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The current study determined whether the pre-implantation conceptus modified endometrial fatty
acid concentrations. Oestrus was synchronized in 14 mature lactating cows and embryos were
transferred on day 7. Cows were slaughtered 10 d later, with each uterine horn flushed, the pre-
implantation conceptus located, and inter-caruncular endometrial tissue collected from the gravid
horn (containing the pre-implantation conceptus) and non-gravid horn. Endometrial fatty acid
concentrations in the gravid and non-gravid horn were compared using linear models in restricted
maxiumum likelihood. Investigations of the correlations among selected fatty acids and trophoblast
weight or uterine fluid interferon-tau (IFN-τ) concentrations were also undertaken. The presence of
the pre-implantation conceptus had relatively minor effects on endometrial fatty acid concentrations,
but the ω6:ω3 ratio was greater and concentrations of stearic and oleic acid were slightly increased in
the gravid horn. In the gravid horn, a negative linear relationship between the concentration of
arachidonic acid and conceptus weight and IFN-τ concentration in the uterine luminal fluid were
observed. In contrast, therewas a positive relationship between concentrations of dihomo-γ-linolenic
acid in the non-gravid horn and conceptus weight. In conclusion, the presence of the pre-
implantation conceptus appears to modulate endometrial fatty acids, as indicated by the differences
in endometrial fatty acid concentrations in the gravid and non-gravid uterine horns. The physiological
implication of these local effects of the pre-implantation conceptus, on reproductive success requires
further investigation.
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Dairy cow fertility has declined in recent decades, coinci-
dental with large increases in milk yield (Lucy, 2001;
Diskin et al. 2006; Veerkamp & Beerda, 2007; Friggins et al.
2010). The reduction in fertility is the result of cows
taking longer to return to oestrus, displaying poorer signs
of oestrus, lower conception rates and a high incidence of
early embryo loss (Lucy, 2001; Diskin et al. 2006; Friggins
et al. 2010). The greatest proportion of losses are due to
early embryo mortality (Diskin et al. 2006) with the period
of pregnancy recognition identified to be of primary
importance.

Inhibition of pulsatile prostaglandin F2α (PGF2α) secretion
during pregnancy recognition is pivotal to the maintenance

of luteal function and the establishment of pregnancy
(Mattos et al. 2000; Thatcher et al. 2006; Weems et al.
2006; Wathes et al. 2007). The effect of pregnancy on
prostaglandin synthesis includes both the inhibition of
pulsatile PGF2α synthesis and the increased synthesis of
prostaglandin E2 (PGE2) to support luteal function (Okuda
et al. 2002; Arosh et al. 2004a; Arosh et al. 2004b). Long-
chain fatty acids (FA) are important in the main reproductive
processes including PGF2α synthesis (Wathes et al. 2007)
and luteolysis; as such, modulation of endometrial FA has
been suggested as a strategy to support early pregnancy
(Mattos et al. 2000; Binelli et al. 2001). This is supported by
reports of lower 20:4ω6 concentrations and greater 20:3ω6
and 18:2ω6 concentrations in endometrium from pregnant
cows compared with endometrium from cows at a similar
stage of the oestrous cycle (Thatcher et al. 1994; Thatcher
et al. 1995; Meier et al. 2009).*For correspondence: Susanne.Meier@dairynz.co.nz
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These findings have led to the proposition that modifying
the availability of long-chain ω6 FAwill support suppression
of PGF2α. Modification of tissue FA profiles, by changing
dietary FA, has successfully reduced the availability of ω6 FA
(Mattos et al. 2000; Bilby et al. 2006; Childs et al. 2008). In
addition, previous studies have shown a reduction in PGF2α
synthesis or plasma metabolite 13,14-dihydro-15-keto
PGF2α (PGFM) concentrations when the availability of ω6
FA was reduced (Oldick et al. 1997; Thatcher et al. 1997;
Mattos et al. 2002; Mattos et al. 2004; Wamsley et al. 2005;
Caldari-Torres et al. 2006). Additionally, when endometrial
ω6 FA are reduced through supplementation with ω3 FA the
expression of endometrial genes pivotal to the synthesis of
PGE2 (Coyne et al. 2008) and genes involved in tissue
(e.g. progesterone receptor, IGF pathway and peroxisome
proliferator-activated receptors) are reduced (Bilby et al.
2006; Coyne et al. 2008; Coyne et al. 2011).

Yet, when extended to examine the effects of altering ω6
FA availability on embryo survival, conception and preg-
nancy rates the outcomes were variable (Staples et al. 1998;
Ambrose et al. 2006; Petit & Twagiramungu, 2006; Petit
et al. 2008; Zachut et al. 2010). The variability in these
outcomes may be due to the complex and various roles that
prostaglandins have during early pregnancy (Weems et al.
2006; Wathes et al. 2007), and a greater understanding of
how endometrial FA profiles are modified with pregnancy
may lead to FA manipulations that substantially improve
reproductive success.

It was therefore hypothesized that the presence of the pre-
implantation conceptus modified the profiles of endometrial
fatty acids. Hence, the aim of the current study was to
describe localized endometrial FA changes associated with
the presence of the pre-implantation conceptus by examin-
ing differences in endometrial FA concentrations in the
endometrium obtained from the uterine horn containing
the pre-implantation conceptus (gravid horn) compared
with that obtained from the uterine horn without the pre-
implantation conceptus (non-gravid horn).

Materials and Methods

All animal manipulations were approved by the Ruakura
Animal Ethics Committee (Hamilton, New Zealand). This
work was conducted at No. 5 Dairy, DairyNZ Ltd (Hamilton,
New Zealand) and is part of a larger study and as such is a
preliminary investigation.

Animal management

Fourteen lactating Holstein-Friesian (HF) dairy cows (2nd to
5th lactation), of mixed genetic strain grazed fresh pasture as
a single herd. The two genetic strains represented included:
New Zealand [NZ; n=7; <23% North American (NA)
genetics] and NA (n=7; >92% genetics NA genetics).
A detailed description of the breeding scheme used to
generate these cows is described byMacdonald et al. (2008).

Cows were grouped by calving date and an oestrous-
synchrony programme was initiated at 59±4·6 d post-
calving (mean±SED). The synchrony programme involved
inserting a controlled intra-vaginal drug-release device con-
taining progesterone (1·38 g, CIDR-B™ Pfizer Animal Health
Group, Auckland, New Zealand) for 8 d (day of insertion
day �8), with 2 mg oestradiol benzoate administered i.m.
(2 ml, CIDIROL Bomac Laboratories Limited, Auckland,
New Zealand) at the time of CIDR-B insertion. All animals
received two (a.m. and p.m.) i.m. 500-μg injections of
sodium cloprostenol (2 ml, EstroPlan, Parnell Laboratories
NZ Ltd, Auckland, NewZealand) on day 6 following CIDR-B
insertion, and a 10-μg injection of the GnRH analogue
buserelin (2·5 ml, Receptal, Intervet Limited, Auckland,
New Zealand) 24 h after CIDR-B removal. The day after
the GnRH injection was designated day 1 of the synchro-
nized oestrous cycle. Embryos were produced using oocytes
isolated from ovaries collected from the abattoir (Meier et al.
2009). High quality (Grade 1) expanded blastocysts were
transferred non-surgically into the uterine horn ipsilateral to
the palpable corpus luteum (CL) on day 7 of the oestrous
cycle.

Endometrial tissue collection and fatty acid analyses

Cows were slaughtered at the AgResearch Abattoir
(Hamilton, New Zealand) on day 17 of the synchronized
cycle (10 d after embryo transfer). Uterine horns were
separated, flushed with 20 ml saline, and the location of the
conceptus and corpus luteum recorded. Concepti were
recovered from 12 of 14 cows. Ten of the 12 cows had single
ovulators (single corpus luteum) and the remaining two cows
were double ovulators (corpus luteum on each ovary). The
length of the recovered conceptus was measured (using a
microscope) before being frozen in liquid nitrogen and
stored at �80 °C awaiting further processing. Frozen con-
ceptus weight (embryonic disc plus trophoblast tissues) were
recorded. Inter-caruncular endometrial samples (0·5–1·0 g)
were dissected from the middle section of each horn,
immediately transferred into cryo-tubes, snap frozen in
liquid nitrogen and stored at �80 °C awaiting FA analyses.
Methods used to process the tissues and determine FA

concentrations were reported by Meier et al. (2009). Briefly,
endometrial tissues from each uterine horn underwent a
combined fat extraction and transmethylation (Sukhija &
Palmquist, 1988). Commercially available FA standards
were used as qualitative methyl ester reference standards.
The detector response was corrected using theoretical res-
ponse factors according to AOCS Ce 1e-91 (AOCS, 1998).
Endometrial FA concentrations are expressed as g FA/100 g
total FA.

Uterine luminal fluid and interferon-tau analyses

Analyses of the uterine luminal fluids (ULF) were undertaken
by AgResearch (Ruakura, Hamilton, New Zealand). ULF
were centrifuged to remove cellular debris, lyophilized, and
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ULF proteins reconstituted with distilled water containing a
cocktail of proteinase inhibitors (Complete, Roche, USA)
before being dialysed. Protein concentrations were measured
(Bradford, 1976) and samples stored at�20 °C until analysed.

Western blotting procedures were used to quantify
interferon-tau (IFN-τ) concentrations in ULF as previously
reported (Peterson et al. 1998). Briefly, ULF samples
containing 20 μg of total protein and 2 μl human serum
control in 50% glycerol, 0·5 m-Tris–HCl, and pH 6·8 loading
buffer were applied to 12% SDS-polyacrylamide gel and
subjected to electrophoresis, and then electroblotted onto
a reinforced nitrocellulose membrane (Pall BioTrace NT,
USA). Interferon-tau was detected using anti-IFN-τ (gift
from Dr Roberts, University of Missouri, USA) at 1:2000.
Bound antibody was measured by chemiluminescence
(luminol, Sigma-Aldrich) or SuperSignal West Femto
Maximum Sensitivity Substrate (Pierce, Rockford IL, USA),
and bands quantified using Quantity One software (Bio-Rad

Laboratories, Hercules CA, USA). Interferon-τ concen-
trations were expressed as optical density (OD) units per
20 μg total protein.

Statistical analyses

Of the 12 cows where concepti were recovered, FA analyses
were carried out in 22 samples (11 gravid and 11 non-gravid
samples). Fatty acid extractions failed from two endometrial
samples owing to the volume of tissue available. Eleven
endometrial samples collected from the gravid horn were
obtained from nine cows with single samples and one cow
with two gravid horns, as trophoblast tissues were recovered
from both horns. Eleven endometrial samples collected from
the non-gravid horn were from 11 cows. Statistical analyses
were undertaken using GenStat Release 11 (Payne et al.
2008). Uterine horn differences in FA concentrations were
analysed using linear models in restricted maximum

Table 1. Endometrial fatty acid concentrations in the gravid (pregnant) and non-gravid uterine horn, on day 17 of pregnancy, in lactating dairy
cows grazing fresh pasture. Values are means with SED

Fatty acid (common name) Gravid† Non-gravid† SED P values

14:0 (myristic) 0·43 0·28 0·064 0·37
14:1 0·18 0·19 0·014 0·28
15:0 0·39 0·38 0·016 0·38
16:0 (palmitic) 13·15 12·29 0·488 0·21
16:1 1·42 1·48 0·168 0·52
17:0 1·03 0·99 0·031 0·26
18:0 (stearic) 18·03 17·20 0·279 0·06
18:1 (oleic) 20·58 19·85 0·367 0·08
18:2ω6 (linoleic) 7·10 7·19 0·171 0·37
18:3ω3 (linolenic) 1·68 1·84 0·112 0·40
20:0 (arachidic) 0·58 0·59 0·026 0·67
20:1 0·14 0·09 0·054 0·91
20:2 0·22 0·23 0·008 0·53
20:3ω6 (dihomo-γ-linolenic) 2·30 2·20 0·056 0·19
20:4ω6 (arachidonic) 7·04 6·72 0·243 0·15
20:3ω3 (eicosatrienoic) 0·22 0·21 0·011 0·86
20:5ω3 (eicosapentaenoic) 1·60 1·69 0·041 0·19
22:0 1·22 1·30 0·130 0·62
22:5ω3 (docosapentaenoic) 3·42 3·52 0·169 0·80
24:0 1·19 1·44 0·157 0·32
22:6ω3 (docosahexaenoic) 3·21 3·25 0·135 0·51
Unidentified 14·89 17·09 0·713 0·02

Groups
SFA‡ 35·95 34·51 0·972 0·32
MUFA§ 22·80 22·23 0·348 0·25
PUFA¶ 26·78 26·87 0·537 0·77
ω6†† 16·46 16·09 0·314 0·33
ω3‡‡ 10·09 10·59 0·242 0·36
ω6:ω3§§ 1·64 1·51 0·026 0·01

†Gravid=uterine horn containing the pre-implantation conceptus, non-gravid=uterine horn not containing the pre-implantation conceptus; values expressed
as g/100 g total fatty acids
‡SFA=14:0+15:0+16:0+17:0+18:0+20:0+22:0+24:0
§MUFA=14:1+16:1+18:1+20:1
¶PUFA=18:2ω6+18:3ω3+20:2+20:3ω6+20:4ω6+20:3ω3+20:5ω3+22:5ω3+22:6ω3
††ω6=18:2ω6+20:3ω6+20:4ω6
‡‡ω3=18:3ω3+20:3ω3+20:5ω3+22:5ω3+22:6ω3
§§ω6:ω3 ratio= (18:2ω6+20:3ω6+20:4ω6)/(18:3ω3+20:3ω3+20:5ω3+22:5ω3+22:6ω3)
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likelihood (REML), including uterine horn (gravid or non-
gravid), cow genetic strain, and their interactions as fixed
effects, and cow as a random effect. Two cows were
excluded as no visible embryo was recovered.

Both trophoblast weight and IFN-τ concentrations were
log-transformed prior to analyses. The relationships between
trophoblast weight and IFN-τ were examined using linear
regression with the coefficient of determination (R2) being
presented. Initially relationships were explored using linear
regression analyses to examine the relationships between
specific FA and both log of trophoblast size, log ULF IFN-τ
concentration and log trophoblast length. Where the linear
regression was significant, quadratic regression analyses
were also investigated. The quadratic regression analyses
were not significant, hence only data from the linear reg-
ression analyses are presented as R2, slope and the standard
error of the slope (Slope SE). Fatty acids included in these
analyses were stearic acid, oleic acid, linoleic acid, dihomo-
γ-linolenic acid, arachidonic acid, total ω6 FA, total ω3 FA
and the ω6 to ω3 ratio.

Results

Endometrial FA concentrations in the gravid and non-gravid
uterine horns are presented in Table 1. The ratio of ω6:ω3 FA
was greater (P<0·01) in endometrium from the gravid horn
compared with the non-gravid horn. In addition, both 18:0
(P=0·06) and 18:1 (P=0·08) were slightly increased in the

gravid horn. There were no differences in endometrial FA
concentrations for the remaining individual or grouped FA
examined.
The weight of the recovered conceptus varied greatly,

ranging from 4·8 to 312mg (n=12; 100±27·9 mg; mean±
SEM). The log of conceptus weight and log of the ULF IFN-τ
concentrations were positively correlated (P<0·01) for both
the gravid (R2=0·82) and non-gravid (R2=0·81) uterine
horn. Interferon-τ concentrations in ULF were more than
six-times greater in the gravid horn than non-gravid
horns (gravid: 70±15·8 OD units/20 μg protein, non-gravid:
11±5·1 OD units/20 μg protein, respectively).
Correlations between endometrial FA concentrations and

both conceptus weight and IFN-τ concentrations in ULF are
presented in Tables 2 and 3. A negative correlation between
endometrial 20:4ω6 concentrations in the gravid horn and
conceptus weight (P=0·01, R2=0·55) was noted, indicating
that as conceptus weight increased concentrations of 20:4ω6
declined in the gravid but not the non-gravid horn. A similar
negative correlation was recorded for IFN-τ concentrations
and 20:4ω6 (P=0·08; R2=0·30). There was a positive cor-
relation between conceptus weight and 20:3ω6 concen-
trations in the non-gravid horn (P=0·02, R2=0·45); however,
there was no such correlation between IFN-τ concentrations
and 20:3ω6 in the non-gravid horn. A weak positive
correlation (P<0·10, R2=0·35) between endometrial 18:1
and IFN-τ concentrations in ULF of the non-gravid horn was
observed. None of the other correlations investigated were
significant.

Table 2. Coefficient of determination (R2), slope and the standard error of the slope (Slope SE) following linear regression between selected
endometrial fatty acid concentrations (g/100 g of total fatty acids) and the log of conceptus weight on day 17 of pregnancy, in lactating dairy
cows grazing fresh pasture

Log conceptus weight
Fatty acids (common name) Horn† R2 Slope Slope SE P values

18:0 Gravid 0·07 0·335 0·4184 0·44
(stearic) Non-gravid 0·17 0·482 0·3610 0·21

18:1 Gravid 0·01 0·214 0·5899 0·72
(oleic) Non-gravid 0·06 0·693 0·9234 0·47

18:2ω6 Gravid 0·02 0·170 0·3740 0·66
(linoleic) Non-gravid 0·19 0·366 0·2551 0·18

20:3ω6 Gravid 0·06 �0·087 0·1174 0·48
(dihomo-γ-linolenic) Non-gravid 0·45 0·170 0·0626 0·02

20:4ω6 Gravid 0·55 �0·684 0·2051 0·01
(arachidonic) Non-gravid 0·11 �0·443 0·4200 0·32

ω6‡ Gravid 0·15 �0·601 0·4713 0·23
Non-gravid 0·01 0·093 0·3794 0·81

ω3§ Gravid 0·19 �0·388 0·2686 0·18
Non-gravid 0·02 �0·225 0·5608 0·70

ω6:ω3¶ Gravid 0·00 0·003 0·0294 0·91
Non-gravid 0·06 0·054 0·0740 0·48

†Gravid=uterine horn containing the pre-implantation conceptus, non-gravid=uterine horn not containing the pre-implantation conceptus
‡ω6=18:2ω6+20:3ω6+20:4ω6
§ω3=18:3ω3+20:3ω3+20:5ω3+22:5ω3+22:6ω3
¶ω6:ω3 ratio= (18:2ω6+20:3ω6+20:4ω6)/(18:3ω3+20:3ω3+20:5ω3+22:5ω3+22:6ω3)
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Discussion

These results support the hypothesis that presence of the
conceptus modifies endometrial FA concentrations, as the
ω6:ω3 FA ratio was increased in the gravid horn. These
data also suggest that this difference was associated with
an increase in ω6 FA, specifically 20:4ω6 (Table 1).
Arachidonic acid (20:4ω6) is the primary FA precursor for
the synthesis of biological regulators, the eicosanoids, which
includes prostaglandins (PGF2α, PGE2, PGI2), thormboxane
and leukotrienes (see review by Wathes et al. 2007). The
tendency for 20:4ω6 to be increased was not expected, as
endometrial 20:4ω6 concentrations are reportedly lower in
pregnant compared with non-pregnant cows (Thatcher et al.
1995). This difference may reflect the inherent differences in
the experimental models. The current study reports lower
20:4ω6 concentrations than previously reported in endome-
trium from cows at an equivalent stage of the oestrous cycle
(Meier et al. 2009). In addition, previous research reported
that the endometrium from pregnant cows had higher con-
centrations of 20:3ω6 and 18:2ω6 (Meier et al. 2009;
Thatcher et al. 1994) compared with endometrium from
non-pregnant cows. A similar effect was not evident for
endometrium gravid and non-gravid horns, a clear indi-
cation of the fundamental differences between these experi-
mental models. The small changes in endometrial FA
concentrations reported here reflect the unique nature of
the animal model used compared with previous studies. It is
feasible to expect smaller variability within the gravid and

non-gravid horn compared with cows in different reproduc-
tive states (pregnant and non-pregnant). Data from the
current study suggest localized effects on endometrial FA
concentrations associated with the presence of the con-
ceptus. Such a localized effect is supported by Emond et al.
(2004) who reported differences in responsiveness to IFN-τ
between endometrium from the gravid and non-gravid horn.
The physiological significance of these small changes in
endometrial FA concentrations associated with the presence
of the conceptus requires further investigation. A greater
understanding of the physiological importance of these local
changes in endometrial FA during the establishment of
pregnancymay provide information that supports refinement
of the strategies that improve the establishment of pregnancy.
Although the presence of the pre-implantation conceptus

had little effect on endometrial FA concentration overall,
localized effects of the conceptus, within the gravid horn,
were evident. Within the gravid horn, larger concepti and
greater IFN-τ concentrations were associated with lower
endometrial 20:4ω6 concentrations. These variables ex-
plained 55% and 30% of the variation in endometrial
20:4ω6 concentrations, respectively. A primary role for IFN-τ
is the suppression of pulsatile PGF2α synthesis via the
inhibition of the oestradiol and oxytocin receptors (Spencer
& Bazer 2004). Interferon-τ modifies the activity of the
cyclooxygenase enzyme (COX-2), the enzyme that converts
20:4ω6 into prostaglandin intermediates (see review by
Wathes et al. 2007). Low concentrations of IFN-τ have
decreased COX-2 expression (Xiao et al. 1998; Xiao et al.

Table 3. Coefficient of determination (R2), slope and the standard error of the slope (Slope SE) following linear regression between selected
endometrial fatty acid concentrations (g/100 g of total fatty acids) and the log of uterine luminal fluid interferon-tau (IFN-τ) concentrations on
day 17 of pregnancy, in lactating dairy cows grazing fresh pasture

Log IFN-τ
Fatty acid (common name) Horn† R2 Slope Slope SE P values

18:0 Gravid 0·11 0·399 0·3773 0·32
(stearic) Non-gravid 0·04 0·148 0·2589 0·58

18:1 Gravid 0·02 0·207 0·5446 0·71
(oleic) Non-gravid 0·35 1·146 0·5476 0·07

18:2ω6 Gravid 0·00 0·057 0·3490 0·87
(linoleic) Non-gravid 0·00 0·013 0·1867 0·95

20:3ω6 Gravid 0·05 �0·072 0·1091 0·53
(dihomo-γ-linolenic) Non-gravid 0·11 0·047 0·0475 0·35

20:4ω6 Gravid 0·30 �0·467 0·2367 0·08
(arachidonic) Non-gravid 0·07 �0·244 0·3062 0·45

ω6‡ Gravid 0·12 �0·483 0·4449 0·31
Non-gravid 0·06 �0·184 0·2494 0·48

ω3§ Gravid 0·20 �0·365 0·2471 0·17
Non-gravid 0·12 �0·391 0·3751 0·33

ω6:ω3¶ Gravid 0·02 0·011 0·0269 0·68
Non-gravid 0·11 0·052 0·0513 0·34

†Gravid=uterine horn containing the pre-implantation conceptus (n=11), non-gravid=uterine horn not containing the pre-implantation conceptus (n=11)
‡ω6=18:2ω6+20:3ω6+20:4ω6
§ω3=18:3ω3+20:3ω3+20:5ω3+22:5ω3+22:6ω3
¶ω6:ω3 ratio= (18:2ω6+20:3ω6+20:4ω6)/(18:3ω3+20:3ω3+20:5ω3+22:5ω3+22:6ω3)
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1999; Pru et al 2001; Parent et al. 2003; Guzeloglu et al.
2004), whereas elevated IFN-τ increased COX-2 expression
and PGE2 synthesis (Asselin et al. 1997a; Asselin et al.
1997b; Parent et al. 2003; Emond et al. 2004; Guzeloglu
et al. 2004). Additionally, differential effects of IFN-τ on the
gravid and non-gravid horn have been reported. Emond et al.
(2004) reported that IFN-τ unregulated COX-2 expression in
endometrial tissue from the gravid horn only. Hence, the
reduction in 20:4ω6 associated with greater IFN-τ concen-
trations, in the gravid horn, may reflect the stimulation of
COX-2 expression and PGE2 synthesis. This study supports
differences in prostaglandin signalling in the gravid and
non-gravid horn.

The present results suggest that endometrial FA concen-
trations may change as the conceptus develops, although it
remains unclear whether these changes are essential to the
success of pregnancy.
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(Hamilton, New Zealand) and the Foundation for Research,
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