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Glioblastoma multiforme, because of its invasive nature, can be considered a
disease of the entire brain. Despite recent advances in surgery, radiotherapy
and chemotherapy, current treatment regimens have only a marginal impact on
patient survival. A crucial challenge is to deliver drugs effectively to invasive
glioma cells residing in a sanctuary within the central nervous system. The
blood–brain barrier (BBB) restricts the delivery of many small and large
molecules into the brain. Drug delivery to the brain is further restricted by active
efflux transporters present at the BBB. Current clinical assessment of drug
delivery and hence efficacy is based on the measured drug levels in the bulk
tumour mass that is usually removed by surgery. Mounting evidence suggests
that the inevitable relapse and lethality of glioblastoma multiforme is due to a
failure to effectively treat invasive glioma cells. These invasive cells hide in areas
of the brain that are shielded by an intact BBB, where they continue to grow and
give rise to the recurrent tumour. Effective delivery of chemotherapeutics to the
invasive glioma cells is therefore critical, and long-term efficacy will depend on
the ability of a molecularly targeted agent to penetrate an intact and functional
BBB throughout the entire brain. This review highlights the various aspects of
the BBB, and also the brain–tumour-cell barrier (a barrier due to expression of
efflux transporters in tumour cells), that together can significantly influence drug
response. It then discusses the challenge of glioma as a disease of the whole
brain, which lends emphasis to the need to deliver drugs effectively across the
BBB to reach both the central tumour and the invasive glioma cells.
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The past two decades have witnessed major
advances in molecular and cellular biology that
have substantially improved our understanding
of human malignancies. Unfortunately, this
period has also seen a significant rise in the
incidence of malignant brain tumours along with
only a modest increase in the survival rates
associated with them, which are often poor
(Ref. 1). Out of the approximately 22 020 new
cases of primary malignant brain tumours that
were estimated to be diagnosed in the USA in
2010, 80% were expected to be malignant gliomas
(Refs 2, 3). Gliomas represent a group of highly
malignant and lethal tumours of the brain that,
despite all therapeutic advances, have an
extremely poor prognosis. The median survival
of patients with glioblastoma multiforme, the
most common and most malignant subtype of
glioma, is only 12–18 months (Ref. 4). The current
standard of care in glioblastoma multiforme is
treatment with the DNA-alkylating agent
temozolomide combined with radiation, a
treatment that has been proven to prolong
patient survival by a few months (Ref. 4). Many
new molecularly targeted agents that were
developed to inhibit signalling pathways critical
for glioma growth and proliferation have failed
to elicit any clinical benefit (Ref. 5).
Compared with treatment of other types of

tumours, targeting tumours of the central
nervous system (CNS) is particularly
challenging owing to the location of the tumour
in a pharmacological and immunological
sanctuary within the CNS. The blood–brain
barrier (BBB) presents a major obstacle to
systemic chemotherapy and is capable of
significantly limiting drug response (Ref. 6).
Drug efflux transporters at the BBB restrict the
passage of drugs into the brain and thus shield
the tumour cells from exposure to cytotoxic
chemotherapy. In addition to the BBB, the
presence of similar drug efflux pumps within
tumour cells [the brain–tumour-cell barrier
(BTB)] further protects them from chemotherapy.
Systemically administered drugs thus have to
cross these two sequential barriers to reach their
intended molecular target.
This review focuses on the special challenge that

these barriers pose to molecularly targeted and
cytotoxic chemotherapeutic drugs. The aim is to
provide an overview of the various molecular
targets and target-directed chemotherapy for
glioma. We review the most important ATP-

driven transporters at the BBB and in tumour
cells and their role in limiting the delivery and
hence efficacy of systemic chemotherapy. Finally,
we summarise how treatment of an infiltrative
tumour like glioblastoma multiforme requires
targeting the invasive tumour cells that often
reside in areas away from the primary tumour –
cells that are not removed by surgery and are
shielded by multiple barriers, and therefore
continue to grow and give rise to the recurrent
tumour (Ref. 7).

Malignant glioma
Malignant glioma represents one of the greatest
challenges faced by the neuro-oncology
community. Gliomas are tumours that are
thought to arise from glial progenitor and glial
cells, and include astrocytoma, glioblastoma,
oligodendroglioma, ependymoma, mixed
glioma and a few other, rare histologies (Ref. 2).
These tumours account for 32% of all primary
brain tumours and, as stated above, 80% of all
malignant primary brain tumours diagnosed
in the USA (Ref. 2). The World Health
Organization classifies gliomas into four grades
based on their histological features and
malignancy. Grade I (pilocytic astrocytoma) and
grade II (diffuse astrocytoma) tumours are slow
growing and the least malignant forms of
glioma, whereas grade III tumours (anaplastic
astrocytoma) are more malignant and associated
with poorer prognosis (Ref. 8). Grade IV is
assigned to the most malignant and mitotically
active tumours associated with extremely poor
survival rates. Glioblastoma multiforme is a
grade IV glioma and is characterised by
uncontrolled cellular proliferation, diffuse
infiltration, necrosis, angiogenesis and resistance
to apoptosis. The name ‘multiforme’ signifies the
vast intratumoural heterogeneity seen in the
disease. Glioblastoma multiforme is the most
common subtype of glioma, accounting for
∼50% of gliomas, and glioblastoma multiforme
and astrocytoma together account for ∼75% of
gliomas. Survival rates for patients with
malignant gliomas are the worst among all brain
tumours: less than 5% of glioblastoma
multiforme patients survive for 5 years
postdiagnosis (Refs 1, 2).

The majority of glioblastomas are primary
tumours that develop de novo in the brain
without any evidence of a precursor tumour; a
relatively smaller fraction (∼10%) are secondary
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tumours that start as low-grade astrocytomas but
subsequently progress to high-grade gliomas
(Refs 9, 10). Progress in our understanding of
the molecular pathogenesis of malignant
gliomas has made it possible to distinguish
between these two types of glioblastoma
multiforme based on the genetic aberrations and
deregulated growth factor pathways presented
by the tumour. Primary glioblastomas are
characterised by amplification of the epidermal
growth factor receptor (EGFR) and its mutant
EGFR vIII, loss of heterozygosity of
chromosome 10q, amplification/overexpression
of the MDM2 gene (mouse double minute 2),
deletion of the PTEN gene (phosphatase and
tensin homologue), and alterations in the RB1
(retinoblastoma 1) and p53 (TP53) signalling
pathways (Refs 9, 10). Secondary glioblastoma
multiformes are characterised mainly by
overexpression of the platelet-derived growth
factor receptor (PDGFR) and genetic mutations
in the p53 and RB1 signalling pathways (Refs 9,
10). Despite the genetic differences, no
differences in sensitivity to conventional
chemotherapy between primary and secondary
glioblastoma multiformes have been reported.
The molecular and genetic aberrations in glioma
have been extensively studied and show
remarkable heterogeneity even within an
individual tumour (Refs 11, 12). The enormous
intratumoural variability combined with the
complexity of the deregulated signalling
pathways might be one of the reasons why most
target-directed therapeutics are ineffective
against the disease.
Despite aggressive treatment, essentially all

malignant gliomas recur (Ref. 13), eventually
leading to death. The median survival of a
glioblastoma patient after recurrence is
approximately 5–7 months (Ref. 5). Surgery
remains one of the most effective treatments and
almost all patients undergo surgery, unless the
location of the tumour makes any degree of
surgical debulking impossible (Ref. 14). Studies
have shown a correlation between the extent of
surgical debulking and increased patient
survival (Refs 15, 16). Unfortunately, the grim
reality is that regardless of the extent of
resection, tumour recurrence and death are
almost always inevitable. Radiotherapy is
another treatment option for glioblastoma
multiforme that has been proven to increase
survival in patients after surgery (Ref. 4).

Chemotherapy is rapidly assuming an
increasingly important role in the treatment of
malignant gliomas. Although many earlier
studies failed to show any benefit with adjuvant
chemotherapy, the finding that temozolomide in
combination with radiotherapy increases patient
survival dramatically changed chemotherapeutic
treatment of glioma (Ref. 4). Temozolomide is
now the standard of care in glioma, with almost
every patient receiving the drug. However,
reports of resistance to temozolomide have
intensified the search for more effective target-
directed therapies. A recent study showed that
treatment with bevacizumab, a monoclonal
antibody targeting vascular endothelial growth
factor A (VEGFA), in combination with
radiotherapy was well tolerated and resulted in
better overall survival (Ref. 17). It is thought that
such antiangiogenic therapy can potentiate the
effects of radiation mainly by normalising
tumour blood vessels and enhancing oxygen
delivery (Ref. 18). Consequently, several ongoing
clinical trials are evaluating the effects of
concurrent chemotherapy with radiotherapy in
glioma.

A potentially significant advancement in the
treatment of gliomas is the development of
molecularly targeted small-molecule anticancer
agents. There has been considerable progress in
understanding the molecular pathogenesis of
glioma and in identifying key oncogenic
pathways that can be targeted using these small-
molecule inhibitors. This has led to the
development of several small-molecule agents
that inhibit such deregulated signalling
pathways in glioma. The recent success of such
small-molecule inhibitors in other cancers has
propelled the rapid development of similar
therapies for the treatment of malignant gliomas.

Molecularly targeted therapy
Molecular abnormalities in signal transduction
pathways are characteristic features of many
brain tumours, including glioma, and result in
uncontrolled tumour cell proliferation, survival
and apoptotic resistance. The growth factor
pathways that are commonly altered in
malignant glioma are epidermal growth factor
(EGF) (Refs 19, 20, 21), platelet-derived growth
factor (PDGF) (Refs 22, 23, 24) and vascular
endothelial growth factor (VEGF) (Refs 24, 25,
26) pathways. Deregulation in receptors of these
pathways (EGFR, PDGFR and VEGFR) results in
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constitutive activation of downstream effectors
that regulate gene transcription, ultimately
leading to the phenotype in malignant glioma
(Fig. 1). Thus, an attractive approach to inhibit
the aberrant signalling pathways in glioma is to
use small-molecule tyrosine kinase inhibitors
(TKIs) that inhibit the activity of upstream
receptors of these pathways.

Targeting EGFR and PDGFR
Aberrant signalling through the EGFR pathway is
one of themost commongenetic alterations seen in
glioma (Refs 19, 27), and therefore several
therapeutic strategies have used small-molecule
TKIs to target EGFR in glioma. Gefitinib (Iressa,

Astra Zeneca) and erlotinib (Tarceva, OSI
Pharmaceuticals) were some of the first TKIs to
show potent inhibitory effects on EGFR,
prolonging survival in preclinical models of
brain tumours (Refs 28, 29, 30, 31). However,
neither of these two promising drugs showed
any significant survival benefit in glioblastoma
multiforme patients (Refs 32, 33, 34, 35, 36, 37, 38).

PDGFR is another attractive therapeutic target
in glioma because it is commonly overexpressed
in glioma and is thought to contribute to the
aggressive phenotype of the tumour (Refs 22,
23). Imatinib (Gleevec, Novartis), a potent
inhibitor of the tyrosine kinases BCR–ABL, c-Kit
(KIT) and PDGFR, was the first selective TKI to
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Expert Reviews in Molecular Medicine © 2011 Cambridge University Press

Sorafenib

Figure 1. Molecularly targeted therapy for malignant glioma. Several signalling pathways are aberrantly
activated in glioma, the most common being signalling through the receptors EGFR, PDGFR, VEGFR and
c-Kit (Ref. 24). These pathways can be deregulated as a result of one or more mechanisms such as auto-
activation, aberrant expression, mutations, and decreased activity of phosphatases that turn off the signal.
Signalling through these pathways can be shut down by targeted therapies that inhibit these receptors,
thereby preventing the downstream effects that ultimately lead to growth and proliferation of the tumour.
Such molecularly targeted therapeutic agents are listed in the figure near the targets that they inhibit.
Abbreviations: AKT, AKT8 virus oncogene cellular homologue; c-Kit, v-Kit Hardy–Zuckerman 4 feline
sarcoma viral oncogene homologue; EGFR, epidermal growth factor receptor; ERK, extracellular signal-
regulated kinase [mitogen-activated protein kinase (MAPK)]; MEK, MAPK kinase; mTOR, mammalian target
of rapamycin; PI3K, phosphoinositide 3-kinase; PDGFR, platelet-derived growth factor receptor; SRC, rous
sarcoma oncogene cellular homologue; VEGFR, vascular endothelial growth factor receptor.
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be approved for the treatment of cancer (Refs 39,
40). Imatinib showed encouraging antiglioma
activity in preclinical studies, raising hopes in
the clinical trials that followed (Refs 41, 42, 43).
However, the preclinical success did not
translate into significant clinical benefit, with
Phase II trials reporting insignificant antitumour
effects in glioma patients (Refs 44, 45). Dasatinib
(Sprycel, Bristol-Myers Squibb) is another
PDGFR inhibitor with an additional inhibitory
effect on the Src family of kinases. It has also
been shown that dasatinib can inhibit the
growth and migration of glioma cells and
induce cellular apoptosis, again warranting
clinical investigation in glioma (Ref. 46);
however, there is no published literature on the
clinical efficacy of dasatinib in glioma (Table 1).

Targeting VEGFR
Angiogenesis, the process of vascular proliferation
due to the formation of new blood vessels, is a
histopathological hallmark of malignant glioma.
The angiogenic effect is mediated primarily
through the VEGFR pathway, which is
frequently upregulated in glioblastoma
multiforme, making it a prime target for growth
inhibition and therapeutic efficacy (Refs 25, 26).
Numerous small-molecule VEGFR inhibitors,
such as cediranib, sunitinib, sorafenib, vatalanib
and vandetanib, have shown promising results
in preclinical glioma models.
Cediranib (Recentin, AstraZeneca), a pan

inhibitor of the VEGFR tyrosine kinase, is one of
the most exciting prospects for antiangiogenic
therapy in glioma. It has demonstrated
significant effects in mouse glioma models,
decreasing oedema by vascular normalisation in
the tumour and leading to improvement in
survival (Ref. 56). These preclinical effects have
been mirrored in the clinic, where cediranib
treatment results in normalisation of tumour
vessels, decreased vessel permeability and
alleviation of vasogenic oedema (Ref. 47).
Encouraging new data from a recently
concluded Phase II trial suggest that cediranib
therapy results in significant radiographic
response and increases progression-free survival
(Ref. 48).
Sunitinib (Sutent, Pfizer) and sorafenib

(Nexavar, Bayer) are two multitargeted TKIs
that show both antiproliferative and
antiangiogenic activity by simultaneously
targeting VEGFR and PDGFR (Refs 57, 58).

Separate studies have shown that both these
compounds can increase survival in mouse
glioma models at doses achievable in the clinic
(Refs 59, 60). Several clinical trials are currently
evaluating the efficacy of these two agents in
human malignant glioma. Vandetanib (Zactima,
AstraZeneca) is a novel small-molecule inhibitor
that simultaneously targets VEGFR and EGFR
(Ref. 61). It has demonstrated potent antiglioma
effects in clinically relevant glioblastoma
multiforme models, suppressing tumour cell
proliferation and angiogenesis while inducing
apoptosis by inhibition of EGFR (Ref. 62). There
are many ongoing clinical studies that are
evaluating the efficacy and toxicity of
vandetanib in glioma patients.

Targeting PI3K–AKT–mTOR
Other important molecularly targeted agents
include inhibitors of the PI3K–AKT–mTOR
pathway [comprising phosphoinositide 3-kinase,
the serine/threonine protein kinase AKT and the
mammalian target of rapamycin (mTOR/
MTOR)] (Fig. 1), which is thought to be highly
activated in human glioblastomas, modulating
key translational processes (Ref. 63). Rapamycin
(sirolimus) and its analogues temsirolimus
(CCI779) and everolimus (RAD001) are the three
mTOR inhibitors that have undergone extensive
preclinical and clinical evaluation for therapy in
glioma. Clinical trials with mTOR inhibitors as a
single agent in glioma have been largely
unsuccessful, with no therapeutic benefits
reported (Refs 35, 49, 54). However, several
trials are currently evaluating mTOR inhibitors
in combination with other TKIs with an aim to
shut down multiple signalling cascades feeding
the tumour.

Improving the efficacy of molecularly
targeted agents
Most promising molecularly targeted agents have
failed to provide any survival benefit inmalignant
gliomas (Table 1). Given the dismal prognosis of
patients with glioma, the quest to find newer
effective therapeutic options has gained
precedence over the need to find the reasons
behind the failure of these agents, although the
two goals are closely linked. Some of the
reasons suggested for this lack of efficacy have
been related to the genetic heterogeneity of
gliomas and the complexity of signalling
pathways, such as negative feedback
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Table 1. Molecularly targeted agents for tumours of the central nervous system

Compound Molecular target Results from clinical trials for
glioblastoma multiforme

Number of
clincal trialsa

Cediranib VEGFRs 1, 2 and 3 Median OS in 16 patients of 211 days
(Ref. 47)
6-month PFS in 25.8% and PR in 56.7%
of patients (Ref. 48)

6

Dasatinib BCR–ABL, c-Kit,
PDGFR, SRC

No published results 4

Erlotinib EGFR 6-month PFS in 3.1% of patients (Ref. 35)
Median OS 19.3 months (Ref. 36)
6-month PFS in 3% and 12-month OS in
57% of patients (Ref. 37)
Median PFS 2.8 months, median OS
8.6 months (Ref. 38)

20

Everolimus mTOR Stable disease in 36% and PR in 14% of
patients (Ref. 49)

11

Gefitinib EGFR Median EFS 8.1 weeks, median OS
39.4 weeks (Ref. 34)
Median time to progression 8.4 weeks,
6-month PFS in 14.3% of patients,
median OS 24.6 weeks (Ref. 33)

4

Imatinib BCR–ABL, c-Kit,
PDGFR

6-month PFS in 3% of patients (Ref. 44)
6-month PFS in 16% of patients (Ref. 45)
6-month PFS in 27% of patients, median
PFS 14.4 weeks (Ref. 50)
6-month PFS in 24% of patients (Ref. 51)

7

Lapatinib EGFR2 No published results 3

Pazopanib c-Kit, PDGFR,
VEGFRs 1, 2 and 3

No published results 1

Sirolimus mTOR 6-month PFS in 3.1% of patients (Ref. 35) 4

Sorafenib c-Kit, PDGFR, Raf Median PFS 6 months, median OS
16 months (Ref. 52)

7

Sunitinib VEGFRs 2 and 3, c-Kit,
FLT3, PDGFR

Median TTP 1.5 months, OS 3 months
(Ref. 53)

8

Temsirolimus mTOR 6-month PFS in 7.8% of patients, median
OS 4.4 months (Ref. 54)

9

Vandetanib EGFR, VEGFR No published results 10

Vatalanib c-Kit, PDGFR,
VEGFRs 1, 2 and 3

PR in 29% of patients (Ref. 55) 2

aThe numberwas determined from the clinical trials thatwere listed as either completed or ongoing for therapy in
glioma at http://www.clinicaltrials.gov on 1 December 2010.
Abbreviations: EFS, event-free survival; FLT3, fms-related tyrosine kinase 3; OS, overall survival; PFS,
progression-free survival; PR, partial response; TTP, time to progression. For full names of other molecular
targets, see main text.
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mechanisms and upregulation of alternative
pathways. However, all these hypotheses rely on
the a priori assumption that there is adequate
drug delivery to the target. The lack of drug
delivery to the target is an often overlooked yet
perfectly plausible explanation for a lack of
efficacy. Would this delivery failure be detected
in preclinical models that were used to justify
the clinical trials? This would probably not be
the case if the preclinical model used was not
established in the brain (e.g. flank model) or if
the assessment involved well-circumscribed
brain tumours with a leaky BBB amid no
appreciable infiltrative growth to provide a
pharmacological sanctuary (discussed further
below). The latter well-circumscribed phenotype
is the growth pattern of the majority of standard
implanted models that are typically used for
preclinical validation in the process of drug
development (Ref. 64).
So the question germane to the efficacy of

molecularly targeted agents in glioma is: are
these drugs delivered to the tumour-infiltrated
normal brain present after surgical removal of
the bulk tumour mass at levels that are adequate
to disrupt the function of their targets?
Treatment of a brain tumour requires the drug
to bypass several barriers and gain access to
what is considered a ‘sanctuary’ in the CNS. The
CNS is protected by a highly developed and
well-regulated interface that separates it from
the peripheral circulation and maintains
homeostasis in the brain (Ref. 65). This interface
also prevents most drugs and chemicals from
entering the brain, thereby rendering them
ineffective. Once inside the brain, the drug faces
additional barriers that further limit its delivery
to the ultimate target. It is critical to recognise
that the intracellular targets in question are in
the invasive glioma cell – that is, cells left
behind after resection. A discussion of these
barriers that limit drug delivery to tumour, and
hence the drug efficacy, is the essence of this
review.

Barriers restricting drug delivery to the
brain and brain tumour

The blood–brain barrier
The BBB is a natural defence mechanism in the
CNS that separates the brain from the
peripheral circulation. The barrier is formed by
a dense network of blood capillaries supplying
the brain, wherein the endothelial cells are

joined together by tight junctions such that most
drugs and chemicals cannot readily cross into
the brain parenchyma. The BBB thus shields the
brain from exposure to circulating toxins and
potentially harmful chemicals by preventing
them from entering the brain. Besides the
presence of tight junctions, a relative paucity of
fenestrae and pinocytotic vesicles within the
brain capillary endothelial cells along with the
presence of the surrounding extracellular
matrix, pericytes and astrocyte foot processes
further restrict brain uptake (Ref. 65). As a
result of the tight junctions in the BBB,
circulating molecules gain access to the brain
only by (1) passive diffusion of small nonpolar
molecules through the BBB or (2) active
transport (Ref. 66).

Numerous studies have endeavoured to
correlate brain penetration and CNS activity of
compounds to their physicochemical properties.
These studies used different approaches for
predicting BBB permeability and reported that
compounds that have activity within the CNS
have high lipophilicity (logP=∼4), few
hydrogen-bond donors (two to seven), low polar
surface area (∼40 Å) and low molecular weight
(∼400 Da) (Refs 67, 68, 69, 70). It is not
surprising that all these properties impart
greater membrane permeability to the drug
molecule, resulting in enhanced transport to the
brain (Ref. 70). However, several molecules with
these favourable properties have been found to
have modest permeability into the brain, which
is a result of active efflux transporters that
further make the BBB impermeable (Refs 67, 71).
The BBB is fortified by the presence of
numerous drug transport proteins, many of
which transport drugs out of the brain. It has
been shown that ATP-dependent transporters
can severely restrict the brain penetration of
therapeutic agents – even those molecules with
favourable physicochemical properties that were
predicted to cross the BBB with relative ease
(Refs 67, 71). Most of these transporters belong
to two superfamilies: the ATP-binding cassette
(ABC) and solute carrier families. P-glycoprotein
(P-gp, ABCB1), breast-cancer-resistance protein
(BCRP, ABCG2) and multidrug-resistance-
associated proteins (MRPs, ABCCs) are
important members of the ABC family. We limit
our discussion in this review to P-gp, BCRP and
MRPs. The reader is directed to several excellent
reviews that cover other drug efflux transporters
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in greater detail than is possiblewithin the scope of
this article (Refs 72, 73, 74, 75, 76, 77, 78).

P-glycoprotein
P-gp, the product of the ABCB1 gene (previously
known as multidrug resistance 1 gene, MDR1), is
by far the most extensively studied member of the
ABC superfamily of transporters. It was originally
discovered by Juliano et al. in 1976 while studying
the mechanisms behind the resistance in tumour
cell lines (Ref. 79). The group noticed that cell
membranes of the resistant cells expressed a
170 kDa surface glycoprotein capable of altering
the permeability of drugs, and designated it as
‘permeability glycoprotein’ or ‘P glycoprotein’.
A decade later, in 1986, the gene encoding the
protein was discovered (Ref. 80) and the
complete primary structure of P-gp was
determined (Ref. 81). The existence of P-gp at
the BBB was first reported in 1989 when
Cordon-Cardo et al. detected P-gp expression in
brain capillary endothelial cells and proposed
that it had a role in regulating the entry of drug
molecules into the CNS (Ref. 81). Shortly
thereafter, Theibaut and colleagues reported the
expression of P-gp at the rat BBB (Ref. 82),
which was followed by numerous studies
showing the presence of P-gp in the brain
capillaries of other species such as mice, rats,
cows and pigs (Refs 83, 84, 85). However, it was
a seminal study by Beaulieu et al. that reported
the localisation of P-gp on the luminal side of
the capillary endothelial cells and bolstered
theories that the transporter is involved in
preventing drugs from entering the brain and in
the development of multidrug resistance in
cancer (Ref. 86).
The most compelling early evidence of the

protective role of P-gp at the BBB was a chance
discovery when mice deficient in the Abcb1a
(Mdr1a) gene (P-gp-knockout mice) were found
to be 100-fold more sensitive to the neurotoxin
ivermectin compared with the normal wild-type
mice (Ref. 87). The study revealed elevated
levels of ivermectin in the brains of P-gp-
knockout mice, which confirmed that P-gp
protects the CNS by preventing drugs and
chemicals from crossing the BBB. P-gp has since
been implicated in restricting CNS penetration
of hundreds of drugs, including several
chemotherapeutic agents in clinical practice. The
development of Abcb1a/1b−/− double knockout
mice (Ref. 88) and Abcb1a/1b−/−Abcg2−/− triple

knockout mice (Ref. 89) has provided
researchers with powerful tools to examine the
influence of P-gp in the transport of drugs to the
brain. Studies exploring the interaction of
chemotherapeutic agents with P-gp have used
these in vivo models to illustrate how potent
anticancer drugs and many molecularly targeted
TKIs are avid P-gp substrates and how this
limits their distribution to the CNS (Table 2).

Multidrug-resistance-associated proteins
The discovery of P-gp as an efflux transporter
capable of transporting drugs out of tumour
cells led to an increased interest among
researchers to find other proteins involved in
drug transport and resistance. In 1987, Cole and
co-workers noticed that an adriamycin-selected
lung cancer cell line was resistant to drugs such
as colchicine, vinca alkaloids and anthracycline
analogues (Ref. 105). These cells were known
not to overexpress P-gp, leading researchers to
believe that the observed resistance might be
due to a transporter-mediated mechanism that
was similar to P-gp. Molecular analysis revealed
the presence of a cDNA encoding a 190 kDa
protein that was later confirmed to be present in
several multidrug resistance cell lines that did
not express P-gp. This protein, which was
named multidrug-resistance-associated protein
(Ref. 106), was the first of 12 members of a
subfamily of ABC transporters now designated
as subfamily-C (ABCC). Cloning of MRP in 1992
resulted in renewed enthusiasm for drug-
resistance investigations, which were now
focused on identifying additional transporters
capable of transporting drugs out of cells.

There is now evidence that nine of the 12 ABCC
family members (MRPs 1–9) mediate some form
of xenobiotic or drug resistance (Ref. 97). The
discovery of MRPs also resulted in several
studies investigating the localisation and role of
these transporters at the BBB. However, studies
on the expression of MRP transporters at the
BBB have been controversial and often
contradictory. In 1998, Huai-Yun et al.
demonstrated the functional expression of MRP1
in bovine brain microvessel endothelial cells and
suggested that the most likely localisation of
MRP1 at the BBB should be apical (Ref. 98). In
2004, Zhang et al. described the localisation of
various MRPs in bovine brain microvessel
endothelial cells, showing that MRP1 and
MRP5, which are predominantly localised
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basolaterally in various tissues, were highly
expressed on the apical side, whereas MRP2 was
not detected (Ref. 102). The group also reported
equal localisation of MRP4 on the apical and
basolateral plasma membranes in these cells.
Nies and co-workers quantitatively studied the

expression and localisation of MRPs in several
regions of the adult human brain and showed
the presence of MRPs 1, 4 and 5 on the luminal
side of the BBB, consistent with the findings in
the bovine brain (Ref. 107). In contrast to these
earlier studies that report the absence of MRP2

Table 2. Selected ABC transporters at the blood–brain barrier (BBB) and the
brain–tumour-cell barrier and their substrate chemotherapeutic agents

Transporter Gene Localisation
at the BBB

Presence in
gliomacells

Selected substrate
chemotherapeutic agents

P-glycoprotein
(P-gp)

ABCB1
(MDR1)

Luminal (Ref. 84) Yes (Refs 90,
91, 92)

Vincristine, vinblastine,
paclitaxel, docitaxel,
doxorubicin, daunorubicin,
mitoxantrone, etoposide,
teniposide, methotrexate,
topotecan, imatinib, dasatinib,
lapatinib, gefitinib, sorafenib,
erlotinib, tandutinib

Breast-cancer-
resistance protein
(BCRP)

ABCG2
(MXR)

Luminal (Ref. 93) Yes (Refs 94,
95, 96)

Doxorubicin, daunorubicin,
mitoxantrone, methotrexate,
topotecan, SN-38 (active
metabolite of irinotecan),
gimatecan, imatinib, dasatinib,
lapatinib, gefitinib, sorafenib,
erlotinib, tandutinib

Multidrug-
resistance-
associated
protein 1 (MRP1)

ABCC1
(MRP1)

Luminal, apical
(Refs 97, 98)

Yes (Refs 99,
100, 101)

Etoposide, teniposide,
vincristine, vinblastine,
paclitaxel, docitaxel,
doxorubicin, daunorubicin,
mitoxantrone, topotecan,
irinotecan, methotrexate

Multidrug-
resistance-
associated
protein 2 (MRP2)

ABCC2
(MRP2)

Luminal
(Ref. 111)

? Cisplatin, etoposide, vincristine,
vinblastine, doxorubicin,
daunorubicin, topotecan,
irinotecan, methotrexate,
paclitaxel, docitaxel

Multidrug-
resistance-
associated
protein 3 (MRP3)

ABCC3
(MRP3)

? Yes (Refs 100,
101, 103)

Etoposide, teniposide,
vincristine, methotrexate

Multidrug-
resistance-
associated
protein 4 (MRP4)

ABCC4
(MRP4)

Luminal, apical
(Refs 97, 98)

Yes (Refs 100,
104)

Methotrexate, topotecan,
6-mercaptopurine, thioguanine,
cisplatin

Multidrug-
resistance-
associated
protein 5 (MRP5)

ABCC5
(MRP5)

Luminal, apical
(Refs 97, 98)

Yes (Refs 100,
101, 104)

6-Mercaptopurine, thioguanine,
gemcitabine
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at the BBB, some studies have shown MRP2
expression at the luminal membranes of the
human (Ref. 108), rat and pig BBB (Ref. 109).
Although equivocal, expression of MRPs at the

BBB has thus now been described in several
studies; however, the exact localisation and role
of MRPs at the BBB are still debated. There have
been reports that demonstrate the influence of
MRPs at the BBB, wherein absence or inhibition
of the transporter(s) results in enhanced brain
penetration of substrate drugs (Refs 110, 111,
112, 113, 114). Recently, it was shown that
transport of topotecan to the brain was
enhanced when MRP4 was absent in the MRP4-
knockout mice (Ref. 115). These studies strongly
suggest that some of the MRPs act as an active
drug efflux transporter at the BBB. However,
further investigation is necessary to completely
understand the function of these transporters at
the BBB. The availability of newer tools such as
knockout mice deficient in one or more of
the MRPs can provide answers to remaining
questions about the protective role of MRPs at
the BBB.

Breast-cancer-resistance protein
BCRP is another member of the ABC superfamily
of transporters that confers drug resistance in
cancer by virtue of its ability to translocate
drugs out of cells. BCRP was originally
identified independently and almost
simultaneously by three different groups
studying non-P-gp- and non-MRP-mediated
drug resistance in cancer cell lines (Refs 93, 116,
117). In 1999, Doyle and colleagues observed an
ATP-dependent reduction in the intracellular
accumulation of anthracycline anticancer drugs
in MCF-7 breast cancer cells and were not able
to ascribe this to overexpression of known
multidrug-resistance transporters, P-gp or MRP.
RNA fingerprinting identified overexpression of
a mRNA that encoded a 655 amino acid protein
in the resistant cells, a protein that they
designated as the breast-cancer-resistance
protein (Ref. 116). A similar study investigating
the occurrence of mitoxantrone resistance in
cancer cell lines isolated a novel cDNA that
encoded an ATP-dependent transporter that was
named mitoxantrone-resistance protein (MXR)
(Ref. 117). Around the same time, Allikmets and
co-workers identified a novel gene that was
highly expressed in the human placenta. They
showed that the gene encoded an ABC

transporter protein, which they termed the ABCP
(ABC transporter in the placenta) (Ref. 93). When
the sequences of genes from these three studies
were eventually compared, they were recognised
as essentially identical and belonging to a
subfamily of ABC transporters not previously
associated with drug resistance in humans
(Ref. 118). Subsequently, the Human Genome
Nomenclature Committee assigned this gene the
name ABCG2. Following the cloning of BCRP,
its role in the efflux of drugs from multidrug-
resistant cells has been widely studied, and there
are several reports on BCRP-mediated resistance
to chemotherapeutic agents (Table 2).

The putative role of BCRP in the barrier
function at the BBB has been controversial.
Several studies have reported that BCRP is
localised on the luminal side of the capillary
endothelial cells in human (Ref. 119) and rat
(Ref. 120) brains. Others have reported the
enriched presence of BCRP in the brain
capillaries of mice (Ref. 121) and pigs (Ref. 122).
However, this presence of BCRP at the BBB has
not been unequivocally correlated to the low
brain penetration of all BCRP substrates. Lee
et al. conducted in situ brain perfusion studies
using dehydroepiandrosterone sulfate and
mitoxantrone, two drugs that are efficiently
transported by BCRP, and reported no
enhancement in brain penetration of the two
compounds in Abcg2−/− mice (Ref. 123).
Similarly, another study showed that in vitro
interaction of BCRP with substrate compounds
rarely translates to visible effects at the BBB in
vivo (Ref. 124). The authors from both studies
concluded that BCRP has a minor role in the
efflux of drugs at the BBB. By contrast, there
have been several studies that demonstrate the
role of BCRP in the efflux of drugs at the BBB.
Cisternino and colleagues showed that BCRP-
mediated efflux of prazosin and mitoxantrone at
the BBB limits permeability of the brain to these
prototypical substrates (Ref. 121). Likewise,
Enokizono et al. showed that brain partitioning
of drugs increased significantly when BCRP was
absent in Abcg2−/− mice (Ref. 125). Breedveld
et al. showed that brain penetration of imatinib
was restricted by BCRP (Ref. 126), and we
recently reported that sorafenib transport to the
brain was significantly increased in Abcg2−/−

mice (Ref. 127). There has been a recent increase
in the number of studies investigating the role of
BCRP-mediated active efflux in the transport of
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drugs out of the brain. This surge has been driven
by reports suggesting a possible cooperative role
of P-gp and BCRP in keeping drugs out of the
brain (Refs 127, 128, 129, 130, 131, 132, 133, 134).
Several studies have shown that there is a
dramatic increase in the brain penetration of
dual P-gp and BCRP substrates when these two
transporters are absent simultaneously in
Abcb1−/−Abcg2−/− mice. First seen with
topotecan (Ref. 128), this phenomenon has now
been reported for several other compounds,
including important TKIs such as lapatinib
(Ref. 129), dasatinib (Refs 130, 131), gefitinib
(Ref. 132), erlotinib (Ref. 133) and sorafenib
(Refs 127, 134). These findings, along with
reports that there is extensive overlap in the
expression pattern and substrate specificity of
BCRP and P-gp (Ref. 135), suggest that P-gp and
BCRP work together at the BBB to limit the
brain penetration of dual substrates.
In summary, the BBB is a major bottleneck that

limits drug delivery to the brain; a significant
fraction of large and small molecules do not
effectively cross the BBB (Ref. 6). It is clear that
drug efflux transporters, a key component of
this barrier, can significantly restrict the passage
of drugs into the brain, even those with
favourable physicochemical properties to cross
biological membranes. The fact that there are
several drug transporters at the BBB, some of
which might be working together, further
complicates the problem. Effective targeting of
tumours in the brain will require novel
strategies to inhibit these gatekeepers so that
promising drug candidates are not rendered
ineffective because of their inability to enter
the brain.

Is the BBB compromised in glioma?
Recently, the role of the BBB in limiting treatment
efficacy in glioma has been questioned based on
studies that report high concentrations of
chemotherapeutic agents in tumour resections
(Ref. 136). These reports suggest that the BBB
does not influence delivery in glioma. This has
caused confusion in the clinical assessment of
drug delivery when using drug concentrations
in the tumour core (the resected tissue) as a
guide for the adequacy of drug delivery. It is
true that the BBB can be disrupted at or near the
tumour because the central core of the tumour is
highly angiogenic, containing new and leaky
blood vessels (Ref. 137). Although drug delivery

might be greatly enhanced in such areas of the
tumour, surgery almost completely removes the
central core of the tumour in the brain (contrast-
enhancing area). Therefore, concentrations in
these areas do not represent those in the brain
areas that are not removed by surgery.
Moreover, the BBB is intact at the growing edge
of the tumour and early in the development of
the vascular niche of invasive glioma cells
(Ref. 138). The disruption of brain vasculature is
directly related to tumour size and distance from
the central core (Ref. 137). Invasive glioma cells
that are not removed by surgery reside in areas of
diffuse glioma invasion, which can be centimetres
away from the main tumour (Ref. 139) and have
an intact BBB capable of restricting drug levels.
Given the diffusely infiltrating growth of glioma,
it is not surprising that the tumour eventually
recurs from areas of the tumour rim that are not
resected (Ref. 13), where drug delivery is
impaired because of the BBB.

Effective delivery of chemotherapeutics to the
invasive glioma cells is therefore critical, and
long-term efficacy will depend on the ability of
a molecularly targeted agent to penetrate an
intact and functional BBB throughout the entire
brain. This idea of glioma as a disease of the
whole brain lends particular credence to the
need to use systemic circulation to effectively
deliver drug across the BBB to encompass the
central tumour, the growing edge of the tumour
and invasive glioma cells. We present this
problem in Figure 2, where a hypothetical
schematic of a brain tumour can be seen with a
gradient of drug concentration around the
tumour (Fig. 2a). The tumour core (the area with
a disrupted BBB) can have high drug levels;
however, areas immediately surrounding the
core can receive significantly less drug owing to
an intact BBB. The tumour core is usually
removed after surgery, but glioma cells invade
areas of restricted drug delivery away from the
tumour (Fig. 2b). The goal of effective
chemotherapy should be to effectively deliver
drug in areas that can harbour the invasive
glioma cells and not just the tumour core, the
part of the tumour removed by surgery (Fig. 2c).
This idea has been supported in a study by Fine
et al., where the authors measured paclitaxel
concentrations in resected tissue specimens from
brain tumour patients and showed that
concentrations in the normal brain surrounding
the tumour were tenfold lower than those in the
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tumour core (Ref. 90). Furthermore, Pitz et al.
recently summarised clinical studies reporting
anticancer drug concentrations in brain tumours
and suggested that drug concentrations in
contrast-enhancing areas of the tumour (tumour
core) were relatively higher than those in non-
contrast-enhancing areas (tumour periphery and
normal brain) (Ref. 91).

The brain–tumour-cell barrier
In addition to the BBB, the BTB is another barrier
that the drug has to cross to reach its intracellular

target. The tumour cell membrane, which forms
this barrier, regulates the transport of nutrients,
growth factors, drugs and other substances into
and out of the cell. A considerable amount of
work has been done studying the expression,
regulation and activity of ABC transporters in
cells from various tumours, including
glioblastoma multiforme. There is increasing
evidence suggesting that drug efflux transporters
on the tumour cells decrease intracellular drug
uptake, resulting in the multidrug-resistant
phenotype often observed in glioma cells.

HighLow
Drug levels in the brain

Hypothetical schematics of regional drug delivery in glioma
Expert Reviews in Molecular Medicine © 2011 Cambridge University Press

Regions

1 Tumour core 

2 Boundary of surgical resection 

3 Areas adjacent to the tumour core

4 Invasive tumour cells in areas away from the tumour core

5 Invasive tumour cells in the contralateral hemisphere 

1

33
45

2

a

33
45

2Removed
by

surgery

b

1

3
3

45

c

Figure 2. Hypothetical schematics of regional drug delivery in glioma. Schematics of a brain tumour are
shown, with a simulated gradient of drug concentration around the site of the tumour. (a) The tumour core,
the area with a disrupted blood–brain barrier (BBB), can have high drug levels (region ‘1’); however, areas
immediately surrounding the core (region ‘3’) can receive significantly less drug owing to incomplete BBB
breakdown. (b) The tumour core is usually removed after surgery (up to boundary ‘2’); however, glioma cells
that have invaded areas away from the central tumour are not removed. In these areas, including those far
away from the tumour (region ‘4’) and even in the normal hemisphere (region ‘5’), glioma cells can continue
to grow and give rise to the recurrent tumour. (c) The goal of chemotherapy should be to effectively deliver
drug in areas that can harbour the invasive glioma cells and not just the tumour core, the part of the tumour
removed by surgery.
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P-gp is by far themost extensively studied efflux
transporter in glial tumours, and its presence has
been confirmed by several studies. Fattori and co-
workers used immunohistochemistry to show that
P-gpwas heterogeneously expressed in about 82%
of glioblastomas (Ref. 92). Similarly, several other
studies have reported enhanced expression of
P-gp in tissue specimens from human gliomas
(Refs 99, 100). However, there have also been
several conflicting reports indicating the absence
of P-gp in glioblastoma multiforme cells. These
studies suggest that expression of P-gp in
human glioma specimens is relatively low and
rare (Ref. 140). Decleves et al. showed that P-gp
was not expressed in human glioma cells at
either the transcript or the protein level
(Ref. 141). These widely differing results on the
expression of P-gp have been attributed in part
to the assay technique used for the detection of
P-gp (Ref. 94). Nevertheless, the recent reports
mentioned above confirm the presence of P-gp
in glioma cells and its effect on accumulation of
anticancer drugs in these cells.
In contrast to P-gp, very few studies have

investigated the expression of BCRP in tumour
cells from glioma. Despite its original isolation
from drug-resistant breast cancer cell lines, the
expression of BCRP in many solid tumours has
been found to be negligible (Ref. 95). However,
new evidence implicates this transporter with a
special side population of tumour cells that are
believed to have stem-cell-like properties
(Refs 96, 142). These precursor cells, responsible
for driving tumour growth and proliferation, are
thought to be drug resistant because of efflux by
BCRP. In a mouse model of glioma, Bleau et al.
recently demonstrated enhanced tumourigenicity
of BCRP-enriched stem-like cells (Ref. 104). This
suggests a similar role of BCRP wherein the
transporter confers resistance in glioma cells by
virtue of its ability to pump drugs out of the cell.
Other than P-gp and BCRP, MRPs have also

been found to be expressed in glioblastoma cells
(Ref. 101). Transporters of this family have been
reported to be expressed at levels that are in
some cases greater than that of P-gp (Ref. 140).
Histochemical analysis of glioma specimens has
revealed the presence of significant amounts of
MRPs 1, 3, 4 and 5 (Refs 103, 141, 143). The
influence of MRPs on chemoresistance in glioma
has also been reported: nonspecific inhibition of
MRPs enhanced the cytotoxic effects of
anticancer agents in glioma cell lines (Ref. 144).

In a recent study, Kuan and co-workers reported
elevated expression of MRP3 in human
glioblastoma multiforme in contrast to negligible
presence in normal brain (Ref. 145), and
suggested the potential use of MRP3 as a
prognostic marker and molecular target for
glioblastoma multiforme.

In summary, expression of ABC transporters in
human glioma cells and their role in acquired drug
resistance have been reported by several studies in
the past few years. The findings have often been
ambiguous and conflicting. Although the
genetic heterogeneity of the tumour in glioma
can account for some of the variability in the
reports, more research is clearly needed to
elucidate the role of these transporters in
tumour cells. Nonetheless, it is clear that the
BTB can be a significant second barrier that has
the ability to hamper drug delivery to the
intracellular target.

BBB and BTB: complex barriers that limit
delivery of TKIs to glioma
The impact of the BBB andBTB ondrug delivery to
the target site can be significant, especially when
the drug is a substrate for transporters present
at both the barriers (Fig. 3). The recent surge in
the development of molecularly targeted TKIs
for CNS tumours has led to several
investigations on their interaction with
important efflux transporters. The availability of
tools in the form of transgenic mouse models
and transporter-overexpressing cell lines has
made it possible to study drug–transporter
interactions with the aim to modulate these and
enhance drug transport to the target tissue.

Given that P-gp and BCRP are the two
important transporters that limit drug delivery
to the brain and tumour cells, most studies have
investigated the interaction of TKIs with these
two efflux pumps. Imatinib was the first TKI
that was reported to be a substrate for drug-
effluxing transporters, when it was discovered
that distribution of imatinib to the brain was
restricted by P-gp-mediated efflux (Ref. 146).
This was followed by a number of studies that
reported that imatinib was effluxed by both P-gp
and BCRP at the BBB (Refs 126, 147). The finding
that imatinib does not effectively cross the BBB
was crucial in explaining its lack of efficacy
against brain relapses in chronic myeloid
leukaemia (Ref. 148). Similarly, Polli et al. showed
that the EGFR inhibitor lapatinib was a substrate
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Multiple mechanisms and barriers that limit drug delivery to glioma
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c  Brain–tumour-cell-barrier

Tyrosine kinase receptor 

Tumour cell

Figure 3. Multiple mechanisms and barriers that limit drug delivery to glioma. The blood–brain barrier
(BBB) and the blood–tumour-cell barrier (BTB) form sequential barriers that a systemically administered
drug must cross to reach the tumour. The centre of the figure shows the invasion of glioma cells from
the tumour core into the normal brain parenchyma. Above this, parts a and b show how the integrity of
the BBB affects drug delivery in these different locations; below, part c depicts the BTB, which restricts
drug delivery in both locations. (a) The BBB is often disrupted at the site of the tumour, with the lack of
tight junctions allowing for easy diffusion of drugs and small molecules into the tumour. However, this is
also the part of the tumour that gets removed after surgery. (b) The BBB is intact in areas centimetres
away from the tumour core. Drug delivery across this barrier is restricted by the presence of tight
junctions between endothelial cells and more importantly by drug efflux transporters that pump drugs
back into the blood. The amount of drug that is able to cross this barrier and reach the brain is usually
a fraction of what reaches the tumour core. Nests of tumour cells in such locations protected by the
intact BBB eventually give rise to the recurrent tumour after surgery. (c) The BTB represents the barrier
between the brain parenchyma and the tumour cell. Drug efflux transporters present in the tumour cell
are a major component of this barrier and restrict intracellular drug uptake. This second barrier is
especially important for molecularly targeted agents that target intracellular domains of receptor tyrosine
kinases. Abbreviations: BCRP, breast-cancer-resistance protein; MRP, multidrug-resistance-associated
protein; P-gp, P-glycoprotein.
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for both P-gp and BCRP (Ref. 149), and then
suggested that these two transporters work
together at the BBB to limit brain penetration of
dual substrates (Ref. 129). Thereafter, we showed
that P-gp and BCRP work together to limit the
brain penetration of several other TKIs, such as
dasatinib, gefitinib and sorafenib (Refs 127, 130,
132). Subsequent studies have shown that this is
true for tandutinib and erlotinib as well (Refs 150,
151). An extremely important finding in most of
these studies is that pharmacological inhibition of
the two transporters together significantly
enhanced brain levels of the TKIs, over and above
individual inhibition of one of the transporters.
These preclinical studies used elacridar
(GF120918), a dual inhibitor of P-gp and BCRP,
and demonstrated that it increases the transport of
the concurrently administered TKI to the brain.
This suggests that coadministration of an inhibitor
of P-gp and BCRP can be used as a strategy to
enhance the delivery of these drugs to the brain.
Many promising TKIs are effective in treating

non-CNS malignancies such as lung, breast and
hepatic cancer. However, none of them shows
any clinical efficacy against metastatic disease in
the brain or against primary brain tumours such
as glioma (Table 1). The complication of delivery
across an intact BBB has made it difficult to apply
peripherally acting chemotherapeutic agents to
invasive cancers of the brain. The problem is
confounded by the fact that the BTB has the
ability to further restrict intracellular delivery of
drug into invasive glioma cells. A more detailed
understanding of these multiple barriers can help
researchers devise strategies to overcome some
of these barriers and thereby increase the
effectiveness of these drugs against glioblastoma
multiforme.

Clinical implications
TKIs inglioblastomamultiforme: hopes and
disappointments
InMay 2001, the first TKI, imatinib, was approved
for treatment of a human malignancy (chronic
myeloid leukaemia), raising hopes within the
oncology community of the promise of similar
target-directed chemotherapeutics for treating
other devastating cancers such as glioblastoma
multiforme. However, to date, none of the TKIs
has been able to show any clinical benefit
against this disease. Imatinib’s success in chronic
myeloid leukaemia started a wave of clinical
trials that evaluated different TKIs either alone

or in combination for therapy in glioma. The
trials were backed by significant data showing
efficacy of the compounds in preclinical models
of glioblastoma multiforme, but most of them
culminated in disappointing failures. The first
clinical trial of a TKI in glioma tested gefitinib
(Ref. 34), with the hope that inhibition of the
highly deregulated EGFR signalling pathway
would translate into improved patient survival.
Its failure was soon followed by the clinical
inefficacy of the other major EGFR inhibitor,
erlotinib. Identification of newer targets led to
the introduction of newer targeted therapies; the
clinical outcomes, however, did not change.

Studies explaining the failure of these trials have
suggested that some reasons for this could be
the heterogeneous molecular characteristics of
individual gliomas and the complexity of
signalling cascades that feed the tumour.
However, several questions remain. (1) Does the
drug cross the BBB? (2) What are the drug
concentrations in the brain? (3) What are the
concentrations in the tumour? (4) Is the
concentration sufficient to inhibit the target?
Answers to these questions can help us gain an
insight into the possible reasons behind the failure
of these drugs. If therapeutic agents do not reach
their intended molecular target, regardless of their
potency they cannot possibly be effective. It is
well accepted that the BBB evolved to protect the
brain and will be a barrier in the CNS delivery of
most drugs. As discussed earlier, many of the
TKIs are substrates for important transporters at
the BBB, and this significantly limits their
concentrations in the brain. Whether these
preclinical findings translate in humans and
whether these transporters restrict penetration of
drugs across a human BBB is still unknown. But
there is no evidence to suggest otherwise, and the
inefficacy of these agents against brain tumours in
humans adds further credence to the hypothesis.

Drug concentrations in the brain and the
tumour
Many of the questions raised above can be
explored if drug levels in the brain could be
measured in patients receiving chemotherapy.
Unfortunately, very few studies have evaluated
drug concentrations in brain tissues. This is due
in part to the difficulty in sampling drug levels
in the brain tissue and to uncertainty in the
prediction of drug levels in the brain from
concentrations in surrogate tissues such as
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cerebrospinal fluid (Ref. 152). However, Hofer and
colleagues recently presented a few case reports
where they investigated the concentrations of
chemotherapeutic agents in the brain and the
tumour. The group measured gefitinib
concentrations in tissue specimens from seven
glioblastoma multiforme patients and reported
tenfold higher concentrations in excised tumour
tissue compared with plasma (Refs 136, 153).
These findings were supported by preclinical
reports describing gefitinib accumulation in the
tumour (Ref. 154). These investigators concluded
that delivery of drugs (gefitinib) to the tumour
is not restricted in patients because the BBB is
overcome by residual damage from
radiotherapy and by the pathological infiltrative
characteristics of glioblastoma multiforme,
which compromise the functional integrity of
the BBB. In the 1980s, a few studies by Stewart
and co-workers measured the concentrations of
cisplatin (Ref. 155), vinblastine (Ref. 156) and
etoposide (Ref. 157) in brain tumours. All these
studies reported high drug levels in the tumour,
similar to those in the above report. But the
group also presented a very interesting finding.
Drug concentrations in regions immediately
adjacent to the tumour were surprisingly lower
than those in the tumour, with the
concentrations decreasing with increasing
distance from the tumour. In a similar study,
Blakeley et al. used microdialysis to show that
penetration of methotrexate was significantly
lower in the brain areas adjacent to the tumour
(Ref. 158). All these studies show significantly
high drug levels in the tumour. So how does
one explain the apparent contradiction that
tumour distribution of drugs does not seem to
be restricted by the BBB, yet at the same time
their efficacy against the tumour is minimal and
the recurrence of tumour after surgery,
centimetres away from the original tumour, is
inevitable even with intensive radio- or
chemotherapy?

Glioblastoma: a whole-brain disease
Given its invasive and infiltrating nature, we
consider glioma as essentially a disease of the
entire brain, and this idea can help understand
the answers to some of the questions raised
above. Apart from being one of the most
malignant cancers, glioma is also one of the
most infiltrative tumours. Even complete
surgical resection of the tumour-bearing

hemisphere inevitably leads to recurrence and
has been abandoned (Ref. 159). Historical
reports show that more than 50% of untreated
brain tumours spread into the contralateral
hemisphere (Ref. 160). Thus, one of the most
important hallmarks of malignant glioma is
local invasion, which has been described in
studies as early as 1938: in a landmark study,
Hans-Joachim Scherer described the diffuse
invasion of glioblastomas by defining secondary
patterns that reflected the growth of tumour in
neighbouring brain tissue (Ref. 161). Thus
glioblastoma multiforme is a disease of the
whole brain. Tumour cells that migrate into the
surrounding brain parenchyma escape surgical
resection and are the putative source of the
recurrent tumour (Figs 2, 3).

This pathological property of glioma can
account for many of the pharmacokinetic
findings mentioned above. First, the central core
of the tumour is a highly necrotic mass and the
BBB is most likely disrupted in this area. This
allows systemically delivered chemotherapy to
easily traverse the impaired barrier and reach
the tumour, thus explaining the high
concentrations seen in the tumour by Hofer and
Frei (Ref. 136). This is almost always true
because the very ability of contemporary
imaging techniques to detect a brain tumour
relies on the ability of the contrast agent
(gadolinium) to leak through a disrupted BBB
and enhance the tumour core (Ref. 162).
Nevertheless, this is also the part of the tumour
that is removed by surgical debulking,
rendering less relevant any correlations between
drug concentrations in this area to eventual
efficacy or lack thereof.

Second, disruption of the BBB becomes
increasingly insignificant in areas away from the
tumour. This is a valuable finding in studies
conducted by Stewart et al. and Blakeley et al.
(Refs 155, 156, 157, 158). The fact that drug
exposure in areas immediately adjacent to the
tumour was an order of magnitude lower than
exposure in the tumour confirms the presence of
a functional BBB in these areas, capable of
restricting the passage of drugs into the brain.
This has been elegantly demonstrated by
Lockman et al., where the authors show that the
BBB remains sufficiently intact in satellite lesions
of the metastatic tumour to significantly restrict
drug delivery to the tumour cells (Ref. 163). This
theory has also been supported by other recent
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studies that have shown that concentrations of
paclitaxel (Ref. 90) and temozolomide (Ref. 164)
in the tumour periphery were lower than those
in the tumour core. A recent study by Pitz et al.
summarises findings from clinical studies and
shows that the concentrations of many
anticancer drugs in contrast-enhancing areas of
the tumour were severalfold higher than those
in plasma (Ref. 91). More importantly, the study
also reports that tissue-to-blood ratios were
generally higher in contrast-enhancing regions
than in non-contrast-enhancing regions, and in
areas of brain distant from tumour (Ref. 91).
Thus, in areas distant from the tumour core,
where gadolinium does not cross the intact BBB,
mechanisms that limit drug distribution (tight
junctions and efflux transport) will still be
operative and limit drug delivery. Consequently,
less drug reaches the sites that harbour the
infiltrated tumourigenic glioma cells, which
continue to grow and ultimately reach a
clinically significant size. Thus recurrence, an
inevitable occurrence in glioma, might be due
not only to tumour cells invading the adjoining
brain areas but also to a lack of drug delivery in
such areas.
Finally, there is a growing body of literature that

suggests that a subset of these invasive cells have
stem-like properties that allow them to repopulate
the tumour (Ref. 165). The cancer stem cell
hypothesis asserts that tumour development
and maintenance in glioblastoma multiforme is
controlled exclusively by these rare fractions of
cells with unlimited proliferative and self-
renewing capacities (Ref. 166). A basic tenet of
this hypothesis is that these stem-like cells have
an innate resistance to chemotherapy (Refs 167,
168), mainly due to the presence of drug
transporters that efflux drugs out of the cells
(Refs 169, 170, 171, 172). This indicates that even
if a drug crosses the BBB to reach the brain
parenchyma, its entry into an infiltrative tumour
cell can be further restricted by drug efflux
proteins present within such cells. These
infiltrative cells, shielded by the BBB and the
BTB, thus grow and eventually give rise to the
recurrent tumour.
Thus, the two complex sequential barriers – the

BBB and the BTB – are two important factors that
govern the passage of drug from systemic
circulation to the target site. The clinical failure
of molecularly targeted therapy suggests two
fundamental realities. One is that the BBB and

the BTB can significantly limit drug delivery to
the target site. The other is that regardless of
how potent our targeted agents are, they will
continue to be ineffective until strategies are
devised to improve their delivery across the BBB
and the BTB into invasive glioma cells. An
excellent depiction of this predicament is given
by Berens and Giese, where the authors explain
that the clinical course of glioma patients after
surgery is determined by residual, invasive
tumour cells – that is, ‘those left behind’ (Ref. 7).

Outstanding research questions
The realisation of the impact that the BBB and the
BTB can have on chemotherapy in glioma has
resulted in a renewed interest among
researchers to pursue strategies that can
overcome these barriers and increase the
delivery of drug to tumour targets. Several
innovative methods have been developed and
used to circumvent the BBB and improve drug
delivery to the brain. These techniques can be
divided into three broad categories:
administration of chemotherapy directly into the
brain parenchyma, osmotic disruption of the
BBB and inhibition of drug efflux.

Direct administration into the CNS is achieved
by the use of biodegradable polymers,
convection-enhanced delivery, or intrathecal and
intraventricular administration. In 2002, the US
Food and Drug Administration (FDA) approved
Gliadel® wafers for use as an adjunct to surgery
in the treatment of malignant glioma. These are
biodegradable polymeric wafers that slowly
release the DNA-alkylating agent BCNU in the
space remaining after surgical resection; they
have been shown to be well tolerated and offer a
survival benefit in glioblastoma multiforme
patients with concurrent chemotherapy
(Refs 173, 174). However, new data indicate no
survival benefit and significant adverse effects
on treatment with these wafers (Ref. 175).
Clinical evaluation of convection-enhanced
delivery for enhancing tumoural delivery of
chemotherapy has yielded similar results
(Ref. 176). In a recent trial, convection-enhanced
delivery afforded no survival benefit compared
with Gliadel® (Ref. 177), whereas a separate
clinical trial reported that treatment was
associated with severe neurological
complications (Ref. 178). Transient disruption of
the BBB by intra-arterial infusion of a
hyperosmotic solution of mannitol (Ref. 179) or
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the bradykinin analogue RMP-7 (Ref. 180) is a
method used to enhance concentrations of
chemotherapy in the brain. Recent studies have
shown that treatment with carboplatin,
etoposide (Ref. 181) and bevacizumab (Ref. 182)
after disruption of the BBB resulted in
prolonged time to progression and reduction in
tumour volume.
A primary drawback common to the above

approaches is that these are complex techniques
and are associated with a significant incidence
of treatment-related complications. Modulation
of drug transporters at the BBB might be an
alternative possible method to improve delivery
of chemotherapy to the brain. Compounds such
as valspodar (PSC833), zosuquidar (LY335979)
and elacridar (GF120918), which are potent
inhibitors of the drug transporters P-gp and
BCRP, can significantly enhance systemic and
brain concentrations of the concurrently
administered chemotherapeutic agent (Refs 127,
128, 130, 131, 132). Consequently, several clinical
trials have tested these chemical modulators
with the aim of reversing multidrug resistance
in haematological and solid tumours. The
results from these clinical investigations have
been disappointing, with many studies
reporting no enhancement in drug efficacy and
significant toxicities related to administration of
the reversal agent. Treatment with valspodar has
been associated with severe toxicities and no
improvement in efficacy of concurrent
chemotherapy (Refs 183, 184). The P-gp
inhibitor zosuquidar has been reported to be
relatively nontoxic but has again failed to show
any improvement in treatment (Refs 185, 186).
By contrast, coadministration of the dual P-gp
and BCRP inhibitor elacridar resulted in
significant enhancement in the oral
bioavailability of topotecan and doxorubicin
(Refs 187, 188). However, these effects were seen
after high doses of elacridar, which were often
toxic. Although most of these failures were in
trials for peripheral solid tumours, the scenario
might be different in brain tumours where a
moderate enhancement in drug delivery across
the BBB can dramatically increase relative drug
concentrations in the brain. Furthermore, in
many of the studies, it was not clear whether the
observed toxicities were a result of the transport
modulator or the simultaneously administered
chemotherapeutic agent. Again, this may be
different in brain tumours where the most

common toxicity observed with the current TKIs
is systemic and administration of an efflux
inhibitor could even serve to reduce the
chemotherapeutic dose if the desired brain
concentrations were achieved at lower systemic
doses. Clinical trials of modulation of multidrug
resistance have been limited by two major
factors: inability to achieve adequate nontoxic
levels of the modulators to reverse drug
resistance in patients, and the presence of
multiple mechanisms of resistance (Ref. 189).
The development of new, more potent inhibitors
can help overcome some of these limitations.
Further clinical studies are needed to better
understand the benefit of increasing the delivery
of chemotherapeutic drugs to tumours in the
brain. Additionally, preclinical studies that will
be used to justify these clinical trials must use
intracranial models that exhibit appreciable
tumour-infiltrated normal brain protected by the
BBB in order to be most informative.

Conclusion
The BBB and the BTB are two important obstacles
that restrict the passage of molecularly targeted
agents to the tumour. An increase in our
understanding of the molecular biology of
glioma has resulted in new potent compounds
that intervene in various signalling pathways
that drive tumour growth. However, regardless
of potency, if the therapeutic agents do not reach
their intended molecular target, they cannot
possibly be effective. Numerous strategies have
been devised to circumvent some of these
barriers and improve the delivery of drug to
tumour cells in the brain. Although some of
these strategies have shown promising results in
the preclinical setting, the results in patients
have thus far been poor. The molecular
heterogeneity in glioma calls for the use of
multitargeted agents – ‘dirty drugs’ that can
inhibit multiple signalling pathways
simultaneously. However, we also need ‘sharp
needles’ that can effectively deliver such drugs
to the site of the invasive tumour. The next
generation of clinical trials is exploring the
use of multitargeted TKIs or combinations of
single-targeting TKIs. Further research
investigating the delivery of chemotherapeutics
to the tumour will ensure that these clinical
trials do not follow the same pattern as that of
the previous trials. Approaching the treatment
of glioma by assuming that the tumour is
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localised in the contrast-enhancing area (hence
resection) will lead to continued failure. The
dismal prognosis in glioma may remain
unchanged until measures are taken to ensure
that promising anticancer treatments are
delivered effectively to invasive glioma cells –
those hiding behind an intact BBB. We must
effectively treat ‘those left behind’.
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