
J. Fluid Mech. (2021), vol. 915, A130, doi:10.1017/jfm.2021.103

Direct numerical simulation of
quasi-two-dimensional MHD turbulent
shear flows

Long Chen1, Alban Pothérat2, Ming-Jiu Ni1,† and René Moreau3

1School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
2Fluid and Complex Systems Research Centre, Coventry University, Coventry CV15FB, UK
3Laboratoire SIMAP, Groupe EPM, Université de Grenoble, BP 75, 38402 Saint Martin d’Hères, France

(Received 29 July 2020; revised 4 December 2020; accepted 22 January 2021)

High-resolution direct numerical simulations are performed to study the turbulent shear
flow of liquid metal in a cylindrical container. The flow is driven by an azimuthal
Lorentz force induced by the interaction between the radial electric currents injected
through electrodes placed at the bottom wall and a magnetic field imposed in the
axial direction. All physical parameters, are aligned with the experiment by Messadek
& Moreau (J. Fluid Mech. vol. 456, 2002, pp. 137–159). The simulations recover
the variations of angular momentum, velocity profiles, boundary layer thickness and
turbulent spectra found experimentally to a very good precision. They further reveal
a transition to small scale turbulence in the wall side layer when the Reynolds
number based on Hartmann layer thickness R exceeds 121, and a separation of this
layer for R ≥ 145.2. Ekman recirculations significantly influence these quantities and
determine global dissipation. This phenomenology well captured by the 2-D PSM model
(Pothérat, Sommeria & Moreau, J. Fluid Mech. vol. 424, 2000, pp. 75–100) until
small-scale turbulence appears and incurs significant extra dissipation only captured
by 3-D simulations. Secondly, we recover the theoretical law for the cutoff scale
separating large quasi-two-dimensional (Q2-D) scales from small three-dimensional ones
(Sommeria & Moreau, J. Fluid Mech. vol. 118, 1982, pp. 507–518), and thus establish
its validity in sheared magnetohydrodynamics (MHD) turbulence. We further find that
three-componentality and three-dimensionality appear concurrently and that both the
frequency corresponding to the Q2-D cutoff scale and the mean energy associated with
he axial component of velocity scale with the true interaction parameter Nt, respectively,
as 0.063N0.37

t and 0.126N−0.92
t .
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1. Introduction

In this paper, we apply the three-dimensional (3-D) direct numerical simulations (DNS)
to study the flow of an electrically conducting incompressible fluid in a cylindrical
container, popularly known as MATUR (MAgnetohydrodynamics TURbulence), designed
to investigate the quasi-two-dimensional (Q2-D) turbulence (Alboussière, Uspenski &
Moreau 1999) in the presence of external magnetic fields. The sketch of MATUR is
shown in figure 1, where the magnetic field is applied along the axial direction. For
such a laboratory-scale configuration, the magnetic Reynolds number is much smaller
than unity (here, Rm = μmσU0L ≈ 0.007, where μm denotes the magnetic permeability
of vacuum, σ is the electrical conductivity, U0 = 0.1 m s−1 and L = 0.01 m are the typical
characteristic velocity and the characteristic length scale, respectively), then the induced
magnetic field b is much smaller than the imposed one B (b ∼ RmB � B), and the Lorentz
force acting on the flow is obtained as FLorentz = j × B, where j denotes the electric current
density (Roberts 1967). If the magnetic field is strong enough, velocity variations along the
field lines are damped by the Lorentz force and the flow tends to be Q2-D.

This tendency was observed in several experiments. Kolesnikov & Tsinober (1974) and
Davidson (1997) stated that this evolution towards a Q2-D regime was a consequence
of the invariance of the angular momentum component parallel to the magnetic field,
when its perpendicular components decay exponentially (∼ exp(σB2t/ρ) where t denotes
the evolution time, ρ is the density). Eckert et al. (2001) conducted an experiment
on magnetohydrodynamics (MHD) turbulence in a sodium channel flow exposed to a
transverse magnetic field, and the measured turbulence intensity and energy spectra were
found to exhibit a spectral slope varying with the magnetic interaction parameter (N =
σB2L/ρU0) from a k−5/3 law for N ≤ 1 and to a minimum exponent of −4 for N � 120
where k is the wavenumber. For the MHD turbulent shear flows, Kljukin & Kolesnikov
(1989) performed the very first experiments, in which the mean velocity distribution and
correlations of velocity fluctuations were provided, but data concerning the energy spectra
and the development of coherent structures fed by the energy transfer towards the large
scales was not available.

In order to better understand the elementary properties of the Q2-D turbulent shear flows
and check the validation of theoretical work (Sommeria & Moreau 1982), Alboussière
et al. (1999) and Pothérat, Sommeria & Moreau (2000) carried out experimental and
theoretical studies on the Q2-D turbulent shear flows, where the transport of a scalar
quantity and the free-surface effect were considered, using the MATUR equipment.
Messadek & Moreau (2002) further provided experiment data on the MHD turbulent
shear flows in a wide range of Hartmann number (Ha) and Reynolds number (Re),
and highlighted the important role of the Hartmann layers where the Joule effect and
viscosity dissipate most of the kinetic energy. Recently, Stelzer et al. (2015b) built a
new experimental device called ZUCCHINI (ZUrich Cylindrical CHannel INstability
Investigation), which, as MATUR, featured a free shear layer at the edge of the inner
disk electrode. Combining it with finite-element simulations (based on a two-dimensional
(2-D) axisymmetric model), they studied the instabilities of the free shear layer and
identified several flow regimes characterised by the nature of the instabilities of the
Kelvin–Helmholtz type (Stelzer et al. 2015a). Based on the FLOWCUBE platform, a
more homogeneous type of turbulence between Hartmann walls was produced from the
destabilisation of vortex arrays (Klein & Pothérat 2010; Pothérat & Klein 2014; Baker
et al. 2018). These authors focused on the transition between 3-D and Q2-D turbulence. In
particular, the cutoff length scale l̂c⊥ (∼N1/3

t , where Nt is the true interaction parameter)
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Figure 1. Sketch of the experimental set-up. A typical electric circuit including one of the point-electrodes
mounted flush at the bottom Hartmann layer is represented.

first theorised by Sommeria & Moreau (1982) that separates 3-D from Q2-D fluctuations
was obtained experimentally, as well as evidence of inverse and direct energy cascades in
3-D magnetohydrodynamic turbulence.

However, a major disadvantage of experimental approaches is that the liquid metal used
for their high electrical conductivity is non-transparent. Although the velocity fields can be
measured by ultrasonic Doppler velocimetry or potential probe techniques, more complete
information, e.g the distribution of the flow fields and the electromagnetic quantities,
are rather difficult to obtain. Therefore, numerical simulations, which can complement
the experimental measurements, have been developed recently to study MHD turbulence.
Taking advantage of the Q2-D property of the MHD flows in the case of high N and
Ha, several simplified effective 2-D models have been developed by averaging the full
Navier–Stokes equations along the direction of the magnetic fields. The advantages of
using these 2-D models are evident, not only to save the costs compared with a full 3-D
numerical approach, but also to provide accurate results where 3-D numerical solutions
cannot fully resolve the boundary layer in the case of high Ha. Sommeria & Moreau (1982)
derived a 2-D model (denoted as SM82 hereafter) based on the simple exponential profile
of Hartmann layers. It gave good results in the flow regime where inertia is small but
failed to describe flows where strong rotation induces secondary flows, such as Ekman
pumping. The 2-D model developed by Pothérat et al. (2000) (denoted as PSM hereafter),
accounting for some 3-D effects, gave more accurate prediction in the Q2-D flows. With
PSM, both of the velocity profiles and the global angular momentum measurements from
MATUR (Pothérat, Sommeria & Moreau 2005) were reproduced, and it was proved that
the local and global Ekman recirculations altered the shape of the flow significantly as
well as the global dissipation. However, both the SM82 model and the PSM model break
down if the Hartmann layer becomes turbulent. While the flow may still remain Q2-D the
boundary-layer friction is altered. Pothérat & Schweitzer (2011) established an alternative
shallow-water model specifically for this case, and recovered experimentally measured
velocity profiles and global momentum in this regime.

In mainly azimuthal flows, such as in a toroidal containers, the dynamics of the sidewall
layer and the free shear layer near the injected electrodes on the flow is complex because
of rotation effects. Even when the Hartmann layers are stable, significant flow alterations
may occur, including non-trivial 3-D effects (Tabeling & Chabrerie 1981), which could
not be observed easily in experiments or with any Q2-D model. It has been proven
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that turbulence may remain localised in a layer near the outer cylinder wall prior to
transition happening in Hartmann layers as indicated by Zhao & Zikanov (2012), who
conducted a series of 3-D DNS of MHD turbulence flows in a toroidal duct. In addition,
for cases with lower values of Hartmann number and higher values of Reynolds number,
three-dimensionality would be more pronounced, even within the Hartmann–Bödewadt
layers, which have been studied theoretically by Davidson & Pothérat (2002) and Moresco
& Alboussière (2003). All of these discoveries encourage us to perform 3-D DNS on the
flows in MATUR configuration (corresponding to the realistic experiment of Messadek &
Moreau 2002). Besides reproducing the results obtained in the experiments, theories and
Q2-D simulations, we focus on answering the following questions in the present work.

(i) Does the separation or turbulence emerge within the sidewall layer when the
electrodes are far away from the sidewall and while the Hartmann layer remains
laminar?

(ii) What causes the angular momentum dissipation in regimes where the Hartmann
layers are laminar?

(iii) How much and what type of three-dimensionality subsists in sheared MHD
turbulence at high Ha? In particular,
(a) How much energy subsists in the secondary flow?
(b) Is there a cutoff length scale between Q2-D and 3-D length scales in sheared

turbulence too?

However, two factors restrict the investigated range of Reynolds number and Hartmann
number in the present DNS studies. One is the computing resource, because very fine
grids are required to capture the small-scale turbulent structure and to resolve the thin
Hartmann boundary layers. Another is the lack of robust computational schemes capable
of dealing with nonlinear unsteady high-Ha flows. In particular, when non-orthogonal
grids are used, extra non-orthogonal correction schemes are required. By applying large
eddy simulations (Kobayashi 2006, 2008), Re could be somewhat increased, but the
resolution requirements for the Hartmann layers remained essentially the same as those
in DNS, since no reliably accurate wall-function models were known for the case of
turbulent flows. Here, the problem of inadequate computational resources is overcome
by employing massively parallel computing. As for the numerical method, we apply the
finite-volume method based on the consistent and conservative scheme developed by Ni
et al. (2007), which can be used to accurately simulate MHD flows at a high Hartmann
number. Therefore, the Hartmann number is allowed to vary from 55 to 792 (magnetic
fields change from 0.2083 to 3 T) while the Reynolds number also varies from 4792 to
31 944 (total current density change from 3 to 20 A). In such parameter spaces, turbulence
is well established while the Hartmann layers remain laminar. Simulations are performed
on the full 3-D domain and, for comparison with previous work, with the PSM model in
the 2-D-average plane.

The layout of the paper is as follows. In § 2, a short description of the physical model
underlying this work and the flow conditions in the MATUR cell are given. Particular
attention is given to the modifications dealing with the electrical conductive wall and
the injected current density. The numerical algorithm and the detailed computational
grid study are also presented in this part. The main properties of the MHD turbulence
are described and discussed in § 3, including the general aspect of the flow, the
secondary flows, the properties of the free shear layer and sidewall layer, the global
angular momentum as well as three-dimensionality. Finally, we offer concluding remarks
in § 4.
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2. Problem statement and formulation

2.1. Flow configuration and mathematical formulation
The physical model of MATUR is shown in figure 1. It is a cylindrical container (radius
r̃0 = 0.11, depth a = 0.01 m, with ˜ distinguishing the dimensional quantity from their
dimensionless counterpart), in which the bottom and the upper walls are electrically
insulating while the vertical walls are conducting. Electric currents are injected at the
bottom of the container through a large number of point-electrodes spread along a
concentric ring parallel with the vertical wall. As indicated by Messadek & Moreau
(2002), a continuous electrode ring would induce a strong local damping in the flows, and,
thus, a series of discrete point-electrodes are positioned to reduce this unwanted effect. The
concentric circles are located at r̃e = 0.054 m or r̃e = 0.093 m, respectively. In the present
study, only r̃e = 0.054 m is considered. The container is filled with mercury and exposed
to a constant homogeneous vertical magnetic field parallel to the axis of MATUR. The
injected currents leave the fluid through the vertical wall to induce a radial electric current
that gives rise to an azimuthal force on the fluid in the annulus between the electrode circle
and the outer wall.The material properties of the fluid at room temperature, such as the
mass density ρ, the kinematic viscosity ν and the electrical conductivity σ , are assumed
constant (ρ = 1.3529 × 104 kg m−3, ν = 1.1257 × 10−7 m2 s−1 and σ = 1.055 × 106 S
m−1). An external homogeneous magnetic field of amplitude B is applied along the axial
direction. At a low magnetic Reynolds number, the full system of the induction equation
and the Navier–Stokes equations for an incompressible fluid can be approximated to the
first order O(Rm). Thus, the non-dimensional magnetohydrodynamic equations governing
the flow can be written as (Roberts 1967)

∇ · v = 0, (2.1)

∂v

∂t
+ (v · ∇)v = −∇p + 1

Re
Δv + N(j × ez), (2.2)

j = −∇ϕ + v × ez, (2.3)

∇ · j = 0. (2.4)

where the variables j, ϕ, v, p denote the current density, the electric potential, the velocity
and the pressure, respectively. Here, lengths are scaled by a, the velocity by a scale U0 to
be specified shortly, and the current by σBU0. The typical scales for the other variables
are as follows: ρU2

0 for the pressure, U0Ba for the electrical potential, a/U0 for time. The
Hartmann number Ha and the interaction parameter N are defined as

Ha = Ba
√

σ

ρν
, N = σB2a

ρU0
, (2.5a,b)

and the Reynolds number is given as Re = Ha2/N. In the present work, all these
non-dimensional numbers are based on the thickness of the container a. For this
experiment, an approximate azimuthal velocity can be derived from the theory in
Sommeria & Moreau (1982). Indeed, Pothérat et al. (2000) derived an approximate
expression for the z-averaged azimuthal velocity in the inviscid laminar, axisymmetric
Q2-D regime, using a Dirac delta function centred at the electrodes r = re to describe
the injected current jW , where the integral is equal to the total injected current I:
jW = I/2πreδ(r − re) (δ is a Dirac delta function, centered at the injection radius re).
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USM82
θ (r) = I

2πr
√

σρν
, re < r < r0,

USM82
θ (r) = 0, r ≤ re.

⎫⎪⎬⎪⎭ (2.6)

and USM82
r = 0. Based on this, we choose the velocity scale as U0 = I/2πr0

√
σρν.

Finally, velocity fluctuations are defined as v′ = v − 〈v〉.
The boundary conditions for v and ϕ are as follows. For the velocity, we apply standard

no-slip conditions at all walls. As for the electric potential, we impose perfectly conducting
sidewalls and perfectly insulating Hartmann walls except for the locations where the
electrodes are located, i.e. at the top wall:

v = 0, ∂zϕ = 0 at z = 1 (top wall). (2.7a,b)

At the surface of point-electrodes located at the bottom wall,

v = 0, ∂zϕ = I
Areσ 2BU0

at z = 0. (2.8a,b)

At the bottom wall, outside point-electrode surfaces,

v = 0, ∂zϕ = 0 at z = 0. (2.9a,b)

At the lateral wall (BC1),
v = 0, ϕ = 0 at r = r.0 (2.10a,b)

Here, 128 points-electrodes (0.001 m diameter and 0.00165 m apart) are uniformly
distributed along a circle located at re at the bottom wall. The surface of each
point-electrode contains 102 cells with those on the periphery cut by the electrode edge.
The area Are, which appears in the boundary condition of (2.8a,b), is the total area of the
small electrodes. Note that we do not need an extra forcing term in (2.2) to drive the flow
because the injected current from the bottom electrodes interacts with the magnetic field,
and generates Lorentz force that drives the flow. The current circulates inside the mercury,
as shown in figure 1, and leaves the domain at the vertical wall. Moreover, because of the
perfectly conducting properties of the wall, the electrical potential across the wall can be
regarded as a constant and set to zero in (2.10a,b).

2.2. Numerical algorithm and validation
The DNS of the governing equations are performed based on the finite-volume approach.
For the pressure−velocity coupling, a second-order temporal accurate pressure-correction
algorithm has been used. Based on a consistent and conservative scheme (Ni et al. 2007),
the electrical potential Poisson equation is then solved to obtain ϕ. The detailed process
within each time step could be split into: (a) obtain a predicted velocity by solving the
momentum equation with pressure from the previous iteration; (b) calculate the predicted
velocity fluxes which are used as the source term of the pressure difference Poisson
equation, which will be solved to obtain the pressure difference, then apply the updated
pressure difference to update the velocity and pressure; (c) solve the Poisson equation
for the electric potential to get the electrical potential, which is used to calculate the
current density fluxes on cell faces with the consistent and conservative scheme. Then the
current density at each cell centre is reconstructed through a conservative interpolation
j = ∇ · (jr) with r the position vector; (d) calculate the Lorentz force FLorentz = j × ez at
the cell centre based on the reconstructed current density, which is used as the source term
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Figure 2. The typical ‘M-shape’ velocity profile of Hunt’s case (a) and the comparison of the numerical result
with Hunt’s analytical solution (b) for Ha = 5000. Here, vx is the streamwise velocity and v0 is the mean
streamwise velocity of the inlet.

of the momentum equation of the next time step. Step (b) is iterated three times before
solving the electrical potential Poisson equation.

The central scheme is applied for all convective-term approximations. All inviscid terms
and the pressure gradient are approximated with a second-order accuracy. A second-order
implicit Euler method is used for time integration. In order to guarantee a robust solution
for unsteady flows and make the temporal cutoff frequency match the spatial cutoff
frequency, the present simulations are run with a constant time step which satisfies the
Courant–Friedrichs–Lewy condition.

A preconditioned bi-conjugate gradient (PBiCG) solver applicable to asymmetric
matrices has been used for the solution of the velocity-pressure coupling equation, together
with a diagonal-incomplete lower and upper triangular matrices (DILU) decomposition
for preconditioning. The preconditioned conjugate gradient (PCG) iterative solver with
a diagonal-incomplete Cholesky (DIC) preconditioner, which deals with symmetric
matrices, has been applied for the solution of pressure and electric potential equations.
Note that for all the iterative solutions, velocity, pressure and electric potential, a constant
convergence criterion of 10−6 is used.

In order to verify the accuracy of our numerical code, the classic Hunt’s flow has
been simulated for comparison with the analytical solution (Hunt 1965). Herein, the
parameters are set to Re = 100, Ha = 5000, and the conductance ratio of Cw = σwtw/σf Lf
is set to 0.01, where σw and σf denote the electrical conductivity of the wall and the
fluid, respectively, tw stands for the thickness of the wall and Lf is the half Hartmann
length of the fluid domain. As illustrated in figure 2, the velocity matches well with
Hunt’s analytical result, especially within the thin boundary layer from z = 0.8 to z = 1.
Moreover, the calculated pressure gradient matches well with the analytical pressure
gradient, with a relative discrepancy lower than 0.08 % based on an error estimation of
|((∇p)Anal − (∇p)Numr)/(∇p)Anal|.

In addition, it should be noted that the boundary condition of a perfectly conducting
sidewall which we used in all simulations ((2.10a,b), denoted as BC1) is not entirely
consistent with the real experiment where the total current was imposed through the lateral
wall. The experimental conditions would be represented by replacing (2.10a,b) by the
electric boundary condition

v = 0, ∂rϕ = − I
Asideσ 2BU0

at r = r0, (2.11a,b)
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Figure 3. The radial distribution of the mean azimuthal velocity (a) and the r.m.s. value of the correlations of
velocity fluctuations (〈v′rv′θ 〉t,θ,z) (b) for BC1 and BC2 at Ha = 66 and Re = 15 972.

denoted as BC2, and where Aside is the surface area of the sidewall. For this reason, we
conducted two further validation steps for Ha = 66 and Re = 15 972. Firstly, we compared
the total current through the sidewall with the total injected current I based on BC1. The
relative error of 0.3 % implies that the applied boundary condition is reasonable. We also
compared a simulation with BC1 to one where an homogeneous current is imposed across
the outer sidewall (figure 3). The maximum relative errors on the mean azimuthal velocity
and the r.m.s. of the fluctuations along the radial direction between the two boundary
conditions are less than 0.8 % and 3 %, respectively. This indicates that the choice of either
BC1 or BC2 does not have any significant impact on the resulting flow field and that both
are compatible with good conservation of charge.

As a further validation, the numerical solutions of the average azimuthal velocity 〈vθ 〉θ,t
at r = 9.6 and z = 0.5 and the time and space average of the angular momentum, 〈Llam〉t,
are also compared with the results produced by the Q2-D model, as shown in table 1:
〈·〉i (i = θ, r, z) represents the average along the specific direction (Hartmann layers are
excluded) and

〈Llam〉t = 1
T

∫ T

0
〈Llam〉V dt, 〈Llam〉V = 1

VΩ

∫
rvθ (r) dΩ, (2.12a,b)

where VΩ = 2πr̃2
0 is the non-dimensional volume of the computational domain, T is the

time interval for average, 〈·〉V is the volume average and vi is the instantaneous velocity.
According to the theory of Sommeria & Moreau (1982), an approximate global angular
momentum can be derived (Pothérat et al. 2000), under the assumption of axisymmetry,
i.e.

LSM82 = I
4πU0a

√
ρνσ

(
1 − r2

e

r2
0

)
. (2.13)

Across the range of considered parameters, the maximum relative errors of
〈vθ 〉θ,t/USM82

θ (r) and 〈Llam〉t/LSM82 are less than 2.1 %, indicating that the DNS results
are reliable. Moreover, we also conducted an extensive grid sensitivity study, the results of
which are presented in the next section.
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Nz NHa NSh τ Sh τHa 〈vθ 〉θ,t/USM82
θ (r, z) 〈Llam〉t/LSM82

G1 168 10 12 36.3 786.8 0.980 0.979
G2 188 10 12 36.4 788.9 0.984 0.981
G3 208 20 20 37.3 805.5 0.996 0.997
G4 258 20 25 37.4 808.4 0.998 0.999
G5 300 25 30 37.5 809.3 0.998 0.999

Table 1. Grid sensitivity study: NHa, NSh denote the grid points within the Hartmann layer and sidewall
layer, respectively, τ Sh, τHa, 〈Llam〉t/LSM82 and 〈vθ 〉θ,t/USM82

θ (r, z) at r = 9.6, z = 0.5, which results from
the different grids, are compared in the case of Ha = 792, Re = 15 972.

2.3. Grid details
Due to the localisation of the Lorentz force within r ∈ [5.4, 11], the fluid rotates around
the axis of the container, and a free shear layer forms at r = 5.4. In order to capture more
precise flow information, highly refined grid resolution is required in both the free shear
layer and the outer wall side layer. Note that the unstructured computational grids are made
of hexahedra and prisms in the present study, and the grid details in the case of Ha = 792
and Re = 15972 are used for illustration. In the radial direction, Nr = 864 grid points
are generated, 30 (respectively, 25) of which are devoted to the sidewall (respectively,
free shear) layer located at r = 11 (r = 5.4). These points are distributed within the layer
according to a geometric ratio of γr = 1.1 starting at r = 11 and r = 5.4 with an initial
interval of Δrmin ≈ 0.0011, while the largest step (in the middle of the container) is
Δrmax ≈ 0.023. The azimuthal direction uses Nθ = 4096 uniformly spaced grid points
and the axial direction uses Nz = 300 non-uniformly spaced grid points. Note that to fully
resolve the Hartmann layer along the axial direction, 25 uniformly spaced grid points
are devoted to each layer and a smooth transition is set toward the core region where
a coarser grid resolution is sufficient. Grid points are spread according to a geometric
sequence of ratio γz = 1.1 starting at z ≈ Ha−1 and z ≈ 1 − Ha−1. The point nearest to
the Hartmann walls is located Δzmin ≈ 5 × 10−5 away from them, and the largest step is
Δzmax ≈ 1.2 × 10−2.

In order to assess the quality of the grids, wall coordinates are introduced

r+ = ReSh
τ r, z+ = ReHa

τ z, (2.14a,b)

where

ReSh
τ =

√
Reτ Sh, ReHa

τ =
√

ReτHa. (2.15a,b)

τ Sh = 1
TASh

∫ ∫ (
−∂vθ

∂r

)∣∣∣∣
r=1

dt ds,

τHa = 1
2TAHa

∫ ∫ (
∂vθ

∂z

∣∣∣∣
z=0

− ∂vθ

∂z

∣∣∣∣
z=1

)
dt ds.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.16)

Here, τ Sh, τHa denote the associated dimensionless forms of the mean stress at the
sidewall and Hartmann wall, respectively, T is the time interval for average, ASh = 22π

and AHa = 121π. Hence, the value of the smallest wall-normal grid step in the Δr+ units
varies from 0.08 (see table 1). The respective variation in the Δz+ units is from 0.18 (see
table 1). Moreover, the simulated results show that the highest velocity occurs at r ≈ 7.04,
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Ha 264 528 792 792 264 264 132 110 99 80 66 55
Re 4792 15 972 15 972 31 944 15 972 31 944 15 972 15 972 15 972 15 972 15 972 15 972
Nv 158.9 190.6 428.9 214.5 47.7 23.9 11.9 8.3 6.7 4.4 3.0 2.1
R 18.2 30.3 20.2 40.4 60.5 121.0 121.0 145.2 161.3 199.6 242.0 290.4
lmin
⊥ (×10−2) 3.95 3.05 3.10 2.52 2.91 2.45 2.88 2.84 2.81 2.77 2.71 2.67

lmin
z (×10−2) 1.92 1.31 1.45 1.34 1.22 1.12 1.10 1.08 1.01 0.96 0.92 0.89

Table 2. Non-dimensional parameters in cases calculated numerically.

where the azimuthal grid step Δθ ≈ 0.011 is sufficiently small. Meanwhile, in order to
ensure that the full range of the dissipative scales is resolved, the smallest turbulent scales
(lmin

⊥ and lmin
z ) predicted by Pothérat & Dymkou (2010) are used to evaluate the grids

quality. The adopted grids indicate Δmax
⊥ /lmin

⊥ � 0.74, Δmax
‖ /lmin

z � 0.83 (�max
⊥ denotes

the largest grid scale perpendicular to the magnetic fields, �max
‖ denotes the largest grid

scale paralleled the magnetic fields and the smallest scales are estimated according to the
turbulent Reynolds number, Ret = ULSL/ν). Here, SL is the size of the large scales, which
is evaluated from the profiles of the r.m.s. of relative azimuthal velocity fluctuations (see
figure 8(a) of Pothérat & Schweitzer 2011) and UL is the velocity of the large scales, which
is calculated according to UL = (

∫
v′

iv
′
idv)1/2, i = (θ, r, z), where v′

i denotes the velocity
fluctuations. The sizes of smallest scales according to Pothérat & Dymkou (2010) for all
cases are listed in table 2.

In addition, the grid independence studies are also conducted on the numerical case
of Ha = 792 and Re = 15 972. Note that not only the grid sizes, but also the grid points
along the z-direction, within the Hartmann layer and within the sidewall layer are tested.
The time-averaged wall stress τ Sh, τHa, the time-averaged angular momentum 〈Llam〉t and
the time–space average azimuthal velocity 〈vθ 〉θ,t, at r = 9.6, z = 0.5 are presented in
table 1.

For Ha = 792, Re = 15 972, (2.6) and (2.13) are not strictly valid since the flow is
not axisymmetric but remain sufficiently accurate to roughly assess the accuracy of the
simulations.

All the simulations are stopped when the total angular momentum of the flow is
statistically steady, i.e. after 3tHa, where

tHa = t̃Ha/(a/U0) and t̃Ha = a2/(νHa) (2.17a,b)

denote the non-dimensional and dimensional Hartmann damping times, respectively.
Average and the r.m.s. quantities are then evaluated over a time interval of 4tHa, and the
computed values of these parameters are compared with evaluate the grid resolution within
the Hartmann layer and sidewall layer. Evidently, the results are very close to each other,
even with the worst spatial resolution, as shown in table 1. Firstly, the reliability and the
accuracy of the DNS results are confirmed by a difference of less than 2.1 % between the
present results and the solutions predicted by (2.6) and (2.13). Moreover, grid-independent
solutions are also achieved with the grids under consideration. For example, less than
3.2 % difference is found for all the predicted values on the coarsest grid and the finest
grid, and this discrepancy is even further reduced when the two finest grids are compared.
Hence, one can conclude that grid G5 is sufficiently fine to simulate the flow in the case
of Ha = 792 and Re = 15 972. The mesh is, however, further refined when 3-D effects
become significant, e.g. in the case of Ha = 55 and Re = 15 972.
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Figure 4. Comparison of 〈vθ 〉θ,z between experiment (symbols), present numeric (solid lines), 2-D numeric
based on PSM model (dashed-dot lines) and USM82

θ (r) (dashed lines) for cases at Ha = 792, Re = 15 972 (a),
and Ha = 792, Re = 31 944 (b). The dashed line depicts an algebraic law r−1 (predicted by (2.6)).

For different numerical cases, the dimensionless time steps used in the computations are
altered according to the parameters applied in simulation, such that Δt = 5.0 × 10−5 for
(Ha, Re) = (264, 4791), 5.5 × 10−5 for (Ha, Re) = (264, 31 944) and 1.6 × 10−5 for all
other cases. The values are determined by the limits of numerical stability, which highly
depends on the viscous term and the convective term of the momentum equations at high
Re. In addition, higher Re or Ha demand smaller time steps because of the higher azimuthal
velocity and the thinner Hartmann layers.

3. Results and discussion

3.1. Validation of velocity profile at Ha � 1 and N � 1
As far as the authors know, it is the very first attempt to reproduce the MATUR experiment
by performing 3-D DNS, and hence, as a necessary validation procedure, a detailed
comparison with the available experimental results needs to be carried out. In addition,
since the PSM model can deal with the cases when Ha � 1 and Nt = N(r̃0/a)2 � 1,
some numerical cases falling into this space are also investigated for validation. However,
note that this model becomes imprecise when either of the parameters, Ha or Nv become of
the order of 1, (Nv = N(r̃0/a) is the interaction parameter based on the horizontal scale),
which, again, stresses the importance of conducting 3-D DNS.

The predictions of the mean azimuthal velocities from different approaches, denoted by
〈vθ 〉t,θ,z, are plotted in figure 4. A good agreement is found between the experimental
results, the numerical data and the laminar theoretical prediction. In the outer region
re < r < r0, the maximum relative discrepancy between the results of DNS and
experiment is less than 6.7 % (8.5 %) in the case of Re = 15 972 (Re = 31 944) based
on an error estimation of (‖〈vDNS

θ 〉t − 〈vexp
θ 〉t‖2)/‖〈vexp

θ 〉t‖2. The maximum relative
discrepancy between the results of DNS and the PSM model is less than 1.0 %
(2.9 %) in the case of Re = 15 972 (Re = 31 944) based on an error estimation of
(‖〈vDNS

θ 〉t − 〈vPSM
θ 〉t‖2)/‖〈vPSM

θ 〉t‖2. In particular, the velocities exhibit the characteristic
feature that they increase sharply across the free shear layer (r = re) due to the current
injection. Accordingly, the shear layer separates the flow into outer and inner regions.
Moreover, from both the experimental and the numerical data, the downward trend of the
azimuthal velocity in regions between the injected electrodes and the vertical wall follows
the expected scaling law of 〈vθ 〉t,θ,z ∼ r−1, as predicted by (2.6), and which reflects the
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Figure 5. (a) The distribution of the instantaneous azimuthal velocity and current streamlines on plane θ = 0
at Ha = 264, Re = 15 972. (b) The vertical profiles of the instantaneous azimuthal velocity within the bottom
Hartmann layer along r = 7.5 and r = 9. (c) The distribution of radial current density both across the top
Hartmann layer and bottom Hartmann layer along r = 7.5 and r = 9, where the origin of the distribution along
r = 9 is shifted to n = 0.02, where n is the wall-normal coordinate i.e. for the bottom wall, n = z, and for the
top wall n = 1 − z.

geometrical spreading of the radial forcing current in the Hartmann layer, i.e. jr ∼ (4πr)−1

(see figure 5c).
A typical instantaneous distribution of vθ obtained numerically over a radial

cross-section θ = 0 for moderate forcing current is shown in figure 5(a). Under a strong
magnetic field, the velocity gradient along the magnetic field lines is remarkably damped,
except in the Hartmann layers where an exponential profile subsists. The detailed velocity
distribution in the Hartmann layer is shown in figure 5(b), and a good agreement is
observed between the present numerical results and the exact solution, given as vθ =
vcore
θ (1 − exp(Haz)), with vcore

θ indicating the azimuthal velocity in the core flow. It also
demonstrates that the thickness of the Hartmann layer at r = 7.5 and r = 9 is the same.
Besides, figure 5(c) reveals that the vertical profiles of radial current density within the
top and bottom Hartmann layers collapse with each other, implying that the electric
current intensity I injected at the electrodes divides in two equal parts between the two
symmetric Hartmann layers. In addition, the radial current density is much higher near
the Hartmann wall, so the Joule dissipation mainly takes place in the thin Hartmann
layers, in line with the laminar Hartmann layer theory. Therefore, the annular fluid domain
located between the selected circular electrodes and the cathode (5.4 ≤ r ≤ 11) is driven
in the azimuthal direction by the Lorentz force, while the central fluid domain (r < 5.4)

is entrained by friction within the free shear layer. Interestingly, the current density at the
upper wall stands a little lower than at the bottom wall, showing that despite the excellent
agreement between the PSM model and experimental data, the flow is ever so slightly
three-dimensional.

In the following part, the evolution of the large structures and the spectral analysis are
discussed. Subsequently, we study the secondary flow induced by Ekman pumping. We
also investigate the characteristics of the free shear layer and the sidewall layer before
presenting the turbulent statistics, global angular momentum and three-dimensionality.
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Figure 6. Typical snapshots of equilibrium or quasi-equilibrium states obtained from numerical simulations.
Contours of the magnitude of the vorticity on plane z = 0.5 (a,c,e), contours of instantaneous azimuthal
velocity on plane θ = 0 (b,d, f ). (a,b) Ha = 792, Re = 15 972. (c,d) Ha = 264, Re = 31 944. (e, f ) Ha =
55, Re = 15 972. The velocity is normalised with U0.

3.2. General behaviour of the flow
The different cases investigated are listed in table 2, where the dimensionless parameter
R(= Re/Ha) represents the Reynolds number scaled on the thickness of the Hartmann
layer. According to the experiments of Moresco & Alboussiere (2004), the flow within
the Hartmann layer becomes turbulent when R ≥ 380, in which case the DNS will require
enormous computational resources. Therefore, only cases with R < 380 are considered in
this paper. Furthermore, five of the relevant interaction parameters scaled on the horizontal
length Nv are at the order of unity, aiming to study the three-dimensionality of the flows.

In the calculations, the electrical current is injected at t = 0 when the fluid is at rest
and remains constant during the whole simulation, following the actual experimental
procedure. For different electrical current intensities, the flow goes through a sequence
of evolution and reaches different equilibrium and quasi-equilibrium states presented on
figure 6. We shall now give an overall view of the numerical results, while more details of
the evolution and local quantities will be reported later.

For R ≤ 121, the evolution of the flow is qualitatively similar to that found for 249 ≤
R ≤ 1122 in 2-D simulations of MATUR (Pothérat & Schweitzer 2011). In this work,
the current was injected at the same location as in the present work, and there was
no separation of the side layer, but the Hartmann layer was modelled as turbulent for
R ≥ 380. The flow contains five or six relatively stable vortices rotating around the z-axis
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Figure 7. Snapshots of velocity contours for Ha = 55, Re = 15972. (a) Distributions of axial velocity vzin the
plane θ = 0 (near the sidewall). (b) Distribution of vorticity in the plane near the top Hartmann wall at z = 0.8.
(c) Distribution of vorticity in the plane near the bottom Hartmann wall at z = 0.2. Note that the contour levels
for vorticity and vz are chosen so as to enhance the visibility of turbulent flow structures.

in near-solid body rotation. They mainly remain localised near the free shear layer once
generated there, as shown in figure 6(a). Thus, the velocity fluctuations in the inner region
and the annular outer region are of much lower intensity, and the azimuthal velocity
contours reveal that the wall side layer and the Hartmann layer are stable. Besides the low
value of R, part of the reason for the stability of the side layer is that these large vorticity
structures remain distant from it, and little interaction between them takes place. However,
the thickness of the sidewall layer is still smaller than the scaling for a straight duct
(Ha−1/2), due to the recirculations induced by Ekman pumping – a point we will analyse
in detail in § 3.5. Since most of the large vortices remain near the centre of the domain,
highly turbulent fluctuations are induced there. By contrast, the velocity fluctuations in the
annular region are much weaker, especially near the sidewall. It is the tail of the vortices
that causes the velocity fluctuations there, as it is stretched and conveyed outwards. The
induced flow in the outer region therefore exhibits long azimuthal vorticity streaks and
much lower fluctuation intensity than in the inner region.

For R ≥ 121, small-scale 3-D turbulence appears in the side layer. The onset of 3-D
turbulence within R � 121 is consistent with the value of 138 reported by Zhao & Zikanov
(2012), albeit a little lower. The difference in curvature of the external wall (a/r̃0 = 1/9
in MATUR and a/r̃0 = 1/5 (in our notations) in Zhao & Zikanov (2012)), suggests that
recirculations may be more important in the latter than the former. Since their effect is
rather stabilising, this could explain the lower value detected here.

For R ≥ 145.2, the size of the large structures increases, leading to highly turbulent
fluctuations in both the inner and the outer regions. Accordingly, long azimuthal vorticity
streaks of relatively high intensity exist in the outer region that induce instabilities
within the wall side layer. Concurrently, the wall side boundary layer separates from
the wall, suggesting that separation results from the fluctuations in the outer region,
as observed previously by Pothérat & Schweitzer (2011). For Ha = 55, Re = 15 972
(R = 290), Ekman recirculations are strong; the Hartmann layer is relatively thick so the
centripetal radial velocity in the Hartmann layer is relatively strong (see figure 12). Thus,
in the vicinity of a free shear layer, figure 6( f ) conveys that the azimuthal velocity near
the Hartmann layer is higher than in the core. Within the sidewall layer, one can observe
the dramatic variation of the azimuthal velocity and vertical velocity (see figure 7a) along
the magnetic field lines besides the separation of the layer.

Finally, in the examples shown here, 3-D effects are only noticeable within the shear
layer for R ≥ 121 (Ha = 132, Re = 15 972; this is in fact better seen from the analysis
of the vertical velocity in the side layer in § 3.5). By contrast, for R � 290 (Ha = 55,
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Figure 8. (a) Typical instantaneous azimuthal velocity signals vs time at (6.85, 0, 0.5) and (9.6, 0, 0.5) at
Ha = 132, Re = 15 972. The solid lines denote the numerical results and the dashed lines denote the theoretical
value derived by Messadek & Moreau (2002), i.e. USM82

θ (r, t) = (I/4πrU0
√

σρν)(1 − exp(−(t/tHa))). (b)
Corresponding PDS (power density spectra) at point (5.4, 0, 0.5) within the free shear layer. Here, f denotes
the frequency.

Re = 15 972), weak three-dimensionality, where flow patterns are topologically identical
but less intense near the top wall, exists outside the shear layer (see figure 7b,c).
The presence of three-dimensionality, however, is controlled by the true interaction
parameter at the scale of the considered structure. A consequence is that inertia-induced
three-dimensionality is expected to appear in parallel layers of thickness δ|| ∼ aHa−1/2

when the local turnover time δ||/U0 becomes smaller than the two-dimensionalisation
time at that scale, ρa2/σB2δ2

||, i.e. when the Reynolds number based on the parallel-layer
thickness R|| = Uδ||/ν exceeds unity. By contrast, since the separation of the wall side
layer is induced by the tail of large 2-D structures, which is mostly Q2-D, it can be expected
to be controlled by R.

3.3. Detailed evolution of the flow
For flows without boundary-layer separation, the parameters Ha = 132, Re = 15 972
are chosen to illustrate the typical evolution process. According to the variation of
the azimuthal velocity signals, as shown in figure 8(a), three different stages can be
distinguished before the flow reaches its final quasi-equilibrium state. The acceleration
of the fluid in a laminar regime corresponds to stage 1. After a short time, the laminar
shear layer at r = 5.4 becomes visible as the external annular region 5.4 ≤ r ≤ 11 is
driven in rotation by the Lorentz force. Pothérat et al. (2005) estimated the stability
threshold for this layer as Re/

√
Ha < 2.5, implying that the circular free shear layer

becomes linearly unstable when the Reynolds number based on its thickness exceeds the
threshold of 2.5. For all injected current intensities considered here, this critical value
on the azimuthal velocity is reached very quickly. Then the circular free shear is subject
to a Kelvin–Helmholtz instability, which breaks it up into small vortices (t/tHa = 0.6,
figure 9a). This process defines stage 2. The detailed evolution of the vortices along the
axial direction, ωz, is presented in figure 9. These vortices merge into larger structures
very soon after their inception (t/tHa = 1.334, 2.075, 3.261, figure 9b–d). They become
distorted because of the shear. As shown in figure 8(a), the velocity at two representative
locations keeps increasing during this stage. The amplitude of velocity oscillation at
r = 8.5 being larger than that at r = 9.6, the turbulent structures exert a weaker influence
in the region far from the electrodes.
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Figure 9. Evolution of the flow with time at Ha = 132, Re = 15 972. The distribution of the axial vortex
structures, ωz, on plane z = 0.5.

Stage 3 corresponds to the quasi-equilibrium state of the flow, which, at this point,
cycles through a recurring sequence. First, large structures progressively lose intensity
and elongate along the free layer (t/tHa = 5.5). Second, these segments break up again
and give birth to several smaller vortex structures (t/tHa = 5.662), which interact with
each other and merge into bigger structures (t/tHa = 5.825). Subsequently, a small number
of large structures are formed (t/tHa = 5.988). The cycle of this recurring sequence is
consistent with the base frequency of velocity signals (f 1 = 2.26) shown in figure 8(b).

As R is increased, the most striking feature is the appearance of separation and
turbulence within the sidewall layer. Figure 10(a) shows the evolution of the mean
shear stress on the sidewall τ Sh, with a sudden increase of τ Sh between t1 and t2 for
Ha = 55, Re = 15 972. In this interval, the increase of τ Sh can be ascribed to the random
turbulent fluctuations, seen more in detail in § 3.5. From t2 (figure 10c), vorticity streaks
attached to the vortices generated at the free shear layer start reaching out to the outer side
layer, and incur local variations of its thickness. At t3 (figure 10d), these variations have
become severe to the point of incurring boundary-layer separation. The decrease of τ Sh

at t4 shown in figure 10(a) confirms the occurrence of separation at the wall side layer.
This is consistent with the visualizations of the vortex structures shown in figure 10(d).
For Ha = 132 and Re = 15 972, by contrast, the evolution of τ Sh is rather smooth and no
brutal change in shear stress is observed, indicating the absence of separation. Moreover,
the evolution of the case at Ha = 55, Re = 15 972 in the later stage (t3, t4, t5) is similar
to that of the case at Ha = 132, Re = 15 972, which goes through the same recurring
sequence.

3.4. Spectral analysis
The power density spectra of several typical cases are analysed in this section shown in
figure 11. To calculate of the average, we employ 60 probes, uniformly distributed along the
angular direction, and take the average of the measured signal as v(t) = 1

60Σvi(t). Spectra
are obtained using Welch’s averaged periodogram method, while a Hamming window was
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Figure 10. (a) The average sidewall shear stress signals variation with time in the case of Ha = 55, Re =
15 972 and Ha = 132, Re = 15 972. (b–f ) Contours of the magnitude of the vorticity on the plane z = 0.5 at
different times at Ha = 55, Re = 15 972.

applied to each overlapping segment of data. Additionally, spatial energy spectra can be
deducted from these spectra by taking advantage of the large average azimuthal velocity
and using Taylor’s hypothesis, 2πf = 〈vθ (t, r, θ, z)〉t,θk.

For R = 30.3, the spectrum of vθ (t) exhibits an expected strong peak at a fundamental
frequency corresponding to the passage of the large structures through the measuring
probes. The other noticeable peaks represent the harmonic and subharmonic frequencies,
as shown in figure 11(a). The spectrum in the inertial region scales as f −3.2. According to
Eckert et al. (2001), the spectral exponent in duct-flow turbulence for N ≈ 39.0 relevant
to this case is approximately −3.5, which is consistent with our findings, despite the
difference in the geometries of these two types of turbulent shear flows.

When R = 121, the peak of the base frequency in the spectra of azimuthal velocity
fluctuations can still be observed (see figure 11b), and thus the large structures continue to
rotate around the axis. The spectrum in the inertial region can be separated into two parts,
with a transition frequency ftrtHa � 20. For ftrtHa ≤ 20, the power spectral density scales
as f −5/3, while for ftrtHa > 20, it scales as f −3. By applying the Taylor’s hypothesis, we
find the corresponding azimuthal wavenumber of ktr � 1.10. This value is in accordance
with the results of Messadek & Moreau (2002), i.e. k̃tr � 1 cm−1. The authors claimed
that the split spectrum arises as a result of weak Joule dissipation. The spectrum of
vz(t) within the free shear layer exhibits axial flow that is of much lower energy than the
other two components, confirming that the turbulence is dominated by its 2-D horizontal
components.

For R = 290.4, the spectra exhibit different features (see figure 11c). In the region of
the free shear layer, the f −3 (high frequencies) and the f −5/3 (low frequencies) power laws
are still distinguishable on the azimuthal velocity. The transition frequency, ftrtHa � 46,
is higher but the corresponding non-dimensional wavenumber almost remains the same,
ktr � 1.09.
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Figure 11. Frequency spectra obtained from velocity time-series. For reference, the power laws f −3.2, f −5/3

and f −3, denoted with a dashed-dot line, are also shown. Solid lines correspond to spectra filtered using
Bezier spline (red), time-series of azimuthal velocity at point (r = 6.85, z = 0.5, green (within the free shear
layer)), axial velocity at point (r = 6.85, z = 0.5, red), axial velocity at point (r = 10.98 (b) 10.95 (c), z = 0.5,
blue (within the sidewall layer)), azimuthal velocity at point (r = 10.95, z = 0.5) (a) Ha = 528, Re = 15 972
(R = 30.3), (b) Ha = 264, Re = 31 944 (R = 121), (c) Ha = 55, Re = 15 972 (R = 290.4), (d) The separation
frequency of the spectra slops f −5/3 and f −3 and the forcing scales for different R.

Within the sidewall layer, by contrast, the power density spectra of azimuthal velocity
(orange line, figure 11(c)) and axial velocity (blue line, figure 11(c)) in the inertial region
exhibit a scaling of the form f −5/3.

The apparent constance of ktr prompts us to compare the transition frequency and
the forcing scale for cases of R ≥ 121. As illustrated in figure 11(d), the scaling law
for the transition frequency with R follows ftrtHa � 0.16R. Since in all cases, k � 1, the
separation between the two slopes may simply result from the forcing geometry. In this
case, the separation between k−5/3 and k−3 may reflect the usual 2-D split between an
inverse energy cascade and a direct enstrophy cascade, as already found in MHD flows
by Sommeria (1986). In this case, ktr may be interpreted as the forcing scale at which the
mean flow transfers energy to turbulent fluctuations (Alexakis & Biferale 2018).

3.5. Secondary flow
Pothérat et al. (2000) showed that the recirculations induced by Ekman pumping
significantly influence the flow. They can be identified by looking at the variations of
the velocity profile in figure 6(e). Although the PSM model already provides a good
understanding on the Ekman pumping effect, the detailed flow information across the fluid
layer and the structures on the plane parallel to the magnetic fields remain unexplored. This
is one of the motivations for carrying out 3-D DNS.

The streamlines of the average fluid velocity shown in figure 12(b) reveal that the Ekman
pumping induces a centripetal flow (i.e. away from the sidewall) in the Hartmann layers
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Figure 12. The distribution of mean radial velocity (a), and mean axial velocity, mean streamlines (b) on
plane θ = 0 at Ha = 80, Re = 15972. (a) Ur and (b) Uz.

and a centrifugal flow (i.e. towards the sidewall) in the core. In addition, the streamlines are
almost symmetric with respect to the centre plane z = 0.5 and the recirculations consist
of two symmetrical cells. Due to mass conservation, the mass fluxes in the axial direction
match the radial ones. Therefore, two strong vertical jets emerge within the wall side layer
because of the decreased boundary thickness. They flow upwards to the top Hartmann
layer or downwards to the bottom Hartmann layer, where they pass through a section
that is further reduced, since Hartmann layers are thinner than wall side layers. This
further enhances the intensity of radial jets driven in the Hartmann layer, as shown in
figure 12(a). They then turn towards the core in the much wider region near the electrodes,
into much weaker axial flows than those within the side layer, as shown in figure 12(b).
This mechanism explains that recirculations are stronger within the free shear layer and the
sidewall layer. Ekman pumping incurs a net centrifugal transport of angular momentum as
the velocity is smaller in the Hartmann layer. This has two consequences: a squeeze of the
sidewall layer and an increased dissipation at the sidewall layer when these recirculations
are important. Pothérat et al. (2000) have derived the analytical expression for the vertical
velocity at the interface between the Hartmann layer and the core:

v−
z = − 5

6
λ

HaN
∇⊥ · [(v−

⊥ · ∇⊥)v−
⊥], (3.1)

Here, v− denotes the velocity at the edge of the Hartmann layer, λ is the aspect
ratio and the subscript ⊥ denotes the vector projection in the direction perpendicular
to the magnetic field. Under the assumptions of PSM, any vertical component of
velocity is associated with recirculations, whether local or global. Therefore, to assess
the limits of the PSM approach, we compare the energies associated with the vertical
velocity component obtained with DNS at Re = 15 972 to the energy obtained from
(3.1), distinguishing energies Em

z and E′
z associated with the average flow and with

the fluctuations. The DNS results show that 〈Em
z 〉t ∼ Ha−5.58 and 〈E′

z〉t ∼ Ha−5.76 (see
figure 13(c), bearing in mind that Re is kept constant in these scalings). Values of Ez
obtained by integrating (3.1) from the results of PSM simulations follow the same scaling
even for values of N as low as N � 0.19 (Ha = 55) where the model is expected to
break down. This indicates that PSM predicts the global recirculations associated with
the mean flow very accurately. The energy associated with the fluctuations predicted
by PSM, by contrast, only matches DNS precisely for N � 1 (Ha � 126.4). Below that
point, PSM underestimates E′

z considerably. The origin of the discrepancy can be found
in the radial profiles of vertical velocity fluctuations (figure 13a,b): the discrepancy
between the profiles obtained with PSM and DNS is exclusively concentrated in the
free shear layer and the wall side layer. More specifically, while this discrepancy
grows continuously as Ha decreases but remains moderate in the shear layer, the
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Figure 13. Comparison of the r.m.s. (root mean square) of the fluctuations of the vertical velocity
(vrms

z (r, θ, z)) along the radial direction near the sidewall layer with Re = 15 972 (a) near the current injection
position r = re (b) near the sidewall. Values were averaged along θ and z. (c) Average part Em

z = ∫ 〈vz〉2
t dv

and fluctuating part E
′
z = ∫

(v
′
z)

2 dv of the energy in the z-velocity component, (d) Evolution of Ez, where
Ez = Em

z + E
′
z. Here, Re is fixed at 15 972 for all four panels.

two profiles brutally depart from one another in the wall side layer for Ha = 55,
when small-scale turbulent fluctuations appear. Since the profiles of 〈〈v′

z〉1/2〉t,θ,z obtained
with either PSM or DNS match everywhere else, even for N � 0.19, it can be concluded
that PSM remains robust at predicting both global and local recirculation down to N � 1,
but breaks down when small-scale turbulent fluctuations not driven by Ekman pumping
appear.

Figure 13(d) shows the detailed evolution of Ez. One can see that after the injection of
the electrical current density at t/tHa = 0, part of the energy is converted to the kinetic
energy along the magnetic field lines, which quickly results in a maximum Ez. After
that, Ez tends to decrease until a constant time-averaged value is reached. When stronger
magnetic fields are imposed, Ez reaches a lower constant value for flows initialized in
turbulent states. Since the entire secondary flow transits through thin parallel layers, some
residual axial flows are always observed within these boundary layers. Therefore, Ez
always stabilises at a non-zero constant value in all the numerical cases, even though it
is very small at Ha = 528 (Ez < 10−8). Interestingly, the walls have opposite effects on
the energy in the third component, depending on whether it is driven by recirculations
or turbulence: here the residual value of Ez being mostly due to Ekman pumping, it is
driven by friction at the Hartmann walls. On the other hand, when turbulence freely decays
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Figure 14. (a) Radial profiles of 〈Uθ 〉θ,z. (b) Log-log plots of the free turbulent shear-layer thickness δf and
the large-scale vortex size δvortex.

in the presence of solid Hartmann walls, the energy in the third component associated
with random fluctuations vanishes (in the sense that Ez/E → 0 as t → ∞, (Pothérat &
Kornet 2015)). In unbounded or periodic domains, by contrast, turbulence decays to a
state where Ez/E = 1/2 (Moffatt 1967; Schumann 1976).

3.6. Boundary layers
One of the main purposes of the experimental study conducted by Messadek & Moreau
(2002) was to investigate the thickness of the free shear layer when turbulence is well
established. Figure 14(a) shows the radial distribution of the mean azimuthal velocity,
from which the thickness of the free shear layer could be estimated. As mentioned in
§ 3.4, the free shear layer develops quickly to an unstable state as soon as the current is
injected. Therefore, a fraction of the momentum is conveyed from the annulus to the inner
region and the boundary layer thickness increases visibly. The resulting entrainment of the
fluid in the inner domain is characterised by a lower maximum value of 〈vθ 〉t,θ,z compared
with that predicted by the laminar theory. For the annulus region, the (non-dimensional)
value of 〈vθ 〉θ,z,t increases with Ha and decreases with Re due to different Ekman
pumping effects. To be more specific, at moderate Ha, either increasing Re or decreasing
Ha enhances the recirculations, and thus the energy dissipation is expected to grow.
Conversely, for the inner region, the radial transfer of the momentum associated with
recirculations set the fluid in rotation. Thus, the value of 〈vθ 〉θ,z,t in that region increases
when recirculations become stronger. In other words, the thickness of the free shear layer
increases when the Ekman pumping effect becomes stronger, which is opposite to its effect
on the laminar side layer (Ha−1/2). Thus, the thickness is related to both Re and Ha. We
now use the mean azimuthal velocity profiles within a wide parameter space of {Re, Ha}
to determine the thickness of the shear layer δf , which is defined as

δf = ΔUθ

(dU/dr)max
. (3.2)

Here, ΔUθ = Uθmax − Uθmin, Uθmin = 0 and Uθmax is the mean velocity value at the
intersection of the maximum slope and the mean velocity profile predicted by the laminar
theory (2.6). As suggested by Messadek & Moreau (2002), the layer thickness δf depends
on both Re and Ha according to the relation

δf = Cf (R)1/n. (3.3)
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Figure 15. Variations of the wall side layer thickness δSW against parameter C = ReHa3/2 (Pothérat et al.
2000) for Re = 15 972 (red), Re = 31 944 (green) and Re = 4792 (black). Full circles: boundary layer in
laminar state; full squares: attached boundary layer with 3-D turbulence; hollow squares: separated boundary
layer.

As shown in figure 14(b), the best fit from our data yields Cf � 0.44 and n � 2.3,
respectively, which is consistent with the values obtained by Messadek & Moreau (2002).
The maximum relative error between the fitting curve and the calculation data are lower
than 5.1 %. Moreover, for (Ha, Re) = (792, 15 972), the layer thickness from numerical
simulation, δf ≈ 1.64, agrees well with the experimental one, δf ≈ 1.61. This scaling is
very different from the theoretical laminar one (δf = Ha−1/2, independent of Re) and
reflects the role of 2-D inertia, measured by R, in determining the thickness of the free
shear layer. In addition, the size of large scales estimated from the velocity fluctuations
(see Pothérat et al. 2005) is also shown. Here, RL represents the Reynolds number based on
the velocity and the size of the large vortices and the size of the large vortices is estimated
from the profiles of r.m.s. azimuthal velocity fluctuations. As shown in figure 14(b), their
size follows a very similar scaling to the size of the boundary layer δv � 0.57R2.4

L with a
maximum relative discrepancy to that law lower than 5.6 %.

Unlike the free shear layer, the structure of the wall side layer was not experimentally
accessible. Three-dimensional simulations make it possible to examine how its thickness
varies against parameter C = ReHa−3/2, which Pothérat et al. (2000) identified as the
governing parameter when secondary flows dominate. The thickness δSW was defined
as the distance from the wall to the point where the velocity magnitude reaches 90 %
of USW

θ , where USW
θ is the azimuthal velocity value at the intersection of the minimum

slope and the mean velocity profile. The results are reported on figure 15. For low
values of C, recirculations are weak and δSW is expected to scale as δSW ∼ Ha−1/2. As
C increases, recirculations become more prominent and δSW approaches the theoretical
scaling of δSW ∼ C−1. The picture changes slightly (in the sense of increasing C) before
3-D turbulence appears in the boundary layer: the thickness suddenly increases to settle on
a larger scaling characterised by δSW � 0.074(Re Ha−3/2)−0.42. More simulations would
be needed to confirm that C remains the relevant parameter in this regime (though the
continued prominence of the secondary flows would suggest this may be the case) and
to confirm the exponent of Re in this scaling. Interestingly, boundary-layer separation has
little visible impact on the scaling of δSW , most likely because of the small ratio of the
surface where it occurs to the total surface of the wall.
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3.7. Angular momentum and wall shear stress
For a first estimate of the global angular momentum, we note that most of the viscous
and Joule dissipation takes place within the Hartmann layer for Q2-D flows under a strong
magnetic field. Since the most intense part of the flow occurs in the outer annulus where
the driving force acts, the contribution of the inner region to the total angular momentum
can be neglected to derive the simple expression (2.13) from the theory of Sommeria
& Moreau (1982) for the elementary case of a steady inertialess flow. Note that in this
case, the Hartmann layers remain laminar and inertialess. This implies that the angular
momentum varies linearly with I and is independent of B.

The values of Llam obtained from the present numerical results are plotted in figure 16
(circle open symbols) , along with the values of the angular momentum measured in
MATUR (Messadek & Moreau 2002) and predicted with the PSM model (triangular
open symbols). All the data reported in this figure are normalised by the value LSM82
predicted with the theoretical expression (2.13), the dashed line corresponds to the
theoretical prediction derived by Pothérat & Schweitzer (2011) for turbulent Hartmann
layers and the square symbols denote the experimental data. As shown in figure 16, the
experimental values, the results of PSM model and our numerical values collapse well
into a single curve, which can be divided into three different zones demarcated by changes
in slope around R � 121 and R � 380. When R < 121, the numerical values (DNS and
PSM) are almost equal to unity, which matches the SM82 linear approximation closely.
For R ≥ 380, the experimental values fall to significantly lower values than the linear
prediction as would be expected when turbulence arises within the Hartmann layers.
However, they match well with the values predicted with the simplified axisymmetric
model derived by Pothérat & Schweitzer (2011), which supposes that the Hartmann
layers are turbulent. When 121 ≤ R < 380, a relatively large discrepancy can be observed
between the numerical values (or experimental values) and the theoretical value of SM82
or theoretical value derived by Pothérat & Schweitzer (2011).

An explanation for this intermediate range was provided by Pothérat et al. (2000), who
modified the equation for Llam from the SM82 theory to account for the dissipation in the
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side layers:

dLlam

dt
= F − Sν − 2Llam

tHa
, (3.4)

where F denotes the global electric forcing and Sν (∼ τ Sh) denotes the viscous dissipation
at the sidewall layer. At a small forcing, the corresponding viscous effect on the angular
momentum is negligible in comparison with the Hartmann friction. Thus, the DNS and
PSM results are consistent with the values predicted with the theoretical expression (2.13)
when R < 121. By contrast, significant differences emerge between the numerical values
and the SM82 theory when 121 ≤ R < 380, since in this range the viscous dissipation at
the sidewall layer cannot be ignored any more. Because the sidewall layer is squeezed
by the strong Ekman pumping recirculations, the sidewall layer becomes thin, which
results in significant increase of velocity gradient and the global dissipation. The present
numerical results confirm this conclusion well when R ∈ [145.2, 290.4], for which these
recirculations are significant.

The DNS enable us to go a step further and examine in detail how the wall shear stress
is affected by 3-D effects. The variation of the wall stresses (τHa, τ Sh) with Ha are shown
in figure 17. The values of wall stress are different on the Hartmann walls and sidewalls.
As shown in figure 17, all the shear stresses on the Hartmann walls collapse well into a
single curve (laminar solution, τHa ∼ 2Ha/Re), even when Ha = 55, which indicates that
the Hartmann layers remain laminar for all the cases considered in this work. However, for
the sidewall shear stresses, the values gradually depart from the laminar solution as Ha
decreases (Ha ≤ 132). To understand the role played by recirculation in this phenomenon,
all the cases are rerun with the PSM model, as well as additional cases with higher Ha
(1056 or 1320 or 1584). When Ha ≥ 264, one can see that the results of DNS match
well with that of 2-D simulations, but they are noticeably higher than the straight-duct
laminar wall stresses because of the recirculations induced by Ekman pumping. For cases
with Ha ≤ 132, the recirculations become more and more significant as Ha decreases,
which results in an increased squeezing of the sidewall layer. Therefore, the values of
τ Sh obtained from PSM simulations are higher than those predicted by the scaling law
for a straight laminar Shercliff layer. However, DNS values of τ Sh are still significantly
higher than the ones from the PSM for Ha ≤ 132. This coincides with the observation
that PSM cannot capture the small-scale turbulence within the side layers in this range of
parameters and further indicates that the dissipation it incurs dominates even the enhanced
dissipation due to the squeezing of the side layer by secondary flows. In summary, the
DNS confirm that the Hartmann layer remains laminar for cases with R ≤ 290.4. When
121 ≤ R ≤ 290.4, the discrepancy between the numerical results and the theoretical results
is associated with either the strong squeezing of the sidewall layer or turbulence within the
sidewall layer.

Finally, we compare the time variations of the mean angular momentum for different
Re and Ha, shown in figure 18(a). For the same Ha, one can see that the amplitude of
the oscillations of the angular momentum in the quasi-steady-state increases with Re, due
to the increasingly turbulent nature of the flow. Furthermore, the transient time (tqs) for
the system to reach the quasi-steady-state from the fluid being at rest decreases with Re
(we estimate this time by measuring the slope of the Llam(t) curve near equilibrium in a
log-log diagram, as in Pothérat et al. 2005). This too is associated with global dissipation,
which is significantly increased by the strong Ekman pumping at higher Re, shortening
the transient time. For a given Re, the variation trend with Ha is opposite, reflecting the
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Figure 17. Space and time-averaged wall friction over the entire range of Ha investigated and for (Re =
15 972): circle full symbols denote wall stress at Hartmann wall and circle opened symbols denote wall stress
on the sidewall For comparison, theories for laminar flows (dashed and dashed-dot line) and results of the PSM
model (gradient opened symbols) are shown too.

t/tHa

〈L
la
m
〉 V 

/
L S

M
8

2

5 10 15 20

0. 9

1.0

Ha = 55, Re =15 972
Ha = 66, Re =15 972
Ha = 132, Re =15 972
Ha = 264, Re =15 972
Ha = 528, Re =15 972
Ha = 792, Re =15 972
Ha = 264, Re =4792
Ha = 264, Re =31 944

N2/3Ha1/3

t qs
/
t H
a

100 101 102

101

102

Numerical results

1.736 × (N2/3Ha1/3)0.467

(a) (b)

Figure 18. (a) Evolution of the global angular momentum with time. (b) Transient time obtained numerically
after switching on the forcing on a fluid at rest vs the non-dimensional parameter N2/3Ha1/3.

damping of recirculations by the Lorentz force. This effect is quantified in figure 18(b),
which shows the variation of the transient time with the combined non-dimensional
parameter N2/3Ha1/3 = Ha5/3/Re2/3, with a scaling tqs/tHa � 1.736(N2/3Ha1/3)0.467,
with a maximum relative error between the fitting curve and the numerical data of
9.1 %. While tqs/tHa is governed by the same parameter as predicted by PSM, the scaling
exponent of 0.467 stands much lower than the value of 1, indicated in Pothérat et al. (2005).
Since a lower exponent is indicative of a higher level of dissipation, this discrepancy may
be attributed to the dissipation incurred by 3-D turbulence in the side layers that the PSM
model cannot account for.

3.8. Three-dimensionality
According to Pothérat & Klein (2014) and Baker, Pothérat & Davoust (2015), the
dimensionality of a structure in a channel of gap a is determined by the ratio lz/a. Here
lz is the momentum diffusion length along B by the Lorentz force. This diffusion process
takes place in a typical diffusion time τ2D(l⊥) = τj(lz/l⊥)2, where τj = ρ/σB2 is the Joule
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dissipation time. Hence, lz can be estimated as (Sommeria & Moreau 1982)

lz(l⊥) = l⊥
√

N(l⊥), (3.5)

where N(l⊥, v(l⊥)) = σB2l⊥/ρv(l⊥) is a scale-dependent interaction parameter and v(l⊥)

is the velocity associated with a fluid structure of size of l⊥. When the Lorentz force
diffuses its momentum over a distance much greater than a, i.e. lz/a � 1, the considered
structure is consequently Q2-D.

However, the separation of the sidewall may produce complex 3-D structures in the case
of Ha = 55, Re = 15 972. Therefore, the correlation between VT(r, θ, t) and VB(r, θ, t)
measured at locations within either Hartmann layers exactly aligned with the magnetic
field lines (i.e. respectively at z = z0 (with z0 = 0.008 < 1/Ha) and z = 1 − z0, but
at the same coordinates (r, θ)) is used to assess the three-dimensionality of the flow
(Klein & Pothérat 2010). Here, VT(r, θ, t) and VB(r, θ, t) represent the azimuthal velocity
fluctuations. The correlation function is defined as

c′(r, θ) =
∑Ti

t=0 VT(r, θ, t)VB(r, θ, t)∑Ti
t=0 V2

B(r, θ, t)
. (3.6)

where Ti is the duration of the recorded signals. Considering the symmetry of the problem,
we shall analyse the radial dependence of this correlation through C

′
(r) = 〈c′(r, θ)〉θ . For

Ha = 55, Re = 15 972, the correlation profile of C′(r) in figure 19(a) indicates that the
flow is very close to Q2-D in most regions, where correlation C′ is almost unity. This is
also demonstrated on figure 19(b), which shows that the instantaneous azimuthal velocity
signals away from the shear layers near the top and bottom Hartmann layers are near
identical for the same position (r, θ ). At r = re, by contrast, the signals slightly differ,
so the correlation C′ is slightly lower than unity (0.832). At this location, the signals
are mostly identical except for a slightly higher amplitude of the bottom signal and short
burst where the signals are weakly correlated. The difference in amplitude reflects weak
three-dimensionality, as defined by Klein & Pothérat (2010), in the sense that flow near
the top and bottom are identical in topology but differ in intensity. The short bursts, by
contrast, indicate strong three-dimensionality where topologies are no more identical.
The bursts correspond to the passage of coherent structures. Hence, the overall picture
is that while the free shear layer itself and the larger structures responsible for the lower
frequency oscillations are only weakly three-dimensional, the smaller coherent structures
that navigate along it can exhibit strong three-dimensionality.

Figure 19(c) confirms that strongly three-dimensionality emerges within the sidewall
layer, where the signals recorded at all three monitored depths differ noticeably. This
is consistent with the distribution of azimuthal velocity within the side layer shown in
figure 6( f ), where the flows on different transverse plane are not topologically equivalent
any more, because of the presence of small-scale 3-D turbulence there.

To further characterise the scale-dependence of three-dimensionality near the
electrodes, we analyse the spectra obtained from the velocity signals near the top and
bottom Hartmann layers, as shown in figure 20. For Ha = 66, Re = 15 972 and Ha =
264, Re = 31 944, pairs of energy spectra obtained near top and bottom Hartmann walls
reveal that the higher frequencies carry significantly less energy in the vicinity of the
top wall than that near the bottom wall, which is clear evidence of three-dimensionality.
By contrast, lower frequencies almost carry the same amount of energy. According to
the theory of Sommeria & Moreau (1982) and the experiments of Baker et al. (2018),
a cutoff scale kc (corresponding to fc here) separating the Q2-D structures from the
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Figure 19. The results of the case with Ha = 55, Re = 15 972. (a) Radial profile of correlation C′. (b) The
azimuthal velocity fluctuation signals of six different points in the top and bottom Hartmann layer variation
with time. For easy identification, values of v′

θ at r = 6.85 (r = 4.5) is displayed as v′
θ + 0.03 (v′

θ − 0.03). (c)
The azimuthal velocity fluctuation signals of three different points in the sidewall layer variation with time,
along r = 10.8.

3-D structures can be identified. Here, the velocity signals, averaged over the azimuthal
direction, were taken within the free shear layer, so as to minimise the influence of the
sidewalls, i.e. r = re. For the details about the calculation of fc, the readers are referred
to Pothérat & Klein (2014). When Nt decreases, fc decreases as three-dimensionality
contaminates larger and larger scales, as shown in figure 20(a,b). For Ha = 264 and
Re = 15 972, fluctuations within the free shear layer are Q2-D over the entire spectral range
(see figure 20c).The variations of the azimuthally averaged cutoff frequency 〈fc〉θ (Nt) are
represented in figure 21(a), and reveal that the variations of 〈fc〉θ across all investigated
cases collapse onto a single curve, and therefore that 〈fc〉θ is determined by Nt with a
scaling law

〈fc〉θ � 0.063N0.37
t . (3.7)

This general law gives a clear estimate for the minimum frequency of vortices that
are affected by 3-D inertial effects. Additionally, we obtain the minimum transverse
wavenumber of 3-D vortices, 〈kc〉θ � 0.396N0.37

t by applying Taylor’s hypothesis, taking
advantage of the strong azimuthal flow component. This law is the first numerical
confirmation of the original theoretical law given by Sommeria & Moreau (1982),
kc ∼ N1/3

t , following Baker et al. (2018)’s recent experimental confirmation. It is also
interesting to note that while this law applies to homogeneous and sheared turbulence
alike, the corresponding scaling law for the cutoff frequency (3.7) differs from the power
law with exponent ∼ 2/3 found in turbulence with weak average flow (Klein & Pothérat
2010).

Given the spatially inhomogeneous nature of the flow in the radial direction, the question
arises as to where three-dimensionality is preferentially found. An answer is provided by
the spatial distribution of the azimuthally averaged variations of the cutoff frequency 〈fc〉θ
along r, shown in figure 21(b). It is quite clear that 〈fc〉θ drops at the locus of the free
shear layer and the sidewall layer. On the other hand, it remains much higher outside of
these regions. Hence, structures are Q2-D over a greater range of scales, down to smaller
ones outside the shear layers and 3-D turbulence appears concentrated in the side layer
and, to a slightly lower extent, the free shear layer. This suggests that three-dimensionality
arises out of direct energy transfer from the mean shear flow to scales at the scale of the
shear layers (δ) or lower. This is supported by the argument that the high level of energy
imparted to them by the shear makes the turnover time at this scale (∼ δ/〈Uθ (r)〉, with
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Figure 20. Power density spectra calculated from instantaneous azimuthal velocity signals acquired at
locations near the free shear layer inside the top (red line) and bottom (green line) Hartmann layers for different
magnetic interaction parameters. (a) Ha = 66, Re = 15 972. (b) Ha = 264, Re = 31 944. (c) Ha = 264, Re =
15 972.
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Figure 21. (a) The azimuthal averages of fc, separating Q2-D large structures from the small 3-D ones,
normalised by U0/a. (b) Radial profiles of azimuthal averages of fc, when Ha = 55, Re = 15 972 and
Ha = 66, Re = 15 972.

r = re or r = R for the free shear and side layers respectively) significantly smaller than
the two-dimensionalisation time (∼ (σB2/ρ)(a/δ)2). Indeed, the ratio of former to the
latter expresses as N(δ/a)2, which is significantly smaller than unity in both cases.

Conversely, away from the shear layers, the mean flow does not inject energy into
the small scales. Since the recent experiments on MHD turbulence without a strong
mean flow of Baker et al. (2018) suggest that even in the presence of moderate
three-dimensionality, the energy cascades upscale, the flow is dominated by larger vortices
for which two-dimensionalisation is more efficient. Unlike in these experiments, however,
the presence of vorticity streaks in the wake of these vortices suggests that an additional
transfer mechanism less favourable to large scales may be at play in the outer region of
MATUR.

3.9. Componentality
To understand the occurrence of the third component velocity fluctuations not driven by
global Ekman pumping, we show instantaneous distributions of axial velocities in the
cross-section θ = 0 (see figure 7a). One can see that the turbulent fluctuations are localised
within the layer near the sidewall. Moreover, this three-dimensionality contaminates
the entire height of the vessel, from the bottom to the top of the Hartmann layers.
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Figure 22. The distribution of the average relative turbulent intensity 〈v′

zv
′
z〉t,z,θ with 〈fc〉θ , when

Re = 15 972, for the different radial values of 〈fc〉θ shown on figure 21(b).

As conveyed in figure 7(b,c), the distributions of instantaneous vertical velocity (including
intensity and topological structure) are different on the plane near the top wall (z = 0.8)
and near the bottom wall (z = 0.2). This further confirms that the wall side layer is the
region where practically all strong three-dimensionality is concentrated.Since the same
regions characterise the appearance of three-dimensionality and three-componentality, the
question of how the two are linked naturally arises. To gain insight into it, we have sought
a relationship between the local energy in the fluctuations of the third velocity component
〈v′2

z 〉t,z,θ and the cutoff frequency, which provides a measure of three-dimensionality
across the turbulent spectrum. These quantities for several cases are plotted on figure 22.
The collapse of the data into a single curve shows that the degree of the two-dimensionality
of the energy spectrum is tightly linked to the amount of energy in the third component.
Therefore, 〈v′2

z 〉t,z,θ is solely determined by the true interaction parameter Nt and follows
a simple power law, i.e. 〈v′2

z 〉t,z,θ = 2 × 10−7〈fc〉−2.485
θ . The maximum relative error

between the fitting curve and the numerical data are lower than 2.2 %. As such, as
increasing the magnetic field drives the flow towards a Q2-D, two-component state,
both the transitions to the Q2-D state and to the two-component state are progressive
and controlled by the true interaction parameters through scalings fc � 0.063N0.37

t and
〈v′2

z 〉t,z,θ � 0.126 × 10−7N−0.92
t . It is noteworthy that this scaling implies a different

dependence on Ha 〈v′2
z 〉t,z,θ ∼ Ha−1.84 than that for E′

z = πR2a〈〈v′2
z 〉t,z,θ 〉r ∼ Ha−5.76.

Since the two quantities only differ though radial averaging, the difference can be
understood by noticing that if fluctuations are confined to a thin radial region of thickness
δ3D then E′

z ∼ πR2a(δ3D/R)〈v′2
z 〉t,z,θ,δ3D , where the subscript δ3D indicates averaging over

that region. Under this assumption, it would follow that δ3D/R ∼ Ha−3.92 (finding the
scaling with Re would require extra simulations over a wider range of its values). The
corresponding region is much thinner than the free shear layer and the wall side layer (see
§ 3.7). However, the radial profiles of vertical velocity fluctuations (figure 13) suggest that
a sharp peak of vertical velocity fluctuations develops within the sidewall layer, that would
explain this scaling. This suggests that the dominant contribution to the three-component
turbulence in the regimes explored in this paper arises out of a very thin region of thickness
within the wall side layer.
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4. Conclusions

The present study reports 3-D DNS of electrically driven MHD turbulent shear flows in
the MATUR experiment (Messadek & Moreau 2002). The numerical results, which are
obtained in a configuration where current is injected far from sidewalls (at a radius of
re = 5.4) and in regimes where the Hartmann layers remain laminar (18.2 ≤ R ≤ 290.4),
provide accurate solutions in excellent agreement not only with the experimental data but
also with the 2-D PSM model and other theoretical approaches. Crucially, the DNS provide
access to the detail of the 3-D dynamics. This enabled us to identify the location and the
nature of 3-D structures, and the role they play in the overall flow dynamics.

The simulations reproduce typical flow features observed in the experiment and
predicted by the theories. The velocity field is dominated by a limited number of large
coherent structures formed at the unstable shear layer. Their dynamics and the inner
structure of the layers led us to identify two changes in behaviour when the ratio of 2-D
inertia to the Lorentz force R = Re/Ha was varied: from R � 121, small-scale turbulence
appears in the wall side layer, a value that is consistent with previous findings in other
set-ups with curved walls (Zhao & Zikanov 2012). For R ≥ 145.2, that layer separates from
the wall, most likely under the influence of fluctuations induced by the large vortices in the
outer region. The thickness δSW of the wall side layers follows this sequence of changes: in
the nonlinear laminar regime, it converges to the asymptotic scaling δSW ∼ (Re Ha3/2)−1

theoretically predicted by Pothérat et al. (2000), but becomes much thicker with a scaling
of δSW ∼ (Re Ha−3/2)−0.42 following the onset of 3-D turbulence.

In addition, the energy spectra exhibit a significant dependence on R: for 18.2 ≤ R ≤
60.5, the turbulent spectrum possesses an inertial range with a E( f ) ∼ f −3 power law.
For R ≥ 121, inertia plays a greater role. The spectra show a transition frequency between
low frequency ranges where E( f ) ∼ f −5/3 and high frequency ranges where E( f ) ∼ f −3,
similar to the split between inverse energy and direct enstrophy cascades found in Q2-D
MHD flows by Sommeria (1986). The dynamics of the free shear layer seen in the
experiments was also recovered as DNS showed that the thickness of the free shear layer
varies nearly as the vortex size does (scaling as R1/2.3 and R1/2.4

L , respectively).
Detailed analysis of the secondary flow confirmed the phenomenology identified by

Pothérat et al. (2000, 2005) whereby, for N � 1, the global recirculation associated with
the main azimuthal flow induces a flux of angular momentum towards the wall side layer.
The ensuing thinning of that layer is responsible for an increased dissipation. The intensity
of the recirculation matches closely the PSM prediction. At statistical equilibrium, the
energy associated with the average axial flow component was found to scale as Em

z ∼
Ha−5.58 both in PSM and the DNS, confirming that it is driven by this main recirculation.
The energy associated with the fluctuating part of this component was, on the other hand,
underestimated by PSM compared with the DNS for N � 1. The discrepancy originates in
the small-scale turbulence produced in the wall side layer. This effect was found to incur
a significant increase in wall shear stress and in turn a reduction in the global angular
momentum, a phenomenon that previous theories could not capture. The extra dissipation
is also a possible cause for the shortened transient time observed when the flow is initiated
at rest.

A major benefit of the 3-D DNS was to afford a detailed scrutiny of the 3-D effects.
The main source of three-dimensionality was found in the small-scale turbulence fed by
the mean shear in the free shear layer and the wall side layer. Outside of these regions,
turbulent spectra still exhibit a high frequency range of 3-D structures and a low frequency
range of Q2-D ones, as predicted by Sommeria & Moreau (1982) and found in turbulence
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driven by a crystal of vortices (Klein & Pothérat 2010). As in this case, the frequency
separating these two ranges scales with the true interaction parameter Nt, albeit with a
different exponent as f ∼ N0.37 instead of f ∼ N2/3. The difference is due to the presence
of a strong background flow and, when converted into wavenumbers, both experiments
exhibit the same cutoff scaling of kc ∼ N1/3

t (Baker et al. 2018), as predicted by Sommeria
& Moreau (1982). This result shows that the existence of a cutoff wavelength separating
3-D and Q2-D turbulent fluctuations extends to sheared turbulence. As such, this result
and the associated scaling can be expected to hold in a wider class of flows including duct
flows.

Simultaneous access to all three velocity components further enabled us to establish
a link between the local dimensionality of the turbulence (measured by the cutoff
frequency fc) and its componentality, measured by the energy in the axial component
of the velocity fluctuations. While the latter decreases monotonically with the former,
and both are controlled by the true interaction parameter through simple power laws,
〈v′2

z 〉t,z,θ ∼ 0.126N−0.92
t and 〈fc〉θ � 0.063N0.37

t . Unlike for the dimensionality scaling
(fc), no prediction exists for the dimensionality scaling (〈v′2

z 〉t,z,θ ), so this raises the
question of its applicability to other types of quasi-static MHD turbulence, beyond shear
flow turbulence or even beyond this particular experiment. The question is all the more
relevant as in the regime explored here, three-component turbulence was found almost
exclusively within a very thin region of the wall side layer. As such, a further step in
understanding the link between componentality and dimensionality could target flows
where 3-D turbulence is more broadly distributed.
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