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Abstract

We characterize the second order subexponentiality of an infinitely divisible distribution on the real line
under an exponential moment assumption. We investigate the asymptotic behaviour of the difference
between the tails of an infinitely divisible distribution and its Lévy measure. Moreover, we study the
second order asymptotic behaviour of the tail of the tth convolution power of an infinitely divisible
distribution. The density version for a self-decomposable distribution on the real line without an
exponential moment assumption is also given. Finally, the regularly varying case for a self-decomposable
distribution on the half line is discussed.
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1. Introduction and results

The subexponentiality of infinitely divisible distributions on the half line was
characterized by Embrechts et al. [6] and on the real line by Pakes [16]. The
subexponentiality of an infinitely divisible distribution implies the asymptotic
equivalence between the tails of the distribution and its Lévy measure. In this paper, we
characterize the second order subexponentiality of an infinitely divisible distribution
on the real line in terms of its Lévy measure under an exponential moment assumption.
The second order subexponentiality yields a higher asymptotic relation than the usual
subexponentiality between the tails of an infinitely divisible distribution and its Lévy
measure.

In what follows, we denote by R the real line and by R+ the half line [0,∞). Denote
byN the totality of positive integers. The symbol δa(dx) stands for the delta measure at
a ∈ R. Let η and ρ be probability distributions onR. We denote by η ∗ ρ the convolution
of η and ρ and by ρn∗ the nth convolution power of ρ with the understanding that
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368 T. Watanabe [2]

ρ0∗(dx) = δ0(dx). The characteristic function of ρ is denoted by ρ̂(z), namely, for z ∈ R,

ρ̂(z) :=
∫ ∞

−∞

eizxρ(dx).

For a measure ξ on R, we denote by ξ̄(x) the tail ξ((x,∞)) for x > 0. For positive
functions f (x) and g(x) on [a,∞) for some a ∈ R, we define the relation f (x) ∼ g(x) by
limx→∞ f (x)/g(x) = 1. We say that f (x, A) ∼ c f (x) as x→∞ and then A→∞ if

lim
A→∞

lim
x→∞

f (x, A)/ f (x) = c > 0.

We say that f (x, A) = o( f (x)) as x→∞ and then A→∞ if

lim sup
A→∞

lim sup
x→∞

| f (x, A)|/ f (x) = 0.

Definition 1.1.

(i) A nonnegative measurable function g(x) on R belongs to the class L if g(x + a) ∼
g(x) for every a ∈ R.

(ii) Let ∆ := (0, c] with c > 0. A distribution ρ on R belongs to the class L∆ if
ρ((x, x + c]) ∈ L. A distribution ρ on R belongs to the class Lloc if ρ ∈ L∆ for
each ∆ := (0, c] with c > 0.

(iii) Let ∆ := (0, c] with c > 0. A distribution ρ on R belongs to the class S∆ if ρ ∈ L∆

and ρ2∗((x, x + c]) ∼ 2ρ((x, x + c]). A distribution ρ on R belongs to the class
Sloc if ρ ∈ S∆ for each ∆ := (0, c] with c > 0.

If a distribution ρ on R belongs to the class Lloc, then, for c > 0,

ρ((x, x + c]) ∼ cρ((x, x + 1]),

and, for every δ > 0, eδxρ((x, x + 1])→ ∞ as x → ∞. See (2.6) in the proof of
Theorem 2.1 of Watanabe and Yamamuro [23] and Lemma 2.17 of Foss et al. [7]. A
distribution ρ on R belongs to the class S if ρ̄(x) ∈ L and ρ2∗(x) ∼ 2ρ(x). Distributions
in the classes S and Sloc are called subexponential and locally subexponential,
respectively.

Definition 1.2. A distribution ρ on R belongs to the class S2
loc if the following three

conditions hold.

(1) ρ ∈ Sloc.
(2)

∫ ∞
−∞
|x|ρ(dx) <∞.

(3) We have

ρ2∗(x) = 2ρ̄(x) + 2m(ρ)ρ((x, x + 1]) + o(ρ((x, x + 1])) (1-1)

as x→∞. Here we denote by m(ρ) the mean of ρ, namely,

m(ρ) :=
∫ ∞

−∞

xρ(dx).

It is different from the absolute mean of ρ in the two-sided case.
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The subclasses S∆, Sloc, and S2
loc of the class S were respectively introduced by

Asmussen et al. [1], Watanabe and Yamamuro [23], and Lin [13]. Lin [13] treated
the one-sided case and used the symbol S2 for the class S2

loc. Distributions in the
class S2

loc are called second order subexponential. Infinitely divisible distributions
on R in the classes S∆ and Sloc are found in Watanabe and Yamamuro [22, 23] and
Shimura and Watanabe [18]. Lin [13] gave some sufficient conditions in order that a
distribution on R+ belongs to the class S2

loc. See [13, Proposition 2.4 and Corollary
2.1]. He showed that the lognormal distribution, Weibull distribution with parameter
β ∈ (0, 1), and Pareto distribution with parameter α > 1 belong to the class S2

loc. Geluk
and Pakes [9] and Geluk [8] treated another second order subexponentiality. Let µ
be an infinitely divisible distribution on R. Then its characteristic function µ̂(z) is
represented as

µ̂(z) = exp
(∫ ∞

−∞

(
eizx − 1 −

izx
1 + x2

)
ν(dx) + iγz −

1
2

az2
)
,

where γ ∈ R, a ≥ 0, and ν is a measure on R satisfying ν({0}) = 0 and∫ ∞

−∞

x2

1 + x2 ν(dx) <∞.

The measure ν is called the Lévy measure of µ. See Sato [17]. Throughout the paper,
we assume that the tail ν̄(c) is positive for all c > 0. For c > 0, define a normalized
distribution ν(c) as

ν(c)(dx) := 1(c,∞)(x)
ν(dx)
ν̄(c)

.

Here the symbol 1(c,∞)(x) stands for the indicator function of the set (c,∞). Denote by
µt∗ the tth convolution power of µ for t > 0. Note that µt∗ is the distribution of Xt for a
certain Lévy process {Xt}.

Theorem 1.3. Let µ be an infinitely divisible distribution on R with Lévy measure ν.
Assume that there exists ε > 0 such that

∫ ∞
−∞

exp(−εx)µ(dx) < ∞. Then we have the
following results.

(i) µ ∈ S2
loc if and only if ν(1) ∈ S

2
loc.

(ii) If µ ∈ S2
loc, then

ν̄(x) = µ̄(x) − m(µ)µ((x, x + 1]) + o(µ((x, x + 1])) (1-2)

as x→∞, equivalently,

µ̄(x) = ν̄(x) + m(µ)ν((x, x + 1]) + o(ν((x, x + 1])) (1-3)

as x→∞.
(iii) Conversely, if (1-2) with finite m(µ), µ ∈ Sloc, and

(µ̄(x))2 = o(µ((x, x + 1]))

as x→∞ hold, then µ ∈ S2
loc.
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Remark 1.4. An exponential moment assumption in the above theorem is necessary for
the restriction of the class Sloc in the two-sided case. See Jiang et al. [10] for a detailed
account. The one-sided compound Poisson case in the above theorem is already known
by Lin [13, Theorem 2.1]. Omey and Willekens [15] studied an infinitely divisible
distribution onR+ with the density of the normalized Lévy measure in the classS2

d. For
the definition of the class S2

d, see Section 4. It is the density version of the class S2
loc.

However, they could not characterize the density of an infinitely divisible distribution
on R+ with its density in the class S2

d because they did not know Lemmas 2.1 and 4.3
below.

Corollary 1.5. Let µ be an infinitely divisible distribution on R with Lévy measure ν.
Assume that there exists ε > 0 such that

∫ ∞
−∞

exp(−εx)µ(dx) < ∞. Then we have the
following results.

(i) µ ∈ S2
loc if and only if µt∗ ∈ S2

loc for some t > 0, equivalently, for all t > 0.
(ii) If µ ∈ S2

loc, then, for all t > 0,

µt∗(x) = tµ̄(x) + (t2 − t)m(µ)µ((x, x + 1]) + o(µ((x, x + 1])) (1-4)

as x→∞.

Remark 1.6. Let µ be an infinitely divisible distribution on R+ with Lévy measure ν.
If µ ∈ Sloc, m(µ) < ∞, and µ satisfies (1-4) for t = t0, t0 + 1 with some t0 > 0, then
µ ∈ S2

loc.

An infinitely divisible distribution µ on R is called self-decomposable if, for every
b ∈ (0, 1), there is a distribution ρb on R such that

µ̂(z) = µ̂(bz)ρ̂b(z).

An infinitely divisible distribution µ on R is self-decomposable if and only if ν(dx) =

k(x)/|x| dx with k(x) being nonnegative and increasing on (−∞, 0) and nonnegative and
decreasing on (0,∞). An infinitely divisible distribution µ onR is called nondegenerate
if it is not a delta measure. Every nondegenerate self-decomposable distribution µ on
R is absolutely continuous and unimodal. Many important statistical distributions are
known to be self-decomposable. However, their Lévy measures and the tth convolution
powers are often not explicitly known. See Sato [17]. In Section 4, we shall prove the
following result (the classes Sd and S2

d are defined in Definitions 4.1 and 4.2 below).

Theorem 1.7. Let µ(dx) = p(x) dx be a self-decomposable distribution on R with Lévy
measure ν(dx) = k(x)/|x| dx. Assume that

∫ 0−
−∞
|x|µ(dx) <∞. Then the following hold.

(i) p(x) ∈ S2
d if and only if ν(1) ∈ S

2
loc, equivalently,

1
ν̄(1)

1(1,∞)(x)k(x)/x ∈ S2
d.
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(ii) If p(x) ∈ S2
d, then

ν̄(x) = µ̄(x) − m(µ)p(x) + o(p(x)) (1-5)

as x→∞, equivalently,

µ̄(x) = ν̄(x) + m(µ)k(x)/x + o(k(x)/x) (1-6)

as x→∞.
(iii) Conversely, if (1-5) with finite m(µ), p(x) ∈ Sd, and (µ̄(x))2 = o(p(x)) as x→∞

hold, then p(x) ∈ S2
d.

Corollary 1.8. Let µ(dx) = p(x) dx be a self-decomposable distribution on R with
Lévy measure ν. Let pt(x) be the density of µt∗(dx) for t > 0. Then the following hold.

(i) p(x) ∈ S2
d if and only if pt(x) ∈ S2

d for some t > 0, equivalently, for all t > 0.
(ii) If p(x) ∈ S2

d, then, for all t > 0,

µt∗(x) = tµ̄(x) + (t2 − t)m(µ)p(x) + o(p(x))

as x→∞.

In Section 6, we shall discuss self-decomposable distributions on R+ with regularly
varying densities as follows.

Proposition 1.9. Let µ(dx) = p(x) dx be a self-decomposable distribution on R+

with Lévy measure ν. Assume that p(x) ∼ x−α−1l(x) for 0 ≤ α ≤ 1 with l(x) being
slowly varying as x→∞. Define slowly varying functions l∗(x) and l∗(x) as l∗(x) =∫ x

1 l(u)/u du and l∗(x) =
∫ ∞

x l(u)/u du for x > 1. Then we have the following results.

(i) Let 0 < α < 1 and define K(α) as

K(α) :=
(2α − 1)(Γ(1 − α))2

2αΓ(2 − 2α)
.

Then
ν̄(x) = µ̄(x)(1 − K(α)x−αl(x) + o(x−αl(x))) (1-7)

as x→∞, and, for t > 0,

µt∗(x) = tµ̄(x)(1 + (t − 1)K(α)x−αl(x) + o(x−αl(x))) (1-8)

as x→∞.
(ii) Let α = 1. Assume that l∗(∞) =∞. Then

ν̄(x) = µ̄(x)
(
1 −

l∗(x)
x

+ o
( l∗(x)

x

))
(1-9)

as x→∞, and, for t > 0,

µt∗(x) = tµ̄(x)
(
1 + (t − 1)

l∗(x)
x

+ o
( l∗(x)

x

))
(1-10)

as x→∞.
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(iii) Let α = 1. Assume that l∗(∞) <∞. Then

ν̄(x) = µ̄(x)
(
1 −

m(µ)
x

+ o
(1

x

))
(1-11)

as x→∞, and, for t > 0,

µt∗(x) = tµ̄(x)
(
1 + (t − 1)

m(µ)
x

+ o
(1

x

))
(1-12)

as x→∞.
(iv) Let α = 0. Then

ν̄(x) = µ̄(x)
(
1 +

l∗(x)
2

+ o(l∗(x))
)

(1-13)

as x→∞, and, for t > 0,

µt∗(x) = tµ̄(x)
(
1 − (t − 1)

l∗(x)
2

+ o(l∗(x))
)
. (1-14)

The organization of this paper is as follows. In Section 2, we give preliminaries for
the proof of Theorem 1.3 and its corollary. In Section 3, we prove Theorem 1.3 and
its corollary. In Section 4, we treat the self-decomposable case and prove Theorem 1.7
and its corollary. In Section 5, three examples of the results are given. In Section 6,
we give some remarks on the regularly varying case and prove Proposition 1.9.

2. Preliminaries

Watanabe and Yamamuro [23] used the main results of Watanabe [20] on the
convolution equivalence of infinitely divisible distributions on R to prove the following
two lemmas.

Lemma 2.1 [23, Corollary 2.1]. Let µ be an infinitely divisible distribution on R with
Lévy measure ν. Assume that there exists ε > 0 such that

∫ ∞
−∞

exp(−εx)µ(dx) <∞. Then
the following are equivalent.

(1) µ ∈ Sloc.
(2) ν(1) ∈ Sloc.
(3) ν(1) ∈ Lloc and µ((x, x + c]) ∼ ν((x, x + c]) for all c > 0.

Remark 2.2. Since Sloc ⊂ S, we see that if condition (1) holds in the above lemma,
then

µ̄(x) ∼ ν̄(x) ∈ L.

Lemma 2.3 [23, Corollary 3.1]. Let µ be an infinitely divisible distribution on R with
Lévy measure ν. Assume that there exists ε > 0 such that

∫ ∞
−∞

exp(−εx)µ(dx) < ∞. If
µt∗ ∈ Sloc for some t > 0, then µt∗ ∈ Sloc for all t > 0 and

µt∗((x, x + c]) ∼ tµ((x, x + c])

for all t > 0 and for all c > 0.
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Lin [13] proved the following three lemmas.

Lemma 2.4 [13, Theorem 2.1]. Let ρ be a distribution on R+. Let {pn}
∞
n=0 be

a nonnegative sequence with pn > 0 for some n ≥ 2 and
∑∞

n=0 pn = 1 satisfying∑∞
n=0 pn(1 + ε1)n <∞ for some ε1 > 0. Define a distribution η on R+ as

η(dx) :=
∞∑

n=0

pnρ
n∗(dx).

Then we have the following results.

(i) If ρ ∈ S2
loc, then we have η ∈ S2

loc and

η(x) =

( ∞∑
n=1

npn

)
ρ̄(x) +

( ∞∑
n=2

n(n − 1)pn

)
m(ρ)ρ((x, x + 1]) + o(ρ((x, x + 1]))

(2-1)
as x→∞.

(ii) Conversely, if (2-1) with finite m(ρ), ρ ∈ Sloc, and

(ρ̄(x))2 = o(ρ((x, x + 1]))

as x→∞ hold, then ρ ∈ S2
loc.

Remark 2.5. We can see from the proof of Theorem 2.1 of [13] that even in the
case of pn < 0 for some n ≥ 0, assertion (i) of the above lemma is still true if∑∞

n=0 |pn|(1 + ε1)n <∞ for some ε1 > 0.

Lemma 2.6 [13, Proposition 2.3]. Let ρ and η be distributions on R+. If ρ ∈ S2
loc and

there are K > 0 and c ∈ R such that

lim
x→∞

η̄(x) − Kρ̄(x)
ρ((x, x + 1])

= c,

then η ∈ S2
loc.

Lemma 2.7 [13, Lemma 3.4]. Let ρ be a distribution on R+. Assume that m(ρ) < ∞,
ρ ∈ Lloc, and (ρ̄(x))2 = o(ρ(x, x + 1]) as x→∞. Then the relation (1-1) implies that
ρ ∈ Sloc.

Let δ := ν̄(c) for c > 0. Define a compound Poisson distribution µ1 and a distribution
σ on R+ as

µ1 := e−δ
∞∑

n=0

δn

n!
(ν(c))n∗ (2-2)

and

σ :=
e−δ

1 − e−δ

∞∑
n=1

δn

n!
(ν(c))n∗. (2-3)
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Lemma 2.8. We can choose a sufficiently large c > 0 such that 0 < eδ − 1 < 1 and

ν(c) = −
1
δ

∞∑
n=1

(1 − eδ)n

n
σn∗. (2-4)

Proof. Under the assumption that 0 < eδ − 1 < 1, we define a signed measure η as

η := −
1
δ

∞∑
n=1

(1 − eδ)n

n
σn∗.

Let ρ be a signed measure on R+. Denote by Lρ(t) for t ≥ 0 the Laplace transform of
ρ, that is, Lρ(t) :=

∫ ∞
0− e−txρ(dx). We have

Lη(t) = −
1
δ

∞∑
n=1

(1 − eδ)n

n
(Lσ(t))n

=
1
δ

log(1 − (1 − eδ)Lσ(t)).

We see from (2-3) that

Lσ(t) = (eδ − 1)−1(exp(δLν(c) (t)) − 1).

Thus,

Lη(t) =
1
δ

log(exp(δLν(c) (t)))

= Lν(c) (t)

and hence we have η = ν(c), that is, (2-4). �

3. Proof of Theorem 1.3 and its corollary
Proof of Theorem 1.3. Let µ be an infinitely divisible distribution on R with Lévy
measure ν. We define an infinitely divisible distribution µ2 by µ = µ1 ∗ µ2. As
in Lemma 2.8, we choose a sufficiently large c > 0 such that 0 < eδ − 1 < 1 and∫ ∞

0− yµ2(dy) > 0. Assume that there exists ε > 0 such that
∫ ∞
−∞

exp(−εx)µ(dx) <∞. Note

that the Lévy measure ν2 of µ2 is 1(−∞,c](x)ν(dx) and hence
∫ −1
−∞

exp(−εx)ν2(dx) < ∞
and, for every b > 0,

∫ ∞
1 exp(bx)ν2(dx) < ∞. Then we see from Theorem 25.17 of

Sato [17] that
∫ ∞
−∞

exp(−εx)µ2(dx) < ∞ and, for every b > 0,
∫ ∞
−∞

exp(bx)µ2(dx) < ∞.
Hence, for every b > 0, µ2(x) = o(e−bx) as x→∞. We find from Lemma 2.1 that µ ∈
Sloc if and only if µ1 ∈ Sloc. Since

∫ ∞
−∞

exp(−εx)µ(dx) <∞, we have
∫ ∞
−∞
|x|µ(dx) <∞

if and only if
∫ ∞
−∞
|x|µ1(dx) < ∞. Suppose that µ ∈ Sloc and

∫ ∞
−∞
|x|µ(dx) < ∞, that is,

µ1 ∈ Sloc and
∫ ∞
−∞
|x|µ1(dx) <∞. We have

µ̄(x) − µ̄1(x) = µ1 ∗ µ2(x) − µ̄1(x)

=

∫ ∞

0−
µ1((x − y, x])µ2(dy) −

∫ 0−

−∞

µ1((x, x − y])µ2(dy)

= I1 − I2. (3-1)
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Note that if
∫ 0−
−∞
|y|µ2(dy) = 0, then I2 = 0. We find that

I1 := I11 + I12 + I13,

where, for A > 0,

I11 :=
∫ A+

0−
µ1((x − y, x])µ2(dy),

I12 :=
∫ x/2+

A+

µ1((x − y, x])µ2(dy),

and

I13 :=
∫ ∞

x/2+

µ1((x − y, x])µ2(dy).

We have by µ1 ∈ Sloc ⊂ Lloc that

I11 ∼ µ1((x, x + 1])
∫ A+

0−
yµ2(dy)

∼ µ1((x, x + 1])
∫ ∞

0−
yµ2(dy)

as x→∞ and then A→∞. For any ε1 ∈ (0, 1), there is C1 = C1(ε1) > 0 such that, for
0 ≤ y ≤ x/2 and for sufficiently large x > 0,

µ1((x − y, x])
µ1((x, x + 1])

≤ C1eε1y.

Thus,

I12 ≤ µ1((x, x + 1])C1

∫ x/2+

A+

eε1yµ2(dy)

= o(µ1((x, x + 1]))

as x→∞ and then A→∞. We have

I13 ≤ µ̄2(x/2) = o(e−x) = o(µ1((x, x + 1]))

as x→∞. Thus,

I1 ∼ µ1((x, x + 1])
∫ ∞

0−
yµ2(dy). (3-2)

Since µ1 ∈ Sloc, for any ε2 ∈ (0, ε), there is C2 = C2(ε2) > 0 such that, for y < 0 and for
sufficiently large x > 0,

µ1((x, x − y])
µ1((x, x + 1])

≤ C2eε2 |y|.

Thus, by the dominated convergence theorem, we see that I2 = 0 or

I2 ∼ µ1((x, x + 1])
∫ 0−

−∞

|y|µ2(dy). (3-3)
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Hence, we find from (3-1)–(3-3) that

µ̄(x) − µ̄1(x) = m(µ2)µ1((x, x + 1]) + o(µ1((x, x + 1])) (3-4)

as x→∞. By an argument analogous to the above equation,

µ2∗(x) − µ2∗
1 (x) = m(µ2∗

2 )µ2∗
1 ((x, x + 1]) + o(µ2∗

1 ((x, x + 1]))

as x→∞. Since µ2∗
1 ((x, x + 1]) ∼ 2µ1((x, x + 1]) and m(µ2∗

2 ) = 2m(µ2),

µ2∗(x) − µ2∗
1 (x) = 4m(µ2)µ1((x, x + 1]) + o(µ1((x, x + 1]))

as x→∞. Thus, we see from (3-4) that

µ2∗(x) − 2µ(x)

= µ2∗
1 (x) − 2µ1(x) + 2m(µ2)µ1((x, x + 1]) + o(µ1((x, x + 1])) (3-5)

as x→∞. Since m(µ) = m(µ1) + m(µ2) and we find from Lemma 2.1 that

µ((x, x + 1]) ∼ ν((x, x + 1]) ∼ µ1((x, x + 1]), (3-6)

we have by (3-5) that

µ2∗(x) = 2µ̄(x) + 2m(µ)µ((x, x + 1]) + o(µ((x, x + 1]))

as x→∞ if and only if

µ2∗
1 (x) = 2µ̄1(x) + 2m(µ1)µ1((x, x + 1]) + o(µ1((x, x + 1]))

as x→∞. Hence, µ ∈ S2
loc if and only if µ1 ∈ S

2
loc. Since, for x > 0,

µ1(x)
1 − e−δ

= σ̄(x),

we see from Lemma 2.6 that σ ∈ S2
loc if and only if µ1 ∈ S

2
loc. We find from (2-3),

Lemma 2.8, and Remark 2.5 that if σ ∈ S2
loc, then ν(c) ∈ S

2
loc for sufficiently large

c > 0. We see from (2-2) and Lemma 2.4 that if ν(c) ∈ S
2
loc, then µ1 ∈ S

2
loc. Thus,

for sufficiently large c > 0, µ ∈ S2
loc if and only if ν(c) ∈ S

2
loc. Since, for sufficiently

large x > 0,

ν(c)(x) =
ν̄(1)
ν̄(c)

ν(1)(x),

we obtain from Lemma 2.6 that ν(1) ∈ S
2
loc if and only if ν(c) ∈ S

2
loc for sufficiently large

c > 0. Thus, we have µ ∈ S2
loc if and only if ν(1) ∈ S

2
loc. We have proved assertion (i).

Next we prove assertion (ii). Assume that µ ∈ S2
loc, equivalently, ν(c) ∈ S

2
loc for c > 0.

Note that m(µ1) = δm(ν(c)). We see from Lemma 2.4 that

µ1(x) = e−δ
∞∑

n=1

δn

(n − 1)!
ν(c)(x)

+ e−δ
∞∑

n=2

δn

(n − 2)!
m(ν(c))ν(c)((x, x + 1]) + o(ν(c)((x, x + 1]))

= ν(x) + m(µ1)ν((x, x + 1]) + o(ν((x, x + 1])) (3-7)

as x→∞. Thus, we obtain (1-2) and (1-3) from (3-4) and (3-6).
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Next we prove assertion (iii). We see from (3-4) that the assumption that (1-2) with
finite m(µ), µ ∈ Sloc, and (µ̄(x))2 = o(µ((x, x + 1])) as x→∞ is equivalent to that (3-7)
with finite m(ν(c)), ν(c) ∈ Sloc, and (ν(c)(x))2 = o(ν(c)((x, x + 1])) as x→∞. This implies
from Lemma 2.4 that ν(c) ∈ S

2
loc, equivalently, µ ∈ S2

loc.

Proof of Corollary 1.5. We see from Theorem 1.3 that µt∗ ∈ S2
loc for some t > 0,

equivalently, for all t > 0 if and only if ν(1) ∈ S
2
loc. Hence, assertion (i) is true.

Next we prove assertion (ii). Suppose that µ ∈ S2
loc. Then we find from (i) that

µt∗ ∈ S2
loc for all t > 0. We see from (1-2) that

µt∗(x) = tν̄(x) + m(µt∗)µt∗((x, x + 1]) + o(µt∗((x, x + 1]))

as x→∞. Note that m(µt∗) = tm(µ) and from Lemma 2.3 that

µt∗((x, x + 1]) ∼ tµ((x, x + 1]).

Thus, we have by (1-2) that

µt∗(x) = tν̄(x) + t2m(µ)µ((x, x + 1]) + o(µ((x, x + 1]))
= tµ̄(x) + (t2 − t)m(µ)µ((x, x + 1]) + o(µ((x, x + 1]))

as x→∞. We have proved (1-4). �

Proof of Remark 1.6. Assume that µ ∈ Sloc, m(µ) < ∞, and µ satisfies (1-4) for
t = t0, t0 + 1 with some t0 > 0. Then

µ(t0+1)∗(x) − (t0 + 1)µ(x) − t0(µ2∗(x) − 2µ(x))

=

∫ x+

0−
µt0∗(x − y)µ(dy) + µ(x) − (t0 + 1)µ(x)

− t0

∫ x+

0−
µ(x − y)µ(dy) − t0µ(x) + 2t0µ(x)

=

∫ x+

0−
(µt0∗(x − y) − t0µ(x − y))µ(dy)

= I1 + I2 + I3, (3-8)

where, for 0 < 2A < x,

I1 :=
∫ A+

0−
(µt0∗(x − y) − t0µ(x − y))µ(dy),

I2 :=
∫ (x−A)+

A+

(µt0∗(x − y) − t0µ(x − y))µ(dy),

and

I3 :=
∫ x+

(x−A)+
(µt0∗(x − y) − t0µ(x − y))µ(dy).
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We divide the proof into three cases: t0 > 1; t0 = 1; and 0 < t0 < 1. Let t0 > 1. By the
assumption,

I1 ∼ t0(t0 − 1)m(µ)
∫ A+

0−
µ((x − y, x − y + 1])µ(dy)

∼ t0(t0 − 1)m(µ)µ((x, x + 1]) (3-9)

as x→∞ and then A→∞. We find from µ ∈ Sloc that there is ε > 0 such that

|I2| ≤ (1 + ε)t0(t0 − 1)m(µ)
∫ (x−A)+

A+

µ((x − y, x − y + 1])µ(dy)

= o(µ((x, x + 1])) (3-10)

as x→∞ and then A→∞. By using integration by parts,

I3 =

∫ A+

0−
(µ̄(x − y) − µ̄(x))µt0∗(dy)

− t0

∫ A+

0−
(µ̄(x − y) − µ̄(x))µ(dy)

+ (µt0∗(A) − t0µ̄(A))(µ̄(x − A) − µ̄(x))
= K1 − K2 + K3.

As x→∞ and then A→∞,

K1 ∼ m(µt0∗)µ((x, x + 1]) = t0m(µ)µ((x, x + 1])

and
K2 ∼ t0m(µ)µ((x, x + 1]).

Note from m(µ) <∞ that µt0∗(A)A→ 0 and µ(A)A→ 0 as A→∞. Thus,

lim sup
A→∞

lim sup
x→∞

|K3|

µ((x, x + 1])
≤ lim sup

A→∞
(µt0∗(A) + t0µ̄(A))A = 0.

Thus,
I3 = o(µ((x, x + 1])) (3-11)

as x→∞ and then A→∞. Thus, from (3-8)–(3-11) and the assumption, we obtain
that

(t0 + 1)t0m(µ)µ((x, x + 1]) − t0(µ2∗(x) − 2µ(x))
= t0(t0 − 1)m(µ)µ((x, x + 1]) + o(µ((x, x + 1])) (3-12)

as x→∞. Hence,

µ2∗(x) = 2µ(x) + 2m(µ)µ((x, x + 1]) + o(µ((x, x + 1])) (3-13)
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as x→∞. That is, µ ∈ S2
loc. Next let t0 = 1. Then we have (3-13) and hence µ ∈ S2

loc.
Finally, let 0 < t0 < 1. In the same way, we see that, as x→∞ and then A→∞,

−I1 ∼ t0(1 − t0)m(µ)µ((x, x + 1]),
I2 = o(µ((x, x + 1])),

and
I3 = o(µ((x, x + 1])).

Thus, we have (3-12) and (3-13) and hence µ ∈ S2
loc. �

4. Self-decomposable case

Let f (x) and g(x) be probability density functions on R. We denote by f ⊗ g(x)
the convolution of f (x) and g(x) and by f n⊗(x) the nth convolution power of f (x) for
n ∈ N.

Definition 4.1.

(i) A probability density function g(x) on R belongs to the class Ld if g(x) ∈ L.
(ii) A probability density function g(x) on R belongs to the class Sd if g(x) ∈ Ld and

g2⊗(x) ∼ 2g(x).

Definition 4.2. A probability density function g(x) on R belongs to the class S2
d if the

following three conditions hold.

(1) g(x) ∈ Sd.
(2)

∫ ∞
−∞
|x|g(x) dx <∞.

(3) For ρ(dx) := g(x) dx,

ρ2∗(x) = 2ρ̄(x) + 2m(ρ)g(x) + o(g(x))

as x→∞.

The classes Sd and S2
d were introduced by Chover et al. [5] and Omey and

Willekens [15], respectively. Densities in the classes Sd and S2
d are called

subexponential and second order subexponential, respectively. See also Foss et al. [7]
and Klüppelberg [12] for the class Sd. An infinitely divisible distribution on R+ with
its density in the class Sd is found in Watanabe [21].

Let µ(dx) = p(x) dx be a nondegenerate self-decomposable distribution on R. We
assume that k(x) is positive for all x > 0. We define self-decomposable distributions
ξ1(dx) = p1(x) dx and ξ2(dx) = p2(x) dx as µ = ξ1 ∗ ξ2 and

ξ̂1(z) := exp
(∫ ∞

0
(eizx − 1)

k(x ∨ d)
x

dx
)

for d > 0. We choose sufficiently large d > 0 such that
∫ ∞

0 yξ2(dy) > 0. Watanabe and
Yamamuro [23] proved the following two lemmas.
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Lemma 4.3 (Theorem 1.3 of [23] and its proof). Let µ(dx) = p(x) dx be a self-
decomposable distribution on R with ν(dx) = k(x)/|x|dx. The following are equivalent.

(1) µ ∈ Sloc.
(2) p(x) ∈ Sd.
(3) p1(x) ∈ Sd.
(4) (1/ν̄(1))1(1,∞)(x)k(x)/x ∈ Sd.
(5) k(x) ∈ L and p(x) ∼ p1(x) ∼ k(x)/x.

Remark 4.4. Let µ(dx) = p(x) dx be a self-decomposable distribution on R with Lévy
measure ν(dx) = k(x)/|x| dx. We see from Lemma 4.3 that µ ∈ S2

loc if and only if
p(x) ∈ S2

d and that ν(1) ∈ S
2
loc if and only if (1/ν̄(1))1(1,∞)(x)k(x)/x ∈ S2

d.

Lemma 4.5 [23, Theorem 1.4]. Let µ(dx) = p(x) dx be a self-decomposable distribution
on R. Let pt(x) be the density of µt∗(dx) for t > 0. If pt(x) ∈ Sd for some t > 0, then
pt(x) ∈ Sd for all t > 0 and

pt(x) ∼ tp(x)

for all t > 0.

Proposition 4.6. Let µ(dx) = p(x) dx be a self-decomposable distribution on R+. If
(µ̄(x))2 = o(µ((x, x + 1])) as x→∞, m(µ) <∞, and

µ2∗(x) = 2µ̄(x) + 2m(µ)µ((x, x + 1]) + o(µ((x, x + 1]))

as x→∞, then p(x) ∈ S2
d.

Proof. Assume that (µ̄(x))2 = o(µ((x, x + 1])) as x→∞, m(µ) <∞, and

µ2∗(x) = 2µ̄(x) + 2m(µ)µ((x, x + 1]) + o(µ((x, x + 1]))

as x→∞. Note that

µ2∗(x) − 2µ̄(x) + (µ̄(x))2 =

∫ x+

0−
(µ̄(x − y) − µ̄(x))µ(dy).

Thus, by the assumption,∫ x+

0−
(µ̄(x − y) − µ̄(x))µ(dy) ∼ 2m(µ)µ((x, x + 1]).

We shall prove that, for every m ∈ N,

lim
x→∞

µ((x − m, x − m + 1])
µ((x, x + 1])

= 1. (4-1)

Since µ is unimodal, we see that, for every m ∈ N,

lim inf
x→∞

µ((x − m, x − m + 1])
µ((x, x + 1])

≥ 1.
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Suppose that there are some c > 1, m0 ∈ N, and a increasing sequence {xn}
∞
n=1 with

limn→∞ xn =∞ such that

lim
n→∞

µ((xn − m0, xn − m0 + 1])
µ((xn, xn + 1])

= c.

We have ∫ xn+

0−
(µ̄(xn − y) − µ̄(xn))µ(dy) = I1 + I2 + I3,

where

I1 :=
∫ m+

0−
(µ̄(xn − y) − µ̄(xn))µ(dy),

I2 :=
∫ (xn−m)+

m+

(µ̄(xn − y) − µ̄(xn))µ(dy),

and

I3 :=
∫ xn+

(xn−m)+
(µ̄(xn − y) − µ̄(xn))µ(dy).

By unimodality, we have for 0 ≤ y ≤ m0

lim inf
n→∞

µ((xn − y, xn])
µ((xn, xn + 1])

≥ y

and for y ≥ m0

lim inf
n→∞

µ((xn − y, xn])
µ((xn, xn + 1])

≥ c(y − m0) + m0.

Thus, we have, by Fatou’s lemma,

lim inf
m→∞

lim inf
n→∞

I1

µ((xn, xn + 1])

≥

∫ m0+

0−
lim inf

n→∞

µ((xn − y, xn])
µ((xn, xn + 1])

µ(dy)

+ lim inf
m→∞

∫ m+

m0+

lim inf
n→∞

µ((xn − y, xn])
µ((xn, xn + 1])

µ(dy)

≥

∫ m0+

0−
yµ(dy) + lim inf

m→∞

∫ m+

m0+

(c(y − m0) + m0)µ(dy)

=

∫ m0+

0−
yµ(dy) +

∫ ∞

m0+

(c(y − m0) + m0)µ(dy) > m(µ). (4-2)

Clearly,

lim inf
n→∞

I2

µ((xn, xn + 1])
≥ 0. (4-3)

By using integration by parts, we see that, for sufficiently large n,

I3 = I1 + (µ̄(xn − m) − µ̄(xn))(µ̄(m) − µ̄(xn)) ≥ I1.
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Thus, we obtain from (4-2) that

lim inf
m→∞

lim inf
n→∞

I3

µ((xn, xn + 1])
> m(µ). (4-4)

Hence, we have by (4-2), (4-3), and (4-4) that

lim inf
n→∞

1
µ((xn, xn + 1])

∫ xn+

0−
(µ̄(xn − y) − µ̄(xn))µ(dy) > 2m(µ).

This is a contradiction. Thus, we have proved (4-1). By unimodality, it implies that
p(x) ∈ Ld. Thus, by Lemma 2.7, we have proved that µ ∈ S2

loc and hence p(x) ∈ S2
d. �

Proof of Theorem 1.7. Since the support of the Lévy measure of ξ2 has an upper
bound, we find from Sato [17, Theorem 25.17] that, for every b > 0,

∫ ∞
0 ebxξ2(dx) <∞

and hence ξ2(x) = o(e−bx) as x→∞. We have

µ̄(x) − ξ̄1(x) = ξ1 ∗ ξ2(x) − ξ̄1(x)

=

∫ ∞

0
ξ1((x − y, x])ξ2(dy) −

∫ 0

−∞

ξ1((x, x − y])ξ2(dy)

= I1 − I2.

Note that if
∫ 0
−∞
|y|ξ2(dy) = 0, then I2 = 0. Suppose that p(x) ∈ Sd, equivalently by

Lemma 4.3, p1(x) ∈ Sd. Recall that p1(x) ∈ L and ξ1 is unimodal. Thus, there are
C > 0 and ε > 0 such that, for 0 < y < x/2 and for sufficiently large x > 0,

ξ1((x − y, x]) ≤ Ceεy p1(x).

Note that
∫ ∞

0 eεyξ2(dy) <∞ and∫ ∞

x/2
ξ1((x − y, x])ξ2(dy) ≤ ξ̄2(x/2) = o(e−x) = o(p1(x))

as x→∞. Thus, by the dominated convergence theorem,

I1 ∼ p1(x)
∫ ∞

0
yξ2(dy).

Since ξ1 is unimodal, we have, for y < 0 and for sufficiently large x > 0,

ξ1((x, x − y]) ≤ p1(x)|y|.

Since
∫ 0
−∞
|y|µ(dy) < ∞, we see from Sato [17, Theorem 25.3] that

∫ ∞
−∞
|y|ξ2(dy) < ∞.

Thus, by the dominated convergence theorem, I2 = 0 or

I2 ∼ p1(x)
∫ 0

−∞

|y|ξ2(dy).
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Note from Lemma 4.3 that p1(x) ∼ p(x). Hence,

µ̄(x) = ξ̄1(x) + m(ξ2)p1(x) + o(p1(x))
= ξ̄1(x) + m(ξ2)p(x) + o(p(x)) (4-5)

as x→∞. Note that p2⊗(x) ∼ 2p(x) and m(ξ2∗
2 ) = 2m(ξ2). In the same way,

µ2∗(x) = ξ2∗
1 (x) + m(ξ2∗

2 )p2⊗(x) + o(p2⊗(x))

= ξ2∗
1 (x) + 4m(ξ2)p(x) + o(p(x))

as x→∞. Hence, we obtain from (4-5) that

µ2∗(x) − 2µ(x)

= ξ2∗
1 (x) − 2ξ1(x) + 2m(ξ2)p(x) + o(p(x))

as x → ∞. Since
∫ ∞
−∞
|y|ξ2(dy) < ∞, we see from Sato [17, Theorem 25.3] that∫ ∞

−∞
|x|µ(dx) <∞ if and only if 0 < m(ξ1) <∞. Thus,

µ2∗(x) = 2µ(x) + 2m(µ)p(x) + o(p(x))

as x→∞ if and only if

ξ2∗
1 (x) = 2ξ1(x) + 2m(ξ1)p1(x) + o(p1(x))

as x→∞. Thus, under the assumption of
∫ 0
−∞
|y|µ(dy) <∞, we have p(x) ∈ S2

d if and
only if p1(x) ∈ S2

d, equivalently, ξ1 ∈ S
2
loc. We find from Theorem 1.3 that ξ1 ∈ S

2
loc

if and only if ν(1) ∈ S
2
loc. That is, p(x) ∈ S2

d if and only if ν(1) ∈ S
2
loc, equivalently,

(1/ν̄(1))1(1,∞)(x)k(x)/x ∈ S2
d.

Next we prove assertion (ii). If p(x) ∈ S2
d, then ν(1) ∈ S

2
loc and hence, by

Theorem 1.3,

ξ̄1(x) = ν̄(x) + m(ξ1)ν((x, x + 1]) + o(ν((x, x + 1]))
= ν̄(x) + m(ξ1)p(x) + o(p(x))
= ν̄(x) + m(ξ1)p1(x) + o(p1(x)) (4-6)

as x→∞. Thus, it follows from (4-5) that (1-5) and (1-6) hold.
Next we prove assertion (iii). The assumptions that (1-5) with finite m(µ), p(x) ∈

Sd, and (µ̄(x))2 = o(p(x)) as x→∞ imply that (4-6) with finite m(ξ1), ξ1 ∈ Sloc, and
(ξ̄1(x))2 = o(ξ1((x, x + 1])) as x→∞ hold. Thus, we see from (iii) of Theorem 1.3 that
ξ1 ∈ S

2
loc, that is, p1(x) ∈ S2

d. It follows from the proof of (i) that p(x) ∈ S2
d. �

Proof of Corollary 1.8. By an argument analogous to the proof of Corollary 1.5, we
can easily prove the corollary from Theorem 1.7 and Lemma 4.5. �
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5. Examples

By using a method of Klüppelberg [11] and Baltrunas [2], Lin [13] proved that the
standard lognormal distribution, Weibull distribution with parameter β ∈ (0, 1), and
Pareto distribution with parameter α > 1 belong to the class S2

loc. Those distributions
are all self-decomposable, so their densities also belong to the class S2

d. See Sato [17]
and Steutel and van Harn [19] for their self-decomposability. The following examples
are direct consequences of Theorem 1.3 and Corollary 1.5 and hence their proofs are
omitted.

Example 5.1. Let µ be the standard lognormal distribution with Lévy measure ν(dx) =

k(x)/x dx. Then we have the density

p(x) :=
1
√

2πx
exp

(
−

(log x)2

2

)
for x > 0. Embrechts et al. [6] showed that µ is subexponential and that

ν̄(x) ∼ µ̄(x) ∼
x

log x
p(x)

and
µt∗(x) ∼ tµ̄(x).

Watanabe and Yamamuro [23] proved a conjecture of Bondesson [4]. That is,

k(x) ∼ xp(x).

We have

ν̄(x) = µ̄(x)
(
1 −
√

e
log x

x
+ o

( log x
x

))
as x→∞, and, for t > 0,

µt∗(x) = tµ̄(x)
(
1 + (t − 1)

√
e

log x
x

+ o
( log x

x

))
as x→∞.

Example 5.2. Let µ be a Weibull distribution with Lévy measure ν and parameter
β ∈ (0, 1). Then

µ̄(x) := exp(−xβ)

for x ∈ R+,
ν̄(x) = µ̄(x)(1 − Γ(β−1)xβ−1 + o(xβ−1))

as x→∞, and, for t > 0,

µt∗(x) = tµ̄(x)(1 + (t − 1)Γ(β−1)xβ−1 + o(xβ−1))

as x→∞.
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Example 5.3. Let µ be a Pareto distribution with Lévy measure ν and parameter α > 1.
Then

µ̄(x) := (1 + x)−α

for x ∈ R+,

ν̄(x) = µ̄(x)
(
1 −

α

α − 1
x−1 + o(x−1)

)
as x→∞, and, for t > 0,

µt∗(x) = tµ̄(x)
(
1 + (t − 1)

α

α − 1
x−1 + o(x−1)

)
as x→∞.

6. Remarks on the regularly varying case

We cannot find from our results the relations of Example 5.3 for a Pareto distribution
with parameter 0 < α ≤ 1 because it does not belong to the class S2

loc. However, we can
get the analogous relations by using the following lemma of Omey and Willekens [14].
Theorem 4.3 of [14] is a direct consequence from [14, Theorem 2.3] for a compound
Poisson distribution on R+, but there is a mistake in the case of finite mean for an
infinitely divisible distribution on R+. So, we restore and prove it for an infinitely
divisible distribution on R+.

Lemma 6.1 [14, Theorem 4.3]. Let µ be an infinitely divisible distribution on R+

with Lévy measure ν. Assume that ν(dx) has a density q(x) on (1,∞) such that
q(x) ∼ x−α−1l(x) for 0 ≤ α ≤ 1 with l(x) being slowly varying as x→ ∞. Define a
constant C(α) for 0 < α < 1 as

C(α) :=
(1 − α)(2α − 1)(Γ(1 − α))2

2αΓ(2 − 2α)
.

(i) We have for 0 < α < 1,

lim
x→∞

µ̄(x) − ν̄(x)

q(x)
∫ x

1 ν̄(u) du
= C(α). (6-1)

(ii) For α = 1, if
∫ ∞

1 ν̄(u) du =∞, then

lim
x→∞

µ̄(x) − ν̄(x)

q(x)
∫ x

1 ν̄(u) du
= 1. (6-2)

(iii) For α = 1, if
∫ ∞

1 ν̄(u) du <∞, then

lim
x→∞

µ̄(x) − ν̄(x)
q(x)m(µ)

= 1. (6-3)

(iv) For α = 0,

lim
x→∞

µ̄(x) − ν̄(x)
(ν̄(x))2 = −

1
2
. (6-4)
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Proof. Let µ be an infinitely divisible distribution onR+ with Lévy measure ν. Assume
that ν(dx) has a density q(x) on (1,∞) such that q(x) ∼ x−α−1l(x) for 0 ≤ α ≤ 1 with
l(x) being slowly varying as x→ ∞. Define a compound Poisson distribution µ1
on R+ as (2-2) for c = 1. Define an infinitely divisible distribution µ2 on R+ as
µ = µ1 ∗ µ2. Then we have by [14, Theorem 2.3], for 0 ≤ α ≤ 1, that the lemma is
true by substituting µ1 for µ. Thus, we can assume that µ2(dx) , δ0(dx). We see
from Sato [17, Theorem 25.17] that, for every b > 0,

∫ ∞
0− exp(bx)µ2(dx) <∞ and hence

µ2(x) = o(e−bx) as x→∞. We have

µ̄(x) − µ̄1(x) = µ1 ∗ µ2(x) − µ̄1(x)

=

∫ ∞

0−
µ1((x − y, x])µ2(dy)

= I1 + I2 + I3,

where

I1 :=
∫ A+

0−
µ1((x − y, x])µ2(dy),

I2 :=
∫ x/2+

A+

µ1((x − y, x])µ2(dy),

and

I3 :=
∫ ∞

x/2+

µ1((x − y, x])µ2(dy).

Since q(x) ∼ x−α−1l(x), ν(1) ∈ Sloc and hence, by Lemma 2.1, µ1 ∈ Sloc. Thus,

I1 ∼ µ1((x, x + 1])
∫ A+

0−
yµ2(dy)

∼ µ1((x, x + 1])
∫ ∞

0−
yµ2(dy)

as x→∞ and then A→∞. Since µ1 ∈ Sloc, there are C > 0 and ε > 0 such that, for
0 ≤ y ≤ x/2 and for sufficiently large x > 0,

µ1((x − y, x]) ≤ Ceεyµ1((x, x + 1]).

Thus,

I2 ≤ µ1((x, x + 1])
∫ x/2+

A+

Ceεyµ2(dy)

= o(µ1((x, x + 1]))

as x→∞ and then A→∞. We have

I3 ≤ µ̄2(x/2) = o(e−x) = o(µ1((x, x + 1]))

as x→∞. Thus,
µ̄(x) − µ̄1(x) ∼ m(µ2)µ1((x, x + 1]). (6-5)

https://doi.org/10.1017/S1446788720000208 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788720000208


[21] Second order subexponentiality and infinite divisibility 387

Note from Lemma 4.3 that, for 0 < α < 1 or α = 1 with
∫ ∞

1 ν̄(u) du =∞,

µ1((x, x + 1]) ∼ q(x) = o
(
q(x)

∫ x

1
ν̄(u) du

)
as x→∞. For α = 0, we have by Lemma 4.3 that

µ1((x, x + 1]) ∼ q(x) = o((ν̄(x))2)

as x→∞. Thus, except for the case of α = 1 with finite m(µ1), the lemma is true. In
the case of α = 1 with finite m(µ1), we see from (6-3) with substituting µ1 for µ and
(6-5) that the lemma is true. �

Proof of Proposition 1.9. Assume that p(x) ∼ x−α−1l(x) for 0 ≤ α ≤ 1 with l(x) being
slowly varying as x→∞. First we prove (i). Let 0 < α < 1. Since p(x) ∈ Sd, we have
by Lemma 4.3,

q(x) ∼ x−α−1l(x).

By Karamata’s theorem (see [3, Theorem 1.5.11]),

ν̄(x) ∼ µ̄(x) ∼
x−αl(x)
α

and ∫ x

1
ν̄(u) du ∼

x1−αl(x)
α(1 − α)

.

Thus, we see from (6-1) of Lemma 6.1 that

lim
x→∞

µ̄(x) − ν̄(x)
x−2α(l(x))2 =

K(α)
α

.

Thus, we have (1-7). In the same way,

lim
x→∞

µt∗(x) − tν̄(x)
x−2α(l(x))2 = t2 K(α)

α
.

Hence, we get (1-8) by (1-7). Next we prove (ii). Assume that p(x) ∼ x−2l(x). Then,
by Karamata’s theorem, we have µ̄(x) ∼ x−1l(x). We have by Lemma 4.3,

q(x) ∼ x−2l(x).

We see from Karamata’s theorem that ν̄(x) ∼ x−1l(x) and∫ x

1
ν̄(u) du ∼ l∗(x)

and that
∫ ∞

1 ν̄(u) du =∞ from l∗(∞) =∞. Thus, we see from (6-2) of Lemma 6.1 that

lim
x→∞

µ̄(x) − ν̄(x)
x−2l(x)l∗(x)

= 1.
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Thus, we have (1-9). In the same way,

lim
x→∞

µt∗(x) − tν̄(x)
x−2l(x)l∗(x)

= t2.

Hence, we get (1-10) by (1-9). Next we prove (iii). As in (ii), we have q(x) ∼ p(x) ∼
x−2l(x), ν̄(x) ∼ µ̄(x) ∼ x−1l(x), and∫ x

1
ν̄(u) du ∼ l∗(x).

We see that
∫ ∞

1 ν̄(u) du <∞ from l∗(∞) <∞. Thus, we find from (6-3) of Lemma 6.1
that

lim
x→∞

µ̄(x) − ν̄(x)
x−2l(x)m(µ)

= 1.

Thus, we have (1-11). In the same way,

lim
x→∞

µt∗(x) − tν̄(x)
x−2l(x)m(µ)

= t2.

Hence, we get (1-12) by (1-11). Next we prove (iv). Assume that p(x) ∼ x−1l(x). Then
we see from Lemma 4.3 that q(x) ∼ x−1l(x). Thus,

µ̄(x) ∼ ν̄(x) ∼ l∗(x).

We find from (6-4) of Lemma 6.1 that

lim
x→∞

µ̄(x) − ν̄(x)
(l∗(x))2 = −

1
2
.

Thus, we have (1-13). In the same way,

lim
x→∞

µt∗(x) − tν̄(x)
(l∗(x))2 = −

t2

2
.

Hence, we get (1-14) by (1-13). �

Finally, we give the relations for a Pareto distribution with parameter 0 < α ≤ 1 as
an example of Proposition 1.9. They are different from the relations of Example 5.3.

Example 6.2. Let µ be a Pareto distribution with Lévy measure ν and parameter
0 < α ≤ 1. Then

µ̄(x) := (1 + x)−α

for x ∈ R+.

(i) Let 0 < α < 1. Then

ν̄(x) = µ̄(x)(1 − αK(α)x−α + o(x−α))

as x→∞, and, for t > 0,

µt∗(x) = tµ̄(x)(1 + (t − 1)αK(α)x−α + o(x−α))

as x→∞.
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(ii) Let α = 1. Then

ν̄(x) = µ̄(x)
(
1 −

log x
x

+ o
( log x

x

))
as x→∞, and, for t > 0,

µt∗(x) = tµ̄(x)
(
1 + (t − 1)

log x
x

+ o
( log x

x

))
as x→∞.
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