p))hK

4 ∑
[a]∈ClK(p)
[a]≠[OK]
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×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pd−1

∑
l=0

∞
∑

X ,Y=−∞
κ(1 − d(2AX + BY p)2 + (dY p − 2Al)2

4Ad
, Bl

d
f (a)1 − 2Al

d
f (a)2 + L(a)p,−)

+ 24
p − 1 ∑

1≤k≤p−1
0≤l≤pd−1

Ck+l≡0 (mod pd)

κ(0, B(Ck + l)
d

f (a)1 − 2A(Ck + l) − dk
d

f (a)2 + L(a)p,−)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −(p − χd(p))hK

4 ∑
[a]∈ClK(p)
[a]≠[OK]

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pd−1

∑
l=0

∞
∑

X ,Y=−∞
κ(1 − d(2AX + BY p)2 + (dY p − 2Al)2

4Ad
, Bl

d
f (a)1 − 2Al

d
f (a)2 + L(a)p,−)

+ 24
p − 1 ∑

1≤k≤p−1
0≤l≤pd−1

Ck+l≡0 (mod pd)

κ (0, k f (a)2 + L(a)p,−)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We are now ready for

Proof of Theorem 1.6 This follows from Theorem 5.3, Proposition 6.3, and the lattice
computations given above. ∎

and

Proof of Corollary 1.9 By Theorems 1.6 and 8.1 and Remark 1.8, for a prime l dividing
disc(HK, p(x)), one can see that either l ∣d, l ≤ md, or l = p, where

md = (1 − d(2AX + BY p)2 + (dY p − 2Al)2

4Ad
) d

= d − d(2AX + BY p)2 + (dY p − 2Al)2

4A
≤ d .

Therefore, any prime factor of disc(HK, p(x)) is bounded by max{d , p}. ∎

Remark 7.1 Note by the identification L(a)p,+ ≅ a(p) and (7.2) that d − md is actually
the product of the lattice norm of an element of Al√

−d
+ a(p) and d, and thus it is

integral, and so is md.
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8 Formulas for Am(v , s, φ(l)) and a computational example

In this section, we assume that (p, d) = 1. Taking a = [A, B+
√
−d

2 ] an
OK-ideal with norm prime p for 1 ≤ l ≤ pd − 1, and writing φ(l) =
Char ( Al√

−d
+ L(a)p,− ⊗Z Ẑ) = ∏q<∞ φ(l)q , where L(a)p,− = a(p) = [A, p B+

√
−d

2 ] and

φ(l)q = Char( Al√
−d

+ L(a)p,− ⊗Z Zq), we state below explicit formulas for the Fourier
coefficients Am(v , s, φ(l)) defined in Definition 6.1 specialized to the quadratic
space (U =K, Qa(x) = −N(x)

A ) under the assumption that (p, d) = 1, via which

one can concretely compute the corresponding κ (m, Al√
−d

+ L(a)p,−). It is known (see,
e.g., [13, Section 2]) that Am(v , s, φ(l)) can be represented by a product of the
so-called local Whittaker functions Wq(s, m, φ(l)q), and thus it suffices to compute
Wq(s, m, φ(l)q). When p = 1 and −d < −4 odd, the formulas for Wq(s, m, φ(l)q)
had been computed by Schofer [14]. Under the assumption (p, d) = 1, for p ≥ 3, one
only needs to work out the local Whittaker function Wp(s, m, φ(l)p) at the place p as
L(a)p,− ⊗Z Zq = L(a)1,− ⊗Z Zq for q ≠ p. The computations wholly rely on [13, Theorems
4.3 and 4.4], and one can find the details in [19, Theorem 5.2]. In the following, we
define some notation, state the formula for Wp(s, m, φ(l)p), and sequentially state
the formula for Am(v , s, φ(l)) in Theorem 8.1.

As discussed in Subsection 6.3, L(a)p,− ⊗Z Zp = Zp f (a)1 +Zp p f (a)2 with

f (a)1 = (−1 B
0 A) , f (a)2 = (0 C

1 0) .

The Gram matrix of L(a)p,− ⊗Z Zp with respect to Qa(⋅) is GL2(Zp)-equivalent to S =
diag(2ε1 , 2ε2 p2) with ε1 = −A and ε2 = − d

4A , and we define

tφ(l) =
⎧⎪⎪⎨⎪⎪⎩

m if p∣l ,
m − 4A2 l 2 ε2

d2 if p ∤ l ,

and

a = a(l) = ordp(tφ(l)).

Then the formula for Wp(s, m, φ(l)p) is given by
(1) for p∣l ,

Wp(s, m, φ(l)p)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + ( ε1 m
p ) p−s if a = 0,

1 + (p − 1)
⎛
⎝

p−2s + χd(p)p−3s +⋯
+χd(p)p−(a−1)s + p−as

⎞
⎠
− χd(p)p−(a+1)s if a ≥ 2 even,

1 + (p − 1)
⎛
⎝

p−2s + χd(p)p−3s +⋯
+p−(a−1)s + χd(p)p−as

⎞
⎠
− p−(a+1)s if a ≥ 1 odd,

1 + (p − 1)
∞
∑
n=2

χd(p)n p−ns if a = ∞,
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(2) for p ∤ l ,

Wp(s, m, φ(l)p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 + (
ε1 tφ(l)

p
) p−s if a = 0,

1 ifa ≥ 1.

To state the formula for Am(v , s, φ(l)), we also need the following components. Let

Λ(s; χd) = d
s
2 π−

s+1
2 �( s + 1

2
) L(s; χd)

be the completed Hecke L-function associated to the quadratic character χd known
to satisfy that

Λ(1; χd) = hK ,

where hK is the weighted class number of K = Q(
√
−d) defined as in Theorem 1.1,

and let Lp(s; χd) be the local part of Λ(s; χd) at the finite place p defined by

Lp(s; χd) =
1

1 − χd(p)p−s .

Define the local part of the divisor function of weight −s associated to the quadratic
character χd by

σ−s ,q(m, χd) =
1 − (χd(q)q−s)ordq(m)+1

1 − χd(q)q−s ,

which is the local Whittaker function component of Am(v , s, φ(l)) at the place q ∤
pd, and write Ψ−1(s, 4πmv) (see [13] for its precise definition) for the Archimedean
component of Am(v , s, φ(l)), which satisfies that Ψ−1(0, 4πmv) = 1. Now we have

Theorem 8.1 For a prime q, write ∣N ∣q for the q-adic norm of integer N. Then one has
that for m > 0 such that m ∈ − Al 2

d +Z,

Λ(s + 1; χd)Am(v , s, φ(l)) = −2 ∏
q∤pd

σ−s ,q(m, χd)

× ∏
q∣d

ordq(md)>0

(1 + (−d ,−m)q ∣md∣sq)Lp(s + 1; χd)
1
p

Wp(s, m, φ(l)p)

× (2m
√

dπv)s Ψ−1(s, 4πmv),

and for m = 0,

A0(v , s, φ(l)) = v
s
2 φ(l)(0) −

√
πv−

s
2 d−

1
2

� ( s+1
2 )

� ( s
2 + 1)

L(s; χd)
L(s + 1; χd)

Lp(s + 1; χd)
Lp(s; χd)

1
p

× Wp(s, 0, φ(l)p).
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Moreover, let μ0,k ,− + λ l ,− be defined by (7.3), and write ξ(k, l) = Char(μ0,k ,− +
λ l ,− + L(a)p,− ⊗Z Ẑ). Then

A0 (v , s, ξ(k, l)) = −
√

πv−
s
2 d−

1
2

� ( s+1
2 )

� ( s
2 + 1)

L(s; χd)
L(s + 1; χd)

Lp(s + 1; χd)
Lp(s; χd)

1
p
(1 + χd(p)p−s) .

Remark 8.2 Recall that κ(m, φ) is defined via A′m(v , 0, φ). By the product formula
for Am(v , s, φ) and the fact that Am(v , 0, φ) = 0, one may see that the value of
κ(m, φ) is given by some multiple of log q for exactly one prime q whose associated
product component of Am(v , s, φ) is the only one vanishing at s = 0, i.e., if we write
Am(v , s, φ) = ∏�≤∞W�(s, m, φ�), then

A′m(v , 0, φ) = W ′
q(0, m, φq) ∏

�≤∞
�≠q

W�(s, m, φ�),

where W ′
q(0, m, φ) induces log q, and W�(0, m, φ�) is simply given in terms of

multiples of ord�(m) or the class number of K = Q(
√
−d). One can further see that

q is either an inert prime, i.e., χd(q) = −1, apart from p such that ordq(m) is odd, a
ramified prime such that (−d ,−m)q = −1 and ordq(md) > 0, or the odd prime p.

Example 8.3 Take −d = −7 and p = 3. Then ClK(3) = {[OK], [a], [a], [b]}, where
a = [2, −1+

√
−7

2 ] and b = [4, −3+
√
−7

2 ]. It is easy to note that Zp(Ua) = Zp(Ua). Then,
by Theorem 1.6, one first has that

log ∣disc(H
Q(
√
−7),3(x))∣

= −2
⎛
⎝
κ (1, L(a)p,−) + ∑

l=1,20
κ(5

7
,− l

7
f (a)1 − 4l

7
f (a)2 ) + ∑

l=4,17
κ(3

7
,− l

7
f (a)1 − 4l

7
f (a)2 )

+ 2 ∑
l=10,11

κ(3
7

,− l
7

f (a)1 − 4l
7

f (a)2 ) + ∑
l=6,15

κ(5
7

,− l
7

f (a)1 − 4l
7

f (a)2 )

+ ∑
l=5,16

κ(6
7

,− l
7

f (a)1 − 4l
7

f (a)2 ) + ∑
l=7,14

κ(0,− l
7

f (a)1 − 4l
7

f (a)2 )

+ 12κ (0, 2 f (a)2 ) + 12κ (0, f (a)2 )
⎞
⎠

−
⎛
⎝
κ (1, L(b)p,−) + ∑

l=1,8,13,20
κ(3

7
,−3l

7
f (b)1 − 8l

7
f (b)2 )

+ ∑
l=2,5,16,19

κ(5
7

,−3l
7

f (b)1 − 8l
7

f (b)2 )

+ ∑
l=3,18

κ(6
7

,−3l
7

f (b)1 − 8l
7

f (b)2 ) + ∑
l=6,15

κ(3
7

,−3l
7

f (b)1 − 8l
7

f (b)2 )

+ ∑
l=7,14

κ(0,−3l
7

f (b)1 − 8l
7

f (b)2 ) + 12(κ (0, 2 f (b)2 ) + 12κ (0, f (b)2 )
⎞
⎠

.
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Following Theorem 8.1 carefully, one can compute and obtain that (the l’s lie in the
index set of the summation associated to κ(m, φ−) given in the expansion above)

κ (1, L(a)p,−) = − log 7,

κ(5
7

,− l
7

f (a)1 − 4l
7

f (a)2 ) = − log 5,

κ(3
7

,− l
7

f (a)1 − 4l
7

f (a)2 ) = − 1
2

log 3,

κ(3
7

,− l
7

f (a)1 − 4l
7

f (a)2 ) = − 1
2

log 3,

κ(5
7

,− l
7

f (a)1 − 4l
7

f (a)2 ) = 0,

κ(6
7

,− l
7

f (a)1 − 4l
7

f (a)2 ) = − log 3,

κ(0,− l
7

f (a)1 − 4l
7

f (a)2 ) = κ (0, 2 f (a)2 ) = κ (0, f (a)2 ) = − 1
2

log 3,

and

κ (1, L(b)p,−) = 0, κ(3
7

,−3l
7

f (b)1 − 8l
7

f (b)2 ) = − 1
2

log 3,

κ(5
7

,−3l
7

f (b)1 − 8l
7

f (b)2 ) = − 1
2

log 5,

κ(6
7

,−3l
7

f (b)1 − 8l
7

f (b)2 ) = −2 log 3,

κ(3
7

,−3l
7

f (b)1 − 8l
7

f (b)2 ) = − log 3,

κ(0,−3l
7

f (b)1 − 8l
7

f (b)2 ) = κ (0, 2 f (b)2 ) = κ (0, f (b)2 ) = − 1
2

log 3.

Plugging all of the above into the expansion for log ∣disc(H
Q(
√
−7),3(x)) ∣, one obtains

log ∣disc (H
Q(
√
−7),3(x))∣

= −2
⎛
⎝
− log 7 + 2 × (− log 5) + 2 × (− 1

2
log 3) + 4 × (− 1

2
log 3)

+ 2 × 0 + 2 × (− log 3) + 2 × (− 1
2

log 3) + 12 × 2 × (− 1
2

log 3)
⎞
⎠

−
⎛
⎝

0 + 4 × (− 1
2

log 3) + 4 × (− 1
2

log 5) + 2 × (−2 log 3) + 2 × (− log 3)

+ 2(− 1
2

log 3) + 12 × 2 × (− 1
2

log 3)
⎞
⎠

= log(3575672).
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On the other hand, numerically, one can find that

H
Q(
√
−7),3(x) = x4 + 4131x3 + 196830x2 + 19131876x + 387420489,

whose discriminant is −3575672 given as in [5, Appendix 4, p. 306].
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