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Basis Convergence and Long Memory in
Volatility When Dynamic Hedging with Futures

Jonathan Dark∗

Abstract

When market returns follow a long memory volatility process, standard approaches to es-
timating dynamic minimum variance hedge ratios (MVHRs) are misspecified. Simulation
results and an application to the S&P 500 index document the magnitude of the misspec-
ification that results from failure to account for basis convergence and long memory in
volatility. These results have important implications for the estimation of MVHRs in the
S&P 500 example and other markets as well.

I. Introduction

The importance of managing risk exposure has elicited a voluminous liter-
ature on futures hedging over the last half-century (see Chen, Lee, and Shrestha
(2003) for a review). The early literature focused mainly on estimating the min-
imum variance hedge ratio (MVHR) via an ordinary least squares (OLS) regres-
sion between the spot and futures (Ederington (1979), Figlewski (1986)). This
approach has been extended to allow for conditional heteroskedasticity (Kroner
and Sultan (1993)) and cointegration (Ghosh (1993), Lien (1996)). Bivariate error
correction generalized autoregressive conditional heteroskedasticity (GARCH)
models between the spot and the futures have therefore become a popular way
of estimating dynamic MVHRs.1

These conventional approaches, however, ignore the convergence of the spot
and the futures (basis convergence) over the life of the futures contract. This per-
sists despite the early literature by Working (1953a), (1953b), (1961) that incor-
porated changes in the basis into the hedging decision. Since these studies, very
little research has examined the importance of basis convergence when hedging.
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1See Park and Switzer (1995), Lien and Tse (1999), Sim and Zurbruegg (2000), Kroner and Sultan
(1993), Cecchetti, Cumby, and Figlewski (1988), and Koutmos and Pericli (1998).
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Castelino (1989), (1990a), (1990b), (1992) showed that once basis convergence is
allowed for, the MVHR approaches unity as the hedge lifting date approaches the
futures expiration date. Given that arbitrage imposes basis convergence (Brennan
and Schwarz (1990), Buhler and Kempf (1995), Twite (1998), and Lim (1992)),
basis convergence is likely to have a significant effect on the MVHR in many
markets.

Over the last decade, an extensive literature has documented the presence
of long memory in financial market volatility (Ding, Granger, and Engle (1993),
Bollerslev and Mikkelsen (1996), Ding and Granger (1996), Breidt, Crato, and
de Lima (1998), Dacorogna, Muller, Nagler, Olsen, and Pictet (1993), Baillie,
Bollerslev, and Mikkelsen (1996), and Andersen and Bollerslev (1997a), (1997b),
(1998)). If long memory in volatility is present, estimation of dynamic MVHRs
via bivariate fractionally integrated volatility processes may be more appropriate.2

This paper therefore seeks to document the magnitude of the misspecifica-
tion that results from failing to account for basis convergence and long memory in
volatility when estimating dynamic MVHRs. Simulations reveal that when hedg-
ing over a five-period horizon, failing to allow for long memory in volatility does
not lead to statistically significant increases in portfolio variance. However, the
statistically significant increases in portfolio variance that result from failing to
account for basis convergence rise as the hedge commencement date approaches
the futures expiration date. For hedges ≥ 20 periods, failing to allow for long
memory in volatility produces higher portfolio variances approximately 60% of
the time, yielding statistically significant increases in variance averaging between
1% to 3%. Failing to allow for basis convergence produces higher portfolio vari-
ances approximately 70% of the time, yielding statistically significant increases
in variance averaging between 2% to 4%. It is also shown that the increase in
variance that results from failing to allow for basis convergence becomes larger
as the correlation between the spot and the futures decreases and maturity effects
increase.

An application to the S&P 500 demonstrates that as the hedge horizon in-
creases, long memory in volatility and basis convergence become more important.
For a five-day hedge, failing to allow for long memory produces higher portfolio

2Long memory in volatility may arise from a heavy-tailed regime switching process (Liu (2000))
or from the aggregation of multiple volatility components caused by heterogeneous information flows
(Anderson and Bollerslev (1997a)) or by heterogeneous traders (Muller, Dacorogna, Dave, Olsen,
Pictet, and Weizsacker (1997)). The findings of long memory in volatility may, however, be spuri-
ous due to the effect of structural breaks or aggregation (Lobato and Savin (1998)). High degrees
of persistence may be explained by occasional break models that exhibit near long memory (Hyung
and Franses (2001), Breidt and Hsu (2002), Granger and Hyung (2004), and Kirman and Teyssiere
(2002a), (2002b)). Furthermore, when examining equity indices, the stocks comprising an index may
exhibit short memory, but due to aggregation the index may exhibit long memory (Granger (1980)).
Financial market volatility may in fact contain both structural breaks and long memory in volatility
(Morana and Beltratti (2004)). Long memory in volatility is supported for four reasons. First, test-
ing and estimation procedures are unable to differentiate between long memory and near long mem-
ory (Granger and Hyung (2004), Breidt and Hsu (2002), and Hsu (2001)). Second, different break
tests may identify different break points (Granger and Hyung (2004), Hyung and Franses (2001), and
Morana and Beltratti (2004)). Third, long memory models forecast as well as if not better than occa-
sional break models even if the data are weakly dependent and exhibit occasional breaks (Diebold and
Inoue (2001), Hyung and Franses (2001), and Morana and Beltratti (2004)). Fourth, Lobato and Savin
(1998) find that stocks exhibit long memory in volatility, refuting the argument that an index exhibits
long memory due to aggregation.
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variances 53% of the time. As the horizon increases to 60 days, the percentage
increases to 75%, yielding an average increase in portfolio variance of 1% to 2%.
Similarly, failing to allow for basis convergence over a five-day horizon produces
higher portfolio variances 64% of the time. As the horizon increases to 60 days,
the percentage increases to 95%, yielding an average increase in variance of 6%.

The plan of the paper is as follows. Section II develops the approach and
presents the simulation results. Section III illustrates the importance of long mem-
ory in volatility and basis convergence when estimating MVHRs on the S&P 500.
Section IV concludes.

II. The MVHR, Basis Convergence, and Long Memory in
Volatility

A. Model Development and the Single-Period MVHR

This section examines the magnitude of the misspecification that results from
failing to account for basis convergence and long memory in volatility when esti-
mating MVHRs. To do this, a model of the joint dynamics between the spot and
the basis is proposed. The model is in the spirit of Chen, Duan, and Hung (1999)
who model the joint dynamics using a bivariate GARCH process with maturity
effects. In this paper, a bivariate fractionally integrated volatility process with
maturity effects is employed. Let St (Ft) represent the spot (futures) at time t, and
Bt = Ft − St represent the basis at time t. The joint dynamics are as follows:

rs,t = εs,t(1)

rb,t = a2m
λ1
t + εb,tm

λ2
t ,(

εs,t

εb,t

)
∼ D

[(
0
0

)
,

(
σ2

s,t σsb,t

σsb,t σ2
b,t

)]
,(2)

σ2
i,t = ωi +

∞∑
j=1

θjε
2
i,t−j i = s, b,(3)

σsb,t = ρsbσs,tσb,t,(4)

θj = O
(
j−1−d

)
,(5)

where rs,t is ΔSt/St−1, rb,t (the normalized change in the basis) is ΔBt/St−1, mt

is the number of days to maturity at time t divided by 100, λ1 and λ2 are maturity
effect parameters, D represents a distribution, and O represents the asymptotic
approximation. (For simplicity, the variances have the same fractional order.)
The conditional covariances at time t − 1 can be expressed as:

Vart−1 [rs,t] = σ2
s,t,(6)

Vart−1 [rb,t] = σ2
b,tm

2λ2
t , and(7)

Covt−1 [rs,t, rb,t] = ρsbσs,tσb,tm
λ2
t = σsb,tm

λ2
t .(8)

If λ1 > 0 (λ2 > 0), the normalized change in the basis (basis volatility and
covariance) converges to zero over the life of the futures contract. Following
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Chen et al. (1999), the single-period MVHR between time t − 1 and t (Φt−1) can
be expressed as:3

Φt−1 =
Vart−1 [ΔSt] + Covt−1 [ΔSt, ΔBt]

Vart−1 [ΔSt] + Vart−1 [ΔBt] + 2Covt−1 [ΔSt, ΔBt]
(9)

=
Vart−1

[
ΔSt

St−1

]
+ Covt−1

[
ΔSt

St−1
,
ΔBt

St−1

]

Vart−1

[
ΔSt

St−1

]
+ Vart−1

[
ΔBt

St−1

]
+ 2Covt−1

[
ΔSt

St−1
,
ΔBt

St−1

]

=
σ2

s,t + σsb,tm
λ2
t

σ2
s,t + σ2

b,tm
2λ2
t + 2σsb,tm

λ2
t

.

Figure 1, Graphs A and B display Φt−1 as the futures contract approaches
expiration for different values of λ2. Both graphs assume σ2

s = 1 and σ2
f = 1.2.

Graph A assumes ρsf = 0.55, while Graph B assumes ρsf = 0.85.4 When λ2 = 0,
the conventional MVHR without maturity effects applies and the MVHR remains
constant. As maturity effects increase (λ2 increases), the distance between the
conventional MVHR and the MVHR allowing for basis convergence increases.
Graph B of Figure 1 illustrates that for a given λ2, as ρsf increases, the difference
between the conventional MVHR and the MVHR allowing for basis convergence
decreases. These preliminary investigations indicate that the misspecification that
results from failing to account for basis convergence increases as maturity effects
increase and the correlation between the spot and the futures decreases.

To consider the effect on the MVHR from incorrectly fitting a bivariate short
memory volatility process, a short memory process is defined as one where

θj = O(p−j),(10)

where p represents the short memory parameter.5 Let (σe
s,t)2 represent the bias

in the estimate of σ2
s,t when incorrectly fitting a short memory volatility process

to the data generating process (DGP). A similar interpretation can be placed on
(σe

b,t)
2 and σe

sb,t for the basis and the covariance. Asymptotic approximations for
these biases are

(
σe

s,t

)2 =
∞∑
j=1

(
j−1−d − p−j

)
ε2

s,t−j,(11)

(
σe

b,t

)2 =
∞∑
j=1

(
j−1−d − p−j

)
ε2

b,t−j,

σe
sb,t = ρsbσ

e
s,tσ

e
b,t.

3The MVHR is derived as follows. The hedged profit from time t − 1 to t (πt), is πt = (1 −
Φt−1)ΔSt − Φt−1ΔBt. The variance of πt conditional on the information available at t − 1 is
Vart−1(πt)=(1−Φt−1)

2Vart−1[ΔSt]+Φ2
t−1Vart−1[ΔBt]+2(1−Φt−1)(−Φt−1)Covt−1[ΔSt,ΔBt].

The first-order condition with respect to Φt−1 yields the single-period MVHR.
4Note that σ2

b = σ2
s + σ2

f − 2ρsf σsσf and σsb = ρsf σsσf − σ2
s .

5For example, in the GARCH(1, 1) model (σ2
t = ω + αε2

t−1 + βσ2
t−1), p = β−1.
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FIGURE 1

The Evolution of the MVHR for Different Values of λ2

Figure 1, Graphs A and B display the single-period MVHR (equation (9)) as the futures contract approaches expiration for
increasing values ofλ2. Both graphs assume σ2

s = 1 and σ2
f = 1.2.

Graph A. ρsf = 0.55
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Graph B. ρsf = 0.85

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

9
0

8
5

8
0

7
5

7
0

6
5

6
0

5
5

5
0

4
5

4
0

3
5

3
0

2
5

2
0

1
5

1
0 5 0

Days to maturity

M
V

H
R

0 0.1 0.3 0.75 2

The bias in the estimated dynamic MVHR (Φe
t−1) will be

Φe
t−1 =

(
σe

s,t

)2
+
(
σe

sb,t

)
mλ2

t(
σe

s,t

)2
+
(
σe

b,t

)2
m2λ2

t + 2
(
σe

sb,t

)
mλ2

t

.(12)

The direction and magnitude of the bias depend on: i) the ability of the short
memory process to approximate the memory decay of the long memory process;
ii) the resulting dominance of one lag structure over the other;6 iii) the evolution
of the stochastic processes εs,t and εb,t; and iv) maturity effects captured via mt

and λ2. Because an analytical solution is mathematically intractable, simulations
will examine whether the bias has a significant effect on risk reduction.7

6It is clear only that for higher order lags, the long memory lags will dominate the short memory
lags.

7Further, if the DGP is a FIGARCH(1, d, 1) process, a fitted GARCH(1, 1) process will exhibit
IGARCH(1, 1) or near IGARCH(1, 1) behavior (Baillie et al. (1996)). If unconditional expectations
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B. Extension to a Multi-Period MVHR

The dynamic MVHR above only seeks to minimize the variability in returns
period by period and fails to take into account any interperiod dependencies. A
dynamic multi-period MVHR that synthesizes Lee (1999) and Chen et al. (1999)
is therefore proposed. Consider a hedger who seeks to minimize the variability in
portfolio returns over r periods. The end-of-period wealth Wt+r−1 is

Wt+r−1 = Wt−1 + (w′rt + w′rt+1 + . . . + w′rt+r−1) ,(13)

where w′ = (1 − Φ,−Φ) and r′t = (ΔSt, ΔBt). The hedger seeks to minimize the
variability in wealth over the life of the hedge conditional on the information at
time t − 1. The dynamic multi-period MVHR at time t − 1 equals

Φt−1 =
σ∗

sb,t + σ2∗
s,t

σ2∗
s,t + σ2∗

b,t + 2σ∗
sb,t

,(14)

where σ∗
ij,t is the appropriate element in [vech(Ht)# + . . . + vech(Ht+r−1)#] and

vech (Ht)
# =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Vart−1

[
ΔSt

St−1

]

Covt−1

[
ΔSt

St−1
,
ΔBt

St−1

]

Vart−1

[
ΔBt

St−1

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝

σ2
s,t

σsb,tm
λ2
t

σ2
b,tm

2λ2
t

⎞
⎟⎠ .(15)

The bias in the forecasts from a short memory process is likely to increase as the
hedge horizon increases. However, like the single-period MVHR, an analytical
solution for the bias in the multi-period MVHR is mathematically intractable.

C. Simulation

To determine whether failing to allow for basis convergence and long mem-
ory in volatility has a significant effect on risk reduction, the following DGP is
considered

rs,t = εs,t,(16)

rb,t = a2m
λ1
t + εb,tm

λ2
t ,(

εs,t

εb,t

)
∼ N

[(
0
0

)
,

(
σ2

s,t σsb,t

σsb,t σ2
b,t

)]
,

σ2
i,t =

ωi

1 − βi
+

(
1 − (1 − L)di

1 − βiL

)
ε2

i,t i = s, b,

σsb,t = ρsbσs,tσb,t.

are taken,
�∞

j=1 θj = 1 for both processes. This also says nothing about the dominance of one lag
structure over the other (for lower order lags).
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A linear convergence in rb,t is also considered (with the remaining components of
the model unchanged),

rb,t = a2 + λ1mt + εb,tm
λ2
t .(17)

Eleven simulations are performed, each consisting of 200 bivariate samples
of 3,000 observations. On rollover, the number of periods to expiration is 75, with
rollover to the next contract occurring 10 periods prior to expiration.8 The first
2,940 observations are used for estimation, the remaining 60 for dynamic ex ante
MVHR estimation. The following models are used to forecast single- (equation
(9)) and multi-period (equation (14)) ex ante MVHRs:

Model 1: constant correlation (CC) FIGARCH(1, d, 0) with maturity effects (the
DGP)—hereafter FIGARCH-mat.9

Model 2: CC GARCH(1,1) with maturity effects—hereafter GARCH-mat.10

Model 3: CC GARCH(1,1) without maturity effects (λ1 = λ2 = 0)—hereafter
GARCH.

MVHRs are estimated over 5-, 20-, 40-, and 60-period horizons.11 All
hedges commence 35 periods prior to expiration, except for simulation 10, which
commences 13 periods prior to expiration. To consider the impact on risk reduc-
tion from failing to allow for long memory in volatility, the portfolio variances
from Models 1 and 2 will be compared. To consider the impact on risk reduc-
tion from failing to account for basis convergence, the portfolio variances from
Models 2 and 3 will be compared. Table 1 provides details of the simulations.

The simulations examine the effects of: i) changes in d (compare simulations
1, 2, 3 or 4, 5, 6); ii) changes in λ2 (compare simulations 1 and 4, 2 and 5, 3
and 6); iii) nonlinear versus linear convergence (the first six simulations impose
nonlinear convergence, the remaining five linear convergence); iv) changes in ρsb

(compare simulations 8 and 9);12 v) fitting an incorrectly specified long memory
volatility model (the DGP for simulation 11 is the HYGARCH(1, d, 1) model);13

and vi) changing the number of periods between the hedge commencement date
and the futures expiration date (compare simulations 8 and 10).14

8To avoid startup problems, the first 7,000 observations are removed from each replication. The
normal random variables zt = εt/σt are generated from Ox version 3.2.

9The FIGARCH model was proposed by Baillie et al. (1996). Other long memory volatility mod-
els include FIEGARCH (Bollerslev and Mikkelsen (1996)), long memory ARCH (Ding and Granger
(1996)), and FIAPARCH (Tse (1998)).

10This model imposes σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1 for i = s, b with the remaining components

of the model correctly specified.
11All models are estimated via the quasi-maximum likelihood estimator (QMLE). See Section III

for estimation procedure.
12The correlation between the spot and the basis is related to the correlation between the spot and

the futures as follows: ρsb = (ρsf σf − σs)(σ2
s + σ2

f − 2ρsf σsσf )
−1/2.

13Davidson (2004) proposes the HYGARCH(1, d, 1) as σ2
t = ω(1 − β)−1 + (1 − (1 − φL)[1 +

γ((1− L)d − 1)](1−βL)−1)ε2
t , which equals the FIGARCH(1, d, 0) model if γ= 1 and φ= 0. The

simulation assumes φs = 0.4, γs = 0.95, φb = 0.2, and γb = 0.9.
14The bias and mean square error (MSE) for the parameter estimates indicate that the estimates

of λ1 are unreliable when employing a nonlinear rate of convergence. The estimates of λ1 for the
linear specification are more reliable. For the remaining parameters, the bias and MSE are small and
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TABLE 1

Parameter Values Used in Simulations

Table 1 presents the parameter values for the DGP specified in equations (16) to (17). Each simulation generated 200
bivariate samples of 3,000 observations. The first 2,940 observations are used for model estimation, with the remaining
60 observations used for ex ante MVHR estimation. All hedges commence 35 periods prior to expiration, except for
simulation 10, which commences 13 periods prior to expiration. The simulations assumed: a2 = 0.05, ωs = ωb = 0.1,
and rollover 10 periods prior to expiration.

Simulation λ1 λ2 ds βs db βb ρsb

1 0.5 0.5 0.25 0.2 0.2 0.15 0.4
2 0.5 0.5 0.45 0.2 0.5 0.3 0.4
3 0.5 0.5 0.7 0.5 0.65 0.4 0.4
4 0.5 0.1 0.25 0.2 0.2 0.15 0.4
5 0.5 0.1 0.45 0.2 0.5 0.3 0.4
6 0.5 0.1 0.7 0.5 0.65 0.4 0.4

7 0.05 0.1 0.7 0.5 0.65 0.4 0.4
8 0.2 0.5 0.45 0.2 0.5 0.3 0.4
9 0.2 0.5 0.45 0.2 0.5 0.3 0.1

10 0.2 0.5 0.45 0.2 0.5 0.3 0.4

11 0.2 0.5 0.45 0.3 0.5 0.4 0.4

Nonlinear Convergence

Linear Convergence

Linear Convergence with Hedge Commencement Date Closer to Futures Expiration Date

Linear Convergence with DGP a Bivariate HYGARCH(1, d, 1)

Figure 2 presents Wilcoxon matched-pairs signed-rank test statistics for dif-
ferences in portfolio variances between two models.15 Figure 2, Graphs A and
B test the importance of basis convergence when estimating the single- (Graph
A) and multi-period (Graph B) MVHRs. Let Msp

g−gmat and Mmp
g−gmat represent the

population median difference of the portfolio variance from the GARCH model
minus the GARCH-mat model for the single- and multi-period MVHRs, respec-
tively. Figure 2, Graphs A and B present the statistics for a test of H0 :M

sp
g−gmat ≤ 0

against Ha :Msp
g−gmat > 0 (Graph A) and H0 :Mmp

g−gmat ≤ 0 against Ha :Mmp
g−gmat > 0

(Graph B). Positive and significant statistics indicate that failing to allow for ba-
sis convergence results in higher portfolio variances. Figure 2, Graphs C and
D examine the importance of long memory in volatility when estimating single-
(Graph C) and multi-period (Graph D) MVHRs. Let Msp

gmat−fmat and Mmp
gmat−fmat

represent the population median difference of the portfolio variance from the
GARCH-mat model minus the FIGARCH-mat model for the single- and multi-
period MVHRs. Figure 2, Graphs C and D present the results for a test of
H0 :Msp

gmat−fmat ≤ 0 against Ha :Msp
gmat−fmat > 0 (Graph C), and H0 :Mmp

gmat−fmat ≤ 0
against Ha :Mmp

gmat−fmat > 0 (Graph D). Similarly, positive and significant statistics
indicate that failing to allow for long memory in volatility results in higher port-
folio variances. A further test examines whether the portfolio variances from the

insensitive to the use of a linear or a nonlinear rate of convergence. (Results are available on request.)
Further, the in-sample results suggest that as λ2 and d increase, the importance of capturing basis
convergence and long memory in volatility increases. When λ2 = 0.1, the GARCH-mat model has
a lower SIC than the GARCH model 28% of the time. When λ2 = 0.5, the percentage increases to
100%. When d = 0.25, the FIGARCH-mat model has a lower SIC than the GARCH-mat model 91%
of the time. For higher values of d, this percentage increases to 100%.

15The test is whether the population median difference between two matched samples is zero. Here
each sample consists of the 200 portfolio variances achieved using a given model. For samples greater
than 25, the critical values can be approximated by the normal distribution.
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multi-period MVHR are less than the single-period MVHR when using Model 1.
These results are available on request.16

Table 2, Panel A examines the effect of ignoring basis convergence when
estimating MVHRs. For illustrative purposes, Table 2 shows simulations 4 and
8 as well as the average across all simulations. The first two columns for each

FIGURE 2

Wilcoxon Statistics for Differences in Portfolio Variances

Figure 2 presents Wilcoxon matched-pairs signed-rank test statistics for differences in portfolio variances between two
models. Figure 2, Graphs A and B test for the importance of basis convergence when estimating the single- (Graph A)
and multi-period (Graph B) MVHRs. Graphs C and D examine the importance of long memory in volatility when estimating
single- (Graph C) and multi-period (Graph D) MVHRs. Each sample consists of 200 portfolio variances achieved using a
particular model. Critical values can be approximated via the normal distribution. A positive and statistically significant
value supports the alternative hypothesis.

Graph A. Single-Period: H0 : Msp
g−gmat ≤ 0, Ha : Msp
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Graph B. Multi-Period: H0 : Mmp
g−gmat ≤ 0, Ha : Mmp
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(continued on next page)

16For simulation 11, the FIGARCH(1, d, 0) estimates of βs are on the lower boundary of zero for
virtually all models. The spot equation is therefore changed to FIGARCH(1, d, 1). The results for this
specification produce 30 models with φi or βi estimates on the lower boundary. The reported statistics
are based on the sample of portfolio variances where these results are removed. Exclusion of these
results has no influence on the conclusions drawn.
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FIGURE 2 (continued)

Wilcoxon Statistics for Differences in Portfolio Variances

Graph C. Single-Period: H0 : Msp
gmat−fmat ≤ 0, Ha : Msp
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Graph D. Multi-Period: H0 : Mmp
gmat−fmat ≤ 0, Ha : Mmp
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simulation represent the mean and median percentage increase in portfolio vari-
ance from failing to allow for basis convergence. The mean/median for each
horizon is based on a 200 × 1 vector, where each element is calculated via:

[(
σg

t − σgmat
t

)/
σgmat

t

]× 100 for t = 1, . . . , 200,(18)

where σg
(200×1) = [σg

1 , . . . , σ
g
200]

′ and σgmat
(200×1) = [σgmat

1 , . . . , σgmat
200 ]′ represent the

portfolio variances for the GARCH and GARCH-mat models, respectively. A
positive mean/median that is statistically significant indicates that the GARCH-
mat model produces smaller variances on average than the GARCH model. (The
statistical significance is determined via the Wilcoxon test statistics in Figure 2,
Graphs A and B.) The third column (count %) indicates the percentage of times
that higher portfolio variances are achieved if basis convergence is ignored (i.e.,
the percentage of times that σgmat

t < σg
t for t = 1, . . . , 200).
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Panel B of Table 2 examines the impact of failing to allow for long memory
in volatility. The mean/median for each horizon is based on a 200 × 1 vector,
where each element is calculated via:[(

σgmat
t − σfmat

t

)/
σfmat

t

]
× 100 for t = 1, . . . , 200,(19)

where σfmat
(200×1) = [σfmat

1 , . . . , σfmat
200 ]′ represents the portfolio variances for the

FIGARCH-mat model. Similarly, a positive mean/median that is statistically sig-
nificant indicates that the FIGARCH-mat model on average produced a smaller
portfolio variance than the GARCH-mat model. The third column (count %) is the
percentage of times that higher portfolio variances are achieved if long memory
is ignored (i.e., the percentage of times that σfmat

t < σgmat
t for t = 1, . . . , 200).

TABLE 2

Selected Simulation Results

In Panel A, the first two columns for each simulation represent the mean/median percentage increases in portfolio variance
from failing to allow for basis convergence (calculated via equation (18)). A positive mean/median indicates that the
GARCH-mat model produced on average a smaller portfolio variance than the GARCH model. The third column indicates
the % of times that the GARCH-mat model produced a smaller portfolio variance than the GARCH model. In Panel B, the
first two columns for each simulation represent the mean/median percentage increases in portfolio variance from failing to
allow for long memory in volatility (calculated via equation (19)). A positive mean/median indicates that the FIGARCH-mat
model on average produced a smaller portfolio variance than the GARCH-mat model. The third column indicates the % of
times that the FIGARCH-mat model produced a smaller portfolio variance than the GARCH-mat model. ** and * indicate
that the differences are significant at the 1% and 5% levels, respectively (where the Wilcoxon matched-pairs signed-rank
test is employed). # excludes the results from simulation 10. The mean, median, and count % are 44.52%, 20.82%, and
66%, respectively, for the single-period MVHR and 60.44%, 4.64%, and 54.5% for the multi-period MVHR. The remaining
results for simulation 10 are comparable to simulation 8 and have been included in the averages.

Simulation 4 Simulation 8 Average (all simulations)

Mean Median Count Mean Median Count Mean Median Count
Horizon % % % % % % % % %

5 −0.10 −0.22 45.00 0.38 −0.07 49.50 0.33# 0.00# 47.85#

20 0.34 0.19* 55.00 3.26 2.69** 67.50 2.44 2.10 62.50
40 0.54 0.45** 59.50 6.20 5.61** 77.50 3.58 3.17 71.18
60 0.35 0.31** 62.00 3.63 3.10** 76.00 2.20 1.86 71.41

5 −0.10 −0.24 46.00 0.74 −0.63 47.50 0.45# −0.41# 46.30#

20 0.49 0.17 53.50 6.50 4.27** 59.00 3.08 1.58 55.27
40 −0.04 −0.04 48.50 −1.40 −1.96** 38.50 −0.68 −0.90 43.14
60 −0.07 −0.12 44.50 −0.96 −0.77** 38.00 −0.38 −0.54 40.55

5 0.49 0.14 53.00 2.23 −0.05 49.50 1.87 0.29 52.27
20 0.75 0.40** 59.50 1.53 0.87** 60.00 1.40 0.70 59.18
40 0.43 0.24** 58.50 1.09 0.59** 59.50 1.00 0.63 60.41
60 0.42 0.32** 60.00 1.14 0.88** 64.00 0.99 0.76 65.00

5 0.23 0.20 54.00 2.35 −0.31 48.50 2.08 0.16 51.50
20 0.57 0.34* 56.50 1.88 0.91* 57.00 1.78 0.85 59.73
40 0.40 0.25* 59.50 2.88 0.87** 55.00 2.39 0.89 58.36
60 0.49 0.07* 52.50 3.52 1.04** 62.00 3.05 1.01 60.23

Panel A. The Impact on Portfolio Variance from Failing to Allow for Basis Convergence

Single-Period MVHR

Multi-Period MVHR

Panel B. The Impact on Portfolio Variance from Failing to Allow for Long Memory

Single-Period MVHR

Multi-Period MVHR

When employing the single-period MVHR, the following conclusions with
respect to basis convergence are drawn. First, basis convergence becomes more
important as the horizon increases. Table 2 shows that for hedges ≥ 20 periods,
failing to allow for basis convergence increases the variance on average 63% to
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71% of the time, yielding increases in variance averaging between 2% to 4%.17

Second, basis convergence becomes more important as λ2 increases. To illus-
trate, when λ2 = 0.1 (simulation 4), for hedges over 60 periods, failing to allow
for basis convergence increases the portfolio variance 62% of the time, yielding
on average a statistically significant increase in variance of 0.3%. When λ2 = 0.5
(simulation 8), both measures increase. Failing to allow for basis convergence
increases the portfolio variance 76% of the time, yielding on average a statisti-
cally significant increase in variance of 3% to 4%.18 Third, for hedges over five
periods, as the hedge commencement date nears the futures expiration date, basis
convergence becomes more important. For the five-period hedges commencing
35 periods prior to expiration, failing to allow for basis convergence does not pro-
duce statistically significant differences in portfolio variance. However for the
five-period hedge that commenced 13 periods prior to expiration (simulation 10),
failing to allow for basis convergence increases the portfolio variance 66% of the
time, yielding on average a statistically significant increase in variance of 45%.19

When employing the multi-period MVHR, an approach that allows for basis
convergence suffers due to a smoothing effect. This effect is problematic when
contract rollover occurs during the hedge, and its effect increases as the hedg-
ing horizon is lengthened. To illustrate, Figure 3 displays 60-day MVHRs for
the FIGARCH-mat model (simulation 2—the 50th sample). The single-period
MVHR displays convergence to unity as the futures contract approaches rollover
(the 25th period of the hedge). On rollover, the MVHR decreases and converges
to unity over the remainder of the hedge. The multi-period MVHR smoothes the
impact of basis convergence on the MVHR.

All simulations except for simulation 10 commence 25 periods prior to roll-
over. Rollover therefore occurs only during the 40- and 60-period hedges (except
for simulation 10 where it occurs during all hedges). When hedging over 40
and 60 periods using the multi-period MVHR, allowing for basis convergence
increases the portfolio variance on average approximately 60% of the time, yield-
ing an average increase in variance of approximately 1%.20 This effect is more
pronounced when maturity effects are strong. To illustrate, when hedging over 40
periods, with λ2=0.1 (simulation 4), allowing for basis convergence increases the
portfolio variance 51.5% of the time, yielding no statistically significant change
in variance. When λ2 = 0.5 (simulation 8), both measures increase. Allowing for
basis convergence increases the portfolio variance 61.5% of the time, yielding on
average a statistically significant increase in portfolio variance of 2%.21

17Figure 2 reveals that most of these increases are statistically significant.
18The test statistics for simulations 4 to 7 (where λ2 = 0.1) are also lower than the test statistics for

the remaining simulations (where λ2 = 0.5). These results are consistent with Figure 1, which shows
that the differences between the conventional MVHR and the MVHR allowing for basis convergence
increase as λ2 increases.

19Note that 45% is the mean increase, and the median increase is 21%. The mean, median, and
count percentages for the remaining horizons are similar to simulation 8. Figure 2, Graph A reveals
that all the test statistics for simulation 10 are significant. Further details are available on request.

20Figure 2 reveals that the test statistics are negative for most hedges ≥ 40 periods.
21It should be noted that when employing the multi-period approach over the 20-period horizon,

allowing for basis convergence on average produces decreases in portfolio variance (see Figure 2,
Graph B and Table 2, Panel A). This is because no 20-period simulations (except simulation 10)
experience a contract rollover.
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FIGURE 3

60-Period Single- versus Multi-Period MVHR for the FIGARCH-mat Model

Figure 3 presents 60-period single- and multi-period MVHRs for simulation 2 (the 50th sample). Rollover of the futures
contract occurs at period 25.
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For both the single- and multi-period MVHR, when hedging over five peri-
ods, failing to allow for long memory does not produce statistically significant
changes in portfolio variance. For hedges ≥ 20 periods, failing to allow for
long memory increases the variance approximately 60% of the time, yielding
statistically significant increases in variance ranging on average between 1% to
3%. These results are insensitive to a linear or nonlinear rate of convergence,
the length of the memory, or the fitting of an incorrectly specified long memory
volatility model.

III. Application

This section examines the consequences of failing to allow for long memory
in volatility and basis convergence when estimating MVHRs on the S&P 500.
The data consist of 3,238 daily observations from January 5, 1988 to October 19,
2000. The index data were obtained from IRESS, and the floor settle price for the
futures was obtained from the Chicago Mercantile Exchange. To create the price
series, only those days where trading occurred in both markets were included.
Once all mismatched price observations had been removed, the index return was
created as ΔSt/St−1 and the normalized change in the basis as ΔBt/St−1. (Both
series were then multiplied by 100.)22 The nearby futures contract was employed,
with rollover 15 trading days prior to expiration.23

22On November 3, 1997, the futures multiplier was reduced from $500 to $250 and the minimum
tick increased from 0.05 to 0.10. The respecification produced a decrease in the average transac-
tion size but no significant change in volatility or other liquidity and market measures (Karagozoglu,
Martell, and Wang (2003)). Nyblom (1989) tests will be used to determine parameter stability.

23The conclusions are insensitive to the use of a 10-day rollover.
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A. Methodology and Estimation Results

The models in this section extend those in the simulations to allow for vary-
ing correlations and dynamics in the conditional mean.24 The following repre-
sents the estimated FIGARCH-mat model (Model 1):

ΔSt

St−1
= a1 + b1

ΔSt−1

St−2
+ εs,t + b2εs,t−1 + b3εs,t−2 + b4εs,t−3(20)

ΔBt

St−1
= a2 + DIt + λ1(mt) + b5

ΔBt−1

St−2
+ b6

ΔBt−2

St−3
+ εb,t(mt)λ2

+ b7εb,t−1(mt−1)λ2 ,

where It = 1 on contract rollover, 0 otherwise, with25

(
εs,t

εb,t

)
∼ N

[(
0
0

)
,

(
σ2

s,t σsb,t

σsb,t σ2
b,t

)]
,(21)

σ2
i,t =

ωi

1 − βi
+

(
1 − (1 − φiL) (1 − L)di

1 − βiL

)
ε2

i,t i = s, b,(22)

ρsb,t = (1 − θ1 − θ2) ρsb + θ1ρsb,t−1 + θ2ψt−1,(23)

ψt−1 =
∑M

h=1 zs,t−hzb,t−h√(∑M
h=1 z2

s,t−h

)(∑M
h=1 z2

b,t−h

) ,(24)

where εi,t = zi,tσi,t for i = s, b and M ≥ 2.26 The GARCH-mat model (Model 2)
replaces equation (22) with GARCH(1, 1) conditional variances, and the GARCH
model (Model 3) imposes the further restriction λ1 = λ2 = 0.27 All models are

24The impact of ρsf on the importance of basis convergence is therefore dynamic. Nonetheless, the
insights from Section II still hold.

25To determine the mean specification for the index, univariate ARMA-GARCH(1, 1) equations
were initially estimated. The autocorrelation function (ACF) and partial autocorrelation function
(PACF) for returns, and Box Pierce statistics for the standardized residuals, as well as the SIC were
used to determine the most appropriate ARMA specification. The chosen mean specification was then
incorporated into the bivariate models estimated in the second stage. In the second stage, to determine
the mean specification for the basis, three alternatives were considered. The first employed the nonlin-
ear specification of equation (16), the second employed the linear specification of equation (17), and
the third augmented equation (17) with a dummy variable equal to one on rollover and zero otherwise
(the selected specification). Similarly, the ACF and Box-Pierce statistics for the standardized residuals
as well as the SIC (now for the bivariate model) were used to determine the mean specification for the
basis.

26The varying correlation approach of Tse and Tsui (2002) is adopted and modified, given that
positive definiteness can be imposed analytically. The analytical conditions for positive definiteness
in the multivariate time varying correlation FIGARCH specifications of previous research (Teyssiere
(1997), (1998), Pafka and Matyas (2001)) have remained elusive. (Brunetti and Gilbert (2000) is the
only other paper that has estimated multivariate FIGARCH models; they assume CC.) The use of
numerical procedures is inadequate, because there is no guarantee that positive definiteness will hold
when forecasting out of sample. To impose positive definiteness, the non-negativity conditions for
the FIGARCH(1, d, 1) process in Bollerslev and Mikkelsen (1996) are combined with the restrictions
0 ≤ θ1, θ2 ≤ 1, θ1 + θ2 ≤ 1 and −1 ≤ ρ ≤ 1 (Tse and Tsui (2002)). To estimate ψt−1, M = 3.
When M = 2, the GARCH models sometimes failed to achieve strong convergence.

27The diagonal GARCH(1, 1) model of Bollerslev, Engle, and Wooldridge (1988) was also esti-
mated (with and without maturity effects). Positive definiteness was imposed via the conditions in
Silberberg and Pafka (2001). The conclusions are insensitive to the use of this model.
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estimated via QMLE. To estimate the FIGARCH-mat model, a truncation lag of
1,000 observations is used, with the pre-sample values equal to the unconditional
variance estimate.28

The simulations show that when hedging over ≥ 20 periods, failure to allow
for basis convergence and long memory in volatility will on average result in
higher portfolio variances. Table 2, however, indicates that higher variances will
not necessarily apply all the time. The following procedure is therefore adopted:
i) estimate Models 1 to 3 from January 5, 1988 to October 12, 1999 and use
the models to estimate single- and multi-period dynamic ex ante MVHRs and
their portfolio variances over 5-, 20-, 40-, and 60-day horizons; ii) increase the
estimation window by 1 day and repeat part (i); and iii) repeat part (ii) another
198 times.

The increase in the estimation window will have little effect on the parame-
ter estimates but will change the distance between the hedge commencement date
and the futures expiration date. This will affect the bias in the MVHR (accord-
ing to the evolution of εs,t, εb,t, and mt—see equation (12)). It will also induce
dependence between the 200 portfolio variances for each model, invalidating the
Wilcoxon matched-pairs signed-rank test.

Table 3 presents the average parameter estimates and t values for the 200
FIGARCH-mat models. To conserve space, the ARMA and ωs/ωb parameter
estimates are not presented.29 The mean estimates for the FIGARCH-mat and
GARCH-mat models are comparable and all models exhibit non-normality. For
Models 1 and 2, Box Pierce diagnostics for zi,t and z2

i,t are satisfactory (for i=s, b).
Model 3, however, suffers from serial correlation in zb,t. Engle and Ng (1993)
tests suggest that the index may suffer from asymmetries. Nyblom (1989) tests
show that the dummy variable has some evidence of parameter instability, with
the remaining parameters for all models generally stable.

Basis convergence is important given that the SIC and likelihood ratio test
strongly reject the restriction λ1 = λ2 = D = 0. There is an increase in the basis
on rollover (captured via D), which decreases over the life of the futures contract
(given that λ1 > 0). The volatility of the basis and the covariance also decrease
as the contract approaches maturity (λ2 > 0).30 The estimates of d are signifi-
cant, and the SIC is lower for the FIGARCH-mat model than the GARCH-mat
model. The correlation parameters are significant and indicate that correlations
are time varying and persistent. In summary, SIC statistics, diagnostics, and the
significance of d all suggest that the FIGARCH-mat model is the best model in
sample.

28Baillie et al. (1996) suggest that FIGARCH estimation using QMLE will produce consistent
and asymptotically normal estimates. For finite samples, QMLE provides suitable estimates of uni-
variate FIGARCH (Baillie et al. (1996)), multivariate FIGARCH (Pafka and Matyas (2001)) and
VC-MGARCH (Tse and Tsui (2002)). It is therefore likely that the QMLE procedure will provide
satisfactory estimates.

29The model was initially estimated with a FIGARCH(1, d, 1) specification in both equations. A
FIGARCH(1, d, 0) specification for the basis was employed, given that φb was insignificant.

30These results are consistent with Castelino and Franses (1982), as well as Chen et al. (1999) who
estimate λ2 for the Nikkei 225 as 0.06.
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TABLE 3

Average Parameter Estimates and t-Values for the FIGARCH-mat Model

Table 3 presents selected average parameter estimates and t-values for the 200 FIGARCH-mat models estimated for
the S&P 500 index (see equations (20) to (24)). The first model is estimated using daily data from January 5, 1988 to
December 22, 1999. The data set is then increased by one observation and the estimation reperformed. This procedure
occurs another 198 times. ** and *indicate significance at the 1% and 5% levels, respectively.

D λ1 λ2

Mean 0.72** 0.01 0.18**
(16.73) (1.46) (3.65)

ds φs βs

Variance–Index 0.32** 0.31* 0.57**
(7.38) (2.47) (4.13)

db φb βb

Variance–Basis 0.24** — 0.10*
(5.98) (2.03)

ρ θ1 θ2

Correlation 0.40** 0.98** 0.01**
(6.75) (194.69) (2.97)

B. Hedging Outcomes

All dynamic MVHRs produce portfolio variances less than the unhedged po-
sition and that obtained via the conventional OLS approach. Table 4 examines the
effect of failing to allow for basis convergence and long memory in volatility, and
is similar to Table 2. The first two columns for Panel A present the mean/median
percentage increase in portfolio variance when failing to allow for basis conver-
gence (calculated using equation (18)). The third column (count %) indicates
the percentage of times that higher portfolio variances are achieved if basis con-
vergence is ignored. Panel B presents the mean/median percentage increase in
portfolio variance when failing to allow for long memory (calculated via equation
(19)). The third column indicates the percentage of times that higher variances
are achieved if long memory is ignored.

The results are consistent with the simulations. First, basis convergence be-
comes more important as the horizon is extended. For a five-day single-period
MVHR, failing to allow for basis convergence increases the portfolio variance
64% of the time, yielding an average increase in variance of 4%. As the horizon
increases to 60 days, failing to allow for basis convergence increases the portfo-
lio variance 95% of the time, yielding an average increase in variance of 6%. A
similar result holds for the multi-period MVHR.31

Second, for short-term hedges, basis convergence is more likely to be impor-
tant when the hedge commencement date is close to the futures expiration date.
The portfolio variance from the GARCH model minus the portfolio variance from
the GARCH-mat model for the single-period MVHR over a five-day horizon re-

31For the multi-period MVHR over a five-day horizon, failing to allow for basis convergence in-
creases the portfolio variance 66% of the time. As the horizon increases to 60 days, this percentage
increases to 82%, yielding a 1% to 2% increase in portfolio variance. The lower percentage gains
and count percentages for the multi-period MVHR are consistent with the smoothing effect discussed
above.
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TABLE 4

The Impact on Portfolio Variance from Failing to Allow for
Basis Convergence and Long Memory in Volatility: S&P 500

In Panel A, the first two columns represent the mean/median percentage increases in portfolio variance from failing to
allow for basis convergence (calculated via equation (18)). A positive mean/median indicates that the GARCH-mat model
produces on average a smaller portfolio variance than the GARCH model. The third column indicates the % of times that
the GARCH-mat model produces a smaller portfolio variance than the GARCH model. In Panel B, the first two columns
represent the mean/median percentage increases in portfolio variance from failing to allow for long memory in volatility
(calculated via equation (19)). A positive mean/median indicates that the FIGARCH-mat model on average produces a
smaller portfolio variance than the GARCH-mat model. The third column indicates the % of times that the FIGARCH-mat
model produces a smaller portfolio variance than the GARCH model.

Panel A. Panel B.
Basis Convergence Long Memory

Mean Median Count Mean Median Count
Horizon % % % % % %

Single-Period MVHR
5 4.44 2.39 63.50 0.87 1.62 53.00

20 4.26 3.14 76.00 0.99 1.35 66.00
40 5.97 5.44 90.00 1.10 1.34 71.50
60 5.56 5.59 94.50 0.76 1.46 74.50

Multi-Period MVHR
5 3.79 3.01 65.50 0.66 1.20 53.00

20 2.76 2.37 67.50 0.21 0.94 63.50
40 2.22 1.80 73.50 0.23 0.61 59.00
60 1.50 1.31 81.50 0.07 0.55 56.00

veals that basis convergence is important near the rollover dates of November 29,
1999, February 28, 2000, and May 26, 2000.

Third, for the single-period MVHR, the costs from failing to allow for long
memory increase with the hedge horizon. For a five-day hedge, failing to allow
for long memory increases the portfolio variance 53% of the time. As the horizon
increases to 60 days, failing to allow for long memory increases the portfolio
variance 75% of the time, yielding on average a 1% to 2% increase in portfolio
variance.

Fourth, when implementing the multi-period MVHR, long memory does not
appear as important. For hedges over 20 to 60 days, failing to allow for long mem-
ory in volatility increases the portfolio variance 56% to 64% of the time, yielding
on average an increase in portfolio variance of approximately 0.5% to 1%.32

Fifth, the multi-period MVHR suffers from the smoothing of the maturity
effect. When using the FIGARCH-mat model, the single-period MVHR outper-
forms the multi-period MVHR 65% of the time for the 20-day horizons. As the
horizon increases to 60 days, the percentage increases to 85% of the time (results
available on request). An alternative multi-period MVHR (for example, Lien and
Luo (1994)) may be more appropriate and demonstrate even greater benefits from
allowing for basis convergence and long memory. This is an area for further re-
search.

Finally, an application to the Australian All Ordinaries Index provides sim-
ilar results. The FIGARCH-mat model provides the best fit in sample, and long

32These results are similar to simulation 4 where long memory is important when employing the
single-period MVHR for hedges ≥ 20 days, but less important when employing the multi-period
MVHR.
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memory in volatility and basis convergence become more important as the hedge
horizon increases.33

IV. Conclusion

This paper shows that when basis convergence occurs over the life of a fu-
tures contract and returns follow a long memory volatility process, the standard
approaches to estimating dynamic MVHRs are misspecified. Simulations and ap-
plications to the S&P 500 and the Australian All Ordinaries Index reveal the mag-
nitude of this misspecification and show that basis convergence and long memory
in volatility are important, particularly when hedging over long-term horizons.
The results also illustrate that the increases in portfolio variance that result from
failing to allow for basis convergence rise as i) the correlation between the spot
and the futures decreases; ii) maturity effects increase; and iii) the hedge com-
mencement date approaches the futures expiration date (particularly over short-
term horizons). Given the presence of arbitrage and the ubiquitous findings of
long memory in financial market volatility, these findings are likely to be of inter-
est in many other markets.
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