
ANZIAM J. 63 (2021), 249–267

doi:10.1017/S1446181121000249

PRICING TIMER OPTIONS: SECOND-ORDER

MULTISCALE STOCHASTIC VOLATILITY ASYMPTOTICS

XUHUI WANG �1, SHENG-JHIH WU 2 and XINGYE YUE 3

(Received 26 March, 2020; accepted 7 April, 2021; first published online 23 August, 2021)

Abstract

We study the pricing of timer options in a class of stochastic volatility models, where

the volatility is driven by two diffusions—one fast mean-reverting and the other slowly

varying. Employing singular and regular perturbation techniques, full second-order

asymptotics of the option price are established. In addition, we investigate an implied

volatility in terms of effective maturity for the timer options, and derive its second-order

expansion based on our pricing asymptotics. A numerical experiment shows that the

price approximation formula has a high level of accuracy, and the implied volatility in

terms of its effective maturity is illustrated.

2020 Mathematics subject classification: primary 91B70; secondary 91G20, 35Q91.

Keywords and phrases: timer option, stochastic volatility, implied volatility, multiscale

asymptotics, singular perturbation.

1. Introduction

InApril 2007, Société Générale Corporate and Investment Banking (SG CIB) issued

the timer option [18], an exotic option whose expiration date depends on the realized

variance of the underlying asset. It is different from the vanilla option in that it

has a random instead of a fixed maturity. The link to the realized variance of the

underlying asset makes the timer option financially attractive. When the implied

volatility is higher than the actual realized volatility, this product protects investors

from overpaying for an option. The price of the vanilla option depends on the implied

volatility, while the price of the timer option is connected to the actual realized

volatility. This connection also makes the timer option a suitable financial instrument

for volatility trading and hedging-like variance or volatility swaps [1]. Moreover, the
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timer option is interesting not only financially but also from a mathematical point of

view.

In spite of the relatively simple payoff structure compared with other exotic options,

pricing of timer options is challenging owing to the volatility-linked maturity structure.

In the past few years, some research has been devoted to these exotic options. Li [15],

Cui et al. [4], Liang et al. [16], and Zheng and Zeng [22] obtained some closed-form

pricing formulas for timer options in specific types of stochastic volatility models.

Zhang et al. [21] studied perpetual timer options under the Hull–White stochastic

volatility model. They transformed the model into the Bessel process by time-change

techniques and obtained an explicit analytical solution using a probabilistic method.

When more general models are under consideration, closed-form solutions are

usually not available. In such a situation, one may appeal to a perturbed approximation

of option prices. In this direction, Saunders [17] studied the pricing of the timer call

option in a class of stochastic volatility models, where the volatility of the underlying

asset follows an ergodic diffusion process fluctuating on a fast time scale. Fouque

et al. [10] introduced a class of multiscale stochastic volatility models, motivated by

several empirical studies [3, 11], in which there are two factors, a fast mean-reverting

diffusion and a slowly varying diffusion, affecting the volatility of the underlying asset

price. The pricing problems of various options have been studied under this class of

multiscale stochastic volatility models (details can be found in [2, 6–8, 12] and the

references therein).

In the present paper, we study the pricing of perpetual timer options, extend-

ing the model of Saunders [17] to a multiscale stochastic volatility model for

the underlying asset and establishing full second-order asymptotics. The extension

from the first-order asymptotics under the single fast-varying factor model to the

second-order multiscale asymptotics is nontrivial owing to the increasing complexity

resulting from the far greater numbers of parameters and equations involved in

the derivation. We note that the asymptotic analysis employed in this paper is

readily applicable to the timer put option. In addition, it will be interesting and

may turn out to be useful to explore “implied volatility” for the timer options in

some sense, though there is no fixed time for a maturity. Therefore, we consider

implied volatility with expected expiration inferred from the pricing model, called

effective implied volatility in the sequel. The pricing expansion is then translated to

a second-order effective implied volatility approximation. Our numerical experiments

demonstrate that the pricing formula is accurate, and the effective implied volatility is

discussed.

The remainder of the paper is organized as follows. In Section 2, we first

describe the class of multiscale stochastic volatility models employed in this work

and then present our main result. Section 3 is devoted to establishing this formula

in detail, and then a second-order expansion of the effective implied volatility

is derived. A numerical example showing the use of the approximate formulas

and assessing the accuracy is given in Section 4. Section 5 concludes our

discussion.
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2. Pricing model and main result

2.1. Pricing model In this paper, we price the timer option under a multiscale

stochastic volatility model for the stock price. This class of models has been studied

previously [12], and it has been developed as an effective framework in which the

principal components of derivative prices can be efficiently captured. In our pricing

model, most of the notation adopted in this paper conventionally follows that defined

in [8, 12] and extensively used in the literature whenever this class of models is under

consideration. Choosing a risk-neutral measure P⋆ and a standard three-dimensional

P
⋆-Brownian motion W⋆t [5], the evolution of the underlying asset price S satisfies the

following stochastic differential equations (SDEs):


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
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


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
















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α(Yt) −

1
√
ǫ
Λ(Yt, Zt)β(Yt)

)

dt +
1
√
ǫ
β(Yt) dW

(1)⋆
t

dZt = (δc(Zt) −
√
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(2)⋆
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(2.1)

where W⋆t = (W
(0)⋆
t , W

(1)⋆
t , W

(2)⋆
t ) is a standard three-dimensional Brownian motion
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Here Wt is a standard three-dimensional Brownian motion, and the coefficients ρ1, ρ2

and ρ̃12 satisfy

|ρ1| < 1, ρ2
2 + ρ̃

2
12 < 1 and ρ12 = ρ1ρ2 + ρ̃12

√

1 − ρ2
1
.

The risk-free interest rate r is a positive constant. The combined market prices of

volatility risk are given by

Λ(y, z) =

√

1 − ρ2
1

(µ − r)

f (y, z)
+ γ(y, z)ρ1,

Γ(y, z) =

√

1 − ρ2
2
− ρ̃2

12

(µ − r)

f (y, z)
+ γ(y, z)ρ̃12 + ξ(y, z)ρ2,

where γ(y, z) and ξ(y, z) are bounded smooth functions of y and z. The volatility

f (y, z) is a positive function; ǫ and δ represent the time scales and allow us to study

the problem in the fast and slow regimes at the same time. The fast factor Y is an

ergodic process on J with a unique invariant distribution Π. We take J = R, although

in extensions to other cases, α(y), β(y) and c(z), g(z) describe the dynamics of the

process Y and Z, respectively, under the real-world measure P.
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We employ this for the pricing of perpetual timer options. In the subsequent context,

a timer option is understood as the perpetual timer option when there is no confusion.

The timer call option has payoff max(Sτ − K, 0) at random maturity τ, where K is

the strike price. Given the predetermined variance budget B, τ = inf{t > 0, It = B}.
Define

It =

∫ t

0

f 2(Ys, Zs) ds

as the cumulative realized variance. Thus, the dynamics are now described by


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
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
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
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




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















dSt = rSt dt + f (Yt, Zt)St dW
(0)⋆
t

dYt =

(

1

ǫ
α(Yt) −

1
√
ǫ
Λ(Yt, Zt)β(Yt)

)

dt +
1
√
ǫ
β(Yt) dW

(1)⋆
t

dZt = (δc(Zt) −
√
δΓ(Yt, Zt)g(Zt)) dt +

√
δg(Zt) dW

(2)⋆
t

dIt = f 2(Yt, Zt) dt.

It is clear that (S, Y , Z, I) is a four-dimensional Markov process. Denoting by E⋆ the

expectation with respect to P⋆, the price of a timer call option with payoff function

max(Sτ − K, 0) is

Pǫ,δ(t, St, Yt, Zt, It) = E
⋆[e−r(τ−t) max(Sτ − K, 0) | Ft]. (2.2)

Since the stochastic volatility setting under consideration is very general and

complex, an analytic solution of (2.2) or (2.4) is difficult, if not impossible, to

obtain. Thus, our goal is to derive an approximate price of the timer option. This

approximation is of the form

Pǫ,δ ≈ P̃ǫ,δ = P0,0 +
√
ǫP1,0 +

√
δP0,1 + ǫP2,0 + δP0,2 +

√
ǫδP1,1, (2.3)

where P0,0 is the leading term of the price; P1,0 is the first-order fast scale correction;

P0,1 is the first-order slow scale correction; and P2,0, P0,2, P1,1 are the second-order

fast scale term, second-order slow scale term and first fast–slow term, respectively. In

the notation Pi,j, the subindex i corresponds to the power of
√
ǫ, and the subindex

j corresponds to the power of
√
δ. The derivation of the expressions for these

price approximation terms will be presented in the next section and summarized in

Theorem 2.6.

2.2. Main result In this section, we briefly introduce the asymptotic analysis of the

timer option pricing and give the main result of this paper. First, we make the following

assumptions, which are necessary throughout the paper.
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ASSUMPTION 2.1. For all values of parameters 0 < ǫ, δ < 1, the system of SDEs (2.1)

has unique strong solutions ( St, Yt, Zt) for all initial values (s, y, z).

ASSUMPTION 2.2. The market prices of volatility risk Λ and Γ appearing subse-

quently are bounded.

ASSUMPTION 2.3. The diffusion process Y (1) is defined by its infinitesimal generator

L0 = β
2(y)∂2

yy/2 + α(y)∂y (so that, in distribution, Yt = Y
(1)

t/ǫ
under P). Moreover,

assume that Y (1) is an ergodic process with a unique invariant distributionΠ, which has

probability density π and does not explode in finite time. In particular, these conditions

are satisfied by the Ornstein–Uhlenbeck (OU) process, which will be used in our

numerical example in Section 4. Let Z(1) be a diffusion process with infinitesimal

generatorM2 = g(z)∂2
zz/2 + c(z)∂z (so that, in distribution, Zt = Z

(1)

δt
).

ASSUMPTION 2.4. The volatility function f is measurable, bounded, and bounded

away from zero. Furthermore, for all y ∈ R, it is assumed that f (y, z) is smooth with

bounded derivatives, so that the averaged effective variance with respect to invariant

density π defined by σ̄2(z) =
∫

f 2(y, z)π(y) dy is finite and twice differentiable.

ASSUMPTION 2.5. Consider Poisson equations of the form L0φ(y, z) + X(y, z) = 0,

where the solvability condition 〈X(y, z)〉 =
∫

X(y, z)π(y) dy = 0 is satisfied, and X(y, z)

is at most polynomially growing in y and z. We assume that the same polynomial

growth condition holds for φ. In particular, this assumption is imposed on the solutions

φi, i = 1, 2, 3, 4 of the Poisson equations (3.17), (3.18), (3.25), (3.26) appearing in the

subsequent analysis.

The analysis is based on two small parameters ǫ and δ, which govern two time scales

for the two volatility driving processes. The driver Y runs on a fast time scale and

rapidly converges to stationarity, which leads to a singular perturbation analysis. On

the contrary, the factor Z fluctuates on a slow time scale, and hence the corresponding

expansion is a regular perturbation problem. Applying a combination of singular and

regular perturbations, we derive a second-order approximate formula for the timer

option.

By application of the Feynman–Kac formula [12, Ch. 1.9.3], the pricing function

Pǫ,δ in (2.2) is the solution of the following partial differential equation (PDE) with

final condition















Lǫ,δPǫ,δ = 0

Pǫ,δ(B, s, y, z) = max(s − K, 0),

where the differential operator Lǫ,δ is the sum of components

Lǫ,δ = 1

ǫ
L0 +

1
√
ǫ
L1 +L2 +

√
δM1 + δM2 +

√

δ

ǫ
M3,
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and the operators Li (i = 0, 1, 2) andMi (i = 1, 2, 3) are defined by


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∂
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1
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β2(y)

∂2

∂y2

L1 = β(y)

(

ρ1f (y, z)s
∂2

∂s∂y
− Λ(y, z)

∂

∂y

)

L2 =
∂

∂t
+ rs
∂

∂s
+ f 2(y, z)

∂

∂x
+

1

2
f 2(y, z)s2 ∂

2

∂s2
− r

M1 = −g(z)Γ(y, z)
∂

∂z
+ ρ2f (y, z)g(z)s

∂2

∂s∂z

M2 = c(z)
∂

∂z
+

1

2
g2(z)

∂2

∂z2

M3 = ρ12β(y)g(z)
∂2

∂y∂z
.

(2.4)

Observe that L2 contains the derivative with t. In fact, given the value of the realized

variance, the pricing problem for the perpetual timer option is independent of t [15,

17]. Therefore, L2 can be rewritten as

L2 = f 2 ∂

∂x
+ rs
∂

∂s
+

s2f 2

2

∂2

∂s2
− r,

which can be regarded as the Black–Scholes operator with x instead of the time

variable t [17]. Note that 〈L2〉 plays an important part in the derivation of the

approximate price, where the bracket notation means the integration with respect to

the invariant distribution Π of the process Y.

We expand Pǫ,δ as

Pǫ,δ =
∑

j≥0

√
δjPǫj where Pǫj =

∑

i≥0

√
ǫ iPi,j.

Inserting this expression into (2.4), and equating both sides of the above equation

with respect to the corresponding powers of
√
δ, we have a system of pricing

equations. Then, carrying out a singular perturbation analysis with respect to
√
ǫ

for these equations, we will obtain the terms P0,0, P1,0, P0,1, P1,1, P0,2 and P2,0

explicitly. Note that there are many Poisson equations of asymptotic expansion terms

for the timer option price. By Assumption 2.5, the source term X(y, z) must satisfy

the solvability condition 〈X(y, z)〉 =
∫

X(y, z)π(y) dy = 0, where the bracket notation

denotes integration with respect to the invariant probability density π of the process Y.

Thus, we derive equations about the operator 〈L2〉 for the terms. Matching boundary
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conditions, we have the following PDEs for the terms P0,0, P1,0, P0,1, P1,1, P2,0 and

P0,2:

O(1) : 〈L2〉P0,0 = 0, P0,0(B, s, z) = max(s − K, 0),

O(
√
ǫ) : 〈L2〉P1,0 = −〈L1P2,0〉, P1,0(B, s, z) = 0,

O(
√
δ) : 〈L2〉P0,1 = −〈M1〉P0,0, P0,1(B, s, z) = 0,

O(
√
ǫδ) : 〈L2〉P1,1 = −〈L1P2,1〉 − 〈M3P2,0〉 − 〈M1〉P1,0, P1,1(B, s, z) = 0,

O(ǫ) : P2,0(x, s, y, z) = −φ(y, z)(∂x +
1
2
D2)P0,0 + F2,0(x, y, z),

〈L2〉F2,0 = −〈L1P3,0〉 + 〈φf 2〉(∂xx +D2∂x +
1
4
D2

2)P0,0, F2,0(B, s, z) = 0,

O(δ) : 〈L2〉P0,2 = −〈M1〉P0,1 −M2P0,0, P0,2(B, s, z) = 0. (2.5)

Here, Dk = sk∂k/∂sk, k = 1, 2, . . . , and φ(y, z) is the solution of L0φ = f 2 − 〈f 2〉, with

〈φ〉 =
∫

φ(y, z)π(y) dy = 0. The equations are from (3.10), (3.11), (3.22), (3.23), (3.16)

and (3.29), respectively. The formal derivation of the price approximation is described

in Section 3 in detail.

As mentioned in Section 2.1, 〈L2〉 is regarded as the Black–Scholes operator.

Obviously, for the leading term, P0,0(x, s, z) = PBS(s, K, (B − x)/σ̄2(z), r, σ̄(z)), that is,

the Black–Scholes formula with volatility σ set to σ̄(z) and the time for expiration set

to (B − x)/σ̄2(z), is given by

PBS

(

s, K,
B − x

σ̄2(z)
, r, σ̄(z)

)

= sN(d1) − Ke−r(B−x)/σ̄2(z)N(d2), (2.6)

where

d1 =
log(s/k) + {r + σ̄2(z)/2}(B − x)/σ̄2(z)

√
B − x

, d2 = d1 −
√

B − x,

N(z) =

∫ z

−∞
e−y2/2 1

√
2π

dy.

We denote σ̄2(z) as σ̄2, for short, in the following context. The other terms

Pi,j(0 < i + j ≤ 2) turn out to be related to the leading term P0,0 in the sense that they

are combinations of various Greeks of PBS and some basis functions. The following

theorem is the main result of this paper.

THEOREM 2.6. Let Pi,j, 0 ≤ i + j ≤ 2, in (2.3) be the unique classical solutions of

the linear PDEs with terminal conditions given in (2.5). Then we have the following
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expressions for Pi,j in terms of PBS(s, K, (B − x)/σ̄2, r, σ̄) in (2.6):


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






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













































P0,0(x, s, z) = PBS(s, K, (B − x)/σ̄2, r, σ̄)

P1,0(x, s, z) = −B − x

σ̄2

[

C1(z)

(

s
∂2P0,0

∂s∂x
+ s2 ∂

2P0,0

∂s2
+

s3

2

∂3P0,0

∂s3

)

− C2(z)

(

∂P0,0

∂x
+

s2

2

∂2P0,0

∂s2

)]

P0,1(x, s, z) =
B − x

σ̄2
(C3(z)s∂2

sσ̄ + C4(z)∂σ̄)P0,0

P2,0(x, s, y, z) = −φ(y, z)

(

∂P0,0

∂x
+

s2

2

∂2P0,0

∂s2

)

+ F2,0(x, s, z),

where F2,0(x,s,z) is defined in (3.19), P0,2 in (3.30), P1,1 in (3.27), C1(z) and C2(z) in

(3.15), and C3(z) and C4(z) in (3.24).

Buyers of vanilla option often overpay for their options, because the implied

volatility in the market is usually higher than the realized volatility. This was shown

by an empirical analysis by SG CIB, which found that 80% of 3-month calls that had

matured in the money were overpriced [18]. The principal pricing term P0,0 provides a

theoretical justification of the argument that the investor of the timer option only pays

the real cost and does not suffer from high implied volatility. As ǫ and δ are small

enough, σ̄ is a natural estimation of the realized volatility It/t. In fact, we have

lim
ǫ→0
δ→0

1

t

∫ t

0

f 2(Ys, Zs) ds = σ̄2(Z0),

where σ̄2(z) =
∫

f 2(y, z)π(y) dy. It is not difficult to obtain this result by the time scales

of fluctuation in the volatility process [12, Ch. 3]. The volatility function f (Yt, Zt) in the

model is driven by Yt and Zt, which are both ergodic processes, running on a fast and a

slow time scale, respectively. Thus, the principal pricing term P0,0 is dependent on the

realized volatility σ̄. It shows that when the implied volatility in the market is higher

than the realized volatility, the leading term P0,0 in the timer option price is lower

than the price of the corresponding vanilla option whose strike price is K and whose

maturity is (B − x)/σ̄2. This theoretical justification was also provided with Heston’s

model (a review of Heston’s model can be found in [13]) under the assumption that

the risk-free rate r was 0%; for r > 0%, a numerical example showed that a timer

call option with variance budget B = σ2
0
T0 was less expensive than the European call

option with maturity T0 (using the notation of Li [15]; see further details therein).

Furthermore, by inverting the timer option approximation formula, we arrive at a

second-order effective implied volatility expansion.

THEOREM 2.7. With the terms Pi,j, 0 ≤ i + j ≤ 2, in Theorem 2.6, the approximation

effective volatility formula can be obtained as

Iǫ,δ ≈ Ĩǫ.δ = I0,0 +
√
ǫI1,0 +

√
δI0,1 + ǫI2,0 + δI0,2 +

√
ǫδI1,1,
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where I0,0 is the leading term of the effective volatility; I1,0, I0,1 and I1,1 are the

first-order fast term, first-order slow term and first-order fast–slow term, respectively;

I2,0 and I0,2 the are second-order fast term and second-order slow term, respectively;

and Ii,j, 0 ≤ i + j ≤ 2 satisfy (3.31).

A proof of this theorem via a detailed asymptotic analysis will be given in

Section 3.

3. Second-order asymptotics for pricing and effective implied volatility

In this section, we give the derivation of the second-order two-factor timer option

pricing asymptotics and effective implied volatility asymptotic expansion. This is

similar to that carried out for European options [8].

3.1. Related lemmas To obtain expressions for the higher-order terms Pi,j, 1 ≤ i +

j ≤ 2, it is desirable to use the following two lemmas.

LEMMA 3.1. The Black–Scholes pricing function PBS(s, K, (B − x)/σ̄2(z), r, σ̄(z)) of

the timer call option, given by (2.6), satisfies the following relationship between its

vega (that is, ∂PBS/∂σ̄) andD1PBS:

∂PBS

∂σ̄
=

2r

σ̄

B − x

σ̄2
(PBS −D1PBS), Z,

where PBS = sN(d1) − Ke−r(B−x)/σ̄2

N(d2).

PROOF. A routine computation gives rise to the formula. �

LEMMA 3.2. The Black–Scholes pricing function PBS(s, K, (B − x)/σ̄2, r, σ̄) of the

timer call option, given by (2.6), satisfies, for nonnegative integers k and n,

〈L2〉
((B − x)/σ̄2)n+1

n + 1
P(Dk)PBS = −

(

B − x

σ̄2

)n

P(Dk)PBS,

〈L2〉
((B − x)/σ̄2)n+1

n + 2
P(Dk)∂σ̄PBS = −

(

B − x

σ̄2

)n

P(Dk)∂σ̄PBS,

〈L2〉
((B − x)/σ̄2)n+1

n + 3
P(Dk)

(

∂2
σ̄σ̄−

3

σ̄(n + 2)
∂σ̄

)

PBS= −
(

B − x

σ̄2

)n

P(Dk)∂2
σ̄σ̄PBS,

where P(Dk) is some polynomial ofD1,D2,D3, . . . ,Dk.

PROOF. Using the fact DkDm = DmDk, for positive integers k and m, and

〈L2〉Dk = Dk〈L2〉, we can derive the results via simple computation. �

By virtue of the two lemmas above, we are able to derive explicit expressions

for Pi,j, 1 ≤ i + j ≤ 2. We carry out singular and regular perturbation asymptotics and

establish the second-order approximation formula for the timer option price in the

subsequent derivation.
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3.2. Second-order asymptotics for pricing

3.2.1. Zero-order term P0,0 and first-order fast term P1,0. In this section, we deal

with P0,0 and P1,0, which are defined in (2.3). We first expand Pǫ,δ in the powers of
√
δ

as

Pǫ,δ =
∑

j≥0

√
δjPǫj , (3.1)

where

Pǫj =
∑

i≥0

√
ǫ iPi,j. (3.2)

We substitute this expansion (3.1) into the PDE (2.4). With the decomposition (2.4)

and collecting the terms based on increasing powers of
√
δ, we have

(

1

ǫ
L0 +

1
√
ǫ
L1 +L2

)

Pǫ0 +
√
δ

{(

1

ǫ
L0 +

1
√
ǫ
L1 +L2

)

Pǫ1 +

(M3√
ǫ
+M1

)

Pǫ0

}

+ δ

{(

1

ǫ
L0 +

1
√
ǫ
L1 +L2

)

Pǫ2 +

(M3√
ǫ
+M1

)

Pǫ1 +M2Pǫ0

}

+ · · · = 0. (3.3)

Equating the corresponding powers of
√
δ on both sides of equation (3.3), we have the

following expressions:

O(1) : 0 =

(

1

ǫ
L0 +

1
√
ǫ
L1 +L2

)

Pǫ0, (3.4)

O(
√
δ) : 0 =

(

1

ǫ
L0 +

1
√
ǫ
L1 +L2

)

Pǫ1 +

(M3√
ǫ
+M1

)

Pǫ0, (3.5)

O(δ) : 0 =

(

1

ǫ
L0 +

1
√
ǫ
L1 +L2

)

Pǫ2 +

(M3√
ǫ
+M1

)

Pǫ1 +M2Pǫ0. (3.6)

Substituting expansions (3.2) into (3.4), and matching terms in powers of
√
ǫ, we find

that the terms P0,0 and P1,0 satisfy the equations

O(1/ǫ) : 0 = L0P0,0,

O(1/
√
ǫ) : 0 = L0P1,0 +L1P0,0.

Note that the operators L0 and L1 defined in (2.4) take derivatives with respect to

y, and we see that they are ordinary equations in y. We choose P0,0 and P1,0 to be

independent of y so that P0,0 = P0,0(x, s, z) and P1,0 = P1,0(x, s, z) satisfy the above

equations; thus, we seek P0,0 and P1,0 which are independent of y. Continuing the

asymptotic analysis, we have:

O(1) : 0 = L0P2,0 +✘✘
✘L1P1,0 +L2P0,0, (3.7)

O(
√
ǫ) : 0 = L0P3,0 +L1P2,0 +L2P1,0, (3.8)

O(ǫ) : 0 = L0P4,0 +L1P3,0 +L2P2,0. (3.9)
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Here, equations 3.7–3.9 are Poisson equations of the form L0P + χ = 0. In virtue of

Assumption 2.5, the Poisson equation has a solution P if the following solvability

condition holds [12, Ch. 3]: 〈χ〉 =
∫

χ(y)π(y) dy = 0, where π(y) is the invariant

probability density of Y. Imposing the solvable condition on equations (3.7)–(3.9),

we have:

O(1) : 0 = 〈L2〉P0,0, (3.10)

O(
√
ǫ) : 0 = 〈L1P2,0〉 + 〈L2〉P1,0, (3.11)

O(ǫ) : 0 = 〈L1P3,0〉 + 〈L2P2,0〉. (3.12)

We expand the terminal condition in (2.4) and have P0,0(B, s, z) = max(s − K, 0), and

P1,0(B, s, z) = 0. We note that P0,0(x, s, z) = PBS(s, K, (B − x)/σ̄2, r, σ̄), given by (2.6).

Before getting P1,0 from equation (3.11), we first compute 〈L1P2,0〉. Using equation

(3.10), equation (3.7) can be rewritten as

L0P2,0 = −L2P0,0 = −(L2 − 〈L2〉)P0,0 = (σ̄2(z) − f 2(y, z))(∂x +D2/2)P0,0.

Let φ(y, z) be a solution to the Poisson equation

L0φ = f 2 − 〈f 2〉, (3.13)

and we derive the expression for P2,0 as

P2,0(x, s, y, z) = −φ(y, z)(∂x +D2/2)P0,0 + F2,0(x, s, z). (3.14)

Thus P1,0 satisfies the PDE

〈L2〉P1,0 = C1(z)

(

s
∂2P0,0

∂s∂x
+s2 ∂

2P0,0

∂s2
+

s3

2

∂3P0,0

∂s3

)

− C2(z)

(

∂P0,0

∂x
+

s2

2

∂2P0,0

∂s2

)

with terminal condition P1,0(B, s, z) = 0, where

C1(z) = 〈ρ1β(·)f (·, z)∂yφ(·, z)〉, C2(z) = 〈β(·)Λ(·, z)∂yφ(·, z)〉. (3.15)

Using Lemma 3.2, we obtain the following solution P1,0:

P1,0=−
B − x

σ̄2

[

C1(z)

(

s
∂2P0,0

∂s∂x
+ s2 ∂

2P0,0

∂s2
+

s3

2

∂3P0,0

∂s3

)

−C2(z)

(

∂P0,0

∂x
+

s2

2

∂2P0,0

∂s2

)]

.

3.2.2. Second-order fast term P2,0. In this section, we deal with the term P2,0,

which is defined in (2.3). From equation (3.14), it turns out that the natural terminal

condition P2,0(B, s, y, z) = 0 is not possible. However, we can obtain the averaged

terminal condition via the ergodicity, 〈P2,0(B, s, y, z)〉 = 0. In addition, the solution to

the Poisson equation (3.13) is chosen here by imposing the condition 〈φ(·, z)〉 = 0.

From (3.14), using the fact thatD2 and L2 can commute and 〈φ(·, z)〉 = 0, we have:

〈L2P2,0〉= −〈φf 2〉(∂xx +D2∂x +D2
2/4)P0,0 + 〈L2〉F2,0. (3.16)
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Let φ1(y, z) and φ2(y, z) be the solutions of the Poisson equations

L0φ1=β(y)f (y,z)φ′y(y,z) − 〈β(·)f (·,z)φ′y(·,z)〉, (3.17)

L0φ2=β(y)Λ(y,z)φ′y(y,z) − 〈β(·)Λ(·,z)φ′y(·,z)〉, (3.18)

respectively. According to equations (3.8), (3.11), (3.13), and (3.14), we compute

L1P2,0, L2P1,0, and have the solution

P3,0 = (ρ1φ1D1 − φ2)(∂x +D2/2)P0,0 − φ(∂x +D2/2)P1,0 + F3,0,

for some F3,0 independent of y. With equations (3.16) and (3.12), we have the following

PDE for F2,0(x, s, z) and the terminal condition F2,0(B, s, z) = 0:

〈L2〉F2,0 = −〈L1P3,0〉 + 〈φf 2〉(∂xx +D2∂x +D2
2/4)P0,0.

Calculating the 〈L1P3,0〉 and using Lemma 3.2, we obtain:

F2,0 =
B−x

σ̄2
[(C5(z)D2

1 − C6(z)D1 − C7(z)D1 + C8(z))(∂x +D2/2)P0,0]

− {ρ1C1(z)D1 − C2(z)}
[

1

σ̄2

(

B − x

σ̄2

)

Aǫ1,0P0,0 −
1

2

(

B − x

σ̄2

)2

Aǫ1,0

∂P0,0

∂x

]

− 1

4

(

B − x

σ̄2

)2

{ρ1C1(z)D1D2Aǫ1,0 − C2(z)D2Aǫ1,0}P0,0

− B − x

σ̄2
〈φf 2〉{∂xx +D2∂x +D2

2/4}P0,0, (3.19)

where C1(z), C2(z) are defined in (3.15), and

Aǫ1,0 = C1(z)

(

s
∂2

∂s∂x
+ s2 ∂

2

∂s2
+

s3

2

∂3

∂s3

)

− C2(z)

(

∂

∂x
+

s2

2

∂2

∂s2

)

,

C5(z) = ρ2
1〈β(·)f (·, z)φ′1〉, C6(z) = ρ1〈β(·)Λ(·, z)φ′1〉,

C7(z) = ρ1〈β(·)f (·, z)φ′2〉, C8(z) = 〈β(·)Λ(·, z)φ′2〉. (3.20)

Thus, from (3.14), the second-order term P2,0 has been obtained.

3.2.3. First-order slow term P0,1 and fast–slow term P1,1. The first-order slow term

P0,1 and fast–slow term P1,1 are defined in (2.3). Substituting the expansions (3.2) into

(3.5) and collecting terms in powers of
√
ǫ, we have

O(
√
δ/ǫ) : 0 = L0P0,1,

O(
√
δ/
√
ǫ) : 0 = L0P1,1 +L1P0,1 +✘✘

✘✘M3P0,0.

We see that L0P0,1 = 0 is an ordinary differential equation in y, which has constants

in solutions (there are also exponentially growing solutions). Just as in the previous

sections, we still look for solutions P0,1 and P1,1, which are independent of y. We
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analyse and obtain Poisson equations of the form in Assumption 2.5:

O(
√
δ) : 0 = L0P2,1 +✘✘

✘L1P1,1 +L2P0,1 +✘✘
✘✘M3P1,0 +M1P0,0,

O(
√
δ
√
ǫ) : 0 = L0P3,1 +L1P2,1 +L2P1,1 +M3P2,0 +M1P1,0. (3.21)

Using the solvable condition, we have equations about 〈L2〉 for P0,1 and P1,1:

O(
√
δ) : 0 = 〈L2〉P0,1 + 〈M1〉P0,0, (3.22)

O(
√
δ
√
ǫ) : 0 = 〈L1P2,1〉 + 〈L2〉P1,1 + 〈M3P2,0〉 + 〈M1〉P1,0, (3.23)

with terminal conditions P0,1(B, s, z) = 0 and P1,1(B, s, z) = 0. By Lemma 3.2, we can

obtain an expression for P0,1:

P0,1 =
B − x

σ̄2
(C3(z)D1∂σ̄ + C4(z)∂σ̄)P0,0,

where

C3(z) = 1
2
ρ2g(z)〈f (·, z)〉σ̄′(z), C4(z) = − 1

2
g(z)〈Γ(·, z)〉σ̄′(z). (3.24)

Note that P1,1 can be obtained using equation (3.23), if we compute 〈L1P2,1〉 and

〈M3P2,0〉. Using (3.21) and (3.22), P2,1 is given by

P2,1 = −φ(y, z)(∂x +
1
2
D2)P0,1 − {ρ2g(z)φ3(y, z)D1∂z − g(z)φ4(y, z)∂z}P0,0 + F2,1(x, s, z),

where F2,1(x, s, z) does not depend on y, and φ3(y, z) and φ4(y, z) satisfy Poisson

equations

L0φ3 = f − 〈f 〉, (3.25)

L0φ4 = Γ − 〈Γ〉. (3.26)

Using (3.14), the above term P2,1, and operators L1 and M3 in (2.4), we obtain an

equation about L2 for P1,1. By Lemma 3.2,

P1,1 = −
1

2

(

B − x

σ̄2

)2 4r

σ̄3
{C1(z)D1 + C2(z)}{C3(z)D1 + C4(z)}(P0,0 −D1P0,0)

+
1

3

(

B − x

σ̄2

)3 2r

σ̄
{C1(z)D1 + C2(z)}{C3(z)D1 + C4(z)}(∂x −D1∂x)P0,0

− 1

6

(

B − x

σ̄2

)3 2r

σ̄
{C1(z)D1D2 − C2D2}{C3(z)D1 + C4(z)}(P0,0 −D1P0,0)

+
1

2

(

B − x

σ̄2

)2 2r

σ̄
{C̃2(z)D2

1 + C̃1(z)D1 + C̃0(z)}(P0,0 −D1P0,0)

+ 2

(

B − x

σ̄2

)2

{C3(z)D1+C4(z)}
[

1

σ̄
Aǫ1,0−

1

3
Aǫ1,0∂σ̄−

1

3

1

σ̄′(z)
∂zAǫ1,0

]

P0,0

− B−x

σ̄2
{C̃3(z) + C̃4(z)∂σ̄}(∂x +D2/2)P0,0, (3.27)
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where C1(z) and C2(z) are defined in (3.15), C3(z) and C4(z) are given in (3.24), A1,0

is given in (3.20), and

C̃0(z) = −σ̄′(z)g(z)〈β(·)Λ(·, z)∂yφ4(·, z)〉,
C̃1(z) = ρ2σ̄

′(z)g(z)〈β(·)Λ(·,z)∂yφ3(·, z)〉+ρ1g(z)〈β(·)f (·, z)∂yφ4(·, z)〉,
C̃2(z) = −ρ1ρ2σ̄

′(z)g(z)〈β(·)f (·, z)∂yφ3(·, z)〉,
C̃3(z) = ρ12g(z)〈β(·,z)∂yzφ(·, z)〉,

C̃4(z) =
1

2
ρ12g(z)〈β(·, z)∂yφ(·,z)〉σ̄′(z),

∂Aǫ
1,0

∂z
=
∂C1(z)

∂z

(

s
∂2

∂s∂x
+ s2 ∂

2

∂s2
+

s3

2

∂3

∂s3

)

− ∂C2(z)

∂z

(

∂

∂x
+

s2

2

∂2

∂s2

)

.

3.2.4. Second-order slow term P0,2. We insert the expansion (3.2) into (3.6) and

obtain equations in powers of
√
ǫ. Similarly, based on the equations, we seek the

solution of P0,2(x, y, z). The O(δ) equation is

O(δ) : 0 = L0P2,2 +✘✘
✘L1P1,2 +L2P0,2 +✘✘

✘✘M3P1,1 +M1P0,1 +M2P0,0. (3.28)

Equation (3.28) is a Poisson equation with solvable condition

O(δ) : 0 = 〈L2〉P0,2 + 〈M1〉P0,1 +M2P0,0. (3.29)

The associated terminal condition is P0,2(B, s, z) = 0. By computing 〈M1〉P0,1 and

M2P0,0, and by Lemma 3.2, the solution P0,2 is given as

P0,2 = −
[

4

3σ̄

(

B−x

σ̄2

)2

N2
1−

2

3σ̄′

(

B−x

σ̄2

)2

N1N′1

]

∂σ̄P00+
1

2

(

B−x

σ̄2

)2

N2
1

(

∂2
σ̄σ̄−

3

σ̄
∂σ̄

)

P0,0

+
1

6

B−x

σ̄2
g2σ̄′2

(

∂2
σ̄σ̄−

3

2σ̄
∂σ̄

)

P0,0 −
(

1

4

B−x

σ̄2
g2σ̄′′− 1

2

B−x

σ̄2
c(z)σ̄′

)

∂σ̄P0,0,

(3.30)

where

N1 = C3(z)D1 + C4(z), N′1 = C′3(z)D1 + C′4(z),

C′3(z) = ∂zC3(z), C′4(z) = ∂zC4(z),

σ̄′(z) = ∂zσ̄(z), σ̄′′(z) = ∂2
zzσ̄(z).

3.3. Second-order asymptotics for effective implied volatility The investigation

of implied volatility is essential, as option prices rarely conform to the idealized

assumption of constant volatility in the Black–Scholes pricing framework, and option

prices are quoted in terms of it in practice. For timer options, there is no fixed maturity

and hence the “implied volatility” does not exist in the usual sense. Recall that in our

pricing formula (B − x)/σ̄2 plays the part of the corresponding fixed time to maturity.

Therefore, this effective maturity is a reasonable candidate for exploring a similar
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concept of “implied volatility” for timer options, which we mentioned as “effective

implied volatility” in the Introduction.

In this section, we convert the expansion of the time option price obtained in

the previous section into an expansion of effective implied volatility of the form

Iǫ,δ =
∑

i≥0

∑

j≥0

√
ǫ i
√
δjIi,j such that Pǫ,δ = PBS(Iǫ,δ). Taking the Taylor expansion of

PBS(Iǫ,δ) about I0,0 and rearranging terms yields

P0,0+
√
ǫP1,0 +

√
δP0,1 +

√
ǫδP1,1 + ǫP2,0 + δP0,2 + · · ·

= PBS(I0,0 +
√
ǫI1,0 +

√
δI0,1 +

√
ǫδI1,1 + ǫI2,0 + δI0,2 + · · · )

= PBS(I0,0) +
√
ǫI1,0∂σ̄PBS(I0,0) +

√
δI0,1∂σ̄PBS(I0,0)

+

√
ǫδ{I1,0I0,1∂

2
σ̄σ̄PBS(I0,0) + I1,1∂σ̄PBS(I0,0)}

+ ǫ
{ 1

2
I2
1,0∂

2
σ̄σ̄PBS(I0,0) + I2,0∂σ̄PBS(I0,0)

}

+ δ
{ 1

2
I2
0,1∂

2
σ̄σ̄PBS(I0,0) + I0,2∂σ̄PBS(I0,0)

}

+ · · · .

Equating the same powers of
√
ǫ and

√
δ and applying P0,0 = PBS(σ̄), we obtain

O(1) : I0,0 = σ̄,

O(
√
ǫ) : I1,0 =

P1,0

∂σ̄P0,0

,

O(ǫ) : I2,0 =
P2,0

∂σ̄P0,0

− 1

2
I2
1,0

∂2
σ̄σ̄P0,0

∂σ̄P0,0

,

O(
√
δ) : I0,1 =

P0,1

∂σ̄P0,0

,

O(δ) : I0,2 =
P0,2

∂σ̄P0,0

− 1

2
I2
0,1

∂2
σ̄σ̄P0,0

∂σ̄P0,0

,

O(
√
ǫδ) : I1,1 =

P1,1

∂σ̄P0,0

− I1,0I0,1

∂2
σ̄σ̄P0,0

∂σ̄P0,0

. (3.31)

Therefore, the desired second-order effective implied volatility approximation I0,0 +√
ǫI1,0 +

√
δI0,1 +

√
ǫδI1,1 + ǫI2,0 + δI0,2 of the effective implied volatility Iǫ,δ is estab-

lished. It is clear that the zero-order term of the approximation is the effective

volatility σ̄; P0,0 and its derivatives with respect to σ̄ appear in the corrected terms.

We consider the “forward log-moneyness” with effective maturity for timer options,

d = log(K/Ser(B−x)/σ̄2

), which is the analogue of the “forward log-moneyness” for

vanilla options in [8]. We show an effective implied volatility surface with d and

effective maturity in Figure 1 in the next section.

4. Numerical example

In this section, we provide a numerical example illustrating the accuracy of our

approach. We perform price approximations in a multiscale stochastic volatility model
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FIGURE 1. Effective implied volatility surface.

where the fast and slow drivers are OU process with α(Yt) = m − Yt, β(Yt) = ν
√

2 and

c(Zt) = c − Zt, g(Zt) = g, respectively. Hence the financial market dynamics are



















































dSt = rSt dt + f (Yt, Zt)St dW
(0)⋆
t

dYt =

(

1

ǫ
(m − Yt) −

1
√
ǫ
Λ(Yt, Zt)ν

√
2

)

dt +
1
√
ǫ
ν
√

2 dW
(1)⋆
t

dZt = (δc(Zt) −
√
δΓ(Yt, Zt)g(Zt)) dt +

√
δg(Zt) dW

(2)⋆
t

dIt = f 2(Yt, Zt) dt,

(4.1)

where the two-factor volatility function is assumed to be

f (y, z) =































20.01 − 10e−(y+z) for y ≥ 0, z ≥ 0

10.01 for y ≥ 0, z < 0

10.01 for y < 0, z ≥ 0

0.01 + 10e(y+z) for y < 0, z < 0.

We take the market prices of volatility risk γ = 0 and ξ = 0, and adopt the same

parameters as those in [9]:

ǫ =
1

200
, δ =

1

200
, m = log(0.1), ν =

1
√

2
, µ = 0.2, ρ1 = 0,

r = 0.04, ρ2 = 0, ρ̃12 = 0, c = log(0.1), g = 1.

A straightforward calculation yields

σ̄2
= 0.0855,

C1 = 0, C2 = 0.055, C3 = 0, C4 = −0.0027, C5 = 0, C6 = 0, C7 = 0, C8 = 0.1717,

C̃0 = −0.8583, C̃1 = 0, C̃2 = 0, C̃3 = 0, C̃4 = 0.

Regarding the prices generated from Monte Carlo simulations as the true prices,

we evaluate the performance of the price approximations. Setting the initial values
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TABLE 1. Timer option prices under multiscale stochastic volatility.

Monte Carlo

Option parameters price P0 P1 P2

T=1/12, k=−200 9.84 (0.074) 9.32 (−5.29%) 9.37 (−4.70%) 9.47 (−3.76%)

T=1/12, k=−100 6.46 (0.064) 6.04 (−6.36%) 6.09 (−5.59%) 6.20 (−3.92%)

T=1/12, k=0 3.79 (0.054) 3.53 (−6.83%) 3.57 (−5.85%) 3.67 (−3.09%)

T=1/12, k=100 2.01 (0.049) 1.84 (−8.73%) 1.86 (−7.54%) 1.93 (−4.01%)

T=1/12, k=200 0.92 (0.0086) 0.85 (−8.16%) 0.86 (−6.71%) 0.89 (−3.91%)

T=1/6, k=−200 14.28 (0.033) 13.26 (−7.16%) 13.37 (−6.37%) 13.46 (−5.70%)

T=1/6, k=−100 9.33 (0.030) 8.63 (−7.48%) 8.73 (−6.43%) 8.85 (−5.10%)

T=1/6, k=0 5.42 (0.025) 5.08 (−6.13%) 5.16 (−4.77%) 5.29 (−2.38%)

T=1/6, k=100 2.892 (0.019) 2.70 (−6.78%) 2.745 (−5.10%) 2.84 (−1.95%)

T=1/6, k=200 1.38 (0.013) 1.289 (−6.37%) 1.32 (−4.33%) 1.35 (−1.91%)

T=1/4, k=−200 16.98 (0.045) 16.30 (−3.96%) 16.467 (−2.99%) 16.57 (−2.41%)

T=1/4, k=−100 10.92 (0.033) 10.64 (−2.57%) 10.78 (−1.25%) 10.92 (0.015%)

T=1/4, k=0 6.53 (0.0462) 6.31 (−1.72%) 6.42 (−3.40%) 6.57 (0.57%)

T=1/4, k=100 3.53 (0.0418) 3.39 (−3.40%) 3.47 (−1.71%) 3.58 (1.34%)

T=1/4, k=200 1.72 (0.0431) 1.67 (−3.43%) 1.71 (−0.92%) 1.75 (1.46%)

S0 = 100, Y0 = m, Z0 = m, x = 0, we simulate the SDEs (4.1) using Euler’s method.

We adapt 105 simulations with time step 10−3 in the simulation process, with various

strike prices and variance budgets. Here, we take B = σ̄2T for T = 1/12, 1/6, 1/4,

which means that the corresponding options will be expected to expire in 1 month, 2

months, and 3 months, respectively. For each choice of B, we consider the strike price

K = S0 + (k/2)
√

B for k = 0, ±100, ±200.

We show the numerical results in Table 1. For Monte Carlo prices, the numbers in

parentheses denote the standard errors for prices computed by Monte Carlo simulation.

P0, P1, and P2 denote the zero-order term P0,0, the first-order approximate price P0,0 +√
ǫP1,0 +

√
δP0,1, and the second-order approximate price P0,0 +

√
ǫP1,0 +

√
δP0,1 +

ǫP2,0 + δP0,2 +
√
ǫδP1,1, respectively. The numbers in parentheses for the approximate

prices represent the relative errors given by (PA − PMC)/PMC, where PA is one of the

approximate prices in Table 1 and PMC is the Monte Carlo price. From Table 1, we can

see the second-order approximations for option prices work well as a whole. For the

expected expiration T = 1/12 and T = 1/4, the relative errors of principal term P0,0

for in-the-money options are smaller than those of out-of-the-money options, while

the reverse is true for T = 1/6. The approximations P1 and P2 perform similarly to

P0, when the options are in the money and out of the money. Generally speaking, the

second-order approximate prices P2 perform better than the first-order approximate

prices P1 and the principal term P0.

The effective implied volatility is also investigated in this numerical example with

the second-order asymptotic approximation. We produce an implied volatility surface
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with forward log-moneyness and effective maturity. In Figure 1, for any fixed value

of effective maturity, we observe that the effective implied volatility curve has a skew

effect, which is in accordance with the observations of empirical studies of vanilla

options [14, 20]. In addition, it changes more rapidly for short effective maturity.

5. Conclusion

Derivatives with random expiration depending on the realized volatility are impor-

tant owing to the need for volatility trading and hedging. We have established a

full second-order asymptotic approximation for the timer option under a class of

multi-factor stochastic volatility models, perturbed by fast and slow scale parameters,

using the techniques of combined singular-regular perturbation. In addition, to explore

the corresponding concept of implied volatility for timer options, we proposed and

investigated the effective implied volatility. By inverting our price asymptotic expan-

sion, we achieved a second-order approximation to the effective implied volatility.

Both approximation formulas, for the price and for the effective implied volatility,

use only the Black–Scholes formula and its derivatives. Numerical experiments were

performed to demonstrate the accuracy of the approximations with various variance

budgets and strike prices, and to illustrate the behaviour of the effective implied

volatility. This study of the effective implied volatility should shed some light for

further investigations of the use of implied volatility for timer options in pricing and

hedging.

There are several directions of study on timer options in which similar perturbation

techniques may provide an effective approach; we mention two of them. First, we

focused here on the plain timer option, whereas one may develop asymptotic pricing

formulas for other timer-type options, such as the timer barrier option and the

compound timer option, where the pricing for their European counterparts have been

studied under multiscale stochastic volatility models [7, 12]. Second, from a model

point of view, it will be interesting to study the pricing of the timer options under

stochastic volatility with regime-switching diffusions [19], which is another class of

stochastic volatility models to which singular perturbation is well applied.
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