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Dynamics of a macroscopic elastic fibre in
a polymeric cellular flow

Qiang Yang1 and Lisa Fauci1,†
1Department of Mathematics, Tulane University, New Orleans, LA 70118, USA

(Received 7 July 2016; revised 24 January 2017; accepted 25 January 2017;
first published online 20 March 2017)

We study the dynamics and transport of an elastic fibre in a polymeric cellular flow.
The macroscopic fibre is much larger than the infinitesimal immersed polymer coils
distributed in the surrounding viscoelastic fluid. Here we consider low-Reynolds-
number flow using the Navier–Stokes/Fene-P equations in a two-dimensional, doubly
periodic domain. The macroscopic fibre supports both tensile and bending forces,
and is fully coupled to the viscoelastic fluid using an immersed boundary framework.
We examine the effects of fibre flexibility and polymeric relaxation times on fibre
buckling and transport as well as the evolution of polymer stress. Non-dimensional
control parameters include the Reynolds number, the Weissenberg number, and the
elasto-viscous number of the macroscopic fibre. We find that large polymer stresses
occur in the fluid near the ends of the fibre when it is compressed. In addition,
we find that viscoelasticity hinders a fibre’s ability to traverse multiple cells in the
domain.
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1. Introduction
The motion of flexible fibres suspended in a fluid is fundamental to many biological

and physical processes. These fibres could be actively generating propulsive forces
or passively transported by the flow. Respiratory cilia may be thought of as actuated
elastica that are responsible for mucus clearance, while sperm flagella are actuated
elastica responsible for mammalian fertilization (Fauci & Dillon 2006). Flexible
diatom chains passively move in the turbulent ocean and account for much of the
Earth’s primary production (Karp-Boss & Jumars 1998). Actin filaments and DNA
strands are also examples of passive elastic fibres that may bend in a moving fluid
(Kantsler & Goldstein 2012; Harasim et al. 2013). In industry, sorting pulp fibres
based on their flexibility is central to the paper-making process (Stockie & Green
1998).

Early experiments by Forgacs & Mason (1959) catalogued the shape deformations
of elastomer fibres in shear, and noted that, for a given fluid viscosity and shear rate,
there was a critical length above which the fibres buckled. More recently, the orbits
and buckling of flexible fibres in a Newtonian shear flow have been analysed using
slender-body hydrodynamics (Becker & Shelley 2001; Tornberg & Shelley 2007),
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bead models (Skjetne, Ross & Klingenberg 1997) and computational models that
fully couple fibre forces with fluid dynamics (Stockie & Green 1998; Nguyen &
Fauci 2014). More complicated transport of fibres occurs in cellular flows that are
formed by counter-rotating vortices. In the absence of fibres, streamlines within the
cellular regions are closed. Here, hyperbolic stagnation points are connected by stable
and unstable manifolds (Young & Shelley 2007; Wandersman et al. 2010; Quennouz
et al. 2015). Young & Shelley (2007) characterized the stretch–coil instability of
fibres in such cellular flows of a viscous Stokesian fluid. They simulated an elastic
fibre immersed in a four-roll mill and showed that buckling instabilities modulated
transport of fibres through the cellular domain. In particular, they characterized the
fibres as ‘random walkers’ that choose an escape direction away from the stagnation
point based upon their internal bending properties and their shape as they near the
compressive region. The buckling threshold was determined by the elasto-viscous
number of the fibre, which is the ratio of the fluid’s viscous forces to the fibre’s
elastic force. Recent laboratory experiments by Wandersman et al. (2010) confirmed
this buckling threshold. These experiments showed that the fibre’s ability to escape
the cellular regions increased with their flexibility. Most recently, through coordinated
experimental and theoretical studies, Quennouz et al. (2015) found that the fibre
buckling probability depends not only on the elasto-viscous number, but also on the
entry position and orientation. The entrapment of fibres in the cellular regions is also
highly dependent on the entry position and entry orientation. Recently, Manikantan
& Saintillan (2013) analysed the effect of thermal fluctuations on the transport of
fibres in cellular flows, and showed that such fluctuations enhance the trapping within
vortical cells.

As in the case of a cilium beating in mucus, in many biological applications a
macroscopic fibre may be interacting with a fluid that has an embedded microstructure.
Here we study the motion of a flexible macroscopic fibre in a cellular flow where
the surrounding fluid is viscoelastic. We choose the Fene-P modification of an
Oldroyd-B description, which models the viscoelastic fluid as a Newtonian solvent
with polymers embedded (Larson 1998; Phan-Thien 2002). Numerical studies of such
Stokesian viscoelastic cellular flows without a macroscopic fibre have been performed
by Thomases & Shelley (2007). While the geometry of the flow is driven by a
time-independent background force, polymer stresses coupled to the fluid equations
result in flows that are not constant in time. They observed the emergence of singular
structures in the polymer stress field in Oldroyd-B fluids for large enough Weissenberg
number – the ratio of polymer relaxation time to the flow time scale. However, when
finite chain lengths were enforced using a Fene-P modification, the maximum values
of stress were reduced.

Here we examine the transport of an immersed elastic macroscopic fibre in a
two-dimensional, doubly periodic cellular flow. A Navier–Stokes fluid with additional
polymer stresses due to Fene-P description is driven by a background force. We
present the mathematical formulation of the coupled fluid–polymer fibre system,
and discuss the non-dimensional control parameters that govern the dynamics. We
examine the effects of Weissenberg number and elasto-viscous number on fibre
dynamics, transport and their ability to escape cellular regions.

2. Mathematical model

We consider an elastic flexible fibre immersed in a four-roll mill background flow
(Young & Shelley 2007; Wandersman et al. 2010). In the absence of a fibre or
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(a) (b)

(c) (d)

FIGURE 1. (Colour online) Fibre configurations at different times at Re = 2.5, Wi = 1
and η = 370. This fairly stiff fibre approaches the stagnation point at the centre, bends,
regains its straight configuration and then moves away from the stagnation point along the
outgoing streamline to the right.

viscoelasticity, the velocity field of this cellular, doubly periodic flow on the domain
Ω̃ = [−W,W] × [−W,W] is

ub = u0

 sin
( π

W
x
)

cos
( π

W
y
)

−cos
( π

W
x
)

sin
( π

W
y
)
 . (2.1)

This background velocity may be generated by adding a time-independent external
force density to the Navier–Stokes equations. Figure 1(a) shows this vortical
background flow, where vertical compression and horizontal stretching occur near
the central stagnation point. Within this domain, we will introduce a fibre of length
L. We choose the physical parameters as shown in table 1. These parameters
largely follow the experiments of Wandersman et al. (2010), except that here we
choose a cellular length of W = π cm while their experiments were performed with
W = 3 cm.

We choose our dimensional length scale to be the vortical cell diameter W, and the
time scale to be the inverse of the maximal extension rate γ̇ =πu0/W. We assume that
the viscoelastic fluid dynamics is described by the coupled non-dimensional Navier–
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Quantity Description Value Units

ρ Fluid density 1.25 g cm−3

µ Solvent viscosity 0.4 g cm−1 s−1

u0 Maximal velocity 0.08 cm s−1

W Cellular length π cm
L Fibre length 0.4π cm
r Effective fibre radius 0.025 cm
ε Aspect ratio r/L 0.0625/π —

Re Reynolds number 2.5
Wi Weissenberg number 0.0–5.0
η Elasto-viscous number 370–2960

TABLE 1. Physical parameters.

Stokes/Fene-P equations in the domain Ω = [−1, 1] × [−1, 1] with periodic boundary
conditions:

Re
(
∂u
∂t
+ u · ∇u

)
=−∇p+1u+ β ∇ · S + f + g, (2.2)

∇ · u= 0, (2.3)
∂C

∂t
+ u · ∇C − (∇uC + C∇uT)=−Wi−1(S − I), (2.4)

S = C

1− tr(C)/L2
. (2.5)

The non-dimensional velocity and pressure are u = (u, v) and p, respectively, and
the Reynolds number is Re= ρπWu0/µ. The Weissenberg number, Wi= τp/τf , is the
ratio of the polymer relaxation time τp and the time scale of the flow τf = (γ̇ )−1. The
dimensionless stress tensor C has been scaled by G, the isotropic stress arising from
thermodynamic fluctuations of the polymer chains in the absence of flow. Note that
G=κTV , where κ is the Boltzmann constant, T is temperature and V is the number of
polymer chains per unit volume (Larson 1998). The Fene-P stress tensor S penalizes
the extensibility of the infinitesimal polymer chains, and L represents the ratio of the
maximal polymer length when stretched to the polymer length when coiled. Here S
represents the extra stress generated by the transport and distension of the polymer
field, and is coupled to the Navier–Stokes equation with the parameter β = Gτf /µ.
Note that β · Wi is a physical quantity that measures the ratio of polymer viscosity
to solvent viscosity. As in Thomases & Shelley (2007), here we choose L2 = 50 and
βWi= 0.5.

In the momentum equation (2.2), g(x) is the external force density chosen to achieve
the background velocity field,

g= Re
π

(
cos(πx) sin(πx)
cos(πy) sin(πy)

)
+ 2π

(
sin(πx) cos(πy)
−cos(πx) sin(πy)

)
, (2.6)

and f is the force density imparted to the fluid by the fibre,

f (x, t)=
∫

D
F(s, t)δ(x−X(s, t)) ds. (2.7)
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Here the position of the fibre D is given by X(s, t), with s a material coordinate and
δ the two-dimensional Dirac delta function. The fibre is taken to be a generalized
Euler elastica whose equilibrium configuration is straight. The fibre supports forces
F=−(∂E/∂X) that are derived from tensile (Et) and bending (Eb) energies,

E= Et + Eb = 1
2
σs

∫
D

(∥∥∥∥∂X
∂s

∥∥∥∥− 1
)2

ds+ 1
2
σb

∫
D

∥∥∥∥∂2X
∂s2

∥∥∥∥2

ds, (2.8)

where σs is a non-dimensional tensile stiffness and σb is a non-dimensional bending
stiffness. In the simulations presented below, we choose σs large enough so that the
fibre remains nearly inextensible, with deviations from its equilibrium arclength of no
more than 3 %. The non-dimensional bending stiffness σb may be varied to change
fibre flexibility, and is related to the dimensional bending rigidity EI of the fibre by

σb = EI
4π2µu0W2r

. (2.9)

The relative importance of flow forces to elastic forces is measured by

η= 8πµγ̇L4

cEI
, (2.10)

where c=−log(ε2e). As in Quennouz et al. (2015), we refer to η as the elasto-viscous
number. This non-dimensional control parameter has also been referred to as ‘effective
viscosity’ in Tornberg & Shelley (2007), ‘effective flow forcing’ in Nguyen & Fauci
(2014) and ‘sperm number’ in Wandersman et al. (2010). In the simulations presented
below, we choose the bending stiffness σb so that the range of the elasto-viscous
number η is as stated in table 1.

The system is closed by enforcing the no-slip condition that requires the material
points of the immersed fibre to move at the fluid velocity defined at those points:

∂X
∂t
= u(X(s, t), t)=

∫
Ω

u(x, t)δ(x−X(s, t)) dx. (2.11)

The formulation of the coupled fluid–fibre–viscoelastic system described above
is readily discretized using an immersed boundary formulation, as in Teran, Fauci
& Shelley (2010), Chrispell, Fauci & Shelley (2013) and Thomases & Guy (2014).
The fluid velocity, pressure and polymer stress tensors are defined on an M × M
finite difference grid, and the centreline of the macroscopic fibre is discretized using
N points. The tensile and bending forces supported on the Lagrangian fibre are
spread to the grid using discretized Dirac delta functions (Peskin 2002). Within
this immersed boundary framework, we associate an effective radius of the fibre to
be one grid spacing, which accounts for most of the support of the forces along
the one-dimensional fibre centreline. A time-splitting method is used to evolve the
momentum equation and the polymer stress equation. The momentum equation is
updated using the formally second-order method of Lai & Peskin (2000), and the
polymer stress equation is updated using the square-root method of Balci et al. (2011).
Both velocity and polymer stress are evolved using a second-order Runge–Kutta
method. In the simulations presented below, we discretize the fluid domain using a
lattice of 256× 256 grid points and the fibre, whose length is not varied, is discretized
as a one-dimensional curve with N = 103 points. Because of the properties of the
discretized Dirac delta function, which the spreads the fibre forces to nearby grid
points, the effective radius of the fibre is taken to be a single grid spacing. This
interpretation is used to identify the elasto-viscous number of the coupled system.
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FIGURE 2. (Colour online) (a) Contour plot of the difference in vertical velocity
components at t = 7 between the coupled fibre–viscoelastic system shown in figure 1(c)
and a simulation with no immersed fibre, normalized by the vertical velocity of the
fibre-free case. (b) The relative L2 norm of the difference between the velocities (both
horizontal and vertical components) of the coupled fibre–viscoelastic system and the
fibre-free case for time 0 6 t 6 15.

3. A case study
Here we examine the motion of an elastic macroscopic fibre immersed in a

polymeric fluid that is driven by external forcing. The Reynolds number Re = 2.5
is small, but non-zero, the elasto-viscous number is η = 370 and the Weissenberg
number Wi = 1. We interpret the effective radius of the one-dimensional fibre to be
the grid spacing, giving an aspect ratio ε= r/L≈ 0.02. This aspect ratio is at the high
end of those reported in Quennouz et al. (2015) and approximately three times the
aspect ratio of the fibres used in the experiments of Wandersman et al. (2010). At
time t= 0 the fibre is placed vertically in the domain, offset slightly from the midline
(along x = 1.2 × 10−3 with its lowest point at y = 1.2 × 10−6). Initially, the fibre is
in its equilibrium, straight and unstretched configuration (figure 1a). The velocity
field was initialized to be the cellular vortical flow given by (2.1), and the polymer
stress tensor S was initialized to be the identity. As the fibre nears the stagnation
point along the stable manifold, it buckles slightly (figure 1b). At time t= 7 we see
that the fibre is nearly straight again and follows a path away from the stagnation
point along the horizontal unstable manifold (figure 1c,d). In related computational
studies that examined motion of an inextensible fibre in a Newtonian–Stokes cellular
flow, Young & Shelley (2007) found that the onset of a buckling instability occurred
for elasto-viscous number η ≈ 328, and later experimental studies by Wandersman
et al. (2010) found this threshold value to be η ≈ 400. The elasto-viscous number
of the fairly rigid fibre in figure 1 is near these buckling thresholds, and, while
demonstrating some bending, does not exhibit dramatic shape changes.

While the Reynolds number chosen here Re= 2.5 is in the range of the experiments
in Wandersman et al. (2010), the experiments of Quennouz et al. (2015) were
performed at lower values. We did run simulations as in figure 1 at the lower
Reynolds numbers Re= 0.5 and 1.0 and found little difference in the fibre dynamics.

The presence of the fibre influences the local flow structure. In order to measure this
influence, we ran a simulation using the same parameters as in the present case study,
but without the immersed fibre. Figure 2(a) shows a contour plot of the difference
in vertical velocity components at t= 7 between the coupled fibre–viscoelastic system
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FIGURE 3. (Colour online) Snapshots of contours of the log(tr S) and the macroscopic
fibre. Note that tr S measures the mean squared distension of polymer coils. Here Re=2.5,
Wi= 1 and η= 370.

shown in figure 1(c) and the simulation with no immersed fibre, normalized by the
vertical velocity of the fibre-free case. We see that the differences are localized near
the fibre, and the vertical velocities near the fibre endpoints are altered nearly 25 %.
Figure 2(b) shows the L2 norm of the difference between the two components of
velocity, normalized by the L2 norm of velocity in the fibre-free case as a function
of time. Interestingly, the fibre has the least effect on the velocity field at times that
correspond to buckling events (near time t= 6, for instance).

Figure 3 shows contour plots of the log of the trace of the stress field S. Note
that tr(S) measures the mean squared distension of polymer coils. As demonstrated
by Thomases & Shelley (2007) for cellular viscoelastic flows without an immersed
macroscopic fibre, stress concentrates on a region emanating from the stagnation point
in the extensional direction. For the small Weissenberg number Wi= 1, the polymers
are slowly stretched and this stretch is limited by the Fene-P penalization. In fact,
in all of the simulations presented here, the Weissenberg numbers are small enough
and the runtime is small enough that the threshold of instability of the cellular flow
is not reached. Figure 3(a) shows that when the fibre is almost straight and is being
compressed, large polymer stresses are concentrated near its ends. At this instance, the
fibre’s tensile energy is large as it tries to maintain its length (figure 7a). The contours
in figure 3(b) show that as the fibre starts to bend the polymer stresses decrease near
its ends, and when it straightens in figure 3(c) the polymer stress is distributed along
the fibre. As the fibre moves along the unstable horizontal direction, we again see
large polymer stretching near its ends.
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FIGURE 4. (Colour online) (a) At time t= 7, contours of the difference between tr(S) in
the fibre–viscoelastic system and that in the corresponding fibre-free viscoelastic system.
(b) Values of tr(S) at the stagnation point in both the fibre–viscoelastic system and the
fibre-free viscoelastic system as a function of time. Here Re= 2.5, Wi= 1 and η= 370.

In order to determine how the presence of the macroscopic fibre affects the
polymer stress field, we examine the difference between tr(S) with a fibre and tr(S)
in a simulation with no fibre. Figure 4(a) shows contours of this difference at time
t = 7. We see positive values around the ends of the fibre, which demonstrate that
there is extra distension of the polymers caused by the fibre locally at its ends.
However, along the extensional horizontal direction around the stagnation point,
negative contours indicate that the presence of the fibre limits the polymer distension
there. Figure 4(b) plots the evolution of tr(S) evaluated at the stagnation point for
both the coupled fibre–viscoelastic system and the fibre-free system. The dotted blue
line, indicating tr(S) in the absence of a fibre, shows that this value stabilizes to a
constant, as the Fene-P penalization limits the polymer stretching. The solid red curve
indicates tr(S) at the stagnation point for the fibre–viscoelastic system. Note that up
until approximately t = 12, distension of the polymers at the stagnation point falls
considerably below that in the fibre-free system. As the fibre moves away from the
stagnation point, it carries along stretched polymers at its end to the fixed location
of the stagnation point, and tr(S) spikes. As the fibre exits the cell, the distension of
polymers at the stagnation point relaxes to the value in the fibre-free case.

We may also visualize the symmetric, positive definite stress field S using ellipses
whose axes align with eigenvectors of S and whose lengths are the two positive real
eigenvalues. The major axis tells us how much and in what direction the polymers are
stretched locally. Initially the stress fields are isotropic, and the added polymer stress
ellipses are unit circles. Figure 5(a) shows the fibre at t = 12 and the corresponding
stress ellipses. Figure 5(b) shows the horizontal component of the fluid velocity along
the x-axis of the domain at the corresponding time t = 12. We see that this velocity
is approximately constant in the interval of the axis that is occupied by the fibre at
that time, indicating that it is moving uniformly to the right.

When this coupled fibre–viscoelastic system is run until time t = 80, the fibre
meanders through the periodic array of vortical cells, and meets seven stagnation
points. Figure 8(b) shows the trajectory of the centre of mass of the fibre. As it
approaches a stagnation point along a stable manifold, it bends, samples the local
velocity field near this hyperbolic point, and exits along an unstable manifold. The
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FIGURE 5. (Colour online) (a) Fibre and surrounding stress ellipse field at time t = 12.
(b) Horizontal component of fluid velocity along x-axis at time t= 12.

direction along which the fibre exits is not predictable, as slight differences in the
bending of the fibre can cause it to move in either direction. We quantify the buckling
behaviour of the fibre as it moves through the domain in two ways. One measure,
that is easiest to capture in physical experiments, is the distance between the fibre’s
endpoints, normalized by its equilibrium length. For a straight fibre, this scaled
end-to-end length is one. In the context of our computational model, we can also
measure fibre buckling by calculating its bending energy Eb in (2.8). Figure 6 shows
these two measures of the fibre’s bending over time. We can see that the fibre behaves
similarly when it gets close to different stagnation points. As it moves towards the
stagnation point, the scaled end-to-end length (figure 6a) abruptly decreases but
moves back to one as the fibre straightens. Figure 6(b) shows similar behaviour with
bending energy abruptly increasing as the fibre meets the stagnation points. Both
measures of buckling show that there is a nearly constant transit time for the fibre to
get from one stagnation point to another, but that the evolving shape deformation of
the fibre is not periodic.

The time evolution of the bending energy in figure 6(b) reveals a curious, repeatable,
‘blip’ during the straightening phase. The bending energy spikes as the fibre reaches
its maximum bent shape near the stagnation point, quickly decreases as the fibre
straightens, but then increases a small amount until decreasing again. We now focus
on the fibre’s bending energy during its first trip in figure 7(a). Figure 7(b) shows
the fibre configurations corresponding to the first peak of bending energy (t = 6.1),
then at the smallest value of bending energy right before the blip (t= 7.2), and then
at the second, smaller peak (t = 7.9). We see the fibre transition from its most bent
configuration, straighten out, but then continue to bend in the recovery direction. One
possibility for this overshoot in bending energy is the memory in the system due to
both the inertia in the Navier–Stokes momentum conservation equation as well as the
evolution of the stresses carried by the embedded polymers. Another possibility is
that this blip is picking up the second peak in an exponentially damped sinusoidal
solution of the classic elastic beam equation.

We note that in this immersed boundary framework, the fibre is not precisely
inextensible, but imparts tensile forces to maintain its length. Although we choose a
tensile coefficient large enough so that the fibre’s arclength does not deviate more
than 3 % of its equilibrium length, its realized arclength does vary. Figure 7(a) also
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FIGURE 6. (Colour online) (a) The scaled end-to-end length of the fibre over time.
(b) The bending energy of the fibre over time. Note that bending occurs periodically, but
the details of the shape deformation are not periodic.
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FIGURE 7. (Colour online) (a) Evolution of fibre bending energy and tensile energy
during its first trip for time 0 6 t 6 15. (b) Snapshots of fibre configurations during first
trip that correspond to the first peak in bending energy, an intermediate time point, and
then the second small peak in bending energy. Note that there is some overshoot of the
straight equilibrium at the latest time point.

shows the evolution of the tensile energy Et (2.8) during its first trip. When the fibre
approaches the stagnation point it is almost straight, but the compression due to the
flow generates significant tensile energy. We see that, during the time interval when
the fibre is most bent, the tensile energy is at its lowest – the fibre struggles less to
maintain its length during buckling.

4. Effect of Weissenberg number Wi

Here we examine the effects of varying the Weissenberg number of the coupled
fibre–viscoelastic system while keeping the same Reynolds number (Re = 2.5) and
elasto-viscous number of the fibre (η = 370) as in the previous example. In the
absence of a macroscopic fibre, Thomases & Shelley (2007) showed that the strain
rate at the stagnation point at steady state in the viscoelastic cellular flow decreased
monotonically with Wi for the same background forcing. Since this strain rate
governs the velocity time scales achieved in the cellular flow, we expect that fibre
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FIGURE 8. Trajectories of the centre of mass of the fibres for various Wi: (a) Newtonian,
(b) Wi= 1, (c) Wi= 2, (d) Wi= 3, (e) Wi= 4 and ( f ) Wi= 5. Here Re= 2.5 and η= 370.
Open circles indicate where they start and where they stop.

transport will slow down as viscoelasticity increases. We compare six simulations
with Weissenberg number Wi = 0, 1, 2, 3, 4 and 5, noting that Wi = 0 corresponds
to a Newtonian fluid. Initially each fibre was placed vertically, close to the centre
stagnation point, but slightly off the incoming streamline as in figure 1(a). At each
Wi, the qualitative motion of the fibres as they approached and moved away from
the stagnation point was the same as that for the Wi= 1 example above. The fibre in
the Newtonian fluid bends and moves away from the stagnation point first, followed
monotonically by the fibres at increasing Weissenberg numbers. This monotonic arrival
at stagnation points is also consistent with the observation by Thomases & Shelley
(2007) that steady shear rates decrease with Wi. Figure 8 shows the trajectories of
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FIGURE 9. (Colour online) (a) Moment when the fibre arrives at successive stagnation
points for different Wi. (b) Distance that the fibre’s head travels up through time t = 80
for different Wi.

the centre of mass of each fibre at different Wi up to time t = 80, expanded to
include many cells in the periodic domain. Open circles indicate both initial and
terminal positions. While each fibre moves away from the first stagnation point it
meets along the same outgoing streamline, their trajectories diverge after meeting
the second stagnation point. As discussed by Young & Shelley (2007), the outgoing
streamline along which the fibre leaves the area of the stagnation point is chosen with
apparent randomness. Small fluctuations in the fluid environment and small changes
in fibre bending easily alter the direction (Quennouz et al. 2015). Figure 8 indicates
that, in the given time interval, the fibres in the Newtonian and smaller Wi flows are
able to sample more of the spatial domain than the fibres in the higher Wi flows. In
particular, the fibres at Wi= 4 and 5 are trapped in the cells where they were initially
launched. We will revisit this feature of trapped fibres below.

The trajectories in figure 8 do not give information about the time scale of
fibre transport. Figure 9(a) shows the moment when the fibre arrives at successive
stagnation points. This is measured by monitoring the distance between the fibre’s
head and the stagnation points of the cellular domain. We see that for the first trip,
the Newtonian one arrives at a stagnation point first, with the fibres at Wi= 1, 2, 3, 4
and 5 monotonically following. However, the evolving fibre geometries and deviation
in chosen paths in the different Wi cases cause this monotonicity to be destroyed
at later stagnation points. Figure 9(b) shows the total distance that the fibre’s head
travels as a function of time. Up until approximately t= 40, the distance travelled is
monotonically decreasing in Weissenberg number. Deviations in the fibre paths and
shape deformations again destroy this monotonicity at later times.

Because evolving fibre geometries and paths can vary greatly depending upon their
initial placement and orientation (Quennouz et al. 2015), we restrict the comparison
of the bending behaviours of fibres at different Weissenberg numbers to their first
trip, as each is initialized identically. Figure 10(a) shows the bending energy of the
fibres up to time t = 15. We see that the fibre in the Newtonian fluid bends earlier
than the fibres at Wi 6= 0, and also meets its second stagnation point during this time
interval at approximately t = 11. The Newtonian fibre has a larger bending energy
than the fibres at Wi 6= 0 as it meets the stagnation point. While the time of buckling
is monotonic in Weissenberg number, the bending energy is not. One feature of note,
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FIGURE 10. (Colour online) (a) Bending energy for the fibre at different Wi during the
first trip. Here Re= 2.5 and η= 370.

however, is that the secondary peak of bending energy noted in the Wi= 1 case above
is much more pronounced in the Wi 6= 0 cases, with only a slight blip appearing in
the Newtonian case (figure 10a). This overshooting of curvature as the fibre straightens
out is enhanced by the memory of polymer stresses distributed near the fibre.

5. Effect of elasto-viscous number η
Here we examine the effects of flexibility on fibre transport. We vary the

non-dimensional bending coefficient σb of the fibre while keeping all the other
parameters fixed for Wi= 0, 1 and 5. For bending coefficients σb = 0.1, 0.05, 0.025
and 0.0125, the elasto-viscous numbers are, respectively, η = 370, 740, 1480 and
2960. Early experiments by Forgacs & Mason (1959) classified the orbits of fibres
in shear flow by tracking pulp, Dacron and elastomer fibres. Rigid rotations, springy
rotations, snake turns and coil formations were described. We observe all these types
of buckling behaviours when fibres with different elasto-viscous numbers are tracked
at each Wi = 0, 1 and 5. Figure 11 shows snapshots of fibres of four stiffnesses
as they traverse the cellular domain for Wi = 0 (a) and Wi = 1 (b). Each fibre was
initially released at the same position. In each panel we superimpose successive
positions of fibres of varying flexibility at equally spaced time intervals up through
t= 17. The velocity field shown is the initial velocity field. As in the previous section,
we are not able to discern a clear pattern of differences in fibre shape deformations
with the same elasto-viscous numbers across Wi by comparing bending energy or
scaled end-to-end lengths. However, fibre trajectories at all stiffnesses show significant
qualitative differences with respect to the viscoelastic properties of the fluid.

In a four-roll-mill Newtonian flow with no immersed fibres, streamlines are closed
in each cellular region. A point particle will simply follow a vortical streamline
and never escape the cell in which it was launched. However, a finite-length fibre
generates forces to alter the surrounding velocity field and can cross streamlines,
allowing for the possibility of escape. Young & Shelley (2007) studied the transport
of fibres in Newtonian cellular flows and identified a region within the cell such that,
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(a) (b)

FIGURE 11. (Colour online) Fibre configurations in (a) Newtonian fluid and (b) Wi= 1
at different times. For bending coefficients σb = 0.1, 0.05, 0.025 and 0.0125, the elasto-
viscous numbers are, respectively, η = 370, 740, 1480 and 2960. Note that each panel
represents the results of four simulations, with each of the fibre positions at the times
t= 1, 3, 5, 7, 9, 11, 13, 15 and 17.
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FIGURE 12. (Colour online) Trajectories of centre of mass of fibres for different Wi
through time t=80. (a) Stiffest fibre σb=0.1 (η=370). (b) Most flexible fibre σb=0.0125
(η= 2960). In all cases the trajectories begin at the spatial position (3× 10−3, 3× 10−6)
(open circle).

when the fibre is launched in that region, it remains trapped. The experiments of
Wandersman et al. (2010) varied the distance between the fibre placement and the
vertical centreline and measured the number of trajectories required for the fibre to
escape. They found that flexible fibres escaped the original cell more frequently than
rigid fibres. Quennouz et al. (2015) expanded these experiments and concluded that
escape is determined not only by the elasto-viscous number, but also by the fibre’s
entry position and orientation.

For fibres launched close to the incoming streamline, as in figure 1(a), figure 12(a)
shows the trajectories of the most rigid fibre (η= 370) in simulations of different Wi
and figure 12(b) shows the corresponding trajectories of the most flexible fibre (η =
2960). There are some important features to note. The most rigid and most flexible
fibres at Wi = 4 and 5 remain trapped in a cellular region. All the flexible fibres at
each Wi are able to escape the original cell in which they were launched. This is
consistent with the observations in Wandersman et al. (2010). However, for Wi 6= 0,
all of these flexible fibres remain trapped in the second cell they encounter. The most

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

66
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.66


402 Q. Yang and L. Fauci

2 4 6 8 100

10

20

30

40

50

60(a) (b)

Stagnation point

Stagnation point

t

Rigid fibre
Flexible fibre

1 2 3 4 5 6
0

20

40

60

80

Stagnation point

1 2 3 4 5
0

20

40

60

80

t

(c)

FIGURE 13. (Colour online) Times at which the most rigid fibre and the most flexible
fibre arrive at successive stagnation points at different Weissenberg number: (a) Wi = 0
(Newtonian), (b) Wi= 1 and (c) Wi= 5.

rigid fibres at Wi= 0, 1 do not remain trapped in any cell up through the simulation
time t= 80. In contrast, the most rigid and most flexible fibres at Wi= 4 and 5 remain
trapped in a cellular region as they leave the first stagnation point.

Figure 13 tracks the moment when the most rigid and most flexible fibres arrive
at successive stagnation points (which could be repeated) in Newtonian, Wi = 1 and
Wi= 5 flows. The rigid fibre always lags behind the flexible fibre in arrival times, and
this is more pronounced at Wi 6= 0. Note that, for the case Wi= 1, the rigid fibre is
traversing multiple cells, while the flexible fibre remains trapped.

We performed systematic studies that varied the initial placement of both the rigid
fibre σb=0.1 and the flexible fibre σb=0.0125 within the vortical cell, at Weissenberg
numbers Wi = 0, 1, 2, 3, 4 and 5. The fibres were always launched vertically in
their straight equilibrium shape, along x= b, where b varied from 0.01 to 0.09, and
the lower point of the fibre was at y = 0.5. For all initial placements of the most
rigid fibres, the fibres in the Newtonian fluid eventually escaped the original cell.
When placed well within the vortical cell, even the fibre in the Wi= 1 case remains
trapped when b> 0.07. For all values of b, the rigid fibres in the Wi= 4 and 5 cases
never escape. For the most flexible fibres, when initialized well within the cell, no
fibre escaped – even in the Newtonian case. However, when placed further at the
cell periphery, the flexible fibre does escape in the Newtonian case, but those in the
non-zero Wi cases do not.
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FIGURE 14. (Colour online) Contours of polymer force densities when the most rigid
fibre (a,c,e, η= 370) and most flexible fibre (b,d, f, η= 2960) move in the cellular flow at
Re= 2.5 and Wi= 3: (a) y-component, η= 370, t= 4; (b) y-component, η= 2960, t= 2.5;
(c) x-component, η = 370, t = 15; (d) x-component, η = 2960, t = 14; (e) y-component,
η= 370, t= 25 and ( f ) y-component, η= 2960, t= 25.

To understand why the presence of the polymers in viscoelastic fluids hinders the
fibre’s ability to escape, we examine the force densities β∇ · S that are generated
by the polymers. Figure 14 shows the contour plot for these polymer force densities
in the x- and y-directions for the most rigid fibre (left column) and the most flexible
fibre (right column) at instances where the fibre is near the edge of the cellular region
(Wi= 3). In figure 14(a,b), when the fibres are near the bottom edge, large positive
y-components of polymer force density (outward y-direction) are generated near the
fibre’s head and push the fibre back into the cell. When the fibres are near the right
edge (figure 14c,d), large negative x-components of polymer force density (inward
x-direction) are generated, again impeding escape. At time t= 25, figure 14(e) shows
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that large force densities in the inward y-direction push back the most rigid fibre,
which does get trapped in the cell as time progresses. Figure 14( f ) shows that at the
same time t= 25 the most flexible fibre is already deep into the cellular region, and
large force densities are not required to keep it confined to the cell.

6. Conclusions
We have modelled the motion of a macroscopic fibre in a viscoelastic fluid in

a doubly periodic cellular flow and compared its dynamics to that in a Newtonian
fluid. Because of overall flow time scales, the fibre in a Newtonian fluid travels
faster and buckles earlier than in the viscoelastic fluids. In viscoelastic flows, we
find that polymer stresses are highly concentrated near the fibre’s ends when the
fibre is straight. However, they are distributed along the fibre when the fibre buckles.
The occupation of the fibre at the centre stagnation point limits the stretch of the
polymers there. As in the Newtonian case, fibre trajectories through the doubly
periodic domain depend on their elasto-viscous number and their initial positioning
and orientation. These simulations show that viscoelasticity greatly hinders a fibre’s
ability to escape cellular regions. We examine the polymer stress field, and note that
for larger Weissenberg numbers the embedded polymers generate large forces to push
the fibre back into the cell when the fibre is near its edge.

The dynamics of the coupled fibre–viscoelastic fluid system presented here are
two-dimensional. Hence, the fibre may be regarded as an elastic sheet of finite
extent. Nevertheless, the fibre buckling and transport behaviours observed in these
simulations are in general agreement with the slender-body simulations of Young
& Shelley (2007) and Tornberg & Shelley (2007), where the fibre centrelines were
confined to a plane but the viscous fluid dynamics was three-dimensional. However,
the fully three-dimensional simulations of Nguyen & Fauci (2014) that represent
the fibre surface along with its centreline demonstrate that out-of-plane perturbations
of the fibre centreline in linear shear flow give rise to complex coiled shapes.
Future implementation of a fully three-dimensional macroscopic fibre immersed in a
polymeric cellular flow will determine if there are other qualitative features of the
coupled system that have not been captured by the two-dimensional simplification.

The computational studies presented here have elucidated some features of the
effects of viscoelasticity on fibre buckling and transport by varying both the
Weissenberg number and the elasto-viscous number of the fibre. Future investigations
will investigate how the dynamics of this fibre–viscoelastic system change with the
presence of additional macroscopic fibres. We look forward to the extension of
laboratory studies as in Wandersman et al. (2010) and Quennouz et al. (2015) to
include viscoelastic fluids that will shed light on these intriguing complex systems.
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