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Abstract

We present cTI, the first system for universal left-termination inference of logic programs.

Termination inference generalizes termination analysis and checking. Traditionally, a termin-

ation analyzer tries to prove that a given class of queries terminates. This class must be

provided to the system, for instance by means of user annotations. Moreover, the analysis

must be redone every time the class of queries of interest is updated. Termination inference, in

contrast, requires neither user annotations nor recomputation. In this approach, terminating

classes for all predicates are inferred at once. We describe the architecture of cTI and report

an extensive experimental evaluation of the system covering many classical examples from

the logic programming termination literature and several Prolog programs of respectable size

and complexity.

KEYWORDS: Termination inference, termination analysis, logic programming, abstract

interpretation

1 Introduction

Termination is a crucial aspect of program verification. It is of particular importance

for logic programs (Lloyd 1987; Apt 1997), since there are no a priori syntactic

restrictions to queries and, as a matter of fact, most predicates programmers tend

to write do not terminate for their most general queries. In the last fifteen years,

termination has been the subject of several research works in the field of logic

programming (see, for instance, Francez et al. (1985), Apt and Pedreschi (1990) and

Ruggieri (1999)). In contrast to what happens for other programming paradigms,

there are two notions of termination for logic programs (Vasak and Potter 1986):

existential and universal termination. To illustrate them, assume we are using a

standard Prolog engine. Existential termination of a query means that either the

computation finitely fails or it produces one solution in finite time. This does not

exclude the possibility that the engine, when asked for further solutions, will loop. On
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the other hand, universal termination means that the computation yields all solutions

and eventually fails in finite time (if we repeatedly ask for further solutions).

Although the concept of existential termination plays an important role in

connection with normal logic programs, it has severe drawbacks that make it not

appropriate in other contexts: existential termination is not instantiation-closed (i.e.

a goal may existentially terminate, yet some of its instances may not terminate),

hence it is not and-compositional (i.e. two goals may existentially terminate while

their conjunction does not); finally, existential termination depends on the textual

order of clauses in the program. Universal termination is a stronger and much more

robust concept: it implies existential termination and it is both and-compositional

and instantiation-closed.

Existential termination has been the subject of only a few works (Vasak and Potter

1986; Levi and Scozzari 1995; Marchiori 1996), whereas most research focused on

universal termination. There are two main directions (see DeSchreye and Decorte

(1994) for a survey): characterizing termination (Apt and Pedreschi 1990; Apt

and Pedreschi 1993; Ruggieri 1999) and finding weaker but decidable sufficient

conditions that lead to actual algorithms (Ullman and Van Gelder 1988; Plümer

1990; Verschaetse 1992). Even though our research belongs to both streams, in this

paper we focus on an intuitive presentation of the implementation of our approach.

A companion paper presents a complete formalization of our work in the theoretical

setting of acceptability for constraint logic programs (Mesnard and Ruggieri 2003),

where we refine a necessary and sufficient condition for termination to the sufficient

condition implemented in cTI.

Our main contribution compared to other automated termination analyzers

(Lindenstrauss and Sagiv 1997; Decorte 1997; Speirs et al. 1997; Codish and

Taboch 1999) is that our tool infers sufficient universal termination conditions from

the text of any Prolog program, adopting a bottom-up approach to termination.

An important feature of this approach first presented in Mesnard (1996) is that

there is no need to define in advance a class of queries of interest. (If required,

these classes can be provided after the analysis has finished in order to specialize

the obtained results.) Our system, called cTI from constraint-based Termination

Inference, is written in SICStus Prolog. A preliminary account of the work described

in this paper appeared in Mesnard and Neumerkel (2001), where we showed

that numeric computations took most of the execution times. Now cTI relies on

the specialized Parma Polyhedra Library (Bagnara et al. 2002), a modern C++

library for the manipulation of convex polyhedra that significantly speeds up the

analysis. Moreover, cTI has been extended so that it can analyze any ISO-Prolog

program (ISO/IEC 1995; Deransart et al. 1996). The only correctness requirement

we currently impose on programs is that they must not create infinite rational terms.

Hence we assume execution with occurs-check or, equivalently, NSTO programs (i.e.

programs that are Not Subject to Occur-Check (Deransart et al. 1991), and thus are

safely executed with any standard conforming system). We point out that simple,

sufficient syntactic methods for ensuring occurs-check freedom are presented in Apt

and Pellegrini (1994), while Søndergaard (1986) and Crnogorac et al. (1996) describe

abstract-interpretation based solutions. Recently, finite-tree analysis (Bagnara et al.
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2001a; Bagnara et al. 2001b) has been proposed to confine infinite rational terms in

programs that are not occurs-check free. Both the approach described in Mesnard

and Ruggieri (2003), and the cTI system can be extended, with the help of finite-tree

analysis, to deal also with such programs.

Throughout the paper we assume a basic knowledge of logic programming

(Apt 1997), constraint logic programming (Marriott and Stuckey 1998), abstract

interpretation (Cousot and Cousot 1992) and propositional µ-calculus (Clarke et al.

2000). In Section 2 we present cTI informally with an example analysis. How to use

cTI is described in Section 3. An experimental evaluation of the system is the subject

of Section 4. Related work is discussed in Section 5 while Section 6 concludes.

2 An overview of cTI

Our aim is to compute classes of queries for which universal left termination is

guaranteed. We call such classes termination conditions. More precisely, let P be a

Prolog program and q a predicate symbol of P . A termination condition for q is a

set TCq of goals of the form ← c, q(x̃) where c is a CLP(H) constraint such that,

for any goal G ∈ TCq , each derivation of P and G using the left-to-right selection

rule is finite.

Our analyzer uses three main constraint structures: Herbrand terms for the initial

program P (seen as a CLP(H) program), non-negative integers, and booleans (P is

abstracted into both a CLP(N) and a CLP(B) program). We illustrate our method

to infer termination conditions by means of an example. The method consists of six

distinct steps, which will be illustrated on the following definition for the predicates

app/3, nrev/2 and app3/4:

app([], X, X).

app([E|X], Y, [E|Z]) :-

app(X, Y, Z).

nrev([], []).

nrev([E|X], Y) :-

nrev(X, Z),

app(Z, [E], Y).

app3(X, Y, Z, U) :-

app(X, Y, V),

app(V, Z, U).

Step 1: From Prolog to CLP(N). From the Prolog program P , a CLP(N) program

PN is obtained by applying a symbolic norm. In our example, we use the term-

size norm, which is the one cTI applies by default. All ISO-predefined predicates

have been manually pre-analyzed for this norm. Notice that, as explained in

Mesnard and Ruggieri (2003), termination inference for pure Prolog programs can

be based on any linear norm. The symbolic term-size norm is inductively defined as

follows:

‖t‖term-size
def
=




1 +
∑n

i=1 ‖ti‖term-size, if t = f(t1, . . . , tn) with n > 0;

0, if t is a constant;

t, if t is a variable.

For example, ‖f(0, 0)‖term-size = 1. All non-monotonic elements of the program are

approximated by monotone constructs. For instance, Prolog’s unsound negation \+ G

is approximated by ((G, fail) ; true). More generally, extra-logical predicates

are mapped to their first-order counterparts so that the termination property
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is preserved. For our running example, we obtain the following CLP(N)

clauses:

appN(0, x, x).

appN(1 + e + x, y, 1 + e + z)←
appN(x, y, z).

nrevN(0, 0).

nrevN(1 + e + x, y)←
nrevN(x, z),

appN(z, 1 + e, y).

app3N(x, y, z, u)←
appN(x, y, v),

appN(v, z, u).

Step 2: Computing a numeric model. A model of the CLP(N) program is now

computed. For each predicate p, the model describes, with a finite conjunction

of linear equalities and inequalities denoted by postNp , the linear inter-argument

relations that hold for every solution of p. In our example we obtain the following

model:

postNapp(x, y, z) ⇐⇒ x + y = z,

postNnrev(x, y) ⇐⇒ x = y,

postNapp3(x, y, z, u) ⇐⇒ x + y + z = u.

The actual computation is performed on the set of nonnegative, infinite precision

rational numbers, using a fixpoint calculator based on PPL, the Parma Polyhedra

Library (Bagnara et al. 2002), and the standard widening (Cousot and Halbwachs

1978; Halbwachs 1979). In our example the least model is found. In general, however,

only a less precise model can be determined.

Step 3: Computing a numeric level mapping. The information provided by the nu-

merical model is crucial to compute a level mapping |·|N. Let p be an n-ary predicate

symbol in the CLP(N) program. The level mapping associates to p a function

fp: �n → � that is guaranteed to decrease when going from the head of the

clause to each recursive call(s), if any, for each clause defining p. For example, a

level mapping |·|N such that |nrevN(x, y)|N = x intuitively means: for each ground

instance1 of each recursive clause defining nrevN, the first argument decreases when

going from the head of the clause to the recursive call (since 1 + e + x > x for each

e, x ∈ �). Since no clause defining app3N is recursive, the level mapping can be

defined so that |app3(x, y, z, t)|N = 0. The level mapping computed for our example

is defined by:

|app(x, y, z)|N = min(x, z),

|nrev(x, y)|N = x,

|app3(x, y, z, u)|N = 0.

This is obtained by means of an improvement of the technique by K. Sohn and

A. Van Gelder for the automatic generation of linear level mappings. Their algorithm,

which is based on linear programming, is complete in the sense that it will always

provide a linear level mapping if one exists (Sohn and Van Gelder 1991). Our

extension, which is described in Mesnard and Neumerkel (2001), consists in first

computing a constraint over the coefficients of a generic linear level mapping

1 That is, where natural numbers have replaced variable symbols.
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(step 3a). Then we generate a concrete level mapping (step 3b). Notice that for

a multi-directional predicate (such as app/3) we may get multiple linear level

mappings. These are combined, with the min operator, into one non-linear level

mapping.

In contrast with the well-known standard framework of acceptability, the decrease

of the level mapping has to be shown only for predicates belonging to the same

strongly connected component (SCC) of the call graph. Step 5 below will ensure that

the other calls to predicates from lower SCC’s do left terminate. The advantage of

this approach is twofold: first, the computation of a level mapping, being SCC-based,

is modular. Secondly, the expressive power of linear level mappings with respect to

termination is much higher than in the acceptability case.

Step 4: From CLP(N) to CLP(B). From the CLP(N) program PN a CLP(B)

program, PB, is obtained by mapping each natural number to 1 (true), each variable

symbol to itself, and addition to logical conjunction.

appB(1, x, x).

appB(1 ∧ e ∧ x, y, 1 ∧ e ∧ z)←
appB(x, y, z).

nrevB(1, 1).

nrevB(1 ∧ e ∧ x, y)←
nrevB(x, z),

appB(z, 1 ∧ e, y).

app3B(x, y, z, u)←
appB(x, y, v),

appB(v, z, u).

The purpose of PB is the one of capturing boundedness dependencies within PN

or, equivalently, rigidity dependencies within the original program.2 A model for PB

is then computed and a boolean level mapping |·|B is obtained from the numerical

level mapping computed in Step 3. In order to do that, the translation scheme

outlined above is augmented with the association of the logical disjunction x ∨ y

to min(x, y): this means that min(x, y) is a bounded quantity if x or y or both are

bounded. Here is what we obtain for the example program:

postBapp(x, y, z) ⇐⇒ (x ∧ y)↔ z, |app(x, y, z)|B = x ∨ z,

postBnrev(x, y) ⇐⇒ x↔ y, |nrev(x, y)|B = x,

postBapp3(x, y, z, u) ⇐⇒ (x ∧ y ∧ z)↔ u, |app3(x, y, z, u)|B = 1.

For instance, as we use the term-size norm, this model tells us that for any computed

answer θ to a call nrev(x, y), xθ is ground if and only if yθ is ground.

Step 5: Computing boolean termination conditions. The information obtained from

PB for each program point is combined with the level mapping by means of the

following boolean µ-calculus formulæ, whose solution gives the desired boolean

termination conditions.

preapp = νT . λ(x, y, z) .{∣∣app(x, y, z)
∣∣B

∀e, x′, z′ : ((x↔ (1 ∧ e ∧ x′)) ∧ (z ↔ (1 ∧ e ∧ z′)))→ T (x′, y, z′)

2 A term t is rigid with respect to a symbolic norm ‖·‖ if and only if its measure is invariant by
instantiation, i.e., ‖t‖ = ‖tθ‖ for any substitution θ.
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prenrev = νT . λ(x, y) .

|nrev(x, y)|B (1)

∀e, x′, z : ((x↔ (1 ∧ e ∧ x′)))→ T (x′, z) (2)

∀e, x′, z :
(
(x↔ (1 ∧ e ∧ x′)) ∧ postBnrev(x′, z)

)
→ preapp(z, 1 ∧ e, y) (3)

preapp3 = νT . λ(x, y, z, u) .


∣∣app3(x, y, z, u)
∣∣B

∀v : 1→ preapp(x, y, v)

∀v : postBapp(x, y, v)→ preapp(v, z, u)

Here is the intuition behind such boolean µ-calculus formulæ. Consider the nrev/2

predicate. Its unit clause is taken into account in the computation of the numeric

and the boolean model. For computing the boolean termination condition prenrev,

we consider the clause

nrevB(x, y)← [x↔ (1 ∧ e ∧ x′)], nrevB(x′, z), appB(z, 1 ∧ e, y).

We are looking for a boolean relation T (x, y) satisfying the following conditions:

• for each (x, y) in T , the level mapping has to be bounded, which leads to

condition (1) above;

• the recursive call to nrev/2 has to terminate, hence condition (2);

• for any state resulting from the evaluation of the first call, the subsequent call

to app/3 has to terminate, giving condition (3);

• finally, we are interested in the weakest solution for T , hence the boolean

termination condition is defined as a greatest fixpoint:

prenrev = νT . λ(x, y) . {(1) ∧ (2) ∧ (3)}.

Solving the equations for our example gives:

preapp(x, y, z) = x ∨ z,

prenrev(x, y) = x,

preapp3(x, y, z, u) = (x ∧ y) ∨ (x ∧ u).

The greatest fixpoint is evaluated with the boolean µ-solver described in Colin

et al. (1997), which computes on the domain Pos of positive boolean formulæ

(Armstrong et al. 1998) and is based on the boolean solver of SICStus Prolog.

Step 6: Back to Prolog. In the final step of the analysis, the boolean termination

conditions are lifted to termination conditions with the following interpretation,

where the c’s are CLP(H) constraints:

• each goal ‘?- c, app(X,Y,Z).’ left-terminates if X or Z are ground in c;

• each goal ‘?- c, nrev(X,Y).’ left-terminates if X is ground in c;

• each goal ‘?- c, app3(X,Y,Z,U).’ left-terminates if X and Y are ground in c or

X and U are ground in c.
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3 Using cTI

Once compiled and installed, cTI is invoked with the command ‘cti source’, where

the program in ‘source’ is assumed to be an ISO-Prolog program. The user may

then control the behavior of cTI with some options. We describe the main ones:

‘-p file’ By default, undefined predicates are assumed to fail. The user may enrich

or redefine the set of built-ins recognized by the system, by specifying ‘-p file’

on the command line. This has the effect of importing the predicates whose

numerical model, boolean model, and termination condition are given in ‘file’.

As predicates imported that way cannot be redefined in the analyzed program,

this scheme provides a way to overcome potential weaknesses of the analysis.

‘-t timeout in ms’ The analysis steps 2, 3a, 3b, 4, and 5 described in Section 2 all

include potentially expensive computations. Because of this, for each such step,

the computation concerning each SCC is subject to a timeout, whose default value

is 2 seconds. The ‘-t’ option allows the user to modify this value.

‘-n N’ For the computation of the numeric model (step 2), a widening is used after

n iterations of the approximate fixpoint iteration. The default value for n is 1.

The user may also modify a program to give specific information for selected

program points. We illustrate this facility by means of examples; the precise syntax

is given in the cTI’s documentation. One may specify that particular program

variables will only be bound to non-negative integers and that the analyzer should

take into account some constraints involving them. For instance, cTI does not detect

that the following program terminates:

p1(N) :- N > 0, M is N-1, p1(M).

p1(N) :- N > 1, A is N>>1, Z is N-A, p1(A), p1(Z).

where the predefined arithmetic functor ‘>>/2’ is the bitwise arithmetic right shift.

On the other hand, cTI is able to show that p2(N) terminates:

p2(N) :- cti:{N > 0, M = N-1}, p2(M).

p2(N) :- cti:{N > 1, 2*A =< N, N =< 2*A+1, Z = N-A}, p2(A), p2(Z).

Finally, at any program point, the user can add linear inter-argument relations or

groundness relations that the analyzer will take for granted. The system can thus

prove the termination of the goal ‘?- top.’ where the predicate top/0 is defined

by the program given in Section 2 augmented with the following clause, where the

term-size of L1 is declared to be less than 10 and L2 is declared to be ground:

top :- cti:{n(L1) < 10},app(L1,Zs,L2),cti:{b(L2)},app(Xs,Ys,L2).

While such programs are no longer ISO-Prolog programs, the annotations can be

automatically removed so as to obtain the original programs back. The assertion

language currently used in cTI is only experimental, and future versions of the

system may be based on the language defined in Hermenegildo et al. (2000).
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4 Experimental evaluation

Unless otherwise specified, the experiments we present here were all conducted with

the option (see Section 3) -p predef_for_compatibility.pl, which ensures that

non-ISO built-ins used in the benchmarks (several of which are written in a non-

ISO dialect of Prolog) are predefined. This experimental evaluation was done on

a GNU/Linux system with an Intel i686 CPU clocked at 2.4 GHz, 512 Mb of

RAM, running the Linux kernel version 2.4, SICStus Prolog 3.10.0 (28.3 MLips),

PPL version 0.5, and cTI version 1.0.

Standard programs from the termination literature. Table 1 presents timings and

results of cTI on some standard LP termination benchmarks. The columns are

labeled as follows:

program: the name of the analyzed program (the asterisk near a name means that

we had to use one of the options that allow to tune the behavior of cTI);

top-level predicate: the predicate of interest;

checked: the class of queries checked by the analyzers of Decorte et al. (1999),

Lindenstrauss and Sagiv (1997) and Speirs et al. (1997);

result: the best result among those reported in Decorte et al. (1999), Lindenstrauss

and Sagiv (1997) and Speirs et al. (1997) (where, of course, ‘yes, the program

terminates ’ is better than ‘no, don’t know ’);

inferred: the termination condition inferred by cTI (1 means that any call to the

predicate terminates, 0 means that cTI could not find a terminating mode for that

predicate);

time: the running time, in seconds, for cTI to infer the termination conditions.

For all the examples presented in Table 1, our analyzer is able to infer a class of

terminating queries at least as large than the one checked by the analyzers of Decorte

et al. (1999), Lindenstrauss and Sagiv (1997) and Speirs et al. (1997) (although we

manually tuned cTI three times). We point out that TermiLog (Lindenstrauss and

Sagiv 1997) and TerminWeb (Codish and Taboch 1999) are sometimes able to prove

termination whereas cTI is not and vice versa.

Standard programs from the abstract interpretation literature. Table 2 presents timings

of cTI using some standard benchmarks3 from the LP program analysis community.

We have chosen eleven middle-sized, well-known logic programs. All the programs

are taken from Bueno et al. (1994) except credit and plan. The first column of

Table 2 gives the name of the analyzed program and the second one gives the number

of its clauses (before any program transformation takes place). The following six

columns indicate the running times (minimum execution times over ten runs), in

seconds, for computing:

MN
P : a numeric model (step 2);

Cµ: the constraint over the coefficients of a generic linear level mapping (step 3a);

µ: the concrete level mapping (step 3b);

3 These have been collected by N. Lindenstrauss, see www.cs.huji.ac.il/ naomil.
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Table 1. De Schreye’s, Apt’s, and Plümer’s programs

Others cTI

Program Top-level predicate Checked Result Inferred Time (s)

permute permute(x, y) x yes x 0.03

duplicate duplicate(x, y) x yes x ∨ y 0.02

sum sum(x, y, z) x ∧ y yes x ∨ y ∨ z 0.03

merge merge(x, y, z) x ∧ y yes (x ∧ y) ∨ z 0.03

dis-con dis(x) x yes x 0.03

reverse reverse(x, y, z) x ∧ z yes x 0.02

append append(x, y, z) x ∧ y yes x ∨ z 0.02

list list(x) x yes x 0.01

fold fold(x, y, z) x ∧ y yes y 0.02

lte goal 1 yes 1 0.02

map map(x, y) x yes x ∨ y 0.02

member member(x, y) y yes y 0.01

mergesort mergesort(x, y) x no 0 0.06

mergesort* mergesort(x, y) x no x 0.07

mergesort ap mergesort ap(x, y, z) x yes z 0.11

mergesort ap* mergesort ap(x, y, z) x yes x ∨ z 0.11

naive rev naive rev(x, y) x yes x 0.03

ordered ordered(x) x yes x 0.01

overlap overlap(x, y) x ∧ y yes x ∧ y 0.01

permutation permutation(x, y) x yes x 0.03

quicksort quicksort(x, y) x yes x 0.06

select select(x, y, z) y yes y ∨ z 0.01

subset subset(x, y) x ∧ y yes x ∧ y 0.02

sum sum(x, y, z) z yes y ∨ z 0.02

pl2.3.1 p(x, y) x no 0 0.01

pl3.5.6 p(x) 1 no x 0.01

pl3.5.6a p(x) 1 yes x 0.01

pl4.0.1 append3(x,y,z,v) x ∧ y ∧ z yes (x ∧ y) ∨ (x ∧ v) 0.02

pl4.5.2 s(x, y) x no 0 0.03

pl4.5.3a p(x) x no 0 0.01

pl5.2.2 turing(x, y, z, t) x ∧ y ∧ z no 0 0.11

pl7.2.9 mult(x, y, z) x ∧ y yes x ∧ y 0.02

pl7.6.2a reach(x, y, z) x ∧ y ∧ z no 0 0.02

pl7.6.2b reach(x, y, z, t) x ∧ y ∧ z ∧ t no 0 0.03

pl7.6.2c reach(x, y, z, t) x ∧ y ∧ z ∧ t yes z ∧ t 0.04

pl8.3.1 minsort(x, y) x no x ∧ y 0.04

pl8.3.1a minsort(x, y) x yes x 0.04

pl8.4.1 even(x) x yes x 0.02

pl8.4.2 e(x, y) x yes x 0.07
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Table 2. Running times for middle-sized programs

Analysis times (s)

Program Clauses MN
P Cµ µ MB

P TC Total Q%

ann 177 0.17 0.48 0.08 0.17 0.06 1.00 49%

bid 50 0.03 0.04 0.02 0.02 0.02 0.14 100%

boyer 136 0.07 0.06 0.02 0.08 0.02 0.30 85%

browse 30 0.05 0.12 0.03 0.04 0.01 0.26 60%

credit 57 0.02 0.03 0.02 0.02 0.01 0.11 100%

peephole 134 0.18 0.56 0.03 0.20 0.06 1.08 94%

plan 29 0.02 0.03 0.01 0.02 0.02 0.11 100%

qplan 148 0.20 0.52 0.12 0.18 0.07 1.13 68%

rdtok 55 0.13 0.39 0.03 0.07 0.02 0.65 44%

read 88 0.26 1.00 0.04 0.31 0.08 1.72 52%

warplan 101 0.10 0.25 0.01 0.08 0.02 0.49 33%

18% 50% 6% 17% 6% 100%

Average % of time for each analysis phase

MB
P : a boolean model (step 4);

TC: the boolean termination conditions (step 5).

The next column reports the total runtime in seconds while the last column, labeled

‘Q%’, expresses the quality of the analysis, computed as the ratio of the number

of user-defined predicates that have a non-empty termination condition over the

total number of user-defined predicates (the result of an analysis presents all the

user-defined predicates together with their corresponding termination conditions).

We note that cTI can prove that bid, credit, and plan are left-terminating: every

ground atom left-terminates. For any such program P , TP has only one fixpoint

(Apt, 1997, Theorem 8.13), which may help proving its partial correctness. Moreover,

as the ground semantics of such a program is decidable, Prolog is its own decision

procedure, which does help testing and validating the program.

On the other hand, when the quality of the analysis is less than 100%, it means

that there exists at least one SCC where the inferred termination condition is 0.

Let us call such SCC’s failed SCC’s. They are clearly identified, which may help the

programmer. Here are some reasons why cTI may fail: potential non-termination,

poor numeric model, non-existence of a linear level mapping for a predicate with

respect to the model, inadequate norm. Also, the analysis of the SCC’s which depend

on a failed SCC is likely to fail, but this does not prevent cTI from analyzing other

parts of the call graph.

Some larger programs. Finally, we have tested cTI on the following programs:

• chat is a parser written by Pereira and Warren;

• lptp is an interactive theorem prover for Prolog written by Stärk (1998);
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Table 3. Running times for larger programs

Analysis times (s)

Program Clauses MN
P Cµ µ MB

P TC Total timeouts Q%

chat 515 3.89 2.78 2.84 2.85 0.35 12.80 1/1/1/0/0 71%

lptp 1298 3.99 14.10 1.84 2.88 1.65 25.10 0/1/0/0/0 67%

pl2wam 1190 2.12 2.37 0.99 2.00 1.29 9.22 0/0/0/0/0 64%

slice 952 2.20 10.46 0.13 2.08 0.93 16.20 0/3/0/0/0 55%

symbolic1 923 1.49 0.67 0.04 0.61 0.29 3.47 0/0/0/0/0 58%

• pl2wam is the compiler from Prolog to WAM of GNU-Prolog 1.1.2 developed

by Diaz and Codognet (2000);

• slice is a multi-language interpreter developed by R. Bagnara and A. Riaudo;

• symbolic1 seems to be a simulator for a Prolog machine. We do not know

the origin of this file.

The results of the analysis are given in Table 3. As explained in the previous section,

we set up a timeout of 2 seconds per SCC for computing a CLP(N) model, the

constraints defining level mappings, a CLP(B) model, and the termination condition.

So we have a limit of 10 seconds of CPU time per SCC. The last but one column

in Table 3 summarizes the number of timeouts for steps 2/3a/3b/4/5, respectively.

5 Related work

The compiler of the Mercury programming language (Somogyi et al. 1996) includes

a termination checker, described in Speirs et al. (1997). The speed of the analyzer is

quite impressive. We see two reasons for this. First, the termination checker is written

in Mercury itself. Second, and most importantly, the analyzer takes high profit of

the mode informations that are part of the text of the program being checked. On

the other hand, while the running times of cTI are bigger, termination inference is a

more general problem than termination checking: in the worst case, an exponential

number of termination checks are needed to simulate termination inference.

TALP (Arts and Zantema 1996) is an automatic tool that transforms a well-moded

logic program (Apt 1997) into a term rewriting system such that termination of the

latter implies termination of the former. The generated term rewriting system is then

proved terminating by the CiME tool (http://cime.lri.fr/). The system seems quite

powerful for this class of logic programs.

Genaim and Codish (2001) made recently a link between backward analysis

(King and Lu 2002) and termination analysis, which leads to termination inference.

Although they used a completely different scheme for computing level mappings,

the results of the analysis on the programs described in Tables 1 and 2 were rather

similar, both in time and quality, to previous versions of cTI that rely on the
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rational linear solver of SICStus Prolog. Thanks to the PPL, cTI is now significantly

faster (speed-ups from a factor of two to more than an order of magnitude have

been observed). The latest version of TerminWeb emphasizes termination analysis

of typed logic programs.

Termination of logic programming where numerical computations are taken into

account are studied in Serebrenik and De Schreye (2001, 2002). The authors present

some advanced techniques for explicitly dealing with integers and floating point

numbers computations.

The size-change termination principle has been proposed in Lee et al. (2001) for

deciding termination of first-order functional programs. The resulting analysis is

close to the TermiLog approach (Lindenstrauss and Sagiv 1997) and the authors

establish its intrinsic complexity.

Finally, we point out that the system Ciao-Prolog (Bueno et al. 1997) adopts

another approach for termination, based on complexity analysis (Debray et al.

1994).

6 Conclusion

We have presented cTI, the first bottom-up left-termination inference tool for ISO-

Prolog, and its experimental evaluation over standard termination benchmarks as

well as middle-sized and larger logic programs. Running cTI on large programs

shows that the approach scales up satisfactorily. We believe that, thanks to the

Parma Polyhedra Library, cTI is today the fastest and most robust termination

inference tool for logic programs.

When a SCC is too large, computations relying on projection may become too

expensive. So we have added for each computation which may be too costly a

timeout and if necessary we are able to return a value which does not destroy the

correctness of the analysis, although the quality of the inference is obviously weaker.

It allows cTI to keep on analyzing the program. As a side effect, the running time

of cTI is linear with respect to the number of SCC’s in the call graph.

Finally, one can observe that the termination conditions computed in Section 2 are

actually optimal with respect to the language used for describing classes of queries.

Can one prove such properties automatically? Mesnard et al. (2002) present a first

step in this direction.
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Availability

cTI is distributed under the GNU General Public License. The analyzer, together

with the programs analyzed for benchmarking, are available from cTI’s web site:

http://www.cs.unipr.it/cTI.
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Science, vol. 1870. Springer-Verlag, 23–61.

ISO/IEC. 1995. ISO/IEC 13211-1: 1995 Information technology – Programming languages –

Prolog – Part 1: General core. International Standard Organization.

King, A. and Lu, L. 2002. A backward analysis for constraint logic programs. Theory and

Practice of Logic Programming 2, 4–5, 517–547.

Lee, C. S., Jones, N. D. and Ben-Amram, A. M. 2001. The size-change principle for program

termination. In Proceedings 28th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL-01), C. Norris and J. J. B. Fenwick, Eds. ACM SIGPLAN

Notices, vol. 36. ACM, London, 81–92.

Levi, G. and Scozzari, F. 1995. Contributions to a theory of txistential termination for

definite logic programs. In Proceedings 1995 Joint Conference on Declarative Programming

(GULP-PRODE’95), M. Alpuente and M. I. Sessa, Eds. Marina di Vietri, Italy, 631–642.

Lindenstrauss, N. and Sagiv, Y. 1997. Automatic termination analysis of logic programs.

In Logic Programming: Proceedings 14th International Conference on Logic Programming,

L. Naish, Ed. MIT Press Series in Logic Programming. MIT Press, 63–77.

Lloyd, L. W. 1987. Foundations of Logic Programming , second ed. Springer-Verlag.

Marchiori, M. 1996. Proving existential termination of normal logic programs.

In Proceedings Fifth International Conference on Algebraic Methodology and Software

https://doi.org/10.1017/S1471068404002017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002017


cTI: a termination inference tool for Prolog 257

Technology (AMAST’96), M. Wirsing and M. Nivat, Eds. Lecture Notes in Computer

Science, vol. 1101. Springer-Verlag, 375–390.

Marriott, K. and Stuckey, P. J. 1998. Programming with Constraints: An Introduction. MIT

Press.

Mesnard, F. 1996. Inferring left-terminating classes of queries for constraint logic programs

by means of approximations. In Logic Programming: Proceedings Joint International

Conference and Symposium on Logic Programming, M. J. Maher, Ed. MIT Press Series

in Logic Programming. MIT Press, 7–21.

Mesnard, F. and Neumerkel, U. 2001. Applying static analysis techniques for inferring

termination conditions of logic programs. See Cousot (2001), 93–110.

Mesnard, F., Payet, E. and Neumerkel, U. 2002. Detecting optimal termination conditions

of logic programs. See Hermenegildo and Puebla (2002), 509–525.

Mesnard, F. and Ruggieri, S. 2003. On proving left termination of constraint logic programs.

ACM Transactions on Computational Logic 4, 2, 1–26.

Nieuwenhuis, R. and Voronkov, A., Eds. 2001. Proceedings 8th International Conference on

Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2001). Lecture Notes

in Artificial Intelligence, vol. 2250. Springer-Verlag.
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