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Abstract

We investigate the density of square-free values of polynomials with large coefficients
over the rational function field Fq[t]. Some interesting questions answered as special cases
of our results include the density of square-free polynomials in short intervals, and an asymp-
totic for the number of representations of a large polynomial N as a sum of a k-th power of
a small polynomial and a square-free polynomial.

2010 Mathematics Subject Classification: 11N25(Primary), 11N32, 11N36, 11R58, 14H05
(Secondary)

1. Overview

In this paper we establish function field analogues to certain classical open problems in
analytic number theory, such as the representation of large integers by a sum of a square-free
integer and a k-th power. We replace large integers, by way of analogy, with polynomials of
large degree over a fixed finite field Fq . In Section 2, we describe these problems in the con-
text of function fields, previously known results on special cases, and state the new theorems
we prove and their applications. In Section 3 we describe the classical problems over the
integers which motivated our analogues, and review the partial or conditional results known
about these problems. The proofs of our new theorems are detailed in Sections 4 and 5.

2. Function field theorems

2·1. Questions about square-frees in function fields

Fix a prime power q, let Fq be the finite field with q elements, and let A = Fq[t] be
the ring of polynomials over Fq . A polynomial a(t) ∈ A is called square-free if it is not
divisible by the square of any non-constant polynomial in Fq[t]. It is well known that the
“probability” of a “random” element of Fq[t] to be square-free is approximately 1/ζq(2) =
1 − 1/q (where ζq is the Zeta function associated to the rational function field Fq(t)). More
precisely, out of the qn polynomials of degree less than n, exactly qn − qn−1 + q − 1 =
qn(1 − 1/q + (q − 1)/qn) are square-free, for n ≥ 2. Many more questions can be asked
about square-frees. Of particular interest to us are the following:
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Question 1. Let f (t, x) ∈ Fq[t][x] be a polynomial of degree k (in x). For any
a = a(t) ∈ Fq[t], denote f (a) = f (t, a(t)) ∈ Fq[t]. Are there infinitely many polynomials
a ∈ Fq[t] such that f (a) ∈ Fq[t] is square-free? If so, how often is f (a) square-free, e.g.
when a ranges over all polynomials of degree less than m?

Question 2. Let N (t) ∈ Fq[t] be a polynomial of degree n, and let k ≥ 2 be an integer. Can
N always be expressed as a sum N = xk + r , where x ∈ Fq[t] is of degree less than n

k , and r
is square-free, for sufficiently large n? If so, in how many ways?

Question 3. Let m, n be positive integers, N (t) ∈ Fq[t] of degree n. Define the interval
around N of length H = qm to be

I (N , m) = {N + a : a ∈ Fq[t], deg a < m}.
The number of square-frees in I (N , m), when averaged over all N of degree n, is H/ζq(2).
How small can we take m, as a function of n, so that for every choice of N , I (N , m) will
contain the expected amount of square-frees, approximately?

One can formulate all of the above as questions about the number of square-free val-
ues attained by certain polynomials on restricted inputs. For Question 2, the polynomial is
fN ,k(t, x) = N (t) − xk , and we are interested in the number of square-free values of f (a) as
a ∈ Fq[t] ranges over polynomials of degree less than n/k. For Question 3, the polynomial
is fN (t, x) = N (t) + x , and the range is over polynomials of degree less than m.

Question 1 has been answered fully by Poonen, as will be described in Section 2·2. Note
that this question deals only with polynomials that are kept fixed as the size of the range
is increased. In this paper we extend this result to apply to varying families of polynomi-
als, with coefficients of large degrees, which can grow rapidly with the size of the range,
allowing us to answer Questions 2 and 3. These new theorems and corollaries are detailed
in Section 2·3.

2·2. Square-free values of polynomials

Consider Question 1 for f (t, x) ∈ Fq[t][x]. There are two obvious obstructions to f being
square-free infinitely often. If f is divisible by the square of some polynomial g ∈ Fq[t][x]
which is non-constant (in x), then clearly f (a) can only be square-free when g(a) ∈ F×

q ,
which occurs for only finitely many a – this is a global obstruction. On the other hand, if
for some prime P ∈ A (i.e. an irreducible, monic polynomial), f (a) is divisible by P2 for
every a ∈ A, then clearly f (a) is never square-free. These are the local obstructions, as they
depend only on the behaviour of f modulo prime powers.

Define for any non-constant D ∈ A,

ρ(D) := #{a mod D : f (a) ≡ 0 (mod D)},
||D|| := #{a mod D} = qdeg D.

For primes P of low degree, the probability that f (a) is not divisible by P2 is exactly
1 − ρ(P2)/||P||2. Heuristically, one expects these events to be nearly independent, hence
the probability that f (a) is indivisible by P2 for all primes P should be approximately

c f :=
∏
P∈P

(
1 − ρ(P2)

||P||2
)

,
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where P is the set of all primes in A. Note that not being divisible by any P2 is equivalent
to being square-free. And indeed, this is true:

THEOREM 2·1. Let f ∈ Fq[t][x] be a square-free polynomial, and define c f as above.
Then

#{a ∈ Fq[t] : degt(a) < m, f (a) is square-free} = c f qm + o(qm),

as m tends to ∞.

Note that if there is a local obstruction at a prime P , then ρ(P2) = ||P||2 and thus c f = 0.
Otherwise, it is easily seen that ρ(P2) ≤ k for P sufficiently large: Indeed, as will be detailed
further in section 4·1, for all but finitely many P , we have ρ(P) ≤ k since Fq[t]/(P) is a
field, and ρ(P2) = ρ(P), by Hensel’s lemma. Thus the infinite product converges, and c f is
positive.

Theorem 2·1 was first proved by Ramsay [9]; however, his proof was valid only for
polynomials f ∈ Fq[x], rather than all f ∈ Fq[t][x], i.e. only polynomials with constant
coefficients. Poonen [8] proved the theorem for f ∈ Fq[t][x], and generalised it further to
multivariate polynomials in Fq[t][x1, . . . , xn]. In 2014 Lando [7] gave a quantitative ver-
sion of Poonen’s work, and applied it to the problems of square-free and power-free values
at prime polynomials.

2·3. New results

Our main goal in this paper is to extend Theorem 2·1 to polynomials f with varying, large
coefficients. Our methods include carefully applying Poonen’s and Lando’s techniques, as
well as replacing some naïve sieving arguments with the more sophisticated Brun sieve.
Specifically, we show:

THEOREM 2·2. Let q = pe be a fixed prime power, let k > 0 be a fixed integer, and define
Ck,q = 9k ln q – a constant depending only on k and q. Let m, n be varying positive integers
with m ≥ Ck,q logq n logq logq n and m → ∞.1 Let f ∈ Fq[t][x] be a square-free polynomial
with degx f ≤ k, degt f ≤ n. Let c f be defined as before. Then

#{a ∈ Fq[t] : deg a < m, f (a) is square-free} = c f qm(1 + o(1)).

Which we can immediately apply to answer Question 2:

COROLLARY 2·3. Let q = pe be a fixed prime power, let k > 0 be a fixed integer, and
let N ∈ Fq[t] be of sufficiently large degree n. Additionally, suppose that either k is co-
prime to p, or N is not a p-th power. Then N has cN ,kq	n/k
(1 + o(1)) representations
as N = xk + r , with x, r ∈ Fq[t] such that r is square-free and deg x < n/k, where cN ,k =∏

P∈P(1 − ρN ,k(P2)/||P||2) and ρN ,k(D) = #{a mod D : ak ≡ N (mod D)}.
Indeed, the number of such representations is exactly the number of square-free values

of f (x) = N − xk , which is square-free2 and has degx f = k, degt f = n, where x ranges

1Note that if n is bounded, Theorem 2·2 is equivalent to Theorem 2·1. We would therefore be interested
mostly in the case n → ∞, and m → ∞ would follow from the bound m ≥ Ck,q · logq n logq logq n.
2Note that if N (t) is a p-th power and p | k, then f (t, x) is a p-th power as well, hence not square-free. It
is easy to see that in all other cases f (t, x) is square-free, by considering either its derivative by x (if p � k)
or by t (if N is not a p-th power), both of which are co-prime to f whenever they are non-zero.
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over polynomials of degree less than m = 	n/k
, which clearly satisfies the assumptions of
Theorem 2·2 as n → ∞.

One could also apply Theorem 2·2 to get an answer to Question 3, on the number of
square-frees in a short interval I (N , m), by applying it for the polynomial f (x) = N + x ,
with degx f = 1 and degt f = n. It is immediate to see that f is square-free, and further-
more c f = 1/ζq(2) = 1 − 1/q holds independently of N , since ρ(P2) = 1 for any N . Thus
Theorem 2·2 would imply that the expected asymptotic

#{a ∈ I (N , m) : a is square-free} = (1 + o(1))
qm

ζq(2)

holds, under the assumption that m ≥ C1,q logq n logq logq n as m, n → ∞.
It can be illuminating to consider this relation it terms of the length of the interval, H =

qm , and the size of its elements, X = qn , for which we get that our assumption is that H ≥
(logq X)C1,q logq logq logq X . However, it turns out that Theorem 2·2 is very wasteful in this case.
We can get the same result for much smaller values of m by using the following variant of
the theorem, which takes advantage of special properties of this family of f (t, x):

THEOREM 2·4. Let q = pe be a fixed prime power, and g ∈ Fq[t][x] a fixed square-
free polynomial with degx g = k. Let n, m be varying positive integers with m − p(logq n −
logq logq n) → ∞, and let N (t) ∈ Fq[t] be of degree n. Then

#{a ∈ I (N , m) : g(a) is square-free} = cgqm(1 + o(1)).

The asymptotic for short intervals is then immediately obtained by applying Theorem 2·4
to g(t, x) = x . Note that in terms of H and X , the relation m − p(logq n − logq logq n) → ∞
translates to H ≥ C

(
logq X/logq logq X

)p
for sufficiently large X , for every value of C ,

i.e. a polylogarithmic relation. We remark further that one can find intervals with H �
logq X/logq logq X that contain no square-free polynomials at all, by a straight-forward
application of the Chinese Remainder Theorem; so this result is nearly sharp.

The appearance of the characteristic p as the exponent in the bound H ≥
C

(
logq X/logq logq X

)p
seems peculiar and surprising, considering that it does not appear

in the bound H � logq X/logq logq X for longest intervals with no square-frees. This expo-
nent may well be only an artefact of our method of proof, rather than an intrinsic property
of Fq[t]. Closing the gap between these two bounds, whether by eliminating the dependence
on p from one or introducing it in the other, could be of considerable interest – especially as
it might lead to better conjectures for the analogous problem over the integers.

The proofs of the two theorems are very similar – they both involve essentially the same
computations, but the different settings lead to different error terms being dominant, hence
different lower bounds on m. In fact, these two dominant error terms are almost independent
of each other, and thus we may view the two theorems as special cases of a unified theorem:

THEOREM 2·5. Let q = pe be a fixed prime power, k > 0 a fixed integer, and m, n1, n2

be varying positive integers with both m ≥ Ck,q logq n1 logq logq n1 and m − p(logq n2 −
logq logq n2 + 2k logq logq n1) → ∞. Let g ∈ Fq[t][x] be a square-free polynomial with
degx g ≤ k, degt g ≤ n1, and let N (t) ∈ Fq[t] be of degree n2. Then

#{a ∈ I (N , m) : g(a) is square-free} = cgqm(1 + o(1)).
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Indeed, note that if n2 is fixed and m > n2, then the interval degenerates to I (N , m) =
{a ∈ Fq[t] : deg a < m}, and Theorem 2·5 becomes equivalent to Theorem 2·2. Similarly, if
instead n1 is fixed, then g may be one of only finitely many polynomials, and Theorem 2·5
becomes equivalent to Theorem 2·4. The more general statement of Theorem 2·5 allows for
both n1, n2 to go to infinity together, as long as m grows sufficiently fast as well.

3. Classical problems over the integers

The questions discussed above are all motivated by similar, classical questions over the
integers, which remain mostly open. For completeness, we review these questions and the
progress that has been made on them.

3·1. Square-free values of polynomials

For a square-free polynomial f (x) ∈Z[x], define as before

ρ(d) = #{a mod d : f (a) ≡ 0 (mod d)}, c f =
∏
p∈P

(
1 − ρ(p2)

p2

)
,

where P is the set of prime numbers. As before, it is natural to expect that c f should be the
probability of f (a) being square-free for random a, or more rigorously, to conjecture:

CONJECTURE 3·1. Let f ∈Z[x] be a square-free polynomial of degree k. The set {n ∈
N : f (n) is square-free} is conjectured to have density c f .

For k = 1, the conjecture is equivalent to the regular density of the square-frees in N. The
conjecture has been proved for k = 2 by Ricci in the 1930’s [10], and for k = 3 by Hooley in
1968 [5]. Unconditionally, the conjecture remains completely open for all k ≥ 4. However,
in [4], Granville proved the conjecture in full generality, assuming the ABC conjecture.

3·2. Sums of powers and square-frees

Question 2 is analogous to the question of representing an integer N as N = xk + r , where
both x and r are positive integers and r is square-free: Can it be done for all sufficiently large
N , and in how many ways? In the case k = 2 the expected asymptotic has been proved by
Estermann in [2]. The case k = 3 was stated by Hooley [6, section 4·6, theorem 4], in the
form that any sufficiently large number is the sum of a cube and a square-free integer, with no
claim on the asymptotic number of such representations. All cases with k ≥ 4 are still open.

3·3. Square-frees in short intervals

The short intervals over the integers are sets of the form I (X, H) = {n ∈Z : X ≤ n <

X + H}. Question 3 is analogous to the question of how low can H be, as a function of X ,
such that I (X, H) will necessarily contain approximately H/ζ(2) square-free integers, for
all sufficiently large X . A slightly weaker variant of the question asks only that the interval
I (X, H) will contain some square-frees.

It is conjectured that we may allow H to be as low as X ε :

CONJECTURE 3·2. Let ε > 0 be fixed, let X be large, and let H � X ε . Then

#{n ∈ I (X, H) : n is square-free} = (1 + o(1))
H

ζ(2)
.
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Again, this conjecture follows from the ABC conjecture by Granville’s method – see the
Appendix for more details.

Unconditionally, the best known result is due to Tolev [11], who proved the asymptotic
for any H = H(X) such that H/(X 1/5 log(X)) → ∞, building on results of Filaseta and
Trifonov [3].

Note that our results on Question 3 in the function field setting, whether using Theorem
2·2 or 2·4, go beyond Conjecture 3·2 and allow for H much smaller than X ε .

4. Proof of main theorem

We will begin by working in the setting of Theorem 2·2, for simplicity, but most of our
computations will be immediately applicable to the other theorems as well. For brevity, let
us denote for any set of polynomials A and any degree d, A<d = {a ∈ A : deg a < d}, and
similarly define A≥d, A=d .

Let us write N = {a ∈ Fq[t]<m : f (a) square-free}. The first step towards estimating #N
is to bound it from below and above by terms more closely related to the contributions of
certain primes. We define

N ′ = {a ∈ Fq[t]<m : ∀P ∈P<m0, P2 � f (a)} (4·1)

N ′′ = {a ∈ Fq[t]<m : ∃P ∈P≥m0 ∩P<m1, P2 | f (a)} (4·2)

N ′′′ = {a ∈ Fq[t]<m : ∃P ∈P≥m1, P2 | f (a)}, (4·3)

where m0 and m1 are appropriately chosen thresholds. Specifically, we take m1 = 	m/2
,
and m0 will be chosen later.

Clearly N ⊆ N ′ ⊆ N ∪ N ′′ ∪ N ′′′, hence #N ′ − #N ′′ − #N ′′′ ≤ #N ≤ #N ′. We would
therefore like to show that #N ′ = c f qm(1 + o(1)) and #N ′′, #N ′′′ = o(c f qm). Before we pro-
ceed to prove these estimates, we need to establish bounds on certain sums and products
related to f .

4·1. Bounds on the singular sum

We define the singular sum of the polynomial f as S = ∑
P∈P ρ(P2)/||P||2. We also

denote the tail of this series by S(m0) = ∑
P∈P≥m0 ρ(P2)/||P||2. Our goal in this section is

to prove the following bounds on S, S(m0) and c f :

LEMMA 4·1. Let q be a fixed prime power, k > 0 a fixed integer, and n, m0 vary-
ing integers with n → ∞. Let f ∈ Fq[t][x] be a square-free polynomial with degx f ≤ k
and degt f ≤ n. Define ρ(D), S, S(m0), c f as above. We have the following asymptotic
inequalities:

S ≤ k ln logq n + O(1) = O(ln ln n), (4·4)

S(m0) = O

(
n

m0qm0

)
, (4·5)

c f � (logq n)−2k . (4·6)

Write f (t, x) = fi(t, x) fs(t, x) where fi(t, x) is the product of all irreducible factors
of f (t, x) which are inseparable in x , and fs(t, x) has no x-inseparable factors. Note that
irreducible polynomials which are inseparable in x are in fact polynomials in x p, thus their
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product fi is in Fq[t][x p] as well. From the fact that f (t, x) is square-free, we immediately
see that fi , fs are co-prime and square-free, and furthermore fi is co-prime to ∂ fi/∂t and
fs is co-prime to ∂ fs/∂x : Indeed, if P(t, x) is an irreducible common divisor of fs and
∂ fs/∂x , it is easy to see that either P2 | fs , which contradicts fs being square-free, or else
P | ∂ P/∂x , which then implies that P is inseparable in x – contradicting the fact that fs has
no inseparable factors. Similarly, if P(t, x) is an irreducible common divisor of fi , ∂ fi/∂t ,
then again either P2 | fi , which leads to contradiction, or P is inseparable in t . Since both
fi , ∂ fi/∂t are in Fq[t][x p], either P p must also be a common divisor, contradicting square-
freedom, or P is also in Fq[t][x p]. But since it is also inseparable in t , it follows that P ∈
Fq[t p, x p], which means that P is a p-th power, contradicting its irreducibility.

Now, define R(t) = Resx( fi , ∂ f /∂t) Resx( fs, ∂ f /∂x) ∈ Fq[t], where Resx is the resul-
tant in the x-variable. Note that R(t) is non-zero: Indeed, by the above claims, ∂ f /∂t =
fs∂ fi/∂t + fi∂ fs/∂t is co-prime to fi , and ∂ f /∂x = fi∂ fs/∂x + fs∂ fi/∂x is co-prime to fs .
Note that the x- and t-degrees of the polynomials fi , fs and their derivatives are all at most
k and n, respectively. Therefore, both resultants can be given as polynomials of degree at
most 2k in the Fq[t]-coefficients of their arguments, each of which is of degree at most n.
Therefore deg R ≤ 4kn = O(n). In particular R has at most 4kn/m0 prime factors of degree
at least m0.

For any prime P ∈P such that P � R, the residue f mod P ∈ (Fq[t]/(P))[x] is non-trivial
(as every prime dividing the content3 of f also divides R). The residue also has degree
≤ k, which then implies ρ(P) ≤ k. Let a ∈ Fq[t] represent a residue class in ρ(P), i.e. sat-
isfy f (a) ≡ 0 (mod P). If furthermore ∂ f (a)/∂x �≡ 0 (mod P), then by Hensel’s lemma
there is a unique lifting of a to a residue ã mod P2 satisfying ã ≡ a (mod P), f (ã) ≡ 0
(mod P2).

If, on the other hand, ∂ f (a)/∂x ≡ 0 (mod P), then P does not divide fs(a): Otherwise,
a is a common root of fs and ∂ f /∂x modulo P , which then implies P | Resx( fs, ∂ f /∂x),
contradicting P � R. From P | f (a) = fs(a) fi(a) it then follows that P | fi (a), and by the
same argument as above, we must then have ∂ f (a)/∂t �≡ 0 (mod P), and thus

d f (t, a(t))

dt
= ∂ f

∂t
(a) + ∂ f

∂x
(a)

da

dt
≡ ∂ f

∂t
(a) �≡ 0 (mod P).

In particular, it follows that P(t)2 � f (t, a(t)), for any such a. Therefore no residue ã mod P2

with ã ≡ a (mod P) satisfies f (ã) ≡ 0 (mod P2).
We have shown that for every residue a mod P ∈ ρ(P), there is at most one lifting modulo

P2 which is in ρ(P2), assuming P � R. Therefore for such primes, ρ(P2) ≤ ρ(P) ≤ k.
The contribution of these primes to S is thus at most

∑
P∈P :P�R

ρ(P2)

||P||2 ≤
∑
P∈P

k

||P||2 =
∞∑

d=1

∑
P∈P=d

k

q2d

≤
∞∑

d=1

k

q2d

qd

d
= k

∞∑
d=1

1

dqd
≤ k

q − 1
= O(1),

3The content of a polynomial is the greatest common divisor of its coefficients. In our case, for f ∈ Fq [t][x]
considered as a polynomial in x , the content is an element of Fq [t]. In particular, P ∈ Fq [t] divides the
content of f in Fq [t] if and only if P divides f in Fq [t][x].
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and similarly their contribution to the tail S(m0) is at most

∑
P∈P≥m0 :P�R

ρ(P2)

||P||2 ≤ k
∞∑

d=m0

1

dqd
= O

(
1

m0qm0

)
.

On the other hand, for any prime P | R, we have ρ(P2) ≤ k||P||. Indeed, if P divides the
content of f , then f/P ∈ (Fq[t]/(P))[x] is non-trivial, as f is square-free and in particular
P2 � f . Thus

ρ(P2) = #{a mod P2 : f (a) ≡ 0 (mod P2)}
= #{a mod P2 : f (a)

P
≡ 0 (mod P)}

= #{a mod P : f (a)

P
≡ 0 (mod P)} · ||P|| ≤ k||P||,

while for primes P | R that do not divide the content, we simply have ρ(P) ≤ k and therefore
ρ(P2) ≤ ||P||ρ(P) ≤ k||P||.4

Therefore the contribution of the primes P | R to the sum S(m0) is at most

∑
P∈P≥m0

P|R

ρ(P2)

||P||2 ≤
∑

P∈P≥m0
P|R

k||P||
||P||2 =

∑
P∈P≥m0

P|R

k

||P||

≤
∑

P∈P≥m0
P|R

k

qm0
≤ 4kn

m0

k

qm0
= O

(
n

m0qm0

)
.

In order to obtain a bound on their contribution to S, denote for all d > 0, ud = #{P ∈
P=d : P | R}, and let xd = dud . The contribution to S is

∑
P∈P
P|R

ρ(P2)

||P||2 ≤
∑
P∈P
P|R

k

||P|| = k
∞∑

d=1

ud

qd
= k

∞∑
d=1

xd

dqd
.

Note that for all d > 0, dud ≤ dπq(d) ≤ qd , and
∑∞

d=1 dud ≤ deg R ≤ 4kn. We will bound
the expression W = ∑∞

d=1 xd/(dqd), which can be seen as a weighted sum of the xd , by
finding its maximum under the constraints 0 ≤ xd ≤ qd ,

∑∞
d=1 xd ≤ 4kn. Observe that since

the weights 1/(dqd) are positive, W always grows when any xd is increased, so we will
have

∑∞
d=1 xd = 4kn; and, since, the weights 1/dqd are strictly decreasing, W always grows

when any xd is increased at the expense of xd ′ for d < d ′. Thus, to maximize W , we should
have the first terms of (xd) be as large as possible, until the bound on the sum

∑∞
d=1 xd

is exhausted, with latter terms being 0. In other words, we will have xd = qd for all d <

n0, xn0 = 4kn − ∑n0−1
d=1 qd , and xd = 0 for all d > n0, where the threshold n0 is uniquely

determined by the constraint 0 ≤ xn0 ≤ qn0 . These (xd) would not necessarily correspond to
any actual R, but will serve for obtaining an upper bound. It follows that qn0−1 ≤ 4kn, hence
n0 ≤ logq(4kqn) = logq(n) + O(1). Thus

4A sharper argument shows that for primes P | R that do not divide the content, we in fact have ρ(P2) ≤
k ||P||/2, as any root of f modulo P that lifts to ||P|| roots modulo P2 must be a double root modulo P ,
and there can be only k/2 distinct double roots modulo P . This could allow us to slightly improve the lower
bound on c f for content-free polynomials, but not in general.
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∑
P∈P
P|R

ρ(P2)

||P||2 ≤ k
∞∑

d=1

xd

dqd
≤ k

n0∑
d=1

1

d
= k(ln(n0) + O(1))

= O(ln ln n).

It is quite clear that for both S, S(m0), the bounds for the contributions of P | R dominate
those of P � R, and yield the bounds (4·4), (4·5).

We now derive the lower bound c f � (logq n)−k−o(1) using the upper bound on S. Let
ε > 0, and split the summands of S into those greater and lesser than ε. As each term is
at most k/||P||, it follows that only boundedly many are greater than ε, and the polyno-
mials appearing in these terms are of bounded degree, thus the contribution of these terms
to the product c f = ∏

P∈P
(
1 − ρ(P2)/||P||2) would be bounded from below by some pos-

itive constant C ′
ε = C ′

k,q,ε > 0 independent of n (assuming no local obstructions exist, so
that 1 − ρ(P2)/||P||2 ≥ 1/||P||2 for all P). On the other hand, for summands such that
x = ρ(P2)/||P||2 < ε, we have the inequality ln(1 − x) > −x/(1 − ε), and hence the con-
tributions of these terms to the product c f is bounded from below by exp

(− S
1−ε

) �k,q

(logq n)−k/(1−ε). Taking the two terms together then yields c f �k,q C ′
ε(logq n)−k+O(ε). As C ′

ε

is independent of n, letting ε → 0 sufficiently slowly as n → ∞ would allow us to replace
the bound by the aforementioned c f � (logq n)−k−o(1). However, the exact exponent will
have negligible relevance to our computations, and the bound (4·6) obtained by choosing
ε = 1/2 suffices for most purposes.

4·2. Bounding N ′′: medium primes

The bound on the medium primes is the easiest of the three, and follows immediately
from a simple union bound. Indeed, m1 is chosen such that for any prime P ∈P<m1 we have
deg(P2) < m and thus #{a ∈ Fq[t]<m : P2 | f (a)} = ρ(P2)qm/||P||2. Therefore

#N ′′ = #{a ∈ Fq[t]<m : ∃P ∈P≥m0 ∩P<m1, P2 | f (a)}
= #

⋃
P∈P≥m0 ∩P<m1

{a ∈ Fq[t]<m : P2 | f (a)}
≤

∑
P∈P≥m0 ∩P<m1

#{a ∈ Fq[t]<m : P2 | f (a)}

=
∑

P∈P≥m0 ∩P<m1

ρ(P2)

||P||2 qm

≤ qm
∑

P∈P≥m0

ρ(P2)

||P||2 = qm S(m0).

It now suffices to choose m0 large enough so that S(m0) = o(c f ). By (4·5), (4·6), we see
that we may take any m0 such that m0qm0/(n(logq n)2k) → ∞, which is clearly satisfied
when e.g. m0 − logq n − 2k logq logq n → ∞. For simplicity, we shall either weaken this
condition to m0 ≥ 1.01 logq n as n → ∞, or just assume m0 → ∞ if n is bounded.

4·3. Bounding N ′: small primes

We write P(m0) = ∏
P∈P<m0 P . We evaluate the size of N ′ by inclusion-exclusion:

#N ′ =
∑

D|P(m0)

μ(D)#{a ∈ Fq[t]<m : D2 | f (a)}.
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For any square-free polynomial D ∈ Fq[t], let ν(D) be the number of its prime factors. For
a non-negative integer j , define

n j =
∑

D|P(m0)
ν(D)= j

#{a ∈ Fq[t]<m : D2 | f (a)}

so that #N ′ = ∑∞
k=0(−1) j n j . Brun’s sieve is essentially the observation that the partial sums

Nr = ∑r
j=0(−1) j n j alternate around the limit #N ′, i.e. #N ′ ≤ Nr for all even r , and #N ′ ≥

Nr for all odd r [1, chapter 6]. It will therefore suffice to prove that Nr = c f qm(1 + o(1)) for
some values of r in a range that includes both even and odd numbers, which will then result
in both upper and lower bounds on #N ′.

Suppose m0, r satisfy 2m0r ≤ m. It follows that for any D | P(m0) with ν(D) ≤ r we have
deg(D2) < 2m0r ≤ m. Such D then satisfies

#{a ∈ Fq[t]<m : D2 | f (a)} = ρ(D2)qm−2 deg D.

Therefore for all j ≤ r , we have n j = ∑
D|P(m0),ν(D)= j ρ(D2)qm−2 deg D , hence

Nr = qm
∑

D|P(m0)
ν(D)≤r

μ(D)
ρ(D2)

||D||2 =: qmU (r, m0).

We now wish to estimate U (r, m0). Note that

U (∞, m0) =
∑

D|P(m0)

μ(D)
ρ(D2)

||D||2 =
∏

P∈P<m0

(
1 − ρ(P2)

||P||2
)

= c f

∏
P∈P≥m0

(
1 − ρ(P2)

||P||2
)−1

= c f (1 + O(S(m0))) = c f (1 + o(1)),

where in the last step we assume m0 is chosen such that S(m0) = o(c f ), as was already
required for bounding #N ′′, so in particular S(m0) = o(1).

It will thus suffice to bound U (∞, m0) − U (r, m0). Let us denote for any non-negative
integer j , v j = ∑

D|P(m0),ν(D)= j ρ(D2)/||D||2. Note that v j is the j th elementary symmetric
polynomial of the finite multiset

{
ρ(P2)/||P||2 : P ∈P<m0

}
, whose elements are positive

real numbers. It follows that v j ≤ v
j
1

j ! (e.g. by expanding the power v
j
1 ). Furthermore, v1

is a partial sum of the singular sum S, hence v1 ≤ λ, where λ = k ln logq n + O(1) is the
right-hand side of (4·4). Suppose r = αλ for some α > 2. Then

|U (∞, m0) − U (r, m0)| =
∣∣∣∣∣∣

∞∑
j=r+1

(−1) jv j

∣∣∣∣∣∣ ≤
∞∑

j=r+1

v j ≤
∞∑

j=r+1

λ j

j !

<

∞∑
j=r+1

λr

r ! α
r− j <

λr

r ! <
λr

(r/e)r
=

(
eλ

r

)r

=
( e

α

)αλ

= O
(
(logq n)−α ln(α/e)k

)
.
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Now if α ln(α/e) is sufficiently large5, then by (4·6),

|U (∞, m0) − U (r, m0)| � (logq n)−kα ln(α/e) = o(c f ).

We have thus shown that if our choice of r satisfies both r ≥ 4.4λ and r → ∞, then Nr =
qmc f (1 + o(1)), hence also #N ′ = c f qm(1 + o(1)), as claimed.

For the proofs of the bounds on N ′, N ′′ to be valid simultaneously, we must be able to
choose m0, r sufficiently large satisfying 2m0r ≤ m. This is the source of our conditions m ≥
Ck,q logq n logq logq n and m → ∞ in Theorem 2·2. Indeed, in the unbounded case n → ∞
we may take m0 = 	1.01 logq n
 and r ∈ {r0, r0 + 1}, where r0 = 	4.45k ln q · logq logq n
 ≥
4.4λ, which would satisfy all assumptions for sufficiently large n; whereas for bounded n,
we may take for example m0 = r0 = �√m/2� → ∞.

4·4. Bounding N ′′′: large primes

The large primes require the most sophistication to estimate, though they contribute
the smallest error. To do so, we apply Poonen’s technique of replacing our target polyno-
mial by an equivalent multivariate polynomial with a simpler t-derivative, and carefully
retrace Lando’s bounds on the corresponding contributions to N ′′′, noting the size of our
coefficients.

Given the polynomial f (x) ∈ Fq[t][x], define a new polynomial F by
F(y0, . . . , yp−1) = f (y p

0 + t y p
1 + · · · + t p−1 y p

p−1) ∈ Fq[t][y p
0 , y p

1 , . . . , y p
p−1]. Note that

degx( f ) ≤ k, degt( f ) ≤ n together imply a bound on F’s coefficients and degrees:
degt(F) < n + pk = O(n), degyi

(F) ≤ pk.
Poonen’s lemmas show that f being square-free implies F is, also [8, lemma 7·2]; which

in turn implies that F and G = ∂ F/∂t are coprime [8, lemma 7·3]6. On the other hand, for
any y ∈ (Fq[t])p, P2 | F(y) if and only if P | F(y) and P | G(y). This is due to the fact that,
as the yi -s appear in F only with exponents divisible by p, G(y) = d(F(y))/dt for all y.
Finally observe that degt G ≤ degt F = O(n), degyi

(G) ≤ degyi
(F) ≤ pk.

Let m p = 	m/p
 ≤ 	m/2
 = m1, and for any positive integer l, let Bl = (Fq[t]<m p)l+1.
Note that when we let the p-tuple y range over all Bp−1, a = y p

0 + t y p
1 + · · · + t p−1 y p

p−1

ranges over all Fq[t]<pm p , which contains Fq[t]<m . Thus

#N ′′′ = #{a ∈ Fq[t]<m : ∃P ∈P≥m1, P2 | f (a)}
≤ #{y ∈ Bp−1 : ∃P ∈P≥m1, P2 | f (y p

0 + t y p
1 + · · · + t p−1 y p

p−1)}
= #{y ∈ Bp−1 : ∃P ∈P≥m1, P2 | F(y)}
= #{y ∈ Bp−1 : ∃P ∈P≥m1, P | F(y) and P | G(y)}

= Op−1,pk

(
n + m1

m1
q (p−1)m p

)
= Op,k

⎛
⎝ n + m

mq
m
p −p

qm

⎞
⎠ , (4·7)

5In the case n → ∞ it suffices to choose α ln(α/e) > 2, which holds for α > 4.32. If n is bounded, take
α → ∞.
6Poonen in fact shows only that they are coprime in Fq (t)[y0, . . . , yp−1], whereas we need them to be
coprime in Fq [t][y0, . . . , yp−1]. This is easy to verify – it is enough to check that they have no common irre-
ducible factor P ∈ Fq [t]. Such a factor will necessarily divide the contents of both F(y0, 0, . . . , 0) = f (y p

0 )

and G(y0, 0, . . . , 0) = (∂ f /∂t)(y p
0 ). This in turn implies that P2 divides f , contradicting our assumption

that it is square-free.
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where the bound in the final line follows from the following proposition, analogous to [7,
proposition 5]:

PROPOSITION 4·2. Let k, l, n, m p, m1 be positive integers with m1 ≥ m p, and let F, G ∈
Fq[t][y0, . . . , yl] be coprime polynomials in l + 1 variables with degyi

(F), degyi
(G) ≤ k

and degt(F), degt(G) ≤ n. Denote Bl = (Fq[t]<m p)l+1 as above, and define

Nl(F, G) = #{y ∈ Bl : ∃P ∈P≥m1, P | F(y) and P | G(y)}.
Then

Nl(F, G) = Ol,k

(
n + m1

m1
qlm p

)
.

Thus, from (4·7) and (4·6), it follows that #N ′′′ = o(c f qm) when e.g. m − p(logq n +
2k logq logq n) → ∞, which is certainly the case under the assumptions of Theorem 2·2.

Before we prove proposition 4·2, we first need a simpler bound, slightly generalising [7,
proposition 6] and giving exact bounds.

PROPOSITION 4·3. Let k, l, n, m p, F, Bl be as in Proposition 4·2, and suppose F is not
identically 0. Then

#{y ∈ Bl : F(y) = 0} ≤ k(l + 1)qlm p .

Proof. If l = 0, then F(y0) is a non-vanishing polynomial of degree at most k in y0. Hence
it has at most k roots in all of Fq[t], and in particular #{y ∈ B0 : F(y) = 0} ≤ k, as claimed.

We proceed by induction on l. Consider F as a polynomial in yl , of degree at most k,
with coefficients in Fq[t][y0, . . . , yl−1]. We write it as F(y′, yl), where y′ = (y0, . . . , yl−1).
Let F0 ∈ Fq[t][y0, . . . , yl−1] be its leading coefficient. Clearly, F0 also satisfies the degree
requirements of Proposition 4·3, hence by induction,

#{y′ ∈ Bl−1 : F0(y′) = 0} ≤ klq(l−1)m p . (4·8)

On the other hand, for any y′ ∈ Bl−1 with F0(y′) �= 0, there are at most degyl
(F) ≤ k values

of yl in all Fq[t] for which F(y′, yl) = 0. Thus

#{(y′, yl) ∈ Bl : F0(y′) �= 0, F(y′, yl) = 0} ≤ k#Bl−1 = kqlm p . (4·9)

Using both (4·8), (4·9), we finally obtain

#{(y′, yl) ∈ Bl : F(y′, yl) = 0}
≤ #{(y′, yl) ∈ Bl : F0(y′) = 0} + #{(y′, yl) ∈ Bl : F0(y′) �= 0, F(y′, yl) = 0}
= qm p #{y′ ∈ Bl−1 : F0(y′) = 0} + #{(y′, yl) ∈ Bl : F0(y′) �= 0, F(y′, yl) = 0}
≤ qm p klq (l−1)m p + kqlm p = k(l + 1)qlm p .

Using exactly the same arguments, one can also show the following similar proposition:

PROPOSITION 4·4. Let k, l, n, m p, m1, F, Bl be as in Proposition 4·2, let P ∈P≥m1 be a
large prime and suppose F is not identically 0 modulo P. Then

Nl(F, P) = #{y ∈ Bl : P | F(y)} ≤ k(l + 1)qlm p .
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Note that we rely strongly on m1 ≥ m p, which implies that each residue class modulo P
has at most a single representative in Fq[t]<m p . We omit the rest of the proof, which is just a
repetition of the proof of Proposition 4·3.

Proof of Proposition 4·2. Again, we induct on l. To avoid repetition, our induction base will
be l = −1, where F, G ∈ Fq[t], and B−1 = {()} is a singleton containing only the empty
tuple. The claim then immediately follows from F, G being coprime in Fq[t], i.e. �P ∈P
such that P | F and P | G, and in particular {y ∈ B−1 : ∃P ∈P≥m1, P | F(y) and P | G(y)}
is empty. Hence Nl(F, G) = 0 = Ok((n + m1)q−m p/m1).

We denote Al = Fq[t][y0, . . . , yl−1]. Consider F, G ∈ Al[yl] as single variable polynomi-
als in yl with coefficients in the polynomial ring Al , and let FC , GC ∈ Al be their respective
contents. We may then write F = FC FI , G = GC G I where FI , G I ∈ Al[yl] are indivisible
by any non-scalar polynomial in Al . Clearly FC , FI are coprime to GC , G I , and all four
polynomials have yi -degrees at most k and t-degrees at most n. We also have

Nl(F, G) ≤Nl(FI , G I ) +Nl(FI , GC) +Nl(G I , FC) +Nl(FC , GC).

Therefore it is enough to show that each of the four summands on the right hand side is
bounded by Ol,k((n + m1)qlm p/m1).

Note that, as both FC and GC are independent of yl , and by the induction hypothesis, we
have

Nl(FC , GC) = qm pNl−1(FC , GC) = qm p Ol−1,k

(
n + m1

m1
q (l−1)m p

)

= Ol,k

(
n + m1

m1
qlm p

)
.

For both Nl(G I , FC), Nl(FI , GC), we have one polynomial in Al and the second indi-
visible by any polynomial in Al . We wish to bound Nl(FI , G I ) by a term of this form as
well. To do so, let H = Resyl (FI , G I ) ∈ Al be the resultant of FI , G I . By basic properties of
the resultant, for any choice of y ∈ Bl, P ∈P , we have P | FI (y), P | G I (y) =⇒ P | H(y).
Thus Nl(FI , G I ) ≤Nl(FI , H). Further note that from degyl

(FI ), degyl
(G I ) ≤ k it follows

that H is given as a polynomial of degree ≤ 2k in the Al coefficients of FI , G I , hence
in particular degt(H) ≤ 2kn, degyi

(H) ≤ 2k2. Also note that H is non-zero, as FI , G I are
co-prime.

We now claim that for any pair of polynomials FI ∈ Al[yl], H ∈ Al such that FI is indi-
visible by non-scalar polynomials in Al , and with degt FI ≤ n, degyi

FI ≤ k and degt H ≤
2kn, degyi

H ≤ 2k2, we have Nl(FI , H) = Ol,k((n + m1)qlm p/m1). These assumptions also
hold for the pairs (FI , GC) and (GC , FI ), yielding bounds on Nl(FI , GC), Nl(G I , FC) and
Nl(FI , G I ), finishing our induction step.

Let H = ∏
j∈J Hj be H ’s decomposition into irreducible polynomials. We have

Nl(FI , H) ≤ ∑
j∈J Nl(FI , Hj ). Note that for each j , Hj ∈ Al , therefore Hj � FI and FI , Hj

are coprime. Let us partition J = J1 ∪ J2 ∪ J3, where J1 = { j ∈ J : Hj /∈ Fq[t]}, J2 = { j ∈ J :
Hj ∈ Fq[t]≥m1}, and J3 = { j ∈ J : Hj ∈ Fq[t]<m1}. As degt H ≤ 2kn and the total degree of
H in all y-variables is at most 2k2l, we have #J2 ≤ 2kn/m1 = Ol,k(n/m1) and #J1 ≤ 2k2l =
Ol,k(1).

For each j ∈ J3, y ∈ Bl , we have Hj (y) = Hj , so clearly �P ∈P≥m1 with P | Hj , hence
Nl(FI , Hj ) = 0. Similarly, for each j ∈ J2, the conditions of proposition 4·4 are satisfied for
F = FI , P = Hj . Hence Nl(FI , Hj ) ≤ k(l + 1)qlm p = Ol,k(qlm p).
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Finally, for each j ∈ J1, let F0 ∈ Al be some coefficient of FI (as a polynomial in yl)
such that Hj � F0 as polynomials. Such a coefficient must exist as Hj � FI . We now bound
Nl(FI , Hj ), again by splitting into three trivially covering sets:

Nl(FI , Hj ) = #{y ∈ Bl : ∃P ∈P≥m1, P | FI (y) and P | Hj (y)}
≤ #{y ∈ Bl : Hj (y) = 0}

+ #{y ∈ Bl : ∃P ∈P≥m1, P | F0(y) and P | Hj (y)}
+ #{y ∈ Bl : Hj (y) �= 0, ∃P ∈P≥m1, P | Hj (y), P | FI (y) and P � F0(y)}.

By Proposition 4·3, the first summand is clearly Ol,k(qlm p). The second summand, by
definition, is Nl(F0, Hj ). As Hj is irreducible, it follows that F0, Hj are coprime. We also
certainly have degyi

(F0), degyi
(Hj ) ≤ 2k2 and degt(F0), degt(Hj ) ≤ 2kn. Therefore F0, Hj

satisfy the conditions of Proposition 4·2, but with smaller l (albeit larger degrees). Hence by
the induction hypothesis,

Nl(F0, Hj ) = qm pNl−1(F0, Hj ) = qm p Ol−1,2k2

(
2kn + m1

m1
q (l−1)m p

)

= Ol,k

(
n + m1

m1
qlm p

)
. (4·10)

To bound the third term, note that for each y = (y′, yl) ∈ Bl−1 × B0 = Bl

such that Hj (y) = Hj (y′) �= 0, we must have degt(Hj (y′)) ≤ 2kn + 2k2lm p. If we let
Py′ = {P ∈P≥m1 : P | Hj (y′), P � F0(y′)}, it follows that #Py′ ≤ (2kn + 2k2lm p)/m1 =
Ol,k((n + m1)/m1). On the other hand, for each y′ ∈ Bl−1, P ∈Py′ , FI (y′, yl) is a polyno-
mial of degree ≤ k in yl , which is non-vanishing modulo P . Since degt(P) ≥ m1 ≥ m p, it
follows that #{yl ∈ B0 : P | FI (y′, yl)} ≤ k. Therefore

#{y ∈ Bl : Hj (y) �= 0, ∃P ∈P≥m1, P | Hj (y), P | FI (y) and P � F0(y)}
=

∑
y′∈Bl−1

Hj (y′)�=0

#{yl ∈ B0 : ∃P ∈P≥m1, P | Hj (y′), P | FI (y′, yl) and P � F0(y′)}

≤
∑

y′∈Bl−1
Hj (y′)�=0

∑
P∈Py′

#{yl ∈ B0 : P | FI (y′, yl)} ≤
∑

y′∈Bl−1
Hj (y′)�=0

∑
P∈Py′

k

=
∑

y′∈Bl−1
Hj (y′)�=0

Ol,k

(
n + m1

m1

)
= Ol,k

(
n + m1

m1
qlm p

)
.

Taking the three results together, we find Nl(FI , Hj ) = Ol,k((n + m1)qlm p/m1) for all
j ∈ J1. Now combining the different bounds for each Ji , we finally obtain

Nl(FI , H) ≤
∑
j∈J1

N (FI , Hj ) +
∑
j∈J2

N (FI , Hj ) +
∑
j∈J3

N (FI , Hj )

=
∑
j∈J1

Ol,k

(
n + m1

m1
qlm p

)
+

∑
j∈J2

Ol,k

(
qlm p

) +
∑
j∈J3

0
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≤ 2k2l · Ol,k

(
n + m1

m1
qlm p

)
+ 2kn

m1
· Ol,k

(
qlm p

)

= Ol,k

(
n + m1

m1
qlm p

)
,

as we wanted to show.

5. Proofs of Theorems 2·4, 2·5
5·1. Proof of Theorem 2·4

Define f (x) = g(t, N (t) + x) ∈ Fq[t][x]. Clearly degx f = degx g = k, and degt f ≤
degx g · degt N + degt g = kn + degt g = O(n). Furthermore, as f is obtained from g sim-
ply by a fixed Fq[t] translation of the x variable, g being square-free implies that f
is square-free, and more importantly, ρ f (D) = ρg(D) = ρ(D) for any polynomial D.
Therefore they also have the same singular sum and series, i.e. S f (m0) = Sg(m0), as well as
S f = Sg and c f = cg being constants independent of the choice of N (t) or its degree n. Thus
taking any m0 → ∞, r → ∞, we have immediately S(m0) = o(1) = o(c f ) and r/S → ∞,
from which we obtain #N ′ = c f qm(1 + o(1)) and #N ′′ = o(c f qm) following the proofs in
Sections 4·3, 4·2. To be able to choose such r, m0 satisfying 2m0r ≤ m, we only need
m → ∞.

We are left only with the need to validate the bound on N ′′′, and here finally n does
come into play, as it still affects the relevant degrees. As c f is now a constant, (4·7) implies
that #N ′′′ = o(1) = o(c f ) when mqm/p/n → ∞, which is equivalent to m − p(logq n −
logq logq n) → ∞, as we required in the theorem’s statement.

5·2. Proof of Theorem 2·5
Similarly to the above, we observe that when we move to f (x) = g(N (t) + x), the

expressions determined by the singular sum, S, S(m0) and c f , will depend only on g and
not on N . Thus the bounds (4·4)–(4·6) will all be valid with n replaced by n1, as will
the computations of Sections 4·2, 4·3, as long as we can choose r, m0 → ∞ with m0 ≥
1.01 logq n1, r ≥ 4.45k ln logq n1 and 2m0r ≤ m, which is possible due to the assumptions
m ≥ Ck,q logq n1 logq logq n1 and m → ∞.

For the bound on #N ′′′, we observe that degt f ≤ kn2 + n1. If n2 ≤ n1, then degt f � n1

and we are basically in the case of Theorem 2·2, where the contribution of N ′′′ is negligible.
Otherwise, n1 ≤ n2, so degt f � n2. Thus (4·7) holds with the degree n replaced by n2.
Taken together with (4·6) with n replaced by n1, we see that #N ′′′ = o(c f qm) would follow
from mqm/p/(n2(logq n1)

2k) → ∞, which is equivalent to

m − p(logq n2 − logq logq n2 + 2k logq logq n1) −→ ∞
as we required.

Remark. We can in fact make a slight improvement here on the required condition: By using
c f � (logq n1)

−k−o(1) instead of (4·6), the constant coefficient 2k can be replaced with any
constant greater than k, or with some (specific) function of the type k + o(1).
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Appendix A. On the Number of Squarefree Integers in Short Intervals
By ALEXEI ENTIN

Abstract

Assuming the ABC conjecture we show that for any fixed ε > 0 the number of squarefree
integers in the interval [x, x + H) is ∼ 6H/π2 provided H > x ε .

A·1. Introduction

We consider the problem of counting the number of squarefree integers in the interval
[x, x + H), where x and H are large positive real numbers. We are interested in the case that
H = x ε for some fixed ε > 0 while x → ∞. It is an open problem to show that for any fixed
ε > 0 there exists even a single squarefree integer in the interval [x, x + H) with H = x ε

for large enough x . The best known result in this direction is due to Filaseta and Trifonov
[3] who showed the existence of squarefree integers in [x, x + H) for H � x1/5 log x . It
was shown by Tolev [11] that when H/(x1/5 log(x)) → ∞, the number of squarefrees in
the interval [x, x + H) is in fact asymptotic to (6/π2)H . It was shown by Granville [4]
that assuming the ABC conjecture for any fixed ε > 0 there exists a squarefree integer in
[x, x + x ε) for x large enough. Our main result is the following:

THEOREM A·1. Assume the ABC conjecture. Let ε > 0 be fixed. Then the number of
squarefree integers in the interval [x, x + H) is ∼ 6H/π2 provided H > x ε .

We note that 6/π2 = ζ(2)−1, where ζ(s) is the Riemann zeta-function. By essentially the
same argument it can be shown that assuming the ABC conjecture for any fixed k the number
of k-power-free integers in [x, x + H) is ∼ ζ(k)−1 H provided H > x ε for fixed ε > 0.

A·2. Proof of Theorem A·1
PROPOSITION A·2. The number of integers in the interval [x, x + H) which are not
divisible by any square of a prime p < H is ∼ 6H/π2 as H → ∞.

Proof. It is elementary to see that the number of integers in [x, x + H) not divisible by p2

for any p < log H/2 is ∼ ζ(2)−1 H = 6H/π2 (this is seen by exact sieving over all primes
up to log H/2). The number of integers in [x, x + H) divisible by p2 for some log H/2 <

p < H is bounded by

∑
1
2 log H<p<H

(
H

p2
+ 1

)
� H

log H
= o(H),

which is asymptotically negligible.

We will need the following result due to Granville [4, theorem 6]:
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PROPOSITION A·3. Assume the ABC conjecture. Let F(X) ∈Z[x] be a fixed squarefree
polynomial and α > 0 a fixed constant. Let y be a natural number and assume that s2|F(y)

for some natural number s. Then for y large enough we have s ≤ y1+α .

PROPOSITION A·4. Assume the ABC conjecture. If H < x and H → ∞ then the number of
integers in [x, x + H) divisible by the square of any prime p > x ε is o(H).

Proof. Let λ > 0 be a constant. Assume that the number of integers in [x, x + H) divisible
by p2 for some prime p > x ε is > λH . We want to show that H must be bounded (for any
fixed λ). Denote N = 	2/ε
, M = 	2N/λ
 (these are both fixed constants for fixed ε, λ). The
interval [x, x + H) necessarily contains a subinterval

[
y, y + M) with at least λM/2 ≥ N

(if M divides H the 1/2 factor is unnecessary) elements divisible by some p2 for some prime
p > x ε � yε .

Assuming by way of contradiction that H can be arbitrarily large, we see that there must
exist arbitrarily large y s.t. at least N integers in the interval

[
y, y + M) are divisible by

a square of some prime p � yε . By the pigeonhole principle there must exist some fixed
distinct a1, ..., aN ≥ 0 s.t. for infinitely many y each y + a1, ..., y + aN is divisible by the
square of some prime p � yε .

Denote F(X) = (X + a1)...(X + aN ) ∈Z[x]. This is a squarefree polynomial. From the
above we see that for infinitely many y the value F(y) is divisible by the square of some
d = p1...pN � yNε ≥ y2. But this contradicts Proposition A·3 (taking any α < 1 in the
proposition).

Combining Proposition A·2 and Proposition A·4 we deduce Theorem A·1.
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