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Abstract

We study the joint degree counts in linear preferential attachment random graphs and
find a simple representation for the limit distribution in infinite sequence space. We show
weak convergence with respect to the p-norm topology for appropriate p and also provide
optimal rates of convergence of the finite-dimensional distributions. The results hold for
models with any general initial seed graph and any fixed number of initial outgoing
edges per vertex; we generate nontree graphs using both a lumping and a sequential rule.
Convergence of the order statistics and optimal rates of convergence to the maximum of
the degrees is also established.
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1. Introduction

Preferential attachment random graph models have become extremely popular in the fifteen
years since they were studied by Barabási and Albert [4]. In the basic models, nodes are
sequentially added to the network over time and connected randomly to existing nodes such
that connections to higher degree nodes are more likely. The literature around these models
has become too vast to survey, but Newman [17], Newman et al. [18], and van der Hofstad [28]
provide good overviews.

The most popular models are those similar to Barabási and Albert [4], in which nodes are
added sequentially and attach to exactly one randomly chosen existing node, and the chance a
new node connects to an existing node is proportional to its degree; see [8], [14], and [26] for
results on more general attachment rules. The model is typically generalized to allow for vertices
to have � ≥ 1 initial edges by starting with the previous model and then, for k = 0, 1, 2, . . . ,
lumping vertices k� + 1, k� + 2, . . . , (k + 1)� into a single vertex (possibly causing loops).
The most studied feature of these objects is the distribution of the degrees of the nodes; that
is, the proportion of nodes that have degree k as the graph grows large. The basic content of
Barabási and Albert [4] and the rigorous formulation of Bollobás et al. [6] is that, as k → ∞,
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Joint degree distributions of preferential attachment random graphs 369

this distribution roughly decays proportional to k−γ for some γ > 0; this is the so-called power
law behavior.

In this paper we study the joint degree distribution for a linear preferential attachment model
where each entering node initially attaches to exactly � ≥ 1 nodes. In the � ≥ 2 case, we study
two mechanisms for attaching edges, a sequential update rule and the lumping rule mentioned
above (and note our results are strikingly different for the two rules). We show weak convergence
with respect to p-norm topology of the scaled degrees for the process started from any initial
‘seed’ graph to a limiting distribution that has a simple representation and provide an optimal
rate of convergence for the finite-dimensional distributions.

To state our results in greater detail, we first precisely define the random rules governing the
evolution of the models we study. We distinguish between two cases: one that allows for loops
and the other that does not; in fact, the two can be related (see Lemma 1 below), but we present
the results separately for the sake of clarity.

Our results are stated in terms of weights of vertices, but our weights can be thought of as
in-degree plus one since in the models, vertices are born with weight 1, and each time a vertex
receives a new edge from another vertex, its weight increases by 1. Fix � ≥ 1 and let dk(n)

denote the weight of vertex k in the graph G(n). Assume that the seed graph G(0) has s vertices
with labels 1, . . . , s and with initial weights d1, . . . , ds (note that di = di(0)). We construct
the graph G(n) with n vertices from G(n − 1) having n − 1 edges in two possible ways.

1.0.1. Model N�. Given the graph G(n − 1) having s + n − 1 vertices, G(n) is formed by
adding a vertex labelled s + n and sequentially attaching � edges between it and the vertices of
G(n − 1) according to the following rules. The first edge attaches to vertex k with probability

dk(n − 1)∑s+n−1
i=1 di(n − 1)

, 1 ≤ k ≤ n − 1;

denote by K1 the vertex which received that first edge. The weight of K1 is updated immediately,
so that the second edge attaches to vertex k with probability

dk(n − 1) + 1(k = K1)

1 + ∑s+n−1
i=1 di(n − 1)

, 1 ≤ k ≤ n − 1,

where 1(·) is the indicator function. The procedure continues this way, edges attach with
probability proportional to weights at that moment, and additional received edges add one to
the weight of a vertex, until vertex n has � outgoing edges. Finally, we set ds+n(n) = 1, and
let G(n) be the resulting graph. Note that multiple edges between vertices are possible.

1.0.2. Model L�. Given the graph G(n−1) having s+n−1 vertices, G(n) is formed by adding
a vertex labelled s + n having weight ds+n(n − 1) = 1 and attaching � edges between it and
the vertices labelled {1, . . . , s + n} (so loops are possible). The first edge attaches to vertex k

with probability
dk(n − 1)∑s+n
i=1 di(n − 1)

, 1 ≤ k ≤ n;
denote by K1 the vertex which received that first edge. As in model N�, the weight of K1 is
updated immediately, and the procedure continues in this way until � edges are added and we
call G(n) the resulting graph.

Note that if � = 1 then the weights can be interpreted as the total degree since each additional
vertex has ‘out-degree’ 1 and, in this case, the N1 model is just the usual Barabási–Albert
preferential attachment tree.
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In the next section we state our finite-dimensional results; process level statements are in
Section 1.2.

1.1. Finite-dimensional degree distributions

Key to both understanding and obtaining our results is to focus on the joint cumulative degree
counts rather than the joint degree counts. Write X ∼ GG(a, b) with a > 0 and b > 0 for
a random variable X having the generalized gamma distribution with density proportional to
xa−1e−xb

on x > 0, and Y ∼ beta(a, b) for a > 0 and b > 0 if Y has density proportional to
xa−1(1 − x)b−1 on 0 < x < 1.

Theorem 1. Fix a seed graph G(0) having s vertices and weight sequence d1, . . . , ds , and let
mk = ∑k

i=1 di for 1 ≤ k ≤ s. Assume that either

(i) G(n) follows model N�, in which case let ak = ms + (� + 1)(k − s) + � for k ≥ s; or

(ii) G(n) follows model L�, in which case let ak = ms + (� + 1)(k − s) for k ≥ s.

Fix r ≥ s and let B1, . . . , Br−1 and Zr be independent random variables with distributions

Bk ∼
{

beta(mk, dk+1) if 1 ≤ k < s,

beta(ak, 1) if s ≤ k ≤ r ,

and Zr ∼ GG(ar , � + 1). Define the products

Zk = Bk . . . Br−1Zr, 1 ≤ k < r,

and let Z = (Z1, . . . , Zr) and Y = (Z1, Z2 − Z1, . . . , Zr − Zr−1). Denote the scaled weight
sequence of the first r vertices of G(n) by

D(n) = (D1(n), . . . , Dr(n)) = 1

(� + 1)n�/(�+1)
(d1(n), . . . , dr (n)).

Then there is a positive constant C = C(r, �, ms) such that

sup
K

∣∣P[D(n) ∈ K] − P[Y ∈ K]∣∣ ≤ C

n�/(�+1)
for all n ≥ 1,

where the supremum ranges over all convex subsets K ⊂ R
r .

Remark 1. The error rate n−�/(�+1) is the best possible since the rate of convergence of a
scaled integer-valued random variable to a limiting distribution with nice density is bounded
from below by the scaling (nice means uniformly bounded away from 0 on some interval; see
[19, Lemma 4.1]). Also, a bound on the constant C(r, �, ms) could, in principle, be made explicit
with our methods, but with much added technicality. Such a constant would increase in each
of its arguments. We emphasize that obtaining optimal rates in multidimensional distributional
limit theorems for the metric we are using is, in general, neither easy nor common.

Since the sets {(x1, . . . , xr ) : max{x1, . . . , xr} ≤ t} are convex in R
r , we immediately obtain

the following corollary to the theorem.

Corollary 1. Let D and Y be as in Theorem 1 under either (i) or (ii). Then, there is a positive
constant C = C(r, �, ms), such that

sup
t≥0

∣∣∣P[
max

1≤k≤r
Dk(n) ≤ t

]
− P

[
max

1≤k≤r
Yk ≤ t

]∣∣∣ ≤ C

n�/(�+1)
for all n ≥ 1.
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The representation of the limits appearing in Theorem 1 is a sort of ‘backward’ construction
started from Zr . Our next result is an alternative ‘forward’ construction that is useful for des-
cribing the infinite limit L(Z1, Z2, . . . ); compare to the forthcoming process level discussion.
Denote by gamma(r, λ) a gamma distribution with shape parameter r > 0 and rate parameter
λ > 0 having density proportional to xr−1e−λx , x > 0.

Proposition 1. Let B1, . . . , Bs−1 and as be as in Theorem 1, and let X1, X2, . . . be independent
with X1 ∼ gamma(as/(� + 1), 1) and Xk ∼ gamma(1, 1), k ≥ 2. Then the random vector Z

in Theorem 1 has the representation Z
d= Z̃, where

Z̃k =
{

Bk . . . Bs−1X
1/(�+1)
1 if 1 ≤ k < s,

(X1 + · · · + Xk−s+1)
1/(�+1) if k ≥ s.

Proof. We need to check that the representation above has the same distribution as that of
Theorem 1. The two representations are identical for k = 1, . . . , s − 1. For k ≥ s, that the
joint distributions continue to agree is an easy consequence of induction and the beta-gamma
algebra which implies that, for k > s,

(X1 + · · · + Xk−s)
1/(�+1) =

(
X1 + · · · + Xk−s

X1 + · · · + Xk−s+1

)1/(�+1)

(X1 + · · · + Xk−s+1)
1/(�+1)

d= V 1/(�+1)Zk,

where V ∼ beta(as/(� + 1) + k − s − 1, 1) is independent of Zk . A simple calculation
shows that V 1/(�+1) ∼ beta(as + (� + 1)(k − s − 1), 1), which is the same distribution as
Bk−1. Continuing in this way yields the proposition. �

Remark 2. Proposition 1 leads to rather clean representations of the limits appearing in The-
orem 1 for particular choices of a seed graph. If the seed graph G(0) has one vertex with
d1 = � + 1 and G(n) is formed according to model L� (alternatively, the seed graph has two
vertices with d1 = � + 1 and d2 = 1, following model N�), then Proposition 1 implies that
0 < Z1 < Z2 < · · · are the points of an inhomogeneous Poisson point process on the positive
line with intensity (� + 1)t� dt .

1.2. Process level convergence and order statistics

Using Kolmogorov’s extension theorem, for any choice of seed graph and generative mech-
anism, the distribution of the vector Y in Theorem 1 can be uniquely extended to obtain an
infinite vector Ỹ = (Y1, Y2, . . . ) which we can take to be of the form Yi = Zi − Zi−1 for
0 < Z1 < Z2 < · · · given explicitly by the forward construction of Proposition 1. It is
immediate from Theorem 1 that D̃(n) = (D1(n), . . . , Dn(n), 0, . . . ), viewed as an infinite
sequence by appending zeros, converges weakly to Ỹ with respect to the product topology.
However, weak convergence with respect to this topology does not yield much at the process
level (for example, restricting to bounded sequences, it does not imply convergence of the
sequence of maximums to the maximum of the limit), and so we show weak convergence with
respect to a topology that is strong enough to imply weak convergence of order statistics.

For 1 ≤ p < ∞, let lp be the usual sequence-space endowed with the norm ‖·‖p. Moreover,
denote by l+p ⊂ lp the subspace of sequences having nonnegative entries along with the topology
inherited from lp. Clearly, D̃(n) ∈ l+p for all n ≥ 1. For x ∈ l+p , denote by x↓ the sequence
with the entries of x appearing in decreasing order; clearly x↓ ∈ l+p .
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We have the following result which greatly generalizes the convergence of the maximum of
the first r coordinates of D(n) in Corollary 1 to the order statistics of the entire sequence D̃(n).

Theorem 2. Let Ỹ and D̃(n) be the infinite extensions of the random vectors Y and D(n) of
Theorem 1 as just described. Then Ỹ ∈ l+p almost surely for any p > (� + 1)/�. Moreover, for
� = 1 and any p ≥ 4, or � ≥ 2 and any p ≥ � + 1, the sequences L(D̃(n)) and L(D̃(n)↓)

converge weakly to L(Ỹ ) and L(Ỹ↓) with respect to the lp-topology.

1.3. Idea of the proofs of Theorem 1 and Theorem 2

The representation of the limit vector in Theorem 1 is integral to our approach. It says
that in the limit for k > s, conditional on coordinate Zk+1, the previous coordinate Zk is an
independent beta variable multiplied by Zk+1. On the other hand, for k > s, conditional on
the sum of the weights of the first k + 1 vertices, say Sk+1(n), it is not too difficult to see that
the sum of the weights of the first k vertices, Sk(n), will be distributed as a classical Pólya
urn, run for a number of steps of the order Sk+1(n) (see Lemma 2 below). Furthermore, Pólya
urns limit to beta variables, so L(Sk(n)) ≈ L(BkSk+1(n)), where Bk is an appropriate beta
variable independent of Sk+1(n) (see Lemma 3 below, an extension of [21, Lemma 4.4], which
gives a new bound on the Wasserstein distance between Pólya urns and beta distributions). The
limits satisfy this approximate identity exactly; that is, Zk = BkZk+1. Once we take care of
the error made in swapping out Pólya urns for betas (done via a telescoping sum argument),
all that is left is to show that Zr is close to Sr(n), which follows by the results of Peköz et
al. [21]. For Theorem 2, we establish weak convergence of the distribution of the sequence
D̃(n) to the distribution of Ỹ with respect to lp topology by verifying a tightness criterion for
probability measures on lp, and then applying Theorem 1 to show the convergence of finite-
dimensional distributions. The convergence of the distribution of D̃↓(n) follows from the
continuous mapping theorem applied to the ordering function.

1.4. Related work

To the best of the authors’ knowledge all of the results above for � ≥ 2 are new. The
sequential-edge model was studied by Berger et al. [5], where they gave a beautiful description
of the limiting structure of the graph started from a random vertex and performing a depth first
search. That work is complementary to ours: as the number of vertices n → ∞, the depth first
search started from a uniformly chosen vertex only sees vertices of order n, and these do not
appear in our limits.

For � = 1, the limiting marginal distribution of the degree of the ith vertex are described
in different ways in [13] (after relating these variables to an appropriate triangular urn model)
and [19, Theorem 1.1, Proposition 2.3]. In the latter paper models 1 and 2 are our models N1
with s = 2 and d1 = d2 = 1, and L1 with s = 1 and d1 = 2, respectively, and their scaling is
a constant times

√
n. For model N1, they identify the distributional limit of Di(n) for i ≥ 2

(note that vertices 1 and 2 have the same distribution in this model) as (�1B1/2,i−3/2)
1/2, where

�1 ∼ gamma(1, 1) is independent of B1/2,i−3/2 ∼ beta( 1
2 , i − 3

2 ). In model L1, the analogous
limit can be written as (�1B1/2,i−1)

1/2 (interpreting B1/2,0 = 1). Using our description of
these limits given by Proposition 1, we find that, for X1/2 ∼ gamma( 1

2 , 1) independent of
X1, X2, . . . , independent and identically distributed (i.i.d.) random variables with distribution
gamma(1, 1),√

X1/2 + X1 + · · · + Xi−1 − √
X1/2 + X1 + · · · + Xi−2

d= √
�1B1/2,i−3/2,√

X1 + X2 + · · · + Xi − √
X1 + X2 + · · · + Xi−1

d= √
�1B1/2,i−1.
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These intriguing distributional identities are not easily interpretable, but they can be directly
verified by comparing Mellin transforms. It would be of interest to obtain a representation of
the joint distributions similar in appearance to the right-hand side of these identities.

Still assuming that � = 1, there are some existing results about properties and characteri-
zations of limits of the joint degrees of fixed vertices and maximums of such, but only started
from certain seed graphs. Especially close to our work in this special case is Móri [16], who
used martingale arguments to show that (2D̃(n))n≥1, in model N1 with s = 2 and d1 = d2 = 1,
has an almost sure limit denoted by (ζ1, ζ2, . . . , ), which must have the same distribution as 2Ỹ ,
though the description of the limiting ζi previously given is not so explicit: moment formula
are given (and can be checked to agree with those of 2Ỹ ) and some other properties are derived.
For example, Móri [16, Lemma 3.4 with β = 0] showed that the variables

τj := ζ1 + · · · + ζj−1

ζ1 + · · · + ζj

are beta(2j − 1, 1) and that τ1, . . . , τr , ζ1 + · · · + ζr are independent. This coincides with
our description of the limits in Theorem 1. See also [12, Section 2] for a discussion of these
representations in this and related models. Again using martingales, Móri [16, Theorem 3.1]
showed that (maxi≥1 Di(n))n≥1 converges almost surely and in Lp for p ≥ 1 to maxi≥1 ζi .
Thus, we can identify the distribution of this limit as that of 2 maxi≥1 Yi .

Our work generalizes and extends these existing results for the � = 1 case in several
directions. The rates of convergence in Theorem 1 and Corollary 1 are new, as are the
descriptions of the limiting joint degrees, even for simple seed graphs where existing results are
available. At the process level, our lp convergence complements the almost sure convergence
of the sequence and maximum given by Móri [16] for the basic seed graph, as well as covering
much more, allowing different seed graphs and giving convergence of the order statistics.

1.4.1. A different multiedge preferential attachment graph. An alternative way to define a
preferential attachment model where each new node attaches to � > 1 nodes was given by
Bollobás et al. [6]. The model begins by generating a random graph according to model L1
or N1 with n� nodes, denoted G(n�), and then, for each of i = 1, . . . , n, collapsing nodes
(i − 1)� + 1, . . . , i� into one node keeping all of the edges (so there may be loops in both
models). But with this definition the degree of the ith node is just the sum of the degrees of
nodes (i − 1)� + 1, . . . , i� in G(n�) and so the finite-dimensional limits can be read from
Theorems 1. Moreover, since a linear transformation of a convex set is convex, the analogous
error rates of the theorem in this more general setting also hold. An important remark is that this
multiedge preferential attachment graph is fundamentally different than that introduced above:
in this model the degree of a fixed vertex grows like

√
n for any � where, as in models N�

and L�, the degree grows like n�/(�+1). Also note that using the representation of Proposition 1,
summing the limiting distributions of the degrees of adjacent vertices has a particularly simple
form due to telescoping. For example, for model L1 started from a single loop (so s = 1 and
d1 = 2), the joint distributional limits of the scaled degrees of nodes i = 1, . . . , r in G(n)(�)

are given by √
X1 + · · · + X�i − √

X1 + · · · + X�(i−1),

where X1, X2, . . . are i.i.d. and have distribution gamma(1, 1).
Similarly, at the process level, the lumping operation maps l+p to l+p since by Hölder’s

inequality, for numbers x1, . . . , x�,

|x1 + · · · + x�|p ≤ �p−1(|x1|p + · · · + |x�|p).
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The lumping is also Lipschitz continuous since, for x, y in l+p ,

∑
i≥1

∣∣∣∣
�∑

j=1

x(i−1)�+j −
�∑

j=1

y(i−1)�+j

∣∣∣∣
p

≤
∑
i≥1

�∑
j=1

∣∣x(i−1)�+j − y(i−1)�+j

∣∣p.

So by the continuous mapping theorem, we can easily read the limits of the degrees for the
lumped graph from those of the original graph given in Theorem 2. We do not provide a formal
statement of our results for this case because it is a straightforward derivative of the � = 1 case.

1.4.2. Connection to the Brownian continuum random tree. Consider model L1 started from
a loop (so s = 1 and d1 = 2). If we write Si(n) = ∑i

j=1 Dj(n) then Proposition 1 and the
results of Móri [16], discussed above, imply that, for r ≥ 1, the scaled sums of degree counts

(S1(n), . . . , Sr (n))
a.s.→ (

√
X1,

√
X1 + X2, . . . ,

√
X1 + · · · + Xr),

where the Xi are i.i.d. and have distribution gamma(1, 1). These are the points of an inho-
mogeneous Poisson point process with intensity 2t dt , which also arises in Aldous’ continuum
random tree (CRT) construction (see [1] and [2]), and is described by Pitman [24, around
Theorem 7.9]. The explicit connection is that if we consider G(n) plus the not yet attached
half-edge of vertex n + 1, then there are 2n + 1 ‘degrees’ which can be bijectively mapped to a
binary tree with n+1 leaves. The bijection is defined through Rémy’s algorithm for generating
uniformly chosen binary plane trees (see the discussion in [21, Remark 2.6]). The algorithm
begins with a binary tree with two leaves and a root, corresponding to the two starting degrees
of the loop and the half-edge of the second vertex in model L1. In Rémy’s algorithm, leaves
are added to the tree by selecting a (possibly internal) vertex uniformly at random and inserting
a cherry at this vertex (that is, insert a graph with three vertices and two edges with the ‘elbow’
oriented towards the root of the binary tree), so two vertices (one of which is a leaf) are added
at each step and these correspond to the two degrees of each edge added in the preferential
attachment model. The number of vertices in the spanning tree of the first k leaves added in
Rémy’s algorithm is exactly the sum of the degrees of the first k vertices in model L1 started
from a loop. If the leaves are labelled in the order they appear (the initial two leaves labelled
1 and 2), then this leaf labelling is uniform which implies that if we first choose a uniform
random binary plane tree with n ≥ 2 leaves and then k ≤ n leaves uniformly at random and
fix a labelling 1, . . . , k, then for Tj (n) defined to be the number of vertices in the spanning tree
containing the root and the leaves labelled 1, . . . , j , we have

(S1(n), . . . , Sk(n))
d= 1

2n1/2 (T1(n), . . . , Tk(n)).

Theorem 1 provides a rate of convergence of this random vector to its limit.
We can now clearly see the connection to the CRT since according to Aldous [2], uniform

random binary plane trees converge to Brownian CRT, and the number of vertices in the spanning
tree of k randomly chosen leaves in a uniform binary tree of n leaves converges to the length
of the tree induced by Brownian excursion sampled at k uniform times as per Pitman [23], [24,
Theorem 7.9], and it is known that these trees are formed by combining branches with lengths
given by a Poisson point process on the positive line with intensity proportional to t dt .

1.4.3. A statistical application. Is it possible with probability greater than 1
2 to tell the difference

between two preferential attachment graphs started from nonisomorphic seeds and run for a
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long time? This question is posed in the � = 1 case by Bubeck et al. [7], where the answer was
determined to be yes as long as the degree sequences of the seeds are different. The crucial
step is to separate the two graphs based on the maximum degree, which relies on a careful
understanding of the maximum degree along the lines of Corollary 1. In fact, by exploiting the
connection to the Brownian CRT just mentioned (along with other results), the answer to the
question can be strengthened to yes as long as the two seed graphs are nonisomorphic; see [9].

1.4.4. Organization of the paper. To show Theorems 1 and 2, we relate the weight distributions
of both models N� and L� to a single infinite-color urn model that generalizes the single
color models considered in [13], [19], and [21]; urn models frequently appear when studying
preferential attachment, see, for example, [3], [5], [19], [20], [22], and [25]. In the next
section we define the relevant infinite-color urn model and make explicit the equivalence to
the preferential attachment models under study. In Section 2 we state and prove a general
approximation result from which Theorem 1 follows. Section 3 contains the proof of Theorem 2.

1.5. An infinite-color urn model

Consider the following infinite-color urn model. At step 0 there are s ≥ 1 distinct colors
present in the urn, and we assume that these colors are labelled from 1 to s. Fix an integer
� ≥ 1. At the nth step, a ball is picked at random from the urn and returned along with an
additional ball of the same color. Additionally, if n is a multiple of �, a ball of (the new) color
s + n/� is added after the nth draw.

We are interested in the cumulative color counts; that is, for each k ≥ 1, let Mk(n) be the
number of balls of colors 1 to k in the urn after the nth draw (and possible immigration) has
been completed. Let mk be the number of balls of colours 1 to k at time 0, so that Mk(0) = mk .
In order to avoid degeneracies, we will assume that, at time 0, at least one ball of each color
from 1 to s is present; that is, m1 ≥ 1 and mk+1 − mk ≥ 1 for 1 ≤ k < s.

The following result makes explicit the connection between the urn model just described and
the preferential attachment models under study. It follows from straightforward considerations.

Lemma 1. Fix a seed graph G(0) with s vertices, and let d1, . . . , ds be the initial weight
sequence. Let � ≥ 1 and consider either the situation of

(i) model N� for the graph sequence, and an infinite-color urn model having initially dk balls
of color k, where 1 ≤ k ≤ s; or

(ii) model L� for the graph sequence, and an infinite-color urn model having initially dk balls
of color k, where 1 ≤ k ≤ s, and one ball of color s + 1.

Then, for any r and n > r ,

(d1(n), d1(n) + d2(n), . . . , d1(n) + · · · + dr(n))
d= (M1(�n), . . . , Mr(�n)).

2. Proof of Theorem 1

Theorem 1 easily follows from the next result (proved immediately after its statement), the
fact that linear transformations of convex sets are convex, and Lemma 1.

Proposition 2. Fix r > s. Let B1, . . . , Br−1 and Zr be independent random variables such
that

Bk ∼
{

beta(mk, mk+1 − mk) if 1 ≤ k < s,

beta(ms + (� + 1)(k − s) + �, 1) if s ≤ k < r ,
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and Zr ∼ GG(ms + (� + 1)(r − s) + �, � + 1). Define

Zk = Bk . . . Br−1Zr, 1 ≤ k < r, Z = (Z1, . . . , Zr),

and let

W(n) = (W1(n), . . . , Wr(n)) = ��/(�+1)

(� + 1)n�/(�+1)
(M1(n), . . . , Mr(n)).

Then there is a positive constant C = C(r, �, ms), independent of n, such that

sup
K

∣∣P[W(n) ∈ K] − P[Z ∈ K]∣∣ ≤ C

n�/(�+1)
for all n, (1)

where the supremum ranges over all convex sets K ⊂ R
r .

We need some intermediate lemmas to prove Proposition 2. Denote by P (
b
w

; m) the
distribution of white balls in a classical Pólya urn after m completed draws, starting with b

black and w white balls. Denote by P �
Im(

b
w

; m) the number of white balls after m completed
steps in the following Pólya urn with immigration, starting with b black and w white balls: at
the nth step, a ball is picked at random from the urn and returned along with an additional ball
of the same color; additionally, if n is a multiple of � then a black ball is added after the nth
draw and return.

Lemma 2. Let p = k − s + 1. If k ≥ s, we have

Mk(n) ∼ P �
Im

(
1

ms + �p + (k − s)
; n − �p

)
. (2)

Furthermore, conditionally on Mk+1(n), we have

Mk(n) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P

(
mk+1 − mk

mk

; Mk+1(n) − mk+1

)
if 1 ≤ k < s,

P

(
1

ms + �p + (k − s)
; Mk+1(n) − ms − (� + 1)p

)
if k ≥ s.

(3)

Proof. To prove (2), first note that the number of balls having a color from the set {1, . . . , k}
is deterministic up to the point where the first ball of color k+1 appears in the urn; this is the case
after �p = �(k − s + 1) completed draws. At that time we have Mk(�p) + 1 = ms + (� + 1)p,
so that Mk(�p) = ms +�p+(k−s). After that, consider all balls of colors {1, . . . , k} as ‘white’
balls and all balls of colors {k + 1, . . . , } as ‘black’ balls. The number of white balls for the
remaining n−�p steps now behaves exactly like P �

Im(
b
w

; m) with b = 1, w = ms +�p+(k−s),
and m = n − �p.

To prove the second line of (3), consider all balls of colors {1, . . . , k} as white balls and balls
of color k + 1 as black balls. After time �p the number of white balls now behaves exactly
like P (

b
w

; m) with b = 1, w = Mk(�p), and m being the number of times a ball among colors
{1, . . . , k + 1} was picked after time p, which is just Mk+1(n) − ms − (� + 1)p.

The argument to prove the first line of (3) is similar and, therefore, omitted. �
We will need the following coupling of Pólya urns and beta variables that is a generalization

(from the b = 1 case) of [21, Lemma 4.4]; for related distributional approximation results,
see [11].
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Lemma 3. Fix positive integers b, w, and n. There is a coupling (X, Y ) with X ∼ P (
b
w

; n)

and Y ∼ beta(w, b), such that almost surely,

|X − nY | <
b(4w + b + 1)

2
. (4)

Proof. We use induction over b, and start with the base case b = 1. Let V0, . . . , Vw−1 be
independent and uniformly distributed on the interval [0, 1]. By a well known representation
of the distribution beta(w, 1), we can choose

Y := max(V0, . . . , Vw−1).

To construct X, first note that for P (
1
w

; m){A} denoting the probability the relevant Pólya urn
law puts on the set A ⊂ Z, we have

P

(
1

w
; m

)
{w, . . . , t} =

w−1∏
k=0

t − k

m + w − k

for all m ≥ 0 and for w ≤ t ≤ w +m (see, for example, [10, Equation (2.4), p. 121]). For each
m ≥ 0, let

N(m) := max
0≤k≤w−1

(k + �(m + w − k)Vk�).
It is easy to see that the cumulative distribution function of N(m) is that of P (

1
w

; m) for each m,
and that

|N(m) − mY | ≤ w + 1 for all m ≥ 0. (5)

Letting X := N(n), (4) follows for the b = 1 case. As a side remark, note that, although
N(m) ∼ P (

1
w

; m) for each m, the joint distribution of (N(0), N(1), . . . ) is not that of a Pólya
urn process!

To prove the inductive step, assume we have constructed Nb−1(0), Nb−1(1), . . . and Yb−1
such that Nb−1(m) ∼ P (

b−1
w

; m) for all m ≥ 0, Yb−1 ∼ beta(w, b − 1), and

|Nb−1(m) − mYb−1| ≤ (b − 1)(4w + b)

2
for all m ≥ 0.

Now, let Y ′
b ∼ beta(w, 1) be independent of all else and N ′(0), N ′(1), . . . be defined and

coupled to Y ′ as in the base case, that is, N ′(m) ∼ P (
1
w

; m) such that |N ′(m)−mY ′| ≤ w+1.
Define

Nb(m) := N ′(Nb−1(m) − (w + b − 1)).

It is not difficult to see that Nb(m) ∼ P (
b
w

; m). Also, it is not difficult to see that Yb :=
Yb−1Y

′ ∼ beta(w, b). Noting from (5) that, for any y > 0,

|N ′(m) − yY ′| ≤ |N ′(m) − mY ′| + |m − y|Y ′ ≤ (w + 1) + |m − y|,
we have

|Nb(m) − mYb| = ∣∣N ′(Nb−1(m) − (w + b − 1)) − mYb−1Y
′∣∣

≤ (w + 1) + ∣∣Nb−1(m) − (w + b − 1) − mYb−1)
∣∣

≤ (w + 1) + (w + b − 1) + (b − 1)(4w + b)

2

= b(4w + b + 1)

2
.

This concludes the inductive step, where (4) is just the m = n case. �
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The last ingredient we need to prove Proposition 2 is some moment information.

Lemma 4. For any k > s, and q = 1, 2, . . . , we have

EMk(n)q � nq�/(�+1), (6)

and, for w = ms + (� + 1)(k − s) + � and t = n − �(k − s + 1),

E{Mk(n)(Mk(n) + 1) · · · (Mk(n) + �)}
= w

(w + 1 + �(t − 1)/�� + t) · · · (w + 1 + �(t − 1)/�� + t + �)

w + 1 + (� + 1)�(t − 1)/�� + �

= (ms + (� + 1)(k − s) + �)n�

(
� + 1

�

)�

(1 + O(n−1)).

(7)

Furthermore,

lim sup
n→∞

E

{
n�/(�+1)

Mk(n)

}
< ∞. (8)

Proof. The asymptotic (6) follows from [21, Lemma 4.1]. From that lemma, we also have,
for Y ∼ P �

Im(
1
w

; t),

E{Y (Y + 1) · · · (Y + �)} =
�∏

j=0

(w + j)

t−1∏
i=0

(
1 + � + 1

w + 1 + i + �i/��
)

.

Setting T = �(t − 1)/��, using careful bookkeeping and a telescoping argument, we obtain

E{Y (Y + 1) · · · (Y + �)}

=
�∏

j=0

(w + j)

t−1∏
i=0

(
1 + � + 1

w + 1 + i + �i/��
)

=
�∏

j=0

(w + j)

T −1∏
k=0

�−1∏
i=0

(
1 + � + 1

w + 1 + i + k(� + 1)

) t−1∏
m=�T

(
1 + � + 1

w + 1 + m + T

)

= w

�−1∏
i=0

(w + 1 + i + (� + 1)T )

t−1∏
m=�T

(
1 + � + 1

w + 1 + m + T

)

= w

�−1∏
i=0

(w + 1 + i + (� + 1)T )

t−1−�T∏
m=0

(
1 + � + 1

w + 1 + m + (� + 1)T

)

= w

�−1∏
i=t−�T

(w + 1 + i + (� + 1)T )

t−1−�T∏
m=0

(w + 1 + m + (� + 1)(T + 1))

= w

�+�T −t−1∏
i=0

(w + 1 + i + T + t)

�∏
m=�+�T −t+1

(w + 1 + m + T + t)

= w
(w + 1 + T + t) · · · (w + 1 + T + t + �)

w + 1 + (� + 1)T + �
.

Setting w = ms + (� + 1)(k − s) + � and t = n − �(k − s + 1) as per (2) yields (7).
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In order to prove (8), let

X ∼ P �
Im

(
1

w + 1
; t

)
and Y ∼ P �

Im

(
1

w
; t

)
,

where w = ms + (� + 1)(k − s) + � − 1. From (2) and [21, Lemma 4.2], we have

Ef (X) = E{Yf (Y + 1)}
EY

for any bounded function f ; in particular, for the function f (x) = 1/x, bounded when x ≥ 1,
we have

EX−1 = E

{
Y

(Y + 1)EY

}
≤ 1

EY
.

By (6), EY � n�/(�+1), from which (8) easily follows. �
Note that the Landau-O notation of the lemma contains a constant that depends on �, k,

and both of ms, s. But here and below we ignore the dependence of constants on s when also
depending on ms through the inequalities 1 ≤ s ≤ ms .

Proof of Proposition 2. To ease notation, we fix n and drop it in our variable notation and
write, for example, Wk instead of Wk(n). For k < l, let

Kk,l = Bk . . . Bl, Vk,l = Kk,l−1Wl, Vl,l = Wl.

We may assume that B1, . . . , Br−1 are all independent of W = W(n). Fix a convex subset
K ⊂ R

r , assuming without loss of generality that K is closed, and let h be the indicator function
of K . We proceed in two major steps by writing

P[W ∈ K] − P[Z ∈ K] = Eh(W) − Eh(Z)

= E
{
h(W) − h(V1,r , . . . , Vr,r )

} + E
{
h(V1,r , . . . , Vr,r ) − h(Z)

}
=: ER1 + ER2.

In order to bound R1, first write it as the telescoping sum

R1 = h(V1,1, . . . , Vr,r ) − h(V1,r , V2,r , . . . , Vr,r )

=
r−1∑
k=1

[
h(V1,k, . . . , Vk−1,k, Vk,k, Vk+1,k+1, . . . , Vr,r )

− h(V1,k+1, . . . , Vk−1,k+1, Vk,k+1, Vk+1,k+1, . . . , Vr,r )
]

=:
r−1∑
k=1

R1,k.

Fix k, and define bk and wk to be the parameters of the Pólya urn in Lemma 2, that is,

bk =
{

mk+1 − mk if 1 ≤ k < s,

1 if k ≥ s,

wk =
{

mk if 1 ≤ k < s,

ms + �(k − s + 1) + (k − s) if k ≥ s.
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Conditioning on Mk+1, we can use Lemmas 2 and 3 to conclude that there is a coupling (Xk, Yk)

with

Xk ∼ P

(
bk

wk

; Mk+1 − ck

)
, Yk ∼ beta(wk, bk),

such that almost surely,

|Xk − (Mk+1 − ck)Yk| ≤ bk(4wk + bk + 1)

2
,

where

ck =
{

mk+1 if 1 ≤ k < s,

ms + (� + 1)(k − s + 1) if k ≥ s.

Hence, there is a constant C(k, �, ms) and a random variable Ek with |Ek| ≤ C(k, �, ms) almost
surely, such that

Xk

Mk+1
= Yk + Ek

Mk+1
.

Define

V ′
j,k := ��/(�+1)

(� + 1)n�/(�+1)
Kj,k−1Xk = Kj,k−1

Xk

Mk+1
Wk+1 for 1 ≤ j < k,

V ′′
j,k+1 := ��/(�+1)

(� + 1)n�/(�+1)
Kj,k−1YkMk+1 = Kj,k−1YkWk+1 for 1 ≤ j < k + 1,

and
V ′

j,j := Vj,j for j ≥ k, V ′′
j,j := Vj,j for j ≥ k + 1.

Note that by Lemma 2, L(V ′
j,k) = L(Vj,k) and L(V ′′

j,k+1) = L(Vj,k+1), hence, we have

R1,k
d= h(V ′

1,k, . . . , V
′
k−1,k, V

′
k,k, V

′
k+1,k+1, . . . , V

′
r,r )

− h(V ′′
1,k+1, . . . , V

′′
k−1,k+1, V

′′
k,k+1, V

′′
k+1,k+1, . . . , V

′′
r,r )

= g

(
Yk + Ek

Mk+1

)
− g(Yk),

where we define (in notation anticipating future conditioning)

g(x) := h(K1,k−1xWk+1, . . . , Kk−1,k−1xWk+1, Wk+1, . . . , Wr).

Let Fk be the σ -algebra generated by B1, . . . , Bk−1, Ek , and W (hence, also (Mj )
r
j=1). Since

h is the indicator function of a convex set, and since linear transformations of convex sets result
again in convex sets, conditional on Fk , it follows that g is of the form g(x) = 1(a ≤ x ≤ b)

for −∞ ≤ a ≤ b ≤ ∞ which are random but Fk-measurable. Hence,

E{|R1,k| | Fk} ≤ P

[
a − |Ek|

Mk+1
≤ Yk ≤ a + |Ek|

Mk+1

∣∣∣∣ Fk

]

+ P

[
b − |Ek|

Mk+1
≤ Yk ≤ b + |Ek|

Mk+1

∣∣∣∣ Fk

]

≤ 2 sup
x∈R

P

[
x − C

Mk+1
≤ Yk ≤ x + C

Mk+1

∣∣∣∣ Fk

]

≤ C′

Mk+1
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for some constant C′ = C′(k, �, ms), and where the last inequality follows from basic properties
of the beta distribution. Hence, by (8) of Lemma 4,

E|R1,k| ≤ E

{
C′

Mk+1

}
≤ C′′

n�/(�+1)
(9)

for some constant C′′ = C′′(k, �, ms).
In order to bound R2, write

R2 = h((K1,r−1, . . . , Kr−1, r−1, 1)Wr) − h((K1,r−1, . . . , Kr−1, r−1, 1)Zr)

= g(Wr) − g(Zr),

where now
g(x) = h((K1,r−1, . . . , Kr−1, r−1, 1)x).

Given K1,r−1, . . . , Kr−1, r−1, the function g is again of the same form as in the first part of the
proof, so that

E|R2| ≤ 2 dKol(L(Wr), L(Zr)), (10)

where dKol denotes the Kolmogorov distance, i.e. the supremum distance between distribution
functions. Define the scaling constants

μ̃n = (� + 1)n�/(�+1)

��/(�+1)
and μn =

(
(� + 1)EMr(n)�+1

ms + (� + 1)(r − s) + �

)1/(�+1)

.

Since the Kolmogorov distance is scale invariant,

dKol(L(Wr), L(Zr)) = dKol

(
L

(
Mr(n)

μn

)
, L

(
Zrμ̃n

μn

))

≤ dKol

(
L

(
Mr(n)

μn

)
, L(Zr)

)
+ dKol

(
L(Zr), L

(
Zrμ̃n

μn

))
:= R2,1 + R2,2. (11)

From [21, Theorem 1.2], we have R2,1 = O(n−�/(�+1)) and, noting that the density of Zr is
bounded, standard arguments yield R2,2 = O(|1 − μ̃n/μn|). To bound |1 − μ̃n/μn|, use (6)
and (7) to find

EMr(n)�+1 = E{Mr(n) · · · (Mr(n) + �)} + O(n�2/(�+1))

= (ms + (� + 1)(r − s) + �)n�

(
� + 1

�

)�

(1 + O(n−1)) + O(n�2/(�+1))

= (ms + (� + 1)(r − s) + �)n�

(
� + 1

�

)�

+ O(n�2/(�+1)).

Using this last expression, we easily find

μn

μ̃n

= (1 + O(n−�/(�+1)))1/(�+1).

Now, using the fact that, for 0 < x < 1, (1 + x)1/(�+1) − 1 ≤ x/(� + 1), we find μn/μ̃n =
1 + O(n−�/(�+1)) and so R2,2 = O(n−�/(�+1)). Now collecting the bounds (9)–(11) we are
able to prove (1). �
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3. Proof of Theorem 2

Since Theorem 1 establishes convergence of finite-dimensional distributions, to prove the
claimed convergence of (D̃(n))n≥1, we need to show tightness in lp for the relevant p. In the
next section we state and prove an lp tightness criteria in terms of moment conditions and then
in Section 3.2 we bound the relevant moments appropriately. In Section 3.3 we establish the
continuity of the ordering function on lp and put everything together to prove Theorem 2 in
Section 3.4.

3.1. Tightness in lp

The following result is essentially Suquet’s [27, Section 6, Theorem 16], but we give a
self-contained proof.

Lemma 5. Let X(n) = (X1(n), X2(n), . . . ), n ≥ 1, be a sequence of lp-valued random
elements, where 1 ≤ p < ∞. If

(i) supn≥1
∑

i≥1 E|Xi(n)|p < ∞, and

(ii) limk→∞ supn≥1
∑

i≥k E|Xi(n)|p = 0,

then the sequence of probability measures (P[X(n) ∈ ·])n≥1 is tight in the lp-topology.

Proof. By the Fréchet–Kolmogorov theorem, B ⊂ lp is relatively compact if it is bounded
and

lim
k→∞ sup

x∈B

∑
i≥k

|xi |p = 0.

Thus, for any C > 0 and any strictly increasing sequence of numbers 1 ≤ k1 < k2 < · · · , the
set

K(C, (km)m≥1) :=
{
x ∈ lp :

∑
i≥1

|xi |p ≤ C, and
∑
i≥km

|xi |p ≤ 1

m
for all m ≥ 1

}

is lp-compact.
Now, fix ε > 0. From (i) we conclude that there is C such that

P

[∑
i≥1

|Xi(n)|p > C
]

≤ 1

C

∑
i≥1

E|Xi(n)|p ≤ ε

2
for all n ≥ 1.

From (ii) we conclude that there is a sequence 1 ≤ k1 < k2 < · · · such that, for all m ≥ 1,

P

[∑
i≥km

|Xi(n)|p >
1

m

]
≤ m

∑
i≥km

E|Xi(n)|p ≤ ε

2m+1 for all n ≥ 1.

For this C and (km)m≥1, we conclude that, for all n ≥ 1,

P
[
X(n) �∈ K(C, (km)m≥1)

] ≤ P

[∑
i≥1

|Xi(n)|p > C
]

+
∑
m≥1

P

[∑
i≥km

|Xi(n)|p >
1

m

]

≤ ε

2
+ ε

2

∑
m≥1

1

2m

= ε. �
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3.2. Moment bounds

The following moment bounds are used in order to apply Lemma 5.

Lemma 6. Let � ≥ 1, and let Dk(n) be as in Theorem 1. There is a constant C = C(�, ms, s)

such that
EDk(n)�+1 ≤ Ck−�.

Moreover, in the special cases N1 and L1,

EDk(n)4 ≤ Ck−2.

Proof. By Lemma 1, it is enough to prove the theorem for the appropriate equivalent urn
model (possibly adjusting s and ms , each by at most one). Recall the definition of Mk(n) as
in Proposition 2, set U1(n) = M1(n), and, for k = 2, 3, . . . , let Uk(n) = Mk(n) − Mk−1(n),
where we set Uk(n) = 0 if k is a color that has not been added by time n. Note that L(Uk(n)) =
L(Dk(n)).

First note that the statement of the theorem is trivial if Uk(n) = 0, that is, if color k has not
yet appeared; in particular, if k − s > n + 1. Now, for k > s,

L(Uk(n) | Mk(n)) = P

(
ms + (k − s)(� + 1) − 1

1
; Mk(n) − ms − (k − s)(� + 1)

)
.

Let the random variable B ∼ beta[1, ms + (k − s)(� + 1) − 1] be independent of Mk(n).
Conditional on B and Mk(n), let X(Mk(n), B) be binomial with parameters Mk(n) − ms −
(k − s)(� + 1) and B. By the de Finetti representation of the classical Pólya urn, we have

L(Uk(n) | Mk(n)) = L((1 + X(Mk(n), B)) | Mk(n)). (12)

Hölder’s inequality implies that, for nonnegative x, y,

(x + y)p ≤ 2p−1(xp + yp),

and so starting from (12), we have

EUk(n)p ≤ 2p−1(1 + EX(Mk(n), B)p). (13)

Now, note that, if L(Y ) = bin(N, q) then for positive integer p, and denoting Stirling numbers
of the second kind by

{
p
j

}
(and note these are nonnegative),

EYp =
p∑

j=0

{
p

j

}
E{Y (Y − 1) · · · (Y − j + 1)} ≤

p∑
j=0

{
p

j

}
(Nq)j .

So from (13), condition on Mk(n) and B to find

EUk(n)p ≤ 2p−1
(

1 +
p∑

j=0

{
p

j

}
EMk(n)jEBj

)
. (14)

Standard formulae for beta moments imply that

EBj = �(j + 1)�(ms + (k − s)(� + 1))

�(ms + (k − s)(� + 1) + j)
≤ Ck−j , (15)
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where C = C(�, ms, s) is a constant. By Jensen’s (or Hölder’s) inequality, for j ≤ p,

EMk(n)j ≤ (EMk(n)p)j/p. (16)

Set p = �+1, and use the fact that Mk(n)�+1 ≤ Mk(n)(Mk(n)+1) · · · (Mk(n)+�). From (7),

E{Mk(n)(Mk(n) + 1) · · · (Mk(n) + �)}
= (ms + (� + 1)(k − s) + �)

×
∏�

j=0(ms + k − s + 1 + �(n − �(k − s + 1) − 1)/�� + n + j)

ms + (� + 1)(k − s + 1) + (� + 1)�(n − �(k − s + 1) − 1)/�� + �

≤ (ms + (� + 1)k + �)
(ms + k − s + 1 + (n − �(k − s + 1) − 1)/� + n + �)�+1

ms + (� + 1)(k − s + 1) + (� + 1)(n − �(k − s + 1) − 1)/� − 1

≤ (ms + (� + 1)k + �)
(ms + n((� + 1)/�) + �)�+1

ms + n((� + 1)/�) − (2� + 1)/�

≤ C′kn�,

where C′ = C′(�, ms) is a constant. These moment estimates together with (14) and (15) imply
that

EUk(n)�+1 ≤ C′′
�+1∑
j=0

(kn�)j/(�+1)k−j = C′′
�+1∑
j=0

(
n

k

)j�/(�+1)

≤ C′′′
(

n

k

)�

, (17)

where C′′ and C′′′ are constants depending only on �, ms, s and the last inequality is because
we may assume that n ≥ k − s − 1. Scaling Uk(n) by n−�/(�+1), we have

E{(n−�/(�+1)Uk(n))�+1} ≤ C′′′k−�,

which proves the first assertion of the lemma. For the second assertion, follow the proof up
to (16) and now set � = 1 and p = 4. Again EMk(n)4 can be bounded by the fourth rising
factorial moment and now [21, Lemma 4.1] implies that, for w = ms + 2(k − s) + 1 and
t = n − (k − s + 1),

E{Mn(k) · · · (Mn(k) + 3)}

=
3∏

j=0

(w + j)

t−1∏
i=0

w + 1 + 2i + 4

w + 1 + 2i

= w(w + 2)(w + 1 + 2t)(w + 1 + 2t + 2)

≤ (w + 2)2(w + 2t + 3)

= (ms + 2(k − s) + 3)2(ms + 2(k − s) + 1 + 2(n − (k − s) − 1) + 3)2

≤ ck2n2,

where c = c(ms, s) is a constant. Now applying the same argument as (17), it follows that, for
some constants c′ and c′′ depending only on ms and s,

EUk(n)4 ≤ c′
4∑

j=0

E{(n2k2)j/4}k−j ≤ c′′
(

n

k

)2

.

Scaling Uk(n) in this last equation yields the second assertion. �
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3.3. Continuity of the ordering function

For x ∈ l+p , define the ordering function x↓ ∈ l+p as follows. Since limi→∞ xi = 0,
the sequence has a maximum. Let y1 be the value of that maximum, remove it from the
sequence x, and repeat, assigning consecutive values to y2, y3, and so forth. Then, set
x↓ := y. Note that the ordering function is not just a permutation of the coordinates:
( 1

2 , 0, 1
4 , 0, 1

8 , 0, . . . )↓ = ( 1
2 , 1

4 , 1
8 , . . . ). To see that x↓ ∈ l+p , note that ‖x↓‖p = ‖x‖p, since

every positive value appearing in x will appear in x↓, and zero values in x do not contribute to
the norm.

Lemma 7. For any 1 ≤ p < ∞, the ordering function is continuous in l+p .

Remark 3. As pointed out to us by a referee, the ordering function is in fact 1-Lipschitz in lp;
this follows from [15, Theorem 3.5] applied to step functions. We present the lemma and proof
for the sake of completeness.

Proof of Lemma 7. Since l+p is a metric space, it is enough to show that the ordering function
is sequentially continuous. Assume that x(n) → x in l+p ; that is, ‖x(n) − x‖p → 0 as n → ∞.
For α > 0 (to be chosen later), define the set of indices

Mα = Mα(x) = {i : xi > α};
since limi→∞ xi = 0, the set Mα is finite for any positive α. Define the sequences x′ and x′′
by x′

i = xi 1(i ∈ Mα) and x′′ = x − x′. Moreover, for each n, define the two sequences x′(n)

and x′′(n) by x′
i (n) = xi(n) 1(i ∈ Mα) and x′′(n) = x(n) − x′(n) (note that the sequence x(n)

is decomposed with respect to Mα , which depends on x only).
Now, fix ε > 0, and choose α such that

‖x′′‖p ≤ 1
4ε,

and it is, moreover, possible to choose α such that

max
i �∈Mα

xi < α < min
i∈Mα

xi. (18)

Clearly, the first |Mα| elements of x↓ are just the ordered nonzero elements of x′. Now, choose N

large enough so that

(i) ‖x − x(n)‖p ≤ 1
4ε for all n ≥ N ,

(ii) xi(n) > α for all i ∈ Mα all n ≥ N ,

(iii) xi(n) < α for all i �∈ Mα and all n ≥ N , and

(iv) ‖(x′)↓ − (x′(n))↓‖p ≤ 1
4ε for all n ≥ N .

Condition (i) can be achieved because x(n) → x; conditions (ii) and (iii) can be achieved
because x(n) → x implies uniform coordinatewise convergence and because of (18); condi-
tion (iv) can be achieved again by uniform coordinatewise convergence and the fact that the
order statistics of finitely many values can be approximated to any arbitrary precision. It follows
that, for any n ≥ N ,

‖x↓ − (x(n))↓‖p ≤ ‖(x′)↓ − (x′(n))↓‖p + ‖x′′‖p + ‖x′′(n)‖p ≤ 1
4ε + 1

4ε + 1
2ε = ε. �
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3.4. Proof of Theorem 2

Proof. We first argue that almost surely Y ∈ l+p for p > �/(� + 1). First note that Yi =
Zi − Zi−1 and, according to Theorem 1, for i > s, Zi = GG(as + (� + 1)(i − s)) and
Zi−1 = Bi−1Zi , where Bi−1 ∼ beta(as + (� + 1)(i − s − 1), 1) and is independent of Zi .
Thus, we can write Yi = Zi(1−Bi−1) and note that (1−Bi−1) ∼ beta(1, as+(�+1)(i−s−1)).
From standard moment formula for gamma and beta distributions, we have

EY
p
i = �(as/(� + 1) + i − s + p/(� + 1))

�(as/(� + 1) + i − s)

�(1 + p)�(as + (� + 1)(i − s − 1) + 1)

�(as + (� + 1)(i − s − 1) + 1 + p)

≤ Ci−p�/(�+1),

where C = C(p, �, as, s) is a constant and the inequality follows from xt�(x)/�(x + t) → 1
as x → ∞. Clearly, we can extend the inequality to all i ≥ 1. Therefore,

E

∞∑
i=1

Y
p
i =

∞∑
i=1

EY
p
i ≤ C

∞∑
i=1

i−p�/(�+1),

and this last term is finite for p > (�+ 1)/�. Since the expectation of the sum is finite, the sum
is almost surely finite.

The tightness of (D̃(n))n≥1 follows by applying the moment bounds of Lemma 6 in Lemma 5
and then convergence to the claimed limit follows from the convergence of finite-dimensional
distributions given by Theorem 1.

Finally, (D̃(n)↓)n≥1 converges to Ỹ↓ because of the convergence of (D̃(n))n≥1, the conti-
nuity of the order mapping given by Lemma 7. �
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