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Abstract

A system of mutually interacting superprocesses with migration is constructed as the
limit of a sequence of branching particle systems arising from population models. The
uniqueness in law of the superprocesses is established using the pathwise uniqueness of a
system of stochastic partial differential equations, which is satisfied by the corresponding
system of distribution function-valued processes.

Keywords: Distribution function-valued; Martingale problem; superprocess; stochastic
partial differential equation; well-posedness

2020 Mathematics Subject Classification: Primary 60J68
Secondary 60H15; 60K35

1. Introduction

Superprocesses, describing the evolution of a large population undergoing random repro-
duction and spatial motion, were first constructed as high-density limits of branching particle
systems by Watanabe [20]. The connection between superprocesses and stochastic evolution
equations was investigated by Dawson [1]. Since then, ample systematic research results have
been published; see e.g. [2], [7], and [13]. Those with immigration, a class of generalizations
of superprocesses, have also attracted the interest of many researchers. We refer to [13], [14],
[15], and the references therein for immigration structure and related properties. Let MF(R)
be the collection of all finite Borel measures on R. Set MF(R)2 = MF(R) × MF(R). Let Ck

b(R)
(resp. Ck

0(R)) be the collection of all bounded (resp. compactly supported) continuous func-
tions on R with bounded derivatives up to kth order. Let (μt)t≥0 be a continuous MF(R)-valued
process solving the following martingale problem (MP): for all f ∈ C2

b(R), the process

Mf
t = 〈μt, f 〉 − 〈μ0, f 〉 −

∫ t

0

(
1

2

〈
μs, f ′′〉 + 〈κ, f 〉

)
ds (1.1)

is a continuous martingale with quadratic variation process

〈Mf 〉t = γ

∫ t

0

〈
μs, f 2〉 ds, (1.2)
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where γ > 0 and κ ∈ MF(R). The corresponding model is super-Brownian motion (SBM) when
κ = 0. The uniqueness in law of SBM can be obtained by its log-Laplace transform

log E exp(−〈μt, f 〉) = −〈μ0, ut〉
(see Watanabe [20]), where ut is the unique solution to the following log-Laplace equation:

⎧⎨
⎩
∂ut(x)

∂t
= 1

2
�ut(x) − γ

2
ut(x)2,

u0(x) = f (x).

Xiong [22] studied the stochastic partial differential equation (SPDE) satisfied by the distribu-
tion function-valued process of SBM, and approached its uniqueness from a different point of
view. Related work can also be found in [3] and [8].

For a finite measure κ , the corresponding model is the superprocess with immigration,
which was constructed in [11] through the cumulant semigroup; see also [12] and [14]. In
the case of κ being interactive, i.e. κ = κ(μs), the existence of a solution to the MP (1.1, 1.2)
has been verified in Méléard [17], where the result is applicable to the situation with interac-
tive immigration, branching rate, and spatial motion. By the approach of pathwise uniqueness
for SPDEs satisfied by the distribution function-valued process, Mytnik and Xiong [19] estab-
lished the well-posedness of MPs for superprocesses with interactive immigration. See also
[23] for related work.

In fact there exist some populations distributed in different colonies, such as the mutually
catalytic branching model; see [4], [5], [6], [16], and [18]. The evolution of this model can be
illustrated by interacting superprocesses. A sudden event may induce mass migration and lead
to an increment of population size in one colony and a decrement in the other. For instance,
war causes large numbers of people to move into a neighbouring country, and radiation mutates
normal cells, and so on. Therefore it is natural to study superprocesses with interactive migra-
tion between different colonies. In this paper we consider a continuous MF(R)2-valued process(
μ1t , μ

2
t

)
t≥0, called a mutually interacting superprocess with migration, which solves the

following MP: for all f , g ∈ C2
0(R), the processes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mf
t = 〈

μ1t , f
〉 − 〈

μ10 , f
〉 − 1

2

∫ t

0

〈
μ1s , f ′′〉 ds − b1

∫ t

0

〈
μ1s , f

〉
ds

+
∫ t

0

〈
μ1s , η

(·, μ1s , μ2s )f 〉 ds,

M̂g
t = 〈

μ2t , g
〉 − 〈

μ20 , g
〉 − 1

2

∫ t

0

〈
μ2s , g′′〉 ds − b2

∫ t

0

〈
μ2s , g

〉
ds

− 〈χ, g〉
∫ t

0

〈
μ1s , η

(·, μ1s , μ2s )〉 ds

(1.3)

are two continuous martingales with quadratic variation and covariation processes⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈Mf 〉t = γ1

∫ t

0

〈
μ1s , f 2〉 ds,

〈M̂g〉t = γ2

∫ t

0

〈
μ2s , g2〉 ds,

〈Mf , M̂g〉t = 0,

(1.4)
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where χ is a probability measure on R, γ1 and γ2 are positive constants, and the migration
intensity η(·, ·, ·) is a non-negative bounded continuous function on R× MF(R)2.

The purpose of this paper is to establish the well-posedness of the MP (1.3, 1.4), i.e. the
existence and uniqueness in law of such mutually interacting superprocesses with migration.
As far as we know, this is the first attempt to discuss the well-posedness of mutually interactive
superprocesses with migration. The structure of interactive migration makes the model more
complex and increases the challenge of constructing a solution to the MP. Simultaneously, the
traditional method of moment duality fails to prove the uniqueness of such a process. We for-
mulate the process as the limit empirical measure of a sequence of branching particle systems.
The uniqueness in law of the superprocesses is demonstrated by the pathwise uniqueness of the
solution to a system of mutually interacting SPDEs, which are satisfied by the corresponding
distribution function-valued processes.

We introduce some notation. Let D(R+,MF(R)2) (resp. C(R+,MF(R)2)) denote the space
of càdlàg (resp. continuous) paths from R+ to MF(R)2 furnished with the Skorokhod topol-
ogy. Let D(R+,R2) be the collection of càdlàg paths from R+ to R

2. Let Cb,m(R) be the
subset of Cb(R) consisting of non-decreasing bounded continuous functions on R. Write
〈μ, f 〉 as the integral of f ∈ C2

b(R) with respect to measure μ ∈ MF(R). For any f , g ∈ C2
b(R),

define 〈f , g〉1 = ∫
R

f (x)g(x)dx. Let H0 = L2(R) be the Hilbert space consisting of all square-
integrable functions with the norm ‖ · ‖0 given by ‖f ‖2

0 = ∫
R

f 2(x)e−|x|dx for any f ∈ H0. Set
vi(x) = νi((−∞, x]) as the distribution functions of νi ∈ MF(R) for any x ∈R and i = 1, 2.
Define the distance ρ on MF(R) by

ρ(ν1, ν2) =
∫
R

e−|x||v1(x) − v2(x)|dx.

It is easy to see that under metric distance ρ, MF(R) is a Polish space whose topology coin-
cides with that given by weak convergence of measures. Let �x� denote the integer part of x.
Moreover, we always assume that all random variables in this paper are defined on the same
filtered probability space (	,F ,Ft, P). Let E be the corresponding expectation.

The rest of this paper is organized as follows. In Section 2 a sequence of branching particle
systems arising from population models is formulated. In Section 3 the existence of solu-
tion to the MP (1.3, 1.4) is established through the tightness of a sequence of measure-valued
stochastic processes arising as the empirical measures of the branching particle systems. In
Section 4 we verify the equivalence between the MP (1.3, 1.4) and SPDEs satisfied by the dis-
tribution function-valued processes and further prove the pathwise uniqueness of the SPDEs
by an extended Yamada–Watanabe argument. Throughout the paper we use the letter K, with
or without subscripts, to denote constants whose exact value is unimportant and may change
from line to line.

2. A related branching model with migration

There exists a population living in two colonies with labels {1, 2}. Initially, each colony
has n particles, spatially distributed in R. Write k ∼ t to denote the kth living particle at time t
in each colony. For any s ≥ t, let Xn,i

k∼t(s) denote the corresponding particle’s location at time s
in colony i with i ∈ {1, 2} if it is alive up to time s. The motions of the particles during their
lifetimes are modelled by independent Brownian motions. For any i ∈ {1, 2}, k ∼ t, accompa-
nying the corresponding particle with a standard Brownian motion {Bik∼t(s) : s ≥ 0}, we have

Xn,i
k∼t(s)

d= Xn,i
k∼t(t) + Bik∼t(s) − Bik∼t(t) for all s ≥ t.
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For s< t, Xn,i
k∼t(s) represents the corresponding particle’s location at time s if it is alive at s;

otherwise the same notation represents its ancestor’s location at s.
We start by introducing the branching particle systems. In colony 1 there exist indepen-

dent branching and emigration, and there are also independent branching and immigration in
colony 2. The branching mechanisms in the two colonies are also independent. However, the
emigration and immigration are interactive. The particles in colony 1 can move to colony 2,
but not reciprocally. During branching/emigration/immigration events, all the particles move
according to independent Brownian motions.

• (Measure-valued process in colony i with i= 1, 2.) Let μn,i
t be the empirical distribu-

tion of particles living in colony i, that is, for any f ∈ C2
b(R), we have

〈
μ

n,i
t , f

〉 = 1

n

∑
k∼t

f
(
Xn,i

k∼t(t)
)
,

where the sum k ∼ t includes all those particles alive at t in each colony.

• (The behaviour of particles living in colony 1.) For a particle k alive at time t in
colony 1, we consider (conditionally independent) random times τ1k∼t (corresponding
to a reproduction event) and ρk∼t (corresponding to a migration event) such that

P
(
τ1k∼t > t + h |Ft

) = e−λn,1h

and

P(ρk∼t > t + h |Ft) =E

[
exp

{
−

∫ t+h

t
η
(
Xn,1

k∼t(s), μn,1
s , μn,2

s

)
ds

} ∣∣∣Ft

]

≈ e
−η

(
Xn,1

k∼t (t),μ
n,1
t ,μ

n,2
t

)
h

when h is sufficiently small, where λn,1 is the branching rate of those particles liv-
ing in colony 1 with λn,1/n → λ1 as n → ∞, and η(·, ·, ·) ∈ C+

b (R× MF(R)2) is the
migration intensity. If τ1k∼t <ρk∼t, then at time τ1k∼t, particle k dies and gives birth to a
random number ξn,1 of offspring at the position of colony 1 where particle k died, with
E[ξn,1] = 1 + βn,1/n, Var[ξn,1] = σ 2

n,1 satisfying βn,1 → β1 and σn,1 → σ1 as n → ∞.

If ρk∼t < τ
1
k∼t, then at time ρk∼t, particle k migrates to colony 2 and settles down at a

random position according to a probability measure χ .

• (The behaviour of particles living in colony 2.) For a particle k alive at time t in
colony 2, we consider random time τ2k∼t (corresponding to a reproduction event) such
that

P
(
τ2k∼t > t + h |Ft

) = e−λn,2h,

where λn,2 is the branching rate of those particles living in colony 2 with λn,2/n → λ2

as n → ∞. Then, at time τ2k∼t, particle k dies and gives birth to a random number ξn,2 of
offspring at the position of colony 2 where particle k died, with E[ξn,2] = 1 + βn,2/n,
Var [ξn,2] = σ 2

n,2 satisfying βn,2 → β2 and σn,2 → σ2 as n → ∞.

3. Existence of a solution to the martingale problem

In this section we study the convergence of a sequence of measure-valued processes arising
as the empirical measures of the proposed branching particle systems in Section 2, and show
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that the limit is a weak solution to the MP (1.3, 1.4). We denote
∑0

i=1 fi = 0 for any fi. For any
t> 0, let h> 0 be sufficiently small. It follows from the construction of the branching particle
systems that

〈
μ

n,1
t+h, f

〉 = 1

n

∑
k∼t

(
f
(
Xn,1

k∼t(t + h)
) +�

n,1,h
k∼t ( f ) − Dn,1,h

k∼t ( f )
) + 1

n

∑
k∼t

ϒ
n,1,h
k∼t ( f ),

with

�
n,1,h
k∼t ( f ) =

[ξn,1
k∼t∑

i=1

f
(
Xn,1,i

k∼t (t + h)
) − f

(
Xn,1

k∼t(t + h)
)]

1I{τ1k∼t<t+h<ρk∼t
}, (3.1)

Dn,1,h
k∼t ( f ) = f

(
Xn,1

k∼t(t + h)
)
1I{ρk∼t<t+h<τ1k∼t

}, (3.2)

where ξn,1
k∼t , k = 1, 2, . . . are independent and identically distributed (i.i.d.) copies of ξn,1,

Xn,1,i
k∼t (t + h), i = 1, . . . , ξn,1

k∼t are defined as i.i.d. copies of Xn,1
k∼t(t + h), 1I{·} is the indicator

function, and ϒn,1,h
k∼t ( f ) is the correction term due to particle k and its descendants having

more than one branching or migration event in the time interval (t, t + h]. Since f is bounded,
one can check that the correction term satisfies

E
[|ϒn,1,h

k∼t ( f )| |Ft
] ≤ O(h2),

where O(h2) is an infinitesimal of h with order no less than 2. In fact it is hard to obtain the
explicit expression for the correction term. However, the order indicates that it is very tiny and
can make itself disappear in the limit form. The conditional independence of ρk∼t and τ1k∼t
implies that

E
[
1I{τ1k∼t<t+h<ρk∼t

} |Ft
] = P

(
τ1k∼t < t + h |Ft

)
P
(
t + h<ρk∼t |Ft

)
≈ (

1 − e−λn,1h)e−η(Xn,1
k∼t (t),μ

n,1
t ,μ

n,2
t )h

≈ λn,1h

and

E
[
1I{ρk∼t<t+h<τ1k∼t

} |Ft
] ≈ (

1 − e−η(Xn,1
k∼t (t),μ

n,1
t ,μ

n,2
t )h)e−λn,1h

≈ η
(
Xn,1

k∼t(t), μ
n,1
t , μ

n,2
t

)
h.

The corresponding conditional probability can be replaced by the approximate value when h
is sufficiently small. Applying Itô’s formula, we have

f
(
Xn,1

k∼t(t + h)
) = f

(
Xn,1

k∼t(t)
) +

∫ t+h

t
f ′(Xn,1

k∼t(s)
)
dB1k∼t(s) + 1

2

∫ t+h

t
f ′′(Xn,1

k∼t(s)
)

ds. (3.3)
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Consequently

〈
μ

n,1
t+h, f

〉 = 〈
μ

n,1
t , f

〉 + 1

n

∑
k∼t

∫ t+h

t
f ′(Xn,1

k∼t(s)
)
dB1k∼t(s)

+ 1

n

∑
k∼t

1

2

∫ t+h

t
f ′′(Xn,1

k∼t(s)
)

ds

+ 1

n

∑
k∼t

(
�

n,1,h
k∼t ( f ) − Dn,1,h

k∼t ( f ) +ϒ
n,1,h
k∼t ( f )

)
.

Given any t> 0, let us discretize the time interval [0, t] by the step size h. Set j = �t/h�.
Then

〈
μ

n,1
t , f

〉 = 〈
μ

n,1
0 , f

〉 + j∑
�=0

(〈
μ

n,1
(�+1)h∧t, f

〉 − 〈
μ

n,1
�h , f

〉)

= 〈
μ

n,1
0 , f

〉 + j∑
�=0

1

n

∑
k∼�h

∫ (�+1)h∧t

�h
f ′(Xn,1

k∼�h(s)
)
dB1k∼�h(s)

+
j∑

�=0

1

n

∑
k∼�h

1

2

∫ (�+1)h∧t

�h
f ′′(Xn,1

k∼�h(s)
)

ds

+
j∑

�=0

1

n

∑
k∼�h

(
�

n,1,h∧(t−�h)
k∼�h ( f ) − Dn,1,h∧(t−�h)

k∼�h ( f ) +ϒ
n,1,h∧(t−�h)
k∼�h ( f )

)
.

Let Mn,f
i , i = 1, 2, 3 be martingales with

Mn,f
1 (t) =

j∑
�=0

1

n

∑
k∼�h

∫ (�+1)h∧t

�h
f ′(Xn,1

k∼�h(s)
)
dB1k∼�h(s), (3.4)

Mn,f
2 (t) =

j∑
�=0

1

n

∑
k∼�h

{
�

n,1,h∧(t−�h)
k∼�h ( f ) −E

[
�

n,1,h∧(t−�h)
k∼�h ( f ) |F�h

]}
, (3.5)

Mn,f
3 (t) =

j∑
�=0

1

n

∑
k∼�h

{
Dn,1,h∧(t−�h)

k∼�h ( f ) −E
[
Dn,1,h∧(t−�h)

k∼�h ( f ) |F�h
]}

. (3.6)

Moreover, An,f is defined as

An,f (t) =
j∑

�=0

1

n

∑
k∼�h

1

2

∫ (�+1)h∧t

�h
f ′′(Xn,1

k∼�h(s)
)

ds +
j∑

�=0

1

n

∑
k∼�h

ϒ
n,1,h∧(t−�h)
k∼�h ( f )

+
j∑

�=0

1

n

∑
k∼�h

E
[
�

n,1,h∧(t−�h)
k∼�h ( f ) − Dn,1,h∧(t−�h)

k∼�h ( f ) |F�h
]
.

It follows from (3.3) that

E
[
f
(
Xn,1

k∼�h((�+ 1)h ∧ t)
) |F�h

] = f
(
Xn,1

k∼�h(�h)
) + O(h ∧ (t − �h)),

https://doi.org/10.1017/jpr.2021.98 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.98


910 L. JI ET AL.

where O(h ∧ (t − �h)) ≤ 1
2 supx∈R |f ′′(x)|h ≤ Kh holds for any given h and n since f ∈ C2

b(R).
Combining with (3.1) and (3.2), we obtain the conditional expectations

E
[
�

n,1,h∧(t−�h)
k∼�h ( f ) |F�h

] = βn,1λn,1

n
f
(
Xn,1

k∼�h(�h)
)
(h ∧ (t − �h)) + O((h ∧ (t − �h))2)

and

E
[
Dn,1,h∧(t−�h)

k∼�h ( f ) |F�h
]

= f
(
Xn,1

k∼�h(�h)
)
η
(
Xn,1

k∼�h(�h), μn,1
�h , μ

n,2
�h

)
(h ∧ (t − �h)) + O((h ∧ (t − �h))2),

where O((h ∧ (t − �h))2) ≤ Kh2 holds for any given h and n. Consequently

An,f (t) = 1

2

∫ t

0

〈
μn,1

s , f ′′〉 ds +
j∑

�=0

βn,1λn,1

n

〈
μ

n,1
�h , f

〉
(h ∧ (t − �h))

−
j∑

�=0

〈
μ

n,1
�h , η

(·, μn,1
�h , μ

n,2
�h

)
f
〉
(h ∧ (t − �h))

+
j∑

�=0

〈
μ

n,1
�h , 1

〉
O((h ∧ (t − �h))2)

+
j∑

�=0

1

n

∑
k∼�h

ϒ
n,1,h∧(t−�h)
k∼�h ( f ), (3.7)

with the last term satisfying

j∑
�=0

1

n

∑
k∼�h

E
[|ϒn,1,h∧(t−�h)

k∼�h ( f )| |F�h
] ≤

j∑
�=0

〈
μ

n,1
�h , 1

〉
O((h ∧ (t − �h))2). (3.8)

One can see that 〈
μ

n,1
t , f

〉 = 〈
μ

n,1
0 , f

〉 + Mn,f
1 (t) + Mn,f

2 (t) − Mn,f
3 (t) + An,f (t). (3.9)

Carrying out steps similar to those above in colony 2, for any g ∈ C2
b(R), we have

〈
μ

n,2
t , g

〉 = 〈
μ

n,2
0 , g

〉 + M̂n,g
1 (t) + M̂n,g

2 (t) + M̂n,g
3 (t) + Ân,g(t), (3.10)

where

M̂n,g
1 (t) =

�t/h�∑
�=0

1

n

∑
k∼�h

∫ (�+1)h∧t

�h
g′(Xn,2

k∼�h(s)
)
dB2k∼�h(s) (3.11)

and

M̂n,g
2 (t) =

�t/h�∑
�=0

1

n

∑
k∼�h

{
�

n,2,h∧(t−�h)
k∼�h (g) −E

[
�

n,2,h∧(t−�h)
k∼�h (g) |F�h

]}
(3.12)
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are martingales with

�
n,2,h∧(t−�h)
k∼�h (g) =

[ξn,2
k∼�h∑
i=1

g
(
Xn,2,i

k∼�h((�+ 1)h ∧ t)
) − g

(
Xn,2

k∼�h((�+ 1)h ∧ t)
)]

1I{τ2k∼�h<(�+1)h∧t}

and Xn,2,i
k∼�h((�+ 1)h ∧ t) having the same distribution as Xn,2

k∼�h((�+ 1)h ∧ t). Moreover,

M̂n,g
3 (t) =

�t/h�∑
�=0

1

n

∑
k∼�h

{
Dn,2,h∧(t−�h)

k∼�h (g) −E
[
Dn,2,h∧(t−�h)

k∼�h (g) |F�h
]}

(3.13)

is also a martingale with

Dn,2,h∧(t−�h)
k∼�h (g) = 〈χ, g〉1I{ρk∼�h≤(�+1)h∧t}.

We emphasize that the sum ‘k ∼ �h’ in (3.13) involves those particles living in colony 1 at time
�h. In addition,

Ân,g(t) =
�t/h�∑
�=0

1

n

∑
k∼�h

1

2

∫ (�+1)h∧t

�h
g′′(Xn,2

k∼�h(s)
)

ds

+
�t/h�∑
�=0

1

n

∑
k∼�h

E
[
�

n,2,h∧(t−�h)
k∼�h (g) |F�h

] +
�t/h�∑
�=0

1

n

∑
k∼�h

E
[
Dn,2,h∧(t−�h)

k∼�h (g) |F�h
]

+
�t/h�∑
�=0

1

n

∑
k∼�h

ϒ
n,2,h∧(t−�h)
k∼�h (g) +

�t/h�∑
�=0

1

n

∑
k∼�h

�
n,2,h∧(t−�h)
k∼�h (g),

where the second and third terms are due to birth events in colony 2 and migration from
colony 1, respectively, the fourth term is the correction term due to those particles living in
colony 2 and their descendants having more than one branching, and the last term is the cor-
rection term due to those particles living in colony 1 that have not only migrated to colony
2 but also given birth to offspring after settlements. Therefore the sum ‘k ∼ �h’ in the second
or fourth term involves those particles living in colony 2 at �h, and the sum ‘k ∼ �h’ in the
third or last term involves those particles living in colony 1 at �h. Considering the possibility
of more than one branching or migration event in the time interval (�h, (�+ 1)h ∧ t] and the
boundedness of g, one can see that

E
[|ϒn,2,h∧(t−�h)

k∼�h (g)| |F�h
] +E

[|�n,2,h∧(t−�h)
k∼�h (g)| |F�h

] ≤ O((h ∧ (t − �h))2).

Consequently

Ân,g(t) = 1

2

∫ t

0

〈
μn,2

s , g′′〉 ds +
�t/h�∑
�=0

βn,2λn,2

n

〈
μ

n,2
�h , g

〉
(h ∧ (t − �h))

+
�t/h�∑
�=0

〈χ, g〉〈μn,1
�h , η

(·, μn,1
�h , μ

n,2
�h

)〉
(h ∧ (t − �h))
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+
�t/h�∑
�=0

〈
μ

n,1
�h +μ

n,2
�h , 1

〉
O((h ∧ (t − �h))2)

+
�t/h�∑
�=0

1

n

∑
k∼�h

ϒ
n,2,h∧(t−�h)
k∼�h (g) +

�t/h�∑
�=0

1

n

∑
k∼�h

�
n,2,h∧(t−�h)
k∼�h (g), (3.14)

with the terms in the last line satisfying

�t/h�∑
�=0

1

n

∑
k∼�h

E
[|ϒn,2,h∧(t−�h)

k∼�h (g)| |F�h
] +

�t/h�∑
�=0

1

n

∑
k∼�h

E
[|�n,2,h∧(t−�h)

k∼�h (g)| |F�h
]

≤
�t/h�∑
�=0

〈
μ

n,1
�h +μ

n,2
�h , 1

〉
O((h ∧ (t − �h))2).

The following propositions give the quadratic variation and covariation processes for those
martingales Mn,f

i (t) and M̂n,g
i (t) with i = 1, 2, 3.

Proposition 3.1. The variation processes of Mn,f
i (t) with i = 1, 2, 3 are as follows:

〈
Mn,f

1

〉
t =

�t/h�∑
�=0

1

n2

∑
k∼�h

∫ (�+1)h∧t

�h

∣∣f ′(Xn,1
k∼�h(s)

)∣∣2ds, (3.15)

〈
Mn,f

2

〉
t =

�t/h�∑
�=0

〈
μ

n,1
�h , f 2〉(σ 2

n,1 + β2
n,1

n2

)
λn,1

n
(h ∧ (t − �h))

+ 1

n

�t/h�∑
�=0

〈
μ

n,1
�h , 1

〉
O((h ∧ (t − �h))2), (3.16)

〈
Mn,f

3

〉
t = 1

n

�t/h�∑
�=0

〈
μ

n,1
�h , f 2(·)η(·, μn,1

�h , μ
n,2
�h

)〉
(h ∧ (t − �h))

+ 1

n

�t/h�∑
�=0

〈
μ

n,1
�h , 1

〉
O((h ∧ (t − �h))2). (3.17)

Proof. Notice that (3.15) is obtained directly by (3.4). Moreover, by (3.1) one can see that

E
[(
�

n,1,h∧(t−�h)
k∼�h ( f )

)2 |F�h
] =

(
σ 2

n,1 + β2
n,1

n2

)
f 2(Xn,1

k∼�h(�h)
)
λn,1(h ∧ (t − �h))

+ O((h ∧ (t − �h))2),

where O((h ∧ (t − �h))2) ≤ Kh2 holds for any given h and n. Applying Lemma 8.12 of [21],
the quadratic variations of Mn,f

2 are as follows:

〈
Mn,f

2

〉
t =

�t/h�∑
�=0

1

n2
E

{[∑
k∼�h

(
�

n,1,h∧(t−�h)
k∼�h ( f ) −E

(
�

n,1,h∧(t−�h)
k∼�h ( f ) |F�h

))]2 ∣∣∣F�h
}
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=
�t/h�∑
�=0

1

n2

∑
k∼�h

[
f 2(Xn,1

k∼�h(�h)
)(
σ 2

n,1 + β2
n,1

n2

)
λn,1(h ∧ (t − �h)) + O((h ∧ (t − �h))2)

]

=
�t/h�∑
�=0

〈
μ

n,1
�h , f 2〉(σ 2

n,1 + β2
n,1

n2

)
λn,1

n
(h ∧ (t − �h)) + 1

n

�t/h�∑
�=0

〈
μ

n,1
�h , 1

〉
O((h ∧ (t − �h))2).

Further, by (3.2) we have

E
[(

Dn,1,h∧(t−�h)
k∼�h ( f )

)2 |F�h
] = f 2(Xn,1

k∼�h(�h)
)
η
(
Xn,1

k∼�h(�h), μn,1
�h , μ

n,2
�h

)
(h ∧ (t − �h))

+ O((h ∧ (t − �h))2).

In the same way, the quadratic variation process of Mn,f
3 (t) is derived as follows:

〈
Mn,f

3

〉
t =

�t/h�∑
�=0

1

n2
E

{[∑
k∼�h

(
Dn,1,h∧(t−�h)

k∼�h ( f ) −E
(
Dn,1,h∧(t−�h)

k∼�h ( f ) |F�h
))]2 ∣∣∣F�h

}

= 1

n

�t/h�∑
�=0

〈
μ

n,1
�h , f 2(·)η(·, μn,1

�h , μ
n,2
�h

)〉
(h ∧ (t − �h)) + 1

n

�t/h�∑
�=0

〈
μ

n,1
�h , 1

〉
O((h ∧ (t − �h))2).

This completes the proof. �

As above, the quadratic variation processes for M̂n,g
i (t) with i = 1, 2, 3 are stated in the

proposition below without proof.

Proposition 3.2. The variation processes of M̂n,g
i (t) with i = 1, 2, 3 are as follows:

〈
M̂n,g

1

〉
t =

�t/h�∑
�=0

1

n2

∑
k∼�h

∫ (�+1)h∧t

�h

∣∣g′(Xn,2
k∼�h(s)

)∣∣2ds, (3.18)

〈
M̂n,g

2

〉
t =

�t/h�∑
�=0

〈
μ

n,2
�h , g2〉(σ 2

n,2 + β2
n,2

n2

)
λn,2

n
(h ∧ (t − �h))

+ 1

n

�t/h�∑
�=0

〈
μ

n,2
�h , 1

〉
O((h ∧ (t − �h))2), (3.19)

〈
M̂n,g

3

〉
t = 1

n

�t/h�∑
�=0

〈χ, g〉2〈μn,1
�h , η

(·, μn,1
�h , μ

n,2
�h

)〉
(h ∧ (t − �h))

+ 1

n

�t/h�∑
�=0

〈
μ

n,1
�h , 1

〉
O((h ∧ (t − �h))2). (3.20)

From the construction of the model, one can check that the martingales in Proposition 3.1
and 3.2 are mutually uncorrelated except for Mn,f

3 and M̂n,g
3 , whose covariation process is

demonstrated in the following proposition.
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Proposition 3.3. The covariation process of Mn,f
3 and M̂n,g

3 is

〈
Mn,f

3 , M̂n,g
3

〉
t =

�t/h�∑
�=0

1

n
〈χ, g〉〈μn,1

�h , fη
(·, μn,1

�h , μ
n,2
�h

)〉
(h ∧ (t − �h))

+
�t/h�∑
�=0

1

n

〈
μ

n,1
�h , 1

〉2 O((h ∧ (t − �h))2).

Proof. For simplicity of notation, we set

I1(�, k) = 1

n

{
Dn,1,h∧(t−�h)

k∼�h ( f ) −E
[
Dn,1,h∧(t−�h)

k∼�h ( f ) |F�h
]}
,

I2(�, k) = 1

n

{
Dn,2,h∧(t−�h)

k∼�h (g) −E
[
Dn,2,h∧(t−�h)

k∼�h (g) |F�h
]}

.

It follows from (3.6) and (3.13) that

Mn,f
3 (t) =

�t/h�∑
�=0

∑
k∼�h

I1(�, k) and M̂n,g
3 (t) =

�t/h�∑
�=0

∑
k∼�h

I2(�, k),

where
∑

k∼�h includes all alive particles in colony 1 at time �h. Again applying Lemma 8.12
of [21], one can check that

〈
Mn,f

3 , M̂n,g
3

〉
t =

�t/h�∑
�=0

E

[ ∑
k1∼�h,k2∼�h

I1(�, k)I2(�, k)
∣∣∣F�h

]
.

For k1 = k2 = k, the kth living particle in colony 1 emigrates to colony 2, and we have

E[I1(�, k)I2(�, k) |F�h]

= 〈χ, g〉
n2

{
E
[
Dn,1,h∧(t−�h)

k∼�h ( f ) |F�h
](

1 −E
[
1I{ρk∼�h≤(�+1)h∧t} |F�h

])}
= 〈χ, g〉

n2
f
(
Xn,1

k∼�h(�h)
)
η
(
Xn,1

k∼�h(�h), μn,1
�h , μ

n,2
�h

)
(h ∧ (t − �h))

× [
1 − η

(
Xn,1

k∼�h(�h), μn,1
�h , μ

n,2
�h

)
(h ∧ (t − �h))

] + O((h ∧ (t − �h))2)

n2

= 〈χ, g〉
n2

f
(
Xn,1

k∼�h(�h)
)
η
(
Xn,1

k∼�h(�h), μn,1
�h , μ

n,2
�h

)
(h ∧ (t − �h)) + O((h ∧ (t − �h))2)

n2
.

Further, for the case k1 �= k2 we obtain that

E
[
Dn,1,h∧(t−�h)

k1∼�h ( f )Dn,1,h∧(t−�h)
k2∼�h (g) |F�h

] = 0,

https://doi.org/10.1017/jpr.2021.98 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.98


Mutually interacting superprocesses with migration 915

since the probability that two particles emigrate from colony 1 to 2 simultaneously is 0, which
implies

E
[
I1(�, k1)I2(�, k2) |F�h

]
= −〈χ, g〉

n2
E
[
Dn,1,h∧(t−�h)

k1∼�h ( f ) |F�h
] ·E[

1I{ρk2∼�h≤(�+1)h∧t} |F�h
]

= O((h ∧ (t − �h))2)

n2
.

Therefore we obtain

〈
Mn,f

3 , M̂n,g
3

〉
t

=
�t/h�∑
�=0

∑
k∼�h

〈χ, g〉
n2

f
(
Xn,1

k∼�h(�h)
)
η
(
Xn,1

k∼�h(�h), μn,1
�h , μ

n,2
�h

)
(h ∧ (t − �h))

+
�t/h�∑
�=0

∑
k1∼�h,k2∼�h

1

n2
O((h ∧ (t − �h))2)

=
�t/h�∑
�=0

〈χ, g〉
n

〈
μ

n,1
�h , fη

(·, μn,1
�h , μ

n,2
�h

)〉
(h ∧ (t − �h))

+
�t/h�∑
�=0

1

n

〈
μ

n,1
�h , 1

〉2 O((h ∧ (t − �h))2).

The result follows. �

In the following we make some estimations (Lemmas 3.1–3.4) and then prove the tightness
of the empirical measure for the branching particle systems.

Lemma 3.1. Assume that

sup
n

E
[〈
μ

n,1
0 , 1

〉2p + 〈
μ

n,2
0 , 1

〉2p]
<∞ for some p ≥ 1.

For any T > 0, there exists a constant K = K(p, T) such that

sup
n

E

[
sup
t≤T

(〈
μ

n,1
t , 1

〉2p + 〈
μ

n,2
t , 1

〉2p)]
< K.

Proof. Replacing f and g with 1 in (3.9) and (3.10), by Doob’s inequality one can check
that

E

[
sup
t≤T

〈
μ

n,1
t , 1

〉2p
]

≤ K1 + K1

3∑
i=1

E
[|Mn,1

i (T)|2p] + K1E

[
sup
t≤T

|An,1(t)|2p
]

= K1 + K1

3∑
i=1

E
[〈

Mn,1
i

〉p
T

] + K1E

[
sup
t≤T

|An,1(t)|2p
]

(3.20)
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and similarly

E

[
sup
t≤T

〈
μ

n,2
t , 1

〉2p
]

≤ K1 + K1

3∑
i=1

E
[〈

M̂n,1
i

〉p
T

] + K1E

[
sup
t≤T

|Ân,1(t)|2p
]
,

where K1 is a constant depending on p. By 3.7, we have

E

[
sup
t≤T

|An,1(t)|2p
]

≤E

[
sup
t≤T

∣∣∣∣∣
�t/h�∑
�=0

βn,1λn,1

n

〈
μ

n,1
�h , 1

〉
(h ∧ (t − �h)) −

�t/h�∑
�=0

〈
μ

n,1
�h , η

(·, μn,1
�h , μ

n,2
�h

)〉
(h ∧ (t − �h))

+
�t/h�∑
�=0

〈
μ

n,1
�h , 1

〉
O((h ∧ (t − �h))2) +

�t/h�∑
�=0

1

n

∑
k∼�h

ϒ
n,1,h∧(t−�h)
k∼�h ( f )

∣∣∣∣∣
2p]

≤E

[
sup
t≤T

∣∣∣∣∣
�t/h�∑
�=0

βn,1λn,1

n

〈
μ

n,1
�h , 1

〉
(h ∧ (t − �h)) −

�t/h�∑
�=0

〈
μ

n,1
�h , η

(·, μn,1
�h , μ

n,2
�h

)〉
(h ∧ (t − �h))

+
�t/h�∑
�=0

〈
μ

n,1
�h , 1

〉
O((h ∧ (t − �h))2) +

�t/h�∑
�=0

1

n

∑
k∼�h

E
[
ϒ

n,1,h∧(t−�h)
k∼�h ( f ) |F�h

]

+
�t/h�∑
�=0

1

n

∑
k∼�h

(
ϒ

n,1,h∧(t−�h)
k∼�h ( f ) −E

[
ϒ

n,1,h∧(t−�h)
k∼�h ( f ) |F�h

])∣∣∣∣∣
2p]

,

where ϒn,1,h∧(t−�h)
k∼�h ( f ) is expressed as the sum of two parts. The upper bound of the first part

is given by (3.8). The second part can be treated in the same way as other martingales. Recall
that λn,1/n → λ1 and βn,1 → β1 as n → ∞; η is bounded and the step size h is sufficiently
small. Moreover,

�T/h�∑
�=0

〈
μ

n,1
�h , 1

〉
(h ∧ (t − �h))

is bounded by ∫ T

0
sup
t≤s

〈
μ

n,1
t , 1

〉
ds.

By Hölder’s inequality, there is a constant K2 depending on p and T such that

E

[
sup
t≤T

|An,1(t)|2p
]

≤ K2

∫ T

0
E

[
sup
t≤s

〈
μ

n,1
t , 1

〉2p
]

ds.

The other terms of (3.20) can be treated in the same way. Then we have

E

[
sup
t≤T

〈
μ

n,1
t , 1

〉2p
]

≤ K1 + K2

∫ T

0
E

[
sup
t≤s

〈
μ

n,1
t , 1

〉p] ds + K2

∫ T

0
E

[
sup
t≤s

〈
μ

n,1
t , 1

〉2p
]

ds

≤ (K1 + K2T) + K2

∫ T

0
E

[
sup
t≤s

〈
μ

n,1
t , 1

〉2p
]

ds,
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where the last inequality follows from x ≤ x2 + 1 for any x ≥ 0. Let K3 = K1 + K2T , which
depends on p and T . Similarly, by (3.14), (3.18)–(3.20), one can see that

E

[
sup
t≤T

〈
μ

n,2
t , 1

〉2p
]

≤ K3 + K2

∫ T

0
E

[
sup
t≤s

(〈
μ

n,2
t , 1

〉2p + 〈
μ

n,1
t , 1

〉2p)] ds.

As a consequence, we obtain

E

[
sup
t≤T

(〈μn,1
t , 1

〉2p + 〈
μ

n,2
t , 1

〉2p)] ≤ 2K3 + 2K2

∫ T

0
E

[
sup
t≤s

(〈
μ

n,1
t , 1

〉2p + 〈
μ

n,2
t , 1

〉2p)] ds.

The result follows from Gronwall’s inequality. �

Lemma 3.2. Under the condition of Lemma 3.1, for any 0 ≤ s ≤ t ≤ T, f , g ∈ C2
b(R), and i =

1, 2, 3, we have

E
[∣∣〈Mi

n,f 〉
t − 〈

Mi
n,f 〉

s

∣∣p + ∣∣〈M̂n,g
i

〉
t − 〈

M̂n,g
i

〉
s

∣∣p] ≤ K|t − s|p.

Proof. We start with the case of i = 2. It follows from (3.16) and Hölder’s inequality that

E
[∣∣〈M2

n,f 〉
t − 〈

M2
n,f 〉

s

∣∣p]
=E

∣∣∣∣∣〈μn,1
s , f 2〉(σ 2

n,1 + β2
n,1

n2

)
λn,1((�s/h� + 1)h − s)

+
�t/h�∑

�=�s/h�+1

〈
μ

n,1
�h , f 2〉(σ 2

n,1 + β2
n,1

n2

)
λn,1

n
(h ∧ (t − �h))

+ 1

n

�t/h�∑
�=�s/h�+1

〈
μ

n,1
�h , 1

〉
O((h ∧ (t − �h))2) + 1

n

〈
μn,1

s , 1
〉
O(((�s/h� + 1)h − s)2)

∣∣∣∣∣
p

≤ KE

[∫ t

s
sup

s≤u≤r

〈
μn,1

u , 1
〉
dr

]p

≤ K|t − s|pE
[(

sup
s≤r≤t

〈
μn,1

r , 1
〉)p]

≤ K|t − s|p
[
E

[(
sup

s≤r≤t

〈
μn,1

r , 1
〉)2p]]1/2

= K|t − s|p
[
E

[
sup

s≤r≤t

〈
μn,1

r , 1
〉2p

]]1/2

≤ K|t − s|p,
where the last inequality follows from Lemma 3.1. As above, a similar estimation can be
carried out for 〈M̂n,g

2 〉t, which implies the result for i = 2. For i = 1, 3 we can derive the results
analogously. �

By the same approach as for Lemma 3.2, the following lemmas are presented without proof.

Lemma 3.3. Under the conditions of Lemma 3.1, for any 0 ≤ s ≤ t ≤ T, f , g ∈ C2
b(R), we

have

E
[∣∣〈M3

n,f , M̂n,g
3

〉
t − 〈

M3
n,f , M̂n,g

3

〉
s

∣∣p] ≤ K|t − s|p.
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Lemma 3.4. Under the conditions of Lemma 3.1, for any 0 ≤ s ≤ t ≤ T, f , g ∈ C2
b(R), we

have

E
[|An,f (t) − An,f (s)|2p + |Ân,g(t) − Ân,g(s)|2p] ≤ K|t − s|2p.

Theorem 3.1. Assume that

sup
n

E
[〈
μ

n,1
0 , 1

〉2p + 〈
μ

n,2
0 , 1

〉2p]
<∞ for some p ≥ 1.

The sequence {(
μ

n,1
t , μ

n,2
t

)
t∈[0,T] : n ≥ 1

}
is tight in D([0, T],MF(R)2). Furthermore, the limit

(
μ1t , μ

2
t

)
t≥0 is a solution to the MP

(1.3, 1.4) with b1 = β1λ1, b2 = β2λ2, γ1 = σ 2
1λ1, and γ2 = σ 2

2λ2.

Proof. Suppose that {hn : n ≥ 1} is a sequence in (0,+∞) satisfying limn→+∞ hn = 0. For
simplicity, we use Mn,f

i and M̂n,g
i to denote the martingales defined by (3.4)–(3.6) and (3.11)–

(3.13) with respect to h = hn. In fact, by Jakubowski’s criterion (see e.g. Dawson [2, Theorem
3.6.4]), the tightness of {(

μ
n,1
t , μ

n,2
t

)
t∈[0,T] : n ≥ 1

}
in D([0, T],MF(R)2) is obtained by the tightness of{(〈

μ
n,1
t , f

〉
,
〈
μ

n,2
t , g

〉)
t∈[0,T] : n ≥ 1

}
in D([0, T],R2) for any f , g ∈ C2

b(R).
Denote

Mn,f (t) =
3∑

i=1

Mn,f
i (t) and M̂n,g(t) =

3∑
i=1

M̂n,g
i (t).

Then

〈Mn,f 〉t =
3∑

i=1

〈Mn,f
i 〉t, 〈M̂n,g〉t =

3∑
i=1

〈M̂n,g
i 〉t and 〈Mn,f , M̂n,g〉t = 〈

Mn,f
3 , M̂n,g

3

〉
t.

For any 0 ≤ s ≤ t ≤ T and p ≥ 1, by Hölder’s inequality and Lemmas 3.2 and 3.4, we have

E
[∣∣〈μn,1

t , f
〉 − 〈

μn,1
s , f

〉∣∣2p]
≤ KE

[|An,f (t) − An,f (s)|2p] + KE
[|〈Mn,f 〉t − 〈Mn,f 〉s|p

]
≤ KE

[|An,f (t) − An,f (s)|2p] + KE
[|〈M2

n,f 〉t − 〈M2
n,f 〉s|p

]
+ KE

[|〈M1
n,f 〉t − 〈M1

n,f 〉s|p
] + KE

[|〈M3
n,f 〉t − 〈M3

n,f 〉s|p
]

≤ K|t − s|p + K|t − s|2p.

On the other hand, it follows that

E
[|〈μn,2

t , g〉 − 〈μn,2
s , g〉|2p] ≤ K|t − s|p + K|t − s|2p.
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Combining with Lemma 3.3, the tightness of(〈
μ

n,1
t , f

〉)
t∈[0,T],

(〈
μ

n,2
t , g

〉)
t∈[0,T], (An,f (t))t∈[0,T], (Ân,g(t))t∈[0,T],

(〈Mn,f 〉t)t∈[0,T], (〈M̂n,g〉t)t∈[0,T] and (〈Mn,f , M̂n,g〉t)t∈[0,T]

follows from [9, Theorem VI.4.1], which implies that
(
μ

n,1
t , μ

n,2
t

)
t∈[0,T] is tight. Thus there is

a subsequence
(
μ

nk,1
t , μ

nk,2
t

)
t∈[0,T] converging in law as k → ∞. Suppose that

(
μ1t , μ

2
t

)
t∈[0,T]

is the weak limit. For any f , g ∈ C2
b(R), we have(〈μnk,1, f 〉, Ank,f , 〈Mnk,f 〉, 〈μnk,2, g〉, Ânk,g, 〈M̂nk,g〉, 〈Mnk,f , M̂nk,g〉)

−→ (〈μ1, f 〉, Af , 〈Mf 〉, 〈μ2, g〉, Âg, 〈M̂g〉, 〈Mf , M̂g〉)
weakly as k → ∞, where

Af (t) = 1

2

∫ t

0

〈
μ1s , f ′′〉 ds + b1

∫ t

0

〈
μ1s , f

〉
ds −

∫ t

0

〈
μ1s , η

(·, μ1s , μ2s )f 〉 ds,

Âg(t) = 1

2

∫ t

0

〈
μ2s , g′′〉 ds + b2

∫ t

0

〈
μ2s , g

〉
ds +

∫ t

0
〈χ, g〉〈μ1s , η(·, μ1s , μ2s )〉 ds

with b1 = β1λ1, b2 = β2λ2. For any f , g ∈ C2
b(R) and t ∈ [0, T], we see that

〈Mnk,f , M̂nk,g〉t = 〈
Mnk,f

3 , M̂nk,g
3

〉
t → 0 as k → ∞

by Proposition 3.3. Moreover, 〈Mi
nk,f 〉t → 0 and 〈M̂nk,g

i 〉t → 0 with i = 1, 3 as k → ∞ by
(3.15), (3.17), (3.18), and (3.20). We can pass to the limit to conclude that Mf (t) and M̂g(t)
are martingales with quadratic variations

〈Mf 〉t = γ1

∫ t

0

〈
μ1s , f 2〉 ds and 〈M̂g〉t = γ2

∫ t

0

〈
μ2s , g2〉 ds,

where γ1 = σ 2
1λ1 and γ2 = σ 2

2λ2. Letting T → ∞, it implies that
(
μ1t , μ

2
t

)
t≥0 is a solution to

the MP (1.3, 1.4). The result follows. �

4. Uniqueness of the solution to the martingale problem

In this section we first derive the SPDEs satisfied by the distribution function-valued
processes of the mutually interacting superprocesses with migration, and then establish its
equivalence with the MP (1.3, 1.4). Moreover, the pathwise uniqueness of the SPDEs is proved
by an extended Yamada–Watanabe argument.

4.1. A related system of SPDEs

For any y ∈R, we write

u1t (y) =μ1t ((−∞, y]) and u2t (y) =μ2t ((−∞, y]) (4.1)

as the distribution function-valued processes for the mutually interacting superprocesses with
migration

(
μ1t , μ

2
t

)
t≥0. For any x, y ∈R∪ {±∞}, ν1, ν2 ∈ MF(R), and η(·, ·, ·) ∈ C+

b (R×
MF(R)2), let

η̇(y, ν1, ν2) =
∫ y

−∞
η(x, ν1, ν2)ν1(dx).
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Let Wi(ds da) be independent space–time white noise random measures on R+ ×R with
intensity ds da and i ∈ {1, 2}. We consider the following SPDEs: for any t ≥ 0 and y ∈R,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1t (y) = u10 (y) + √
γ1

∫ t

0

∫ u1s (y)

0
W1(ds da) +

∫ t

0

(
�

2
u1s (y) + b1u1s (y)

)
ds

−
∫ t

0
η̇
(
y, μ1s , μ

2
s

)
ds,

u2t (y) = u20 (y) + √
γ2

∫ t

0

∫ u2s (y)

0
W2(ds da) +

∫ t

0

(
�

2
u2s (y) + b2u2s (y)

)
ds

+ χ̇(y)
∫ t

0
η̇
(+∞, μ1s , μ

2
s

)
ds,

(4.2)

where χ̇ is the distribution function of χ , i.e. χ̇ (y) = χ ((−∞, y]).

Definition 4.1. We say that the SPDEs (4.2) have a weak solution if there exists a Cb,m(R)2-
valued process

(
u1t , u2t

)
t≥0 on a stochastic basis such that for any f , g ∈ C2

0(R) and t ≥ 0, the
following holds:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
u1t , f

〉
1 = 〈

u10 , f
〉
1 + √

γ1

∫ t

0

∫ ∞

0

∫
R

f (y)1I{a≤u1s (y)}dyW1(ds da)

+
∫ t

0

[〈�
2

u1s , f

〉
1
+ b1

〈
u1s , f

〉
1 − 〈

η̇
(·, μ1s , μ2s ), f

〉
1

]
ds,

〈
u2t , g

〉
1 = 〈

u20 , g
〉
1 + √

γ2

∫ t

0

∫ ∞

0

∫
R

g(y)1I{a≤u2s (y)}dyW2(ds da)

+
∫ t

0

[〈�
2

u2s , g

〉
1
+ b2

〈
u2s , g

〉
1 + 〈χ̇ , g〉1η̇

(+∞, μ1s , μ
2
s

)]
ds.

Proposition 4.1. Suppose that
(
u1t , u2t

)
t≥0 is a weak solution to the system of SPDEs (4.2).

Then the corresponding measure-valued process
(
μ1t , μ

2
t

)
t≥0 is a solution to the MP (1.3,

1.4).

Proof. For a non-decreasing continuous function h on R, the inverse function is defined as
h−1(a) = inf{x : h(x)> a}. Then, for any f , g ∈ C3

0(R), we have

〈
μ1t , f

〉 = −〈
u1t , f ′〉

1

= −〈
u10 , f ′〉

1 − √
γ1

∫ t

0

∫ ∞

0

∫
R

f ′(y)1I{a≤u1s (y)}dyW1(ds da)

−
∫ t

0

(〈�
2

u1s , f ′
〉

1
+ b1

〈
u1s , f ′〉

1 − 〈
η̇
(·, μ1s , μ2s ), f ′〉

1

)
ds

= 〈
μ10 , f

〉 + √
γ1

∫ t

0

∫ ∞

0
f
((

u1s
)−1(a)

)
W1(ds da)

+
∫ t

0

(〈
μ1s ,

1

2
f ′′

〉
+b1

〈
μ1s , f

〉 − 〈
μ1s , η

(·, μ1s , μ2s )f 〉
)

ds

https://doi.org/10.1017/jpr.2021.98 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.98


Mutually interacting superprocesses with migration 921

and

〈
μ2t , g

〉 = −〈
u2t , g′〉

1

= −〈
u20 , g′〉

1 − √
γ2

∫ t

0

∫ ∞

0

∫
R

g′(y)1I{a≤u2s (y)}dyW2(ds da)

−
∫ t

0

(〈�
2

u2s , g′
〉

1
+ b2

〈
u2s , g′〉

1 + 〈χ̇ , g′〉1η̇
(+∞, μ1s , μ

2
s

))
ds

= 〈
μ20 , g

〉 + √
γ2

∫ t

0

∫ ∞

0
g
((

u2s
)−1(a)

)
W2(ds da)

+
∫ t

0

(〈
μ2s ,

1

2
g′′

〉
+ b2

〈
μ2s , g

〉 + 〈χ, g〉η̇(+∞, μ1s , μ
2
s

))
ds.

Thus Mf
t and M̂g

t are martingales with quadratic variation processes

〈Mf 〉t = γ1

∫ t

0

∫ ∞

0
f 2((u1s )−1(a)

)
ds da

= γ1

∫ t

0

∫
R

f 2(y)ds d
(
u1s (y)

)

= γ1

∫ t

0

〈
μ1s , f 2〉 ds

and

〈M̂g〉t = γ2

∫ t

0

∫ ∞

0
g2((u2s )−1(a)

)
ds da

= γ2

∫ t

0

∫
R

g2(y)ds d
(
u2s (y)

)

= γ2

∫ t

0

〈
μ2s , g2〉 ds.

The independence of W1 and W2 leads to 〈Mf , M̂g〉t = 0. Therefore
(
μ1t , μ

2
t

)
t≥0 is a solution

to the MP (1.3, 1.4). This completes the proof. �

Proposition 4.2. Suppose that
(
μ1t , μ

2
t

)
t≥0 is a solution to the MP (1.3, 1.4) and η(·, ν1, ν2) ∈

C1
0(R) for any ν1, ν2 ∈ MF(R). Then the random field

(
u1t , u2t

)
t≥0 defined by (4.1) is a weak

solution to the SPDEs (4.2).

Proof. Let f , g ∈ C2
0(R) and set

f̃ (y) =
∫ ∞

y
f (x)dx, g̃(y) =

∫ ∞

y
g(x)dx.
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Then we have 〈
u1t , f

〉
1 = 〈

μ1t , f̃
〉

= 〈
μ10 , f̃

〉 + ∫ t

0

〈
μ1s ,

1

2
f̃ ′′

〉
ds + b1

∫ t

0

〈
μ1s , f̃

〉
ds

−
∫ t

0

〈
μ1s , η

(·, μ1s , μ2s )f̃ 〉 ds + Mf̃
t

= 〈
u10 , f

〉
1 +

∫ t

0

〈
u1s ,

1

2
f ′′

〉
1
ds + b1

∫ t

0

〈
u1s , f

〉
1ds

+
∫ t

0

〈
u1s ,

(
η
(·, μ1s , μ2s )f̃ )′〉1ds + Mf̃

t .

Note that〈
u1s ,

(
η
(·, μ1s , μ2s )f̃ )′〉1 = 〈

u1s , η
′(·, μ1s , μ2s )f̃ − η

(·, μ1s , μ2s )f 〉1
= 〈

u1s η
′(·, μ1s , μ2s ), f̃

〉
1 − 〈

u1s , η
(·, μ1s , μ2s )f 〉1

=
〈∫ ·

−∞
u1s (x)η′(x, μ1s , μ2s )dx, f

〉
1
− 〈

u1s , η
(·, μ1s , μ2s )f 〉1

= −
〈∫ ·

−∞
η
(
x, μ1s , μ

2
s

)
du1s (x), f

〉
1

= −〈
η̇
(·, μ1s , μ2s ), f

〉
1.

Therefore we continue to have〈
u1t , f

〉
1 = 〈

u10 , f
〉
1 + 1

2

∫ t

0

〈
u1s , f ′′〉

1ds

+ b1

∫ t

0

〈
u1s , f

〉
1ds −

∫ t

0

〈
η̇
(·, μ2s , μ1s ), f

〉
1ds + Mf̃

t . (4.3)

Similarly, we will have

〈
u2t , g

〉
1 = 〈

u20 , g
〉
1 + 1

2

∫ t

0

〈
u2s , g′′〉

1ds + b2

∫ t

0

〈
u2s , g

〉
1ds

+ 〈χ̇ , g〉1

∫ t

0
η̇
(+∞, μ1s , μ

2
s

)
ds + M̂g̃

t . (4.4)

Let S′(R) be the space of Schwarz distributions and define the S′(R)-valued processes Nt and

N̂t by Nt( f ) = Mf̃
t and N̂t(g) = M̂g̃

t for any f , g ∈ C∞
0 (R). Then Nt and N̂t are S′(R)-valued

continuous square-integrable martingales with

〈N( f )〉t = 〈Mf̃ 〉t

= γ1

∫ t

0

∫
R

f̃ 2(y)μ1s (dy) ds

=
∫ t

0

∫ ∞

0

(√
γ1

)2
f̃ 2((u1s )−1(a)

)
da ds

=
∫ t

0

∫ ∞

0

(√
γ1

∫
R

1I{a≤u1s (y)}f (y)dy

)2

da ds
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and

〈N̂(g)〉t = 〈M̂g̃〉t

= γ2

∫ t

0

∫
R

g̃2(y)μ2s (dy) ds

=
∫ t

0

∫ ∞

0

(√
γ2

)2
g̃2((u2s )−1(a)

)
da ds

=
∫ t

0

∫ ∞

0

(√
γ2

∫
R

1I{a≤u2s (y)}g(y)dy

)2

da ds.

Moreover, one can see that 〈N( f ), N̂(g)〉t = 〈Mf̃ , M̂g̃〉t = 0. By Theorem III-7 and Corollary
III-8 of [10], on some extension of the probability space, one can define two independent
Gaussian white noises Wi(ds da), i= 1, 2 on R+ ×R with intensity ds da such that

Nt( f ) =
∫ t

0

∫ ∞

0

∫
R

√
γ11I{a≤u1s (x)}f (x)dxW1(ds da)

and

N̂t(g) =
∫ t

0

∫ ∞

0

∫
R

√
γ21I{a≤u2s (x)}g(x)dxW2(ds da).

Plugging back into (4.3) and (4.4), one can see that
(
u1t , u2t

)
t≥0 is a solution to (4.2). �

4.2. Uniqueness for SPDEs

This subsection is devoted to proving the pathwise uniqueness of the solution to the system
of SPDEs (4.2). By Propositions 4.1 and 4.2, the uniqueness of the solution to the MP (1.3,
1.4) is then a direct consequence. We apply the approach of an extended Yamada–Watanabe
argument to smooth functions. This is an adaptation to the argument of Proposition 3.1 of [19].

Before going deep into the uniqueness theorem, we introduce some notation. Let � ∈
C∞

0 (R)+ such that supp(�) ⊆ (−1, 1) and the total integral is 1. Define �m(x) = m�(mx).
Notice that �m → δ0 weakly in the sense that for all f ∈ Cb(R),

lim
m→∞

∫
R

�m(x)f (x)dx =
∫
R

δ0(x)f (x)dx = f (0).

Let {ak} be a decreasing sequence defined recursively by a0 = 1 and
∫ ak−1

ak
z−1dz = k for

k ≥ 1. Let ψk be non-negative functions in C∞
0 (R) such that supp(ψk) ⊆ (ak, ak−1) and∫ ak−1

ak
ψk(z)dz = 1 and ψk(z) ≤ 2(kz)−1 for all z ∈R. Let

φk(z) =
∫ |z|

0
dy

∫ y

0
ψk(x)dx for all z ∈R.

Then φk(z) ↑ |z|, |φ′
k(z)| ≤ 1 and |z|φ′′

k (z) ≤ 2k−1. Let

J(x) =
∫
R

e−|x|�(x − y)dy,
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where � is the mollifier given by �(x) = C exp{−1/(1 − x2)}1I{|x|<1}, and C is a constant such
that

∫
R
�(x)dx = 1. Then, for any m ∈Z+, there are positive constants cm and Cm such that

cm e−|x| ≤ |J(m)(x)| ≤ Cm e−|x| for all x ∈R. (4.5)

Suppose that
(
u1t , u2t

)
t≥0 and

(
ũ1t , ũ2t

)
t≥0 are two weak solutions to the system of SPDEs

(4.2) with the same initial values;
(
μ1t , μ

2
t

)
t≥0 and

(
μ̃1t , μ̃

2
t

)
t≥0 stand for their correspond-

ing measure-valued processes, namely uit (y) =μit (−∞, y] and ũit (y) = μ̃it (−∞, y] for i= 1, 2.
Let

vit (y) = uit (y) − ũit (y) and Ḡis(a, y) = 1I{a≤uis (y)} − 1I{a≤ũis (y)}.

Moreover, we denote

Im,k,i
1 = 1

2
E

[∫ t

0

∫
R

φ′
k

(〈
vis, �m(x − ·)〉1)〈vis, �y�m(x − ·)〉1J(x)dx ds

]
,

Im,k,i
2 =E

[∫ t

0

∫
R

φ′
k

(〈
vis, �m(x − ·)〉1)〈vis, �m(x − ·)〉1J(x)dx ds

]
, (4.6)

Im,k,i
3 =E

[∫ t

0

∫
R

∫
R+
φ′′

k

(〈
vis, �m(x − ·)〉1)

∣∣∣∣
∫
R

Ḡis(a, y)�m(x − y)dy

∣∣∣∣
2

daJ(x)dx ds

]
.

Proposition 4.3. For i= 1, 2 we have

E

[∫
R

φk
(〈

vit , �m(x − ·)〉1)J(x)dx

]
= Im,k,i

1 + biI
m,k,i
2 + γi

2
Im,k,i
3 + Im,k,i

4 ,

where Im,k,i
1 , Im,k,i

2 , and Im,k,i
3 are given by (4.6),

Im,k,1
4 = −E

[∫ t

0

∫
R

∫
R

φ′
k

(〈
v1s , �m(x − ·)〉1)�m(x − y)ξ s(y)dyJ(x)dx ds

]
(4.7)

and

Im,k,2
4 =E

[∫ t

0

∫
R

φ′
k

(〈
v2s , �m(x − ·)〉1)〈χ̇ , �m(x − ·)〉1ξ s(∞)J(x)dx ds

]
, (4.8)

with ξ s(·) = η̇
(·, μ1s , μ2s ) − η̇

(·, μ̃1s , μ̃2s ).
Proof. It follows from (4.2) that

v1t (y) = √
γ1

∫ t

0

∫ ∞

0
Ḡ1s (a, y)W1(ds da) +

∫ t

0

(
�y

2
v1s (y) + b1v1s (y) − ξ s(y)

)
ds

and

v2t (y) = √
γ2

∫ t

0

∫ ∞

0
Ḡ2s (a, y)W2(ds da) +

∫ t

0

(
�y

2
v2s (y) + b2v2s (y) + χ̇ (y)ξ s(∞)

)
ds.
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Consequently we have

〈
v1t , �m(x − ·)〉1 = √

γ1

∫ t

0

∫
R+

∫
R

Ḡ1s (a, y)�m(x − y)dyW1(ds da)

+ b1

∫ t

0

〈
v1s , �m(x − ·)〉1ds −

∫ t

0

∫
R

�m(x − y)ξ s(y)dy ds

+ 1

2

∫ t

0

〈
v1s , �y�m(x − ·)〉1ds (4.9)

and

〈
v2t , �m(x − ·)〉1 = √

γ2

∫ t

0

∫
R+

∫
R

Ḡ2s (a, y)�m(x − y)dyW2(ds da)

+ 1

2

∫ t

0

〈
v2s , �y�m(x − ·)〉1ds + b2

∫ t

0

〈
v2s , �m(x − ·)〉1ds

+
∫ t

0
〈χ̇ , �m(x − ·)〉1ξ s(∞) ds. (4.10)

Applying Itô’s formula to (4.9) and (4.10), we can easily get

φk
(〈

v1t , �m(x − ·)〉1)
= √

γ1

∫ t

0

∫
R+
φ′

k

(〈
v1s , �m(x − ·)〉1)

∫
R

Ḡ1s (a, y)�m(x − y)dyW1(ds da)

+
∫ t

0
φ′

k

(〈
v1s , �m(x − ·)〉1)

[
1

2

〈
v1s , �y�m(x − ·)〉1 + b1

〈
v1s , �m(x − ·)〉1

]
ds

+ γ1

2

∫ t

0

∫
R+
φ′′

k

(〈
v1s , �m(x − ·)〉1)

∣∣∣∣
∫
R

Ḡ1s (a, y)�m(x − y)dy

∣∣∣∣
2

da ds

−
∫ t

0

∫
R

φ′
k

(〈
v1s , �m(x − ·)〉1)�m(x − y)ξ s(y)dy ds

and

φk
(〈

v2t , �m(x − ·)〉1)
= √

γ2

∫ t

0

∫
R+
φ′

k

(〈
v2s , �m(x − ·)〉1)

∫
R

Ḡ2s (a, y)�m(x − y)dyW2(ds da)

+
∫ t

0
φ′

k

(〈
v2s , �m(x − ·)〉1)

[
1

2

〈
v2s , �y�m(x − ·)〉1 + b2

〈
v2s , �m(x − ·)〉1

]
ds

+ γ2

2

∫ t

0

∫
R+
φ′′

k

(〈
v2s , �m(x − ·)〉1)

∣∣∣∣
∫
R

Ḡ2s (a, y)�m(x − y)dy

∣∣∣∣
2

da ds

+
∫ t

0
φ′

k

(〈
v2s , �m(x − ·)〉1)〈χ̇ , �m(x − ·)〉1ξ s(∞) ds.

Taking the expectations of
〈
φk

(〈
vit , �m(x − ·)〉1), J(x)

〉
1 with i= 1, 2, we obtain the desired

results. �
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Lemma 4.1. For i= 1, 2 we have

2Im,k,i
1 ≤E

[∫ t

0

∫
R

〈|vis|, �m(x − ·)〉1|J′′(x)|dx ds

]
.

Proof. Note that

2Im,k,i
1 =E

[∫ t

0

∫
R

φ′
k

(〈
vis, �m(x − ·)〉1)〈vis, �y�m(x − ·)〉1J(x)dx ds

]
.

Since �y�m(x − y) =�x�m(x − y), we have

2Im,k,i
1 =E

[∫ t

0

∫
R

φ′
k

(〈
vis, �m(x − ·)〉1)�x

〈
vis, �m(x − ·)〉1J(x)dx ds

]

= −E

[∫ t

0

∫
R

(
∂

∂x

〈
vis, �m(x − ·)〉1

)2

φ′′
k

(〈
vis, �m(x − ·)〉1)J(x)dx ds

]

−E

[∫ t

0

∫
R

∂

∂x

〈
vis, �m(x − ·)〉1φ′

k

(〈
vis, �m(x − ·)〉1)J′(x)dx ds

]

≤ −E

[∫ t

0

∫
R

∂

∂x

〈
vis, �m(x − ·)〉1φ′

k

(〈
vis, �m(x − ·)〉1)J′(x)dx ds

]

= −E

[∫ t

0

∫
R

∂

∂x

(
φk

(〈
vis, �m(x − ·)〉1))J′(x)dx ds

]

=E

[∫ t

0

∫
R

φk
(〈

vis, �m(x − ·)〉1)J′′(x)dx ds

]
,

where the inequality follows from the fact that φ′′
k (z) =ψk(|z|) ≥ 0. Use φk(z) ≤ |z| to get

φk
(〈

vis, �m(x − ·)〉1) ≤ ∣∣〈vis, �m(x − ·)〉1∣∣ ≤ 〈|vis|, �m(x − ·)〉1.

This implies the result. �

Lemma 4.2. For i= 1, 2 we have

Im,k,i
3 ≤ 4E

[∫ t

0

∫
R

φ′′
k

(〈
vis, �m(x − ·)〉1)〈|vis|, �m(x − ·)〉1J(x)dx ds

]
.

Proof. It is easy to see that

Im,k,i
3 ≤E

[∫ t

0

∫
R

∫
R+
φ′′

k

(〈
vis, �m(x − ·)〉1)

∫
R

(
Ḡis(a, y)

)2
�m(x − y)dy daJ(x)dx ds

]

≤ 4E

[∫ t

0

∫
R

φ′′
k

(〈
vis, �m(x − ·)〉1)

∫
R

|vis(y)|�m(x − y)dyJ(x)dx ds

]
.

The result follows. �

Theorem 4.1. Assume that there exists a constant K such that

|ξ (x, ν1, ν2) − ξ (x, ν̃1, ν̃2)| ≤ K[ρ(ν1, ν̃1) + ρ(ν2, ν̃2)]
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for any x ∈R∪ {±∞} and νi, ν̃i ∈ MF(R) with i = 1, 2. Then pathwise uniqueness holds for
the SPDEs (4.2), namely, if (4.2) has two weak solutions defined on the same stochastic basis
with the same initial values, then the solutions coincide almost surely.

Proof. Suppose
(
u1t , u2t

)
t≥0 and

(
ũ1t , ũ2t

)
t≥0 are two weak solutions on the same stochastic

basis with the same initial values. It is sufficient to show that
(
u1t , u2t

) = (
ũ1t , ũ2t

)
for all t ≥ 0

almost surely. Recall that vit (y) = uit (y) − ũit (y). We subsequently estimate the values of Im,k,i
�

with �= 1, 2, 3, 4 and i= 1, 2. Since

lim
m→∞

〈
vis, �m(x − ·)〉1 = vis(x) and lim

m→∞
〈|vis|, �m(x − ·)〉1 = |vis(x)|

for Lebesgue-a.e. x and any s ≥ 0 almost surely, by Lemma 4.1 and the dominated convergence
theorem, we have

lim sup
k,m→∞

2Im,k,i
1 ≤E

[∫ t

0

∫
R

|vis(x)| · |J′′(x)|dx ds

]
.

By (4.5), there exists a constant K such that

lim sup
k,m→∞

2Im,k,i
1 ≤ KE

[∫ t

0

∫
R

|vis(x)| · |J(x)|dx ds

]
. (4.11)

Using |φ′
k(z)| ≤ 1 and the dominated convergence theorem, we can easily get

lim sup
k,m→∞

∣∣Im,k,i
2

∣∣ ≤E

[∫ t

0

∫
R

|vis(x)| · |J(x)|dx ds

]
. (4.12)

Recall that φ′′
k (z)|z| ≤ 2k−1. By Lemma 4.2 one can prove that

lim sup
m→∞

Im,k,i
3 ≤ KE

[∫ t

0

∫
R

φ′′
k

(
vis(x)

)|vis(x)|J(x)dx ds

]
= O(k−1). (4.13)

Recall that χ is a finite measure on R and |φ′
k(z)| ≤ 1. By (4.7), (4.8) we have

lim sup
k,m→∞

|Im,k,i
4 | ≤E

[∫ t

0

∫
R

[|ξ s(x)| + |ξ s(∞)|] · |J(x)|dx ds

]

≤ K
∫ t

0
E
[
ρ
(
μ1s , μ̃

1
s

) + ρ
(
μ2s , μ̃

2
s

)]
ds

≤ KE

[∫ t

0

∫
R

(|v1s (x)| + |v2s (x)|)J(x)dx ds

]
. (4.14)

By Proposition 4.3 and putting (4.11)–(4.14) together, one can see that

E

[∫
R

(|v1t (x)| + |v2t (x)|)J(x)dx

]
≤ KE

[∫ t

0

∫
R

(|v1s (x)| + |v2s (x)|)J(x)dx ds

]
.

Then Gronwall’s inequality implies that

E

[∫
R

(|v1t (x)| + |v2t (x)|)J(x)dx

]
= 0

for any t ≥ 0. Therefore |v1t (x)| = |v2t (x)| = 0 for any t ≥ 0 and x ∈R almost surely. Pathwise
uniqueness follows. �
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