
ABSTRACT
This paper assesses the application of a new method for system stability analysis, the weight 
functions method, to the longitudinal and lateral motions of a High Incidence Research Aircraft 
Model. The method consists of finding the number of weight functions that is equal to the number 
of differential equations required for system modelling. The aircraft’s stability is determined from 
the sign of the total weight function; which should be negative for a stable model. The Aero-Data 
Model In Research Environment (ADMIRE) simulation, developed by the Swedish Defence 
Research Agency, was used for the aerodynamic aircraft modelling, with the following configu-
rations: Mach number = 0·25, altitude = 500m, angle-of-attack [–10 to 30]°, elevon deflection 
angle [–30 to 30]°, canard deflection [0° and 25°] and rudder deflection angles [–30° and 30°]. 
These flight configurations were selected because they are among the flight conditions for Cat. II 
Pilot Induced Oscillation (PIO) criteria validation, performed on the FOI aircraft model presented 
in the PIO Handbook by the Group for Aeronautical Research and Technology in Europe, Flight 
Mechanics/Action Group 12. This aircraft model has a known instability for longitudinal and 
lateral motions and so a control law was introduced to stabilise its flight.
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NOMENCLATURE
b wingspan 
C mean aerodynamic chord 
Cl  roll moment coefficient
Cm  pitch moment coefficient 
Cn  yaw moment coefficient
CD  drag coefficient
CL  lift coefficient 
CT  tangential force coefficient
Cy  side force coefficient 
g acceleration due to gravity 
H altitude
Ix  x body moment of inertia 
Ixy  x-y body axis product of inertia 
Iz  z body axis product of inertia 
Iy  y body axis moment of inertia 
Iβ rolling moment due to the sideslip angle derivative
Iaβ rolling moment due to the roll rate derivative and alpha derivative
lδa rolling moment due to the aileron derivative and alpha derivative
lαδa rolling moment due to the aileron derivative
lδa rolling moment due to the rudder derivative
lr rolling moment due to the yaw rate derivative 
lp rolling moment due to the roll rate derivative 
m  aircraft total mass 
M  Mach number
nβ yawing moment due to the sideslip angle derivative
nαp yawing moment due to the roll rate derivative and alpha derivative
nαδa yawing moment due to the aileron derivative and alpha derivative
nδa yawing moment due to the aileron derivative
nδr yawing moment due to the rudder derivative
nr yawing moment due to the yaw rate derivative
np yawing moment due to the roll rate derivative
p roll angular rate
q pitch angular rate
q dynamic pressure
r yaw angular rate
S  wing surface 
T traction
xeng x-position of the engine’s centre of gravity 
xcg x-position of the centre of gravity 
yβ side force due to the sideslip angle derivative
yδa side force due to the aileron derivative
yδr side force due to the rudder derivative
yr side force due to the yaw rate derivative 
yp side force due to the roll rate derivative
w weight function

~
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W total weight function
α angle-of-attack
β angle of sideslip
δa aileron deflection 
δc canard deflection 
δe elevator deflection 
δr rudder deflection 
φ roll angle 
Φ	 bank angle
θ pitch angle 
ψ heading angle 

ABBREVIATIONS AND ACRONYMS
ADMIRE Aero-Data Model in Research Environment
AG Action Group
DLR Deutsches Zentrum für Luft-und Raumfahrt e.V.
GARTEUR Group for Aeronautical Research and Technology in EURope
FM Flight Mechanics 
FOI Swedish Defence Research Agency
HIRM High Incidence Research Aircraft Model
LARCASE Laboratory of Research in Active Controls, Aeroservoelasticity and Avionics
PIO Pilot-Involved (Pilot-Induced) ( Pilot-In-the-loop) Oscillations
SAAB  Saab AB

1.0 INTRODUCTION
The Weight Function Method (WFM) has been applied in various engineering fields. For example, 
it has been used to determine stress factors for crack problems. The WFM was applied by Yoichi 
et al(1) to solve two- and three-dimensional crack problems and to calculate stress intensity factors 
for arbitrary loading conditions. Their application has been generalised to calculate the response 
analysis of structures and to solve two-dimensional elasticity and plate bending problems. The 
weight function method was found to be useful for analysing structures subjected to a variety of 
loading conditions because the responses expressed in terms of displacements and stresses may be 
calculated by integrating the inner product of a universal weight function and a load vector. The 
stress intensity factor for a patched crack within an infinite plate was successfully numerically 
validated using the WFM(2). 

Paris et al(3) presented an alternate method of Bueckner and Rice for the deviation of a 
two-dimensional weight function to eliminate crack tip stress intensity factors. A generalised 
weight function method was developed(4), based on Betti’s reciprocal theorem application to the 
equivalent cracks problem involving mixed boundary conditions. Fett(5) contributed an analytical 
solution for determining stress distribution using a weight function based on the Boundary 
Collocation Method. Schneider et al(6) used a closed-form weight function formula to calculate 
the stress intensity factor of an edge crack for an elastic disc. A three-dimensional linear elastic 
fracture mechanics (LEFM) problem was also solved using the WFM(7). 
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Figure 1. ADMIRE: Main graphical window simulation and aircraft response(11).
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Stroe(8) solved the Lurie-Postnikov problem using general vibration equations involving linear 
transformations. Stroe also analysed a holonomic system with dependent variable equations(9), where 
the WFM was applied to vibration and stability studies in cases of damped holonomic systems.

The selections of H∞ weighting functions were presented for practical applications by Jiankun 
et al(10), where the authors showed that an H∞ weighting function for a single-input single-output 
system could be obtained by considering it as a series of connections of elementary low-order 
systems. For a constrained control effort, an explicit weighting function was obtained. They 
proposed a novel method for the selection of weighting functions in an H∞ mixed sensitivity design 
to directly control the percentage overshoot. Real-time experimental results were presented for 
the roll-angle control of a laboratory scale model of a vertical take-off aircraft(10).

Our analysis of longitudinal and lateral motions using the WFM was performed on the Aero-Data 
Model In Research Environment model (ADMIRE) developed by the FOI(11), based on the Generic 
Aerodata Model (GAM) developed by SAAB AB in the framework of the GARTEUR Group(12). 
‘The ADMIRE describes a generic small-single seated, single-engine fighter aircraft with a delta-
canard configuration, implemented in MATLAB/SIMULINK Release 13’(13, p iii). The stability 
domains were determined for each flight case for the given configurations. 

This paper is part of a project developed at LARCASE laboratory to perform a more complete 
analysis of an aircraft in subsonic regime as a design tool, based on geometrical parameters. Three 
real different configurations were analysed and HIRM model was chosen for its instability well 
known. The WFM was applied to the original non-linear aerodynamics model implemented in 
ADMIRE simulation, as well as for the model stabilised with control laws, in order to stabilise 
its flight.

2.0  THE HIRM: MODEL DESCRIPTION AND ITS   
IMPLEMENTATION IN ADMIRE SIMULATION

The HIRM (High Incidence Research Model)(1,13,14) of a generic fighter aircraft was used in this 
study. This aircraft model has an envelope defined by a Mach number between 0·15 and 0·5 and 
altitude of between 100 and 20,000ft for the following angles: the angle-of-attack α = [–10 to 
30] degrees, sideslip angle β = [–10 to 10] degrees, elevon angle δe = [–30 to 30] degrees, canard 
angle δc = [–55 to 25] degrees, and rudder angle δr = [–30 to 30] degrees. 

The aerodynamics coefficients were obtained based on wind tunnel and flight tests for a model 
‘... originally designed to investigate flight at high angles of attack ... but [that] does not include 
compressibility effects resulting from high subsonic speeds.’(14, p 21). These coefficients were further 
implemented in the ADMIRE model using the main graphical window simulation presented in 
Fig. 1, which also shows the response of the aircraft model. The tests and analyses provided in 
the GARTEUR program were focused on PIO detection, while this paper evaluates a new method 
to investigate the model’s stability. 

‘The ADMIRE contains twelve states (VT, α, β, pb, qb, rb, ψ, θ, φ, xv, yv, zv) plus additional states 
due to actuators and Flight Control System (FCS). Available control effectors are left- and right 
canard, leading edge flap, four elevons, rudder and throttle setting. The model is also equipped 
with thrust vectoring capability and an extendable landing gear. The model is prepared for the use 
of atmospheric turbulence as external disturbance. The ADMIRE is augmented with an FCS in 
order to provide stability and sufficient handling qualities within the operational envelope (altitude 
<6km, Mach < 1·2). The FCS contains a longitudinal and a lateral part. ... The lateral controller 
enables the pilot to perform roll control where the roll motion is initiated around the velocity 
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vector of the a/c, and angle of sideslip control. Sensor models are incorporated. The 20ms flight 
computer delay on the actuator inputs that is implemented in other versions of ADMIRE was not 
used here. The model has the facility to define model uncertainties, but this was not used. ADMIRE 
is implemented in MATLAB and SIMULINK using a combination of standard SIMULINK blocks 
and S-functions written in C.’(12, p36).

Figure 1 is a screenshot of the ADMIRE window simulation and it is presented here to under-
stand how this model works. Each block is define on different level and for aircraft response a 
screen shot was considered necessary, because of the ADMIRE_main block which contains the 
non-linear coefficients given as tables. 

The following table contains a summary of the aircraft geometrical data, along with aircraft 
mass and mass distribution data(13). 

Table 1
Summary of the aircraft geometrical data

 Parameters Numerical values [Units]
 wing area S 45m2

 wing span b 10m
 wing mean aerodynamic chord c  5·2m
 Mass m 9,100kg
 x-body axis moment of inertia Ix 21,000kgm2

 y-body axis moment of inertia Iy 81,000kgm2

 z-body axis moment of inertia Iz 101,000kgm2

 xz-body axis product of inertia Ixz 2,500kgm2

 zeng  –0·15m
 xcg  0·25c

Let us consider a model defined by a nonlinear autonomous system of equations for the longitudinal 
motion and for its lateral motion, given below as Equations (1) and (2), respectively(13,14,16) .

The aerodynamic force and moment coefficients contain degrees of non-linearities, as shown in 
the next Equation (3). Their values were obtained from the ADMIRE simulation(11):
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3.0 THE WEIGHT FUNCTION METHOD
The main objective of this paper is to study, based on the above Equation (1) and (3), the HIRM 
stability when the Weight Function Method (WFM) is applied. The WFM is based on the following 
theorem: 

Theorem(9): Given the autonomous system, x = f (x), x∈Rn, if wk (x1, x2...xn) exists such that
                       is a total exact differential, then its stability is given by   as follows: 

●	 if W is negative-definite, the solution is asymptotically stable; 
●	 if W is the null function, the solution is neutrally stable; or 
●	 if W is positive-definite, the solution is unstable.
The WFM replaces the classical Lyapunov function by finding a problem with a method which 
obtains a number of weight functions equal to the number of the first-order differential equations 
modelling the system(8,9). The difference between these two methods is that the weight functions 
method finds one function at a time, with their number equal to the number of the first-order 
differential equations.

The WFM’s basic principle is to find three positive weight functions for a system with four 
first-order differential equations, where the fourth weight function is a constant, imposed by the
author. The total weight function      is defined, and its sign should be negative to ensure 
the stability of the aircraft.

3.1 Longitudinal aircraft model

For longitudinal aircraft modelling, it was assumed that γ = 0, V = const and h = const; with these 
conditions, the first two equations of Equation (1) become equivalent to:
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and the longitudinal model is described by:

where CM1 is the sum of Cm1, Cm2, Cm3, Cm6 and Cm7 , and CM2 = Cm4 + Cm5. 
The total weight function Wlong is given by Equation (6), where f1 = α, f2 = q;

In the first parenthesis of Equation (6) that multiplies the term αq, the first weight function wlong1

is defined as            for any positive value of wlong2, because ze = –0·15m is
negative from the aircraft geometry, a value implemented in the ADMIRE simulation. The next 
step consists of replacing wlong1 in Equation and obtaining the total longitudinal weight function 
Wlong, as defined in Equation (7), where its sign depends on the sign of q.

3.2 Lateral aircraft model

The lateral model was given in Equation (2), and using the following notations: 
Equation (2) is written in the form: 

 

&

&
%

%



    



            
q

q qS
I

x z C C C mg
qS
z

y
cg e T T e T c e1 2 3, , Sinn

       









 

            
%

&
qSc
I

C C C C C
y

m m e m c m m1 2 3 4 5, , ,     



c m c m a

y

q C C

q

q qS
I

cC

        




















6 7, , ,

or
&

& MM cg e T e
y

Mx z C mg
qS
z qS

I
cC q1 2   









 







 Sin

. . . (5)

. . . (7)

. . . (8)

. . . (6)

. .

W w x f w f w qf w q w q qS
Ilong k k

k
k long long long long

y

    



1

2

1 1 2 2 1 2  ccC x z C mg
qS
z qS

I
cC q

q w

M cg e T e
y

M

lon

1 2   








 















Sin

 gg long
y

e long
y

M M cgw mg
I
z w q qS

I
c C C q x z1 2 2 1 2









     Sin

 ee TC  











w w mg
I
zlong long

y
e1 2 0  Sin



W w q qS
I
c C C q x z Clong long

y
M M cg e T      











2 1 2

i
I I

I
z y

x
1 

  i
I I

I
y x

z
3 

 

& %

&
%

&
%

   

  

    

p r qS
mV

C

p i qr qSb
I
C

r i pq qS
I
cC x C

y

x
l

z
n cg y

1

3 



















        



&

&

&



      



p

y y p y r y y

p l

p r a ra r

or

1

         
   

l l p l i q r l l l

r n n n

p r r a

p p

r a a   

 

    

 

1

& ii q p n r n n n

p
r r ar a a3      
















    

&

3921.indd   904 03/09/2013   16:25:19

https://doi.org/10.1017/S0001924000008575 Published online by Cambridge University Press

https://doi.org/10.1017/S0001924000008575


Anton et al      ApplicAtion of the weight function method on A high incidence reSeArch... 905  

The system of Equations (8) can be simplified as follows: 

 

where                and:
 

By denoting the state vector xk = [β p r φ]T the lateral weighting function is then given as:

To solve the stability analysis problem, the first weight function is defined from the third term of 
the lateral weighting function, Equation (11), where wlat3 is a constant defined by the authors as 
equal to 1 in this paper, so that:

Equation (12) is replaced in Equation (11), to obtain:

The second weight function, wlat2 , can be defined as a function of the wlat3 positive function:
 

The last step in our analysis is to find the total wlat lateral weight function, defined in Equation 
(15), so that the wlat4 function can be given in Equation (16) as a function of wlat3. 
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Finally, the final weight function wlat is determined from wlat1, wlat2 and wlat4, given by Equations 
(12), (14) and (16), and as a function of wlat3.

4.0 RESULTS
The longitudinal motion’s results are presented for a range of angles of attack, elevon angles and 
canard angles defined as α = [–10 to 30]°, δe = [–30 to 30]° , δc = 0°, and sideslip angle β = 2°. For 
the lateral motion, the roll rate p = [–10 to 10]°/s, the yaw rate r = [–5 to 5]°/s, the sideslip rate β 
= [0 to 10]° and the bank angle Φ = [–20 to 20]°. 

The system defined by Equation and is linearised about a specific equilibrium point, and the 
results are presented for longitudinal and lateral motions with and without control laws in Figs 
5 and 8, respectively. In this context, investigations based on the HIRM database and using the 
WFM have shown the stability and instability fields and the simple stable solutions for the different 
system configurations. 

4.1 Longitudinal motion

An analysis of the mathematical model was performed, based on the weight function Wlong1 given 
by Equation (6) and with wlong2 positively defined. The results are for a system with a null canard 
angle, sideslip angle β = 1°, and for the same variation of angle-of-attack and elevon deflection 
as presented for the equilibrium solution. 

In this case, based on Equation (7), a dependence on the sign of q can be observed. The weight 
function wlon2 is equal to 1, the smallest integer. The variation of the total weight function W versus 
the angle-of-attack and elevon deflection are given in Fig. 2(a) for negative values, q = –5°/s and 
in Fig. 2 (b) for positive values, q = 5°/s. The sign of q changes when the stability field is unstable, 
and vice versa. The aircraft is simple stable for the pairs of angle-of-attack and elevator angle 
given in Fig. 3

The simple stable solution varies between (α = –10°, δe = –14°) and (α = 25·4°, δe = 29·93°), 
as shown in Fig. 3. The two equilibrium curves for elevon and canard deflection angles versus 
angle-of-attack are shown in Fig. 4. The symmetrical elevon deflection angle was estimated using 
Equations (18) and (19):
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where:

   δlie_in – left outboard elevation angle
   δrie_in – right outboard elevation angle
   δloe_in – left inboard elevation angle
   δroe_in – right inboard elevation angle

The total weight function variation with α for the longitudinal motion, for wlong2 = 1, is given by 
Equation (7) and is shown in Fig. 5. The smallest integer 1 was used for wlong2 ,which multiplies 
a term whose sign is analysed here (w1), so that for any higher value of the constant wlong2, the 

(a) (b)

Figure 3. Total weight function W for a complete  
range angle-of-attack/elevon deflection, with  

a null canard deflection and positive  
pitch angle for longitudinal motion.

Figure 2. Total weight function W for a complete 
 range angle-of-attack/elevon deflection, with  

a null canard deflection and negative  
pitch angle for longitudinal motion.

Figure 4. Stability/instability fields for longitudinal 
motion using the weight function method with w2 = 1.

Figure 5. Equilibrium curves for elevon and canard 
deflection angles versus angle-of-attack.
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variation of W is the same only its value increases. The red curve (marker line) shows the variation 
of the total weight function with α in Fig. 5, where it can be seen that for:
● α = [–10° to 10·8776°) and δe = (–4° to 3·585°) the aircraft is asymptotically stable;
● α = 10·8776° and δe = 3·585° the aircraft is neutrally stable;
● α = (10·8776° to 30°] and δe = (3·585° to 19°) the aircraft is unstable;

To stabilise the model, a control law was used for the longitudinal aircraft motion, given by:
 
    δe = δe0 + kaa + kqq  . . . (20)

Using this control law with the regulator gains kα = 0·4 and kq = 1·284 , provided by ADMIRE 
simulation(11), the stability field increases, as shown by the total weight function W, represented 
by the green curve (no marker line) in Fig. 5. In order to analyse aircraft’s stability as function of 
α and δe, the value of δe at equilibrium corresponding to the angle-of-attack α was obtained from 
Fig. 4. It was concluded that, with aircraft longitudinal motion, for: 
● α = (–0·64° to 30°] and δe = (–1·063° to 26°) the aircraft is asymptotically stable;
● α = –0·64° and δe = –1·063° the aircraft is neutrally stable;
● α = [–10° to –0·64°] and δe = (–10° to –1·063°) the aircraft is unstable.

4.2 Lateral motion

Based on the weight functions wlat1, wlat2 and wlat4 given in Equation (12), (14), (16) and with 
wlat3 positively defined by the authors, results are presented for a sideslip angle β = 2°, roll rate 
p = [–10 to 10]°/s, yaw rate r = [–5 to 5]°/s, bank angle Φ = [–20 to 20]° , and the same variation 
of angle-of-attack and elevon deflection presented for longitudinal motion in this paper. The sign 
of Equation (17) depends on the signs of p, r and φ. 

The weight function wlat3 has the same value as that of the longitudinal motion, the smallest 
integer equal to 1. This value was chosen because wlat3 multiplies a parenthesis, and as could be 

Figure 6. Weight function W without/with a control law at equilibrium for longitudinal motion.
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any value, positive definite, the sign of W function does not change. The variations of the total 
weight function W versus angle-of-attack and elevon deflection are given in Fig. 6(a) for negative 
value p = –10°/s, r = –5°/s, Φ = –20° , (b) for null values p = 0°/s, r = 0°/s, Φ = 0° and (c) for 
positive values p = 10°/s, r = 5°/s, Φ = 20°). Figure 6 (b) is a section with the plane, i.e. W =0·

Figure 6(a). Total weight function W for a complete range of angle-of-attack/elevon deflection, for lateral motion.

Figure 6(b). Total weight function W for a complete range of angle-of-attack/elevon deflection, for lateral motion.

Figure 6(c). Total weight function W for a complete range of angle-of-attack/elevon deflection, for lateral motion.
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It is not easy to detail all the stability/instability fields concerning the lateral motion. Figure 6 (a), (b) 
and (c) shows the variation of the weight function with angle-of-attack and elevon/rudder deflection.

The two equilibrium curves for elevon and rudder deflection angles versus angle-of-attack are 
shown in Fig. 7. The asymmetrical elevon deflection angle was estimated based on the notations 
used in Equation (19):

The total lateral weight function is given by Equation (17), in which wlat3 = 1, the smaller integer 
positive define, and is plotted in Fig. 8 where the red curve (no marker line) represents the solution 
without a control law, and the stability and instability fields are the following for various values 
of α and δa:
the aircraft is asymptotically stable for 
● α = [–10° to –8·046°) and δa = (–2·55° to –3·272°);
● α = (4·996° to 8·362° and δa = (–1·754° to –0·244°);
● α = (12·29° to 19·389°) and δa = (1·924° to 3·201°);
● α = (22·97° to 30°) and δa = (9·07° to 25·15°);

the aircraft is simple stable for:
● α = –8·046° and δa = –3·272° ;
● α = 4·996° and δa = –1·754°/α = 8·362° and δa =–0·244°;
● α = 12·29° and δa = 1·924°/α = 19·389 and δa = 3·201°;
● α = 22·97° and δa = 9·07°;

the aircraft is unstable for:
● α = (–8·046° to 4·996°) and δa = (–3·272° to –1·754°);
● α = (8·362° to 12·29°) and δa = (–0·244° to 1·924°);
● α = (19·3890 to 22·970) and δa = (3·2010 to 9·070);

Figure 7. Equilibrium curves for elevon and rudder deflection angles versus angle-of-attack.
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A control law was used to stabilise the model, given by:

   δa = δa0 +   kp p + kφφ

   δr = δr0 +   kb	b + kb	b

This control law was used with the regulator gains given as kp = 0·52106, kφ = –0·27704,  
kβ = 7·6727, and kβdot = –4·9301 implemented in ADMIRE simulation(11); the field of stability 
increases for the range of angles of attack from –10° to 15·67° (see the blue marker curve in Fig. 
8), as shown next for different values of α and δa:
asymptotically stable for:
● α = (–10° to 15·67°) and δa = (–2·551° to 3·47°) 
● α = (19·45° to 20·73°) and δa = (3·186° to 4·894°)
● α = (23·21° to 30°) and δa = (9·712° to 25·15°);

simple stable for:
● α = 15·67° and δa = 3·47°;
● α = 19·45° and δa = 3·186°;
● α = 20·73° and δa = 4·894°;
● α = 23·31° and δa = 9·712°;

unstable for:
● α = (15·67° to 19·45°) and δa = (3·47° to 3·186°) ;
● α = (20·73° to 23·21°) and δa = (4·894° to 9·712°).

5.0 CONCLUSIONS

The manoeuvrability of an aircraft is determined by its ability to change its attitude and speed about 
three axes (longitudinal, lateral and vertical). The main aim of this paper was to determine the 
positive weight functions by using the Weight Function Method to analyse the stability/instability 
fields of an HIRM model and to stabilise this model using control laws.

Figure 8. Weight function W with and without a control at equilibrium for lateral motion.
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For the autonomous system of differential equations used in this paper, the WFM gives the 
stability and instability fields. Based on the analysis presented above for the nonlinear model, 
the oscillatory behaviour was observed for the lateral motion, equivalent to an unstable one, and 
for longitudinal motion it could be seen that the sign of q changes the stability field to unstable 
and vice versa.

The HIRM is an unstable model and the control law introduced for each motion, longitudinal and 
lateral, was used to stabilise its flight in the range of α = (–0·64° to 30°] and δe = (–1·063° to 26°) 
for longitudinal motion, and α = (–10° to 15·67°) and δa = (–2·551° to 3·47°) for lateral motion.
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