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SUMMARY
In this paper, the joint angles of a two link planar manipulator
are calculated by using inverse kinematics equations together
with some geometric equalities. For a given position of
the end-effector the joint angle and angular velocity of the
links are derived. The analyses contains many equations
which have to be solved. However, the solutions are rather
cumbersome and complicated, therefore a program is written
in Fortran 90 in order to do, the whole calculation and data
collection. The results are given at the end of this paper.

KEYWORDS: Two link planar manipulator; Inverse
kinematics; Joint angles; Angular velocity; Forward
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I. INTRODUCTION
The forward kinematics problem always has a unique
solution which can be obtained simply by evaluating the
forward equations.1 On the contrary, inverse kinematics does
the reverse. In inverse kinematics, given a desired position
and orientation for the end-effector of the robot a set of joint
variables can be determine that achieve the desired position
and orientation. Generally, an inverse kinematic problem may
or may not have a solution. Also, if a solution exists it may
not be a unique. Furthermore, inverse kinematic equations are
complicated and nonlinear functions of the joint variables,
therefore the solutions may be difficult to obtain even if they
exist.2

In inverse kinematics, the equations are much more
difficult to solve directly. Generally, it is necessary to develop
efficient and systematic techniques that exploit the paticular
kinematic structure of the manipulator. Although, in one way
the method is very effective in finding the solution because
it uses geometric approaches as well, still there is not one
solution which can be apply to all robots. Therefore, for
different robots different solutions are needed.

II. TWO LINK PLANAR MANIPULATOR
The manipulator is consist of two links and a end-effector
which is fixed at the end of the second link, as it is shown
in Fig. 1. In this figure, the end-effector is moving linearly
between the points A and B.

* Corresponding author.

In Fig. 1, l1 and l2 are the lenghts of the first and second link
of the manipulator, θ1 is the joint angle between x coordinate
frame and the first link of the manipulator, θ2 is the angle
between the first and second link of the manipulator. While
the end-effector is moving between A and B in a linear
motion, the workspace of the manipulator will be as shown
in Fig. 2.

This type of linear movement is desired, especially
in welding applications in order to have a linear and
homogeneous welding seam. The welding seam [AB] can
be divided into many steps as shown in Fig. 3. Every point
coressponds to diferent links position and joint angles which
may calculated by using inverse kinematics equations.3

III. INVERSE KINEMATIC ANALYSES
When the end-effector of the manipulator is moving from A

to B in a linear motion, as it is shown in Fig. 1, the joint
angles θ1 and θ2 change according to the manipulator links
position l1 and l2.

Let’s assume that the end-effector is doing a welding
operation between A and B points, as it is shown in Fig 1.
In this figure, A is the starting point, where the welding
starts and B is the final point where it ends. In order to
figure out the joint angles of the manipulator along [AB],
inverse kinematics equations are used. Finding the inverse
kinematics solutions at the point A and B will not give
us clear idea how the end-effector is behaving along the
welding seam. Therefore it is necessary to find the inverse
kinematic solution of every step points along [AB]. Doing
this computation by hand is rather difficult, complicated
and cumbersome. For this reason, a program is written
in Fortran 90 which calculates the joint angles and links
position of the manipulator. The program is written based on
forward and inverse kinematic equations. In order to drive
inverse kinematics equations,4 homogeneous equations are
used together with some geometric equalities according to
the Denavit Hartenberger (D-H) representation.

For any given starting and ending points, the program
calculates the manipulators links positions, joint angles and
joint angle velocities which will presented at the end of this
paper. The main purpose of this program is to figure out the
end effector position by calculating the variations in the first
and second joint angles θ1 and θ2, respectively.

Let’s assume that the end-effector is passing [AB] in
limited step points. Under this condition, x and y coordinates
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Fig. 3. Dividing the welding seam into step points

of a given step point may calculated. Consider point C

in Fig. 3; x0 and y0 coordinates are calculated by using
geometric equalities as below:

[CA]

[CB]
= m

n
= k (1)

then, x0 and y0 are written as follow:

x0 = x1 + kx2

1 + k
(2)

and

y0 = y1 + ky2

1 + k
(3)

In Fig. 4 coordinate frames of the two link planar manipulator
is given. In this figure, oxyz, ox1y1z1 and ox2y2z2 coordinate
frames are placed on the manipulator links according to
the Denavit Hartenberger (D-H) representation.5 The final
coordinate system onxnynzn is commonly referred to as the
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Fig. 4. Coordinate frames attached to two link planar manipulator

end-effector or tool frame. The origin of the tool frame is
most often placed symmetrically between the fingers of the
gripper.6 The unit vectors along the xn, yn and zn axes are
labelled as n, s and a, respectively. According to the D-
H representation, the transformation matrix in general form
can be written as below:

Ai
i−1 =




Cosθi −CosβiSinθi SinαiSinθi aiCosθi

Sinθi CosαiSinθi −SinαiCosθi aiSinθi

0 Sinαi Cosαi di

0 0 0 1



(4)

where i = 1, 2. Equation (4) describes the transformation
matrix between two coordinate frames i and (i − 1) attached
to links i and i − 1 which are connected by a rotational joint.
In the above equation θi is the angle, αi is the twist angle,
ai is the length and di is the distance between the links. The
joint variables of the two link planar manipulator are given
in Table I.

According to (4), the transformation matrices A1
0 and A2

1,
which relates to the first and second coordinate frames, can
be written as follows:

A1
0 =




c1 −s1 0 l1c1

s1 c1 0 l1s1

0 0 1 1
0 0 0 1




A2
1 =




c2 −s2 0 l2c2

s2 c2 0 l2s2

0 0 1 1
0 0 0 1


 (5)

Table I. The joints variables.

Link (i) di ai αi θi

1 0 l1 0 θ1

2 0 l2 0 θ2
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where c1 = cosθ1, s1 = sinθ1, c2 = cosθ2 and s2 = sinθ2.
The homogeneous transformation matrix is,

T = A2
0 = A1

0A
2
1 (6)

A2
0 =




c12 −s12 0 l1c1 + l2c12

s12 c12 0 l1c1 + l2c12

0 0 1 1
0 0 0 1


 (7)

In the above equation, c12 = c1c2 − s1s2 = cos(θ1 + θ2) and
s12 = s1c2 + c1s2 = sin(θ1 + θ2). The matrix A2

0 relates the
end-effector coordinates to the base coordinate frame. From
Equations (6) and (7), the position of the end-effector in the
base coordinate system can be obtained. From (6), A2

1 can be
written as follows:

A2
1 = (

A1
0

)−1
T (8)

where

(
A1

0

)−1 = A0
1 =




c1 s1 0 −l1
−s1 c1 0 0

0 0 1 0
0 0 0 1


 ,

and

T =




nx0 sx0 ax0 P̄x0

ny0 sy0 ay0 P̄y0

nz0 sz0 az0 P̄z0

0 0 0 1


 .

Then, Equation (8) can be rewritten as follows

A0
1T =




c1 s1 0 −l1
−s1 c1 0 0

0 0 1 0
0 0 0 1







nx0 sx0 ax0 P̄x0

ny0 sy0 ay0 P̄y0

nz0 sz0 az0 P̄z0

0 0 0 1




A2
1 = A0

1T




c1nx0 + s1ny0 c1sx0 + s1sy0 c1ax0 + s1ay0 c1p̄x0 + s1p̄y0 − 11

−s1nx0 + c1ny0 s1sx0 + c1sy0 s1ax0 + c1ay0 s1p̄x0 + c1p̄y0

nz0 sz0 az0 p̄z0

0 0 0 1




The corresponding entries in (5) and (9) are set equal,
therefore the following equations can be written:

c1p̄x0 + s1p̄y0 − l1 = l2c2 (10)

−s1p̄x0 + c1p̄y0 = l2s2 (11)

The first and second joint angles, θ1 and θ2 in Fig. 5 can be
calculated from Equations (10) and (11). Taking the square
of (10) and (11) and adding them side by side the following
equation results

(2l1p̄x0)c1 + (2l1p̄y0)s1 = p̄2
x0 + p̄2

y0 + l2
1 − l2

2 (12)

x

l1

 (Px0, Py0)

θ1

l2

ρ
θ2

y

r

Fig. 5. The manipulator joint angles

where,

p̄x0 = r cosρ
p̄y0 = sinρ

(13)

r =
√

p̄2
x0 + p̄2

y0 (14)

and ρ = tan−1( p̄y0

p̄x0
). By using (13) and the equality

cosθ1cosρ + sinθ1sinρ = cos(θ1 − ρ), the Equation (12) is
rewritten as below:

2l1r cos(θ1 − ρ) = p̄2
x0 + p̄2

y0 + l2
1 − l2

2 (15)

The above equation can be rewritten by using (14) as;

2l1

√
p̄2

x0 + p̄2
y0 cos(θ1 − ρ) = p̄2

x0 + p̄2
y0 + l2

1 − l2
2 (16)

From (16),

(9)

cos(θ1 − ρ) = p̄2
x0 + p̄2

y0 + l2
1 − l2

2

2l1

√
p̄2

x0 + p̄2
y0

(17)

and

cos2(θ1 − ρ) =
(
p̄2

x0 + p̄2
y0 + l2

1 − l2
2

)2

4l2
1

(
p̄2

x0 + p̄2
y0

) (18)

can be written. By using the equality cos2(θ1 − ρ) +
sin2(θ1 − ρ) = 1 and Equation (18), the following equation
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Table II. The joint variables of the manipulator which are used in
the program.

The length of the first link l1 = 10 cm
The length of the second link l2 = 9 cm
x Coordinate (starting point) 7
y Coordinate (starting point) 5
x Coordinate (ending point) −7
y Coordinate (ending point) 2
Step Number (n) 50
Total Loggin Time 30 sn

follows

sin(θ1 − ρ) =

√√√√1 −
(
p̄2

x0 + p̄2
y0 + l2

1 − l2
2

)2

4l2
1

(
p̄2

x0 + p̄2
y0

) (19)

From (17) and (19),

tan(θ1 − ρ) =
p̄2

x0+p̄2
y0+l2

1−l2
2

2l1
√

p̄2
x0+p̄2

y0√
1 −

(
p̄2

x0+p̄2
y0+l2

1−l2
2

)2

4l2
1

(
p̄2

x0+p̄2
y0

)
tan(θ1 − ρ) =

√
4l2

1

(
p̄2

x0 + p̄2
y0

) − (
p̄2

x0 + p̄2
y0 + l2

1 − l2
2

)2

p̄2
x0 + p̄2

y0 + l2
1 − l2

2
(20)

can be written. Then above equation is;

θ1 = ρ + tan−1




√
4l2

1

(
p̄2

x0 + p̄2
y0

) − (
p̄2

x0 + p̄2
y0 + l2

1 − l2
2

)2(
p̄2

x0 + p̄2
y0 + l2

1 − l2
2

)


(21)

The second joint angle, θ2 can be solved by dividing (11) to
(10) as below:

θ2 = tan−1

( −p̄x0s1 + p̄y0c1

p̄x0c1 + p̄y0s1 − l1

)
+ kπ (22)

The program is written acccording to variables which are
given in Table II and Equations (21), (22). The algorithm of
the program is given in detail in Appendix I.

As it is shown in Table II, the program is run for 30 seconds
and 50 step points. After running the program data in Table III
are obtained.

IV. RESULTS AND DISCUSSION
The position of the end-effector on the x-axis is shown in
Fig. 6. There is a linear relationship between time and posi-
tion. After the middle of the sampling time (after 15 seconds),
the end-effector is moving along the negative part of the x-
axis in order to reach to final point set in the program.

Similarly, the variation in the end effector position on the
y-axis is shown in Fig. 7. As it is shown in this figure, the start-
ing and ending points of the end-effector matches the values
that are given in the program which is rather desirable. It
follows from the above two figures the position of the end
effector on the xoy coordinate frame is shown in Fig. 8.
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Fig. 6. The position of the end-effector on x-axis
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Fig. 7. The position of the end-effector on y-axis
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Fig. 8. The position of the end-effector on xoy coordinate frame
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Fig. 9. The variations in the first joint angle, θ1

The variations in the first joint angle, θ1 are shown in Fig. 9.
In this figure there is a linear relationship between time and
the joint angle until 10 sn. After this point, linearity no longer
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Table III. The joint variables of the manipulator which are derived from the program.

Step Time θ1 (Gradient) θ2 (Gradient) ω1 (rad/sn) ω2 (rad/sn)

0 0 −2,816486 126,473 0,00 0,00
1 0,6 −4,252487 128,2504 −0,0418 0,0517
2 1,2 −5,715397 130,0042 −0,0426 0,051
3 1,8 −7,208878 131,7343 −0,0434 0,0503
4 2,4 −8,736984 133,4404 −0,0445 0,0496
5 3 −10,30421 135,122 −0,0456 0,0489
6 3,6 −11,91557 136,7784 −0,0469 0,0482
7 4,2 −13,57665 138,4088 −0,0483 0,0474
8 4,8 −15,2937 140,0119 −0,0499 0,0466
9 5,4 −17,07373 141,5863 −0,0518 0,0458

10 6 −18,92464 143,1301 −0,0538 0,0449
11 6,6 −20,85528 144,6412 −0,0562 0,044
12 7,2 −22,8756 146,117 −0,0588 0,0429
13 7,8 −24,99669 147,5543 −0,0617 0,0418
14 8,4 −27,23099 148,9493 −0,065 0,0406
15 9 −29,59219 150,2976 −0,0687 0,0392
16 9,6 −32,09529 151,5941 −0,0728 0,0377
17 10,2 −34,75644 152,8328 −0,0774 0,036
18 10,8 −37,59261 154,0066 −0,0825 0,0341
19 11,4 −40,62097 155,1076 −0,0881 0,032
20 12 −43,85803 156,127 −0,0942 0,0297
21 12,6 −47,31818 157,0547 −0,101 0,027
22 13,2 −51,01178 157,8804 −0,107 0,024
23 13,8 −54,94283 158,593 −0,114 0,0207
24 14,4 −59,10625 159,1815 −0,121 0,0171
25 15 −63,48522 159,6359 −0,127 0,0132
26 15,6 −68,04936 159,9473 −0,133 0,00906
27 16,2 −72,75414 160,1095 −0,137 0,00472
28 16,8 −77,54247 160,1188 −0,139 0,000272
29 17,4 −82,34827 159,9752 −0,14 −0,00418
30 18 −87,10191 159,6816 −0,138 −0,00854
31 18,6 −91,73608 159,2443 −0,135 −0,0127
32 19,2 −96,19121 158,6716 −0,13 −0,0167
33 19,8 −100,4192 157,9736 −0,123 −0,0203
34 20,4 −104,3854 157,1611 −0,115 −0,0236
35 21 −108,0681 156,2452 −0,107 −0,0266
36 21,6 −111,4578 155,2365 −0,0986 −0,0293
37 22,2 −114,5544 154,1449 −0,0901 −0,0318
38 22,8 −117,365 152,9796 −0,0818 −0,0339
39 23,4 −119,9021 151,7484 −0,0738 −0,0358
40 24 −122,1811 150,4586 −0,0663 −0,0375
41 24,6 −124,219 149,1163 −0,0593 −0,039
42 25,2 −126,0335 147,7267 −0,0528 −0,0404
43 25,8 −127,6423 146,2944 −0,0468 −0,0417
44 26,4 −129,0621 144,8232 −0,0413 −0,0428
45 27 −130,3088 143,3162 −0,0363 −0,0438
46 27,6 −131,3971 141,7762 −0,0317 −0,0448
47 28,2 −132,3404 140,2054 −0,0274 −0,0457
48 28,8 −133,1511 138,6058 −0,0236 −0,0465
49 29,4 −133,8403 136,9787 −0,02 −0,0473
50 30 −134,4179 135,3254 −0,0168 −0,0481

exist and the joint angle is varying rapidly. Similar behaviour
can be seen in the angular velocity of the first joint angle, as
shown in Fig. 10. There, after 1.5 seconds the variations in
the joint angle velocity are rapid and nonlinear.

Similarly, the variation in the second joint angle, θ2 is
shown in Fig. 11. In order to reach the required position

of the end-effector, the variation in the second joint angle
is rather nonlinear, but still there are no sudden increases or
decreases, therefore it assumes a gradual form. As a result, the
angular velocity of the second joint angle is varying linearly
for about 2 seconds, as shown in Fig. 12. After that time the
changes are rather nonlinear, but they are still gradual.
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Fig. 10. The changes of the first joint angle velocity, ω1
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Fig. 11. The variations in the second joint angle, θ2

-0,06

-0,04

-0,02

0

0,02

0,04

0,06

0 5 10 15 20 25 30 35

Time (Second)
Velocity 2 
(rad/sn)

Fig. 12. The changes of the second joint angle velocity, ω2

V. CONCLUSIONS
In this paper, the joint angles and angular velocities of the
two link planar manipulator are derived by using inverse

kinematic equations together with some geometric equalities.
The joint angles variations and angular velocities are shown
in Fig. 6–12. The results derived in this work are completely
theoretical.

The program results may give us an idea how the real robot
may behave under same condition. Obviously, the real robot
may not give same responses. This is due to the fact that
in this analyses the mass of the end-effector and links, the
friction forces in the joints are not considered.

The variation in the first joint angle, θ1 is rapid and
nonlinear are shown in Fig. 9. This could cause problems, in
real life applications due to the fact that under this condition
the inertial forces could become very effective; hence, this
could lead to instability.

In welding application, the linear movements of the end-
effector is crucial in order to have a homogeneous (in terms
of materials) welding seam. For that reason, the stability and
linear movement of the end-effector is very important. In this
case, the stability of the manipulator may be assured by using
one of the adaptive control strategies which can adapt itself
to changes in the system and working condition.7

One could consider modelling the manipulator dynamic-
ally by using one of the dynamic system modelling packages
program, like simulink. The joint angles and position of the
links may be found by using this mathematical model of
the system. Later on, a prototype of the real manipulator
may be built, and the two theoretical results (the inverse
kinematic analyses results and the dynamic model results)
may be compared with real robot responses in order to see
which method is of an effective and practical in use. It is also
possible to find which method gives better understanding of
the real robot.

References
1. J. C. Colson and N. D. Perreira, “Kinematic Arrangements Used

in Industrial Robots”, Proc. 13th International Symposium on
Industrial Robots (1983). pp. 28–37.

2. J. M. Hollerbach and S. Gideon, “Wrist-Partitioned Inverse
Kinematic Accelerations and Manipulator Dynamics”, Int. J.
Robotics Res. 4, 61–76 (1983).

3. A. J. Koivo, Fundamentals for Control of Robotic Manipulators,
(John Wiley and Sons, 1989).

4. A. A. Goldenberg, B. Benhabib and R. G. Fenton, “A Complete
Generalized Solution to the Inverse Kinematics of Robots”,
IEEE Journal of Robotics and Automation, RA-1, No. 1, 14–20
(March 1985).

5. M. W. Spong and M. Vidyasagar, Robot Dynamics and Control
(John Wiley and Sons, 1989).

6. R. P. Paul, B. E. Shimano and G. Mayer, “Kinematic Control
Equations for Simple Manipulators” IEEE Trans. Systems,
Man., and Cybernetics SMC-11, No. 6, 339–455 (1981).

7. S. Bulut, “The robustness of Reduced Order Minimal Controller
Synthesis Control in Plastic Region”, Proc. Instn Mech. Engrs,
Part I, Journal of Systems and Control Engineering 214, 185–
195 (1999).

https://doi.org/10.1017/S0263574705002274 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574705002274


Welding 361

APPENDIX I
The calculation program which is written in Fotran 90

H

H

H

H

H

H

E

B

E

E

E

   START 

ul1, ul2, bax, bay 
bix, biy, adim, time 

baku = (bax**2 + bay**2)**0.5 

biku = (bix**2 + biy**2)**0.5 

  time1 = time/adim 

top1 = ul1 + ul2 
fark1 = ABS(ul1 – ul2)

top1 < baku

baku < fark1

top1 < biku 

biku < fark1 

   bay < 0 

   biy < 0 

A

    m = 0

E

E

C
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H

E

H

E

E

H

A

Create “results” 
Data file 

I = 0,adim 

i = adim 

n = adim-m 

saykat = m/n 

bulx = (bax + saykat*bix)/(1 + saykat) 

buly = (bax + saykat*biy)/(1 + saykat) 

teta1 = atan(buly/bulx) +    
atan(((44*ul1**2*(bulx**2 + buly**2) – 
(bulx**2 + buly**2 + ul1**2 – ul2**2)**0.5)/ 
(bulx**2 + buly**2 + ul1**2 – ul2**2)) 

teta2 = atan((bulx*sin(teta1) + buly*cos(teta1)/ 
(bulx*cos(teta1) + buly*sin(teta1) – ul1)) 

     i = 0 

t1fark = teta1 – teta1s
t2fark = teta2 – teta2s

teta1s = teta1 
teta2s = teta2 

bulx = bix 
buly = biy 

  F   E   D

If the given 
coordinates are 
outside of the 

working space then 
enter button“1” for 

the new 
coordinates

 B  C 

Vgir

Vgir = 1
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Welding 363

hız1 = t1fark/time1
hız2 = t2fark/time1

  F   D   E 

time t = time1*i

  I 

Write all data accordinly into  teta1s, 
teta2s, hız1, hız2 and timet data files

Close the 
“results” data file

STOP

Table IV. The description of notations that are in the Fortran 90 program.

adim: the total step number n: the total step number along [CB]
baku: the distance between o0, origin of the base saykat: the coefficient k, k = m /n

coordinate frame and the starting point
bax: x coordinate of the starting point teta1: the first joint angle, θ1

bay: y coordinate of the starting point teta2: the second joint angle, θ2

biku: the distance between o0, origin of the base teta1s = teta1 − t1fark
coordinate frame and the ending point teta2s = teta2 − t2fark

bix: x coordinate of the ending point t1fark: θ1(t + 1) − θ1(t)
biy: y coordinate of the ending point t2fark: θ2(t + 1) − θ2(t)
bulx: x coordinate of the every step point t : time
buly: y coordinate of the every step point time: one cycle of time
fark1: the subtractive length of the first and second link time1: one step of time

timet: the total time
hız1: the angular velocity of the first joint angle, θ1 top1: the total length of the first and second link
hız2: the angular velocity of the second joint angle, θ2 ul1: the length of the first link
m: the total step number along [AC] ul2: the length of the second link
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