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We are interested in the Korteweg–de Vries (KdV), Burgers and Whitham limits for
a spatially periodic Boussinesq model with non-small contrast. We prove estimates of
the relations between the KdV, Burgers and Whitham approximations and the true
solutions of the original system that guarantee these amplitude equations make
correct predictions about the dynamics of the spatially periodic Boussinesq model
over their natural timescales. The proof is based on Bloch wave analysis and energy
estimates and is the first justification result of the KdV, Burgers and Whitham
approximations for a dispersive partial differential equation posed in a spatially
periodic medium of non-small contrast.
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1. Introduction

In the long wave limit there exist a zoo of amplitude equations that can be derived
via multiple scaling analysis for various dispersive wave systems with conserved
quantities. Among these there are only three generic, nonlinear amplitude equations
that are independent of the small perturbation parameter: the Korteweg–de Vries
(KdV) equation, the inviscid Burgers equation and the Whitham system. In this
paper we shall discuss the validity of these approximations for a spatially periodic
Boussinesq model with non-small contrast.

1.1. The formal approximations in the spatially homogeneous situation

The KdV equation occurs as an amplitude equation in the description of small
spatial and temporal modulations of long waves in various dispersive wave systems.
Examples are the water wave problem or equations from plasma physics (see [3]).
For the Boussinesq equation

∂2
t u(x, t) = ∂2

xu(x, t) − ∂4
xu(x, t) + ∂2

x(u(x, t)2), (1.1)
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with x ∈ R, t ∈ R and u(x, t) ∈ R, by the ansatz

u(x, t) = ε2A(X, T ), (1.2)

where X = ε(x − t), T = ε3t, A(X, T ) ∈ R and 0 < ε � 1 is a small perturbation
parameter, the KdV equation

∂T A = 1
2∂3

XA − 1
2∂X(A2) (1.3)

can be derived by inserting (1.2) into (1.1) and by equating the coefficients in front
of ε6 to zero. This ansatz can be generalized to

u(x, t) = εαA(X, T ), (1.4)

where X = ε(x − t), T = ε1+αt and A(X, T ) ∈ R with α > 0. For α > 2 the Airy
equation ∂T A = 1

2∂3
XA occurs. The KdV equation is recovered for α = 2, and for

α ∈ (0, 2) the inviscid Burgers equation,

∂T A = − 1
2∂X(A2), (1.5)

is obtained. There is another long wave limit that leads to an ε-independent non-
trivial amplitude equation. With the ansatz

u(x, t) = U(X, T ), (1.6)

where X = εx, T = εt and U(X, T ) ∈ R, we obtain

∂2
T U = ∂2

XU + ∂2
X(U2), (1.7)

which can be written as a system of conservation laws:

∂T U = ∂XV, ∂T V = ∂XU + ∂X(U2). (1.8)

In the following, (1.7) and (1.8) are called the Whitham system (see [25]).

1.2. Justification by error estimates

Estimating that the formal KdV approximation and true solutions of the original
system stay close together over the natural KdV timescale is a non-trivial task, since
solutions of order O(ε2) have to be shown to exist on an O(1/ε3) timescale. For
(1.1), an approximation result is formulated as follows.

Theorem 1.1. Let s � 0 and let A ∈ C([0, T0], H5+s) be a solution of the KdV
equation (1.3). Then there exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) we
have solutions u of (1.1) with

sup
t∈[0,T0/ε3]

‖u(·, t) − ε2A(ε(· − t), ε3t)‖H1+s � Cε7/2.

There are two fundamentally different approaches to proving such an approx-
imation result. For analytic initial conditions of the KdV equation, a Cauchy–
Kowalevskaya-based approach can be chosen (cf. [19] with the comments given
in [21] for the water wave problem). Working in analytic function spaces gives some
artificial smoothing that allows us to gain the missing order with respect to (w.r.t.)
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ε between the inverse of the amplitude of O(ε2) and the timescale of O(1/ε3) via
the derivative in front of the nonlinear terms in the KdV equation. This approach
is very robust and works without a detailed analysis of the underlying problem
(see [7] for another example), but gives non-optimal results.

For initial conditions in Sobolev spaces, the underlying idea to gain such estimates
is conceptually rather simple, i.e. the construction of a suitable chosen energy that
includes O(ε2) terms in the equation for the error, such that, for the energy, O(ε3t)
growth rates finally occur. However, the method is less than robust, since a dif-
ferent energy occurs for every original system and the construction of this energy
is a major difficulty. Estimates using this approach showing that the formal KdV
approximation and true solutions of the different formulations of the water wave
problem stay close together over the natural KdV timescale appear in, for exam-
ple, [1, 10, 13, 23, 24]. Another example is the justification of the KdV approxima-
tion for modulations of periodic waves in the nonlinear Schrödinger (NLS) equation
(see [8]). For (1.1) the energy approach is rather short and very instructive for the
subsequent analysis. Therefore, we recall it in § 2.

Interestingly, it turns out that the proofs given for the KdV approximations
transfer more or less line for line into proofs for the justification of the invis-
cid Burgers equation and of the Whitham system. Since only the scaling has to
be adapted, whenever a KdV approximation result holds, inviscid Burgers and
Whitham approximation results can also be established. This will be explained in
detail in § 2.

As above, obtaining such approximation results is a non-trivial task since solu-
tions of order O(εα) have to be shown to exist on an O(ε1+α) timescale. For the
inviscid Burgers equation the approximation result is formulated along the lines
of theorem 1.1. However, due to the notational complexity in achieving general
estimates for the residual (the terms that do not cancel after inserting the approx-
imation into (1.9)), in remark 2.3 we restrict ourselves to the α = 1 case.

Theorem 1.2. Let s � 0, α = 1 and let A ∈ C([0, T0], H3+s) be a solution of the
inviscid Burgers equation (1.5). Then there exist ε0 > 0 and C > 0 such that for
all ε ∈ (0, ε0) we have solutions u of (1.1) with

sup
t∈[0,T0/ε2]

‖u(·, t) − εA(ε(· − t), ε2t)‖H1+s � Cε(3+2α)/2.

Since solutions of order O(1) are considered for the Whitham approximation,
some smallness condition is needed such that the energy used allows us to estimate
the associated Sobolev norm.

For (1.1) a possible Whitham approximation result is formulated as follows.

Theorem 1.3. Let s � 0. There exists a C1 > 0 such that the following holds. Let
U ∈ C([0, T0], H3+s) be a solution of (1.7) with

sup
T∈[0,T0]

‖U(·, T )‖H3+s � C1.

Then there exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) we have solutions u
of (1.1) with

sup
t∈[0,T0/ε]

‖u(·, t) − U(ε·, εt)‖H1+s � Cε3/2.
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The Whitham system for the water wave problem coincides with the shallow
water wave equations that were justified for the water wave problem without surface
tension in [18,20]. A Whitham approximation result that the periodic wave trains of
the NLS equation are approximated by the Whitham system can be found in [14].

1.3. The spatially periodic situation

The last few years have seen some initial attempts to justify the KdV equation
in periodic media. In [17] it has been justified for the water wave problem over a
periodic bottom in the KdV scaling, i.e. with long wave oscillations of the bottom
of magnitude O(ε2), varying on a spatial scale of order O(ε−1). The same result
can be found in [5], where general bottom topographies of small amplitude have
been handled. The result is based on that in [4], where other amplitude systems
have been justified. This situation can be handled as a perturbation of the spatially
homogeneous case.

In the case of O(1) oscillations of the bottom varying on a spatial scale of order
O(1), no approximation result can be found in the existing literature. As a first
attempt to solve this case for the water wave problem, we consider a spatially
periodic Boussinesq equation,

∂2
t u(x, t) = ∂x(a(x)∂xu(x, t)) − ∂2

x(b(x)∂2
xu(x, t)) + ∂x(c(x)∂x(u(x, t)2)), (1.9)

with x ∈ R, t � 0, u(x, t) ∈ R and smooth x-dependent 2π-spatially periodic
coefficients a, b and c satisfying

inf
x∈R

a(x) > 0 and inf
x∈R

b(x) > 0.

For this equation we derive the KdV equation by making a Bloch mode expansion
of (1.9). The KdV approximation describes the modes that are contained in the cir-
cles in figure 1. We prove an approximation result formulated in theorem 5.1. This
guarantees that the KdV equation makes correct predictions about the dynamics of
the spatially periodic Boussinesq model (1.9) over the natural KdV timescale. Our
result is the first justification of the KdV approximation for a dispersive nonlin-
ear partial differential equation posed in a spatially periodic medium of non-small
contrast. For linear systems this limit has been considered independently in [11,12].

In order to make the residual small, an improved approximation must be con-
structed. Since this construction is not the main purpose of this paper, we addi-
tionally assume the following.

(SYM) the coefficient functions

a = a(x), b = b(x) and c = c(x) are even w.r.t. x.

As in the spatially homogeneous situation, it turns out that the proof given for the
KdV approximation transfers more or less line for line into proofs for the justifi-
cation of the approximation via the inviscid Burgers equation and the justification
of the Whitham system. The associated approximation results are formulated in
theorems 5.2 and 5.3.

This paper was originally intended as the next step in generalizing a method
developed in [9] for the justification of the KdV approximation in situations when
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(a) (b) (c)

Figure 1. (a) Curves of eigenvalues over the Fourier wavenumbers as they appear for the
water wave problem [1, 10, 13, 17, 23, 24]. (b) Finitely many curves of eigenvalues as they
appear, for instance, for the poly-atomic FPU system [6, 9]. (c) Infinitely many curves of
eigenvalues over the Bloch wavenumbers as they appear for the spatially periodic Boussi-
nesq model (1.9), the water wave problem over a periodic bottom topography or for the
linearization around a periodic wave in dispersive systems. Since the Fourier transform of
ε2A(εx) is given by ε2ε−1Â(x/ε) the KdV equations describe the modes at the wavenum-
bers k = 0 with the vanishing eigenvalues that are contained in the circles. One of the
two curves in the circle describes wave packets moving to the left, and the other the wave
packets moving to the right.

the KdV modes are resonant with other long wave modes. The method had already
been applied successfully in justifying the KdV approximation for the poly-atomic
Fermi–Pasta–Ulam (FPU) problem in [6]. The qualitative difference in justifying
the KdV equation for the spatially periodic Boussinesq equation in contrast to [9]
and [6] is that, for fixed Bloch and Fourier wavenumbers, respectively, the prob-
lem presented is infinite dimensional. The cases in [6, 9] correspond to figure 1(b),
whereas the spatially periodic Boussinesq equation corresponds to figure 1(c). As a
consequence, the normal form transform that is a major part of the proofs in [6,9]
would be more demanding from an analytic point of view. In the justification of the
Whitham system with the approach in [6,9], infinitely many normal form transforms
have to be performed [15].

Interestingly, for the spatially periodic Boussinesq equation (1.9) there exists an
energy in physical space that allows us to incorporate the normal form transforms
into the energy estimates. This energy approach is presented below.

Notation. Constants that can be chosen independently of the small perturbation
parameter 0 < ε � 1 are denoted by the same symbol, C. We write

∫
for

∫ ∞
−∞.

The Fourier transform of a function u is denoted by û. The Bloch transform of a
function u is denoted by ũ, and this tool is recalled in Appendix C. We introduce
the norm ‖ · ‖L2

s
by

‖û‖2
L2

s
=

∫
|û(k)|2(1 + k2)s dk,

and define the Sobolev norm as ‖u‖Hs = ‖û‖L2
s
, but use also equivalent versions.

2. The spatially homogeneous case

In this section we give a simple proof for theorems 1.1, 1.2 and 1.3 using the energy
method. This proof will be the basis of the subsequent analysis. All three cases can
be handled with the same approach.
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The residual

Res(u) = −∂2
t u(x, t) + ∂2

xu(x, t) − ∂4
xu(x, t) + ∂2

x(u(x, t)2)

quantifies how much a function u fails to satisfy the Boussinesq model (1.1). For
the KdV approximation (1.2), abbreviated as ε2Ψ , if we choose A to satisfy the
KdV equation (1.3), we find

Res(ε2Ψ) = −ε4c2∂2
XA − 2ε6∂T ∂XA − ε8∂2

T A

+ ε4∂2
XA − ε6∂4

XA + ε6∂2
X(A2)

= −ε8∂2
T A.

Therefore, we have the following.

Lemma 2.1. Let s � 0 and let A ∈ C([0, T0], H5+s) be a solution of the KdV
equation (1.3). Then there exist ε0 > 0 and Cres such that for all ε ∈ (0, ε0) we
have

sup
t∈[0,T0/ε3]

‖∂s−1
x Res(ε2Ψ(·, t, ε))‖L2 � Cresε

(13+2s)/2.

Proof. Using the KdV equation allows us to write

4∂2
T A = −2∂T (∂3

XA + ∂X(A2))

= −2(∂3
X∂T A + 2∂X(A∂T A))

= ∂3
X(∂3

XA + ∂X(A2)) + 2∂X(A(∂3
XA + ∂X(A2))).

This shows that A(·, T ) ∈ H6 is necessary to estimate the residual in L2. The formal
error of order O(ε8) is reduced by a factor ε−1/2 due to the scaling properties of the
L2-norm. Moreover, due to the representation of ∂2

T A as a spatial derivative, below,
we can apply ∂−1

x = ε−1∂−1
X to the residual terms, which, however, lose another

factor ε−1.

Similarly, for the Whitham approximation (1.6), abbreviated to ε2Ψ , we find
Res(Ψ) = −ε4∂4

XU if we choose U to satisfy the Whitham system (1.7). Hence, for
an estimate in L2 we need U ∈ H4. Exactly as above, we have the following.

Lemma 2.2. Let s � 0 and let A ∈ C([0, T0], H3+s) be a solution of the Whitham
system (1.7). Then there exist ε0 > 0 and Cres such that for all ε ∈ (0, ε0) we have

sup
t∈[0,T0/ε]

‖∂s−1
x Res(Ψ(·, t, ε))‖L2 � Cresε

(5+2s)/2.

Remark 2.3. For the inviscid Burgers equation, the residual becomes too large
with the simple ansatz (1.2). However, by adding higher-order terms to the approx-
imation (1.2) (with a slight abuse of notation this approximation is again called
εαΨ), one can always achieve

sup
t∈[0,T0/ε1+α]

‖Res(εαΨ(·, t, ε))‖L2 � Cresε
(7+4α)/2
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and

sup
t∈[0,T0/ε1+α]

‖∂−1
x Res(εαΨ(·, t, ε))‖L2 � Cresε

(5+4α)/2.

(See Appendix A, where we prove these estimates for α = 1 and explain that the
number of additional terms goes to infinity for α → 0 and α → 2.)

From this point on, the remaining estimates can be handled in exactly the same
way. The α = 0 case corresponds to the Whitham approximation, and the α = 2
case to the KdV approximation. The difference ε(3+2α)/2R = u − εαΨ satisfies

∂2
t R = ∂2

xR − ∂4
xR + 2εα∂2

x(ΨR) + ε(3+2α)/2∂2
x(R2) + ε−(3+2α)/2 Res(ε2Ψ). (2.1)

We multiply the error equation (2.1) by −∂t∂
−2
x R, which is defined via its Fourier

transform w.r.t. x, namely via

̂∂−1
x R(k) =

1
ik

R̂(k),

integrate it w.r.t. x, and find

−
∫

(∂t∂
−2
x R)∂2

t R dx = 1
2∂t

∫
(∂t∂

−1
x R)2 dx,

−
∫

(∂t∂
−2
x R)∂2

xR dx = − 1
2∂t

∫
R2 dx,∫

(∂t∂
−2
x R)∂4

xR dx = − 1
2∂t

∫
(∂xR)2 dx,

−
∫

(∂t∂
−2
x R)∂2

x(ΨR) dx = −
∫

(∂tR)ΨR dx

= − 1
2∂t

∫
ΨR2 dx + ε

∫
(∂τΨ)R2 dx,

−
∫

(∂t∂
−2
x R)∂2

x(R2) dx = −
∫

(∂tR)R2 dx = − 1
3∂t

∫
R3 dx,

−
∫

(∂t∂
−2
x R) Res(ε2Ψ) dx =

∫
(∂t∂

−1
x R)∂−1

x Res(ε2Ψ) dx.

We can estimate∣∣∣∣
∫

(∂t∂
−1
x R)∂−1

x Res(ε2Ψ) dx

∣∣∣∣ � ‖∂t∂
−1
x R‖L2‖∂−1

x Res(ε2Ψ)‖L2 ,∣∣∣∣
∫

(∂τΨ)R2 dx

∣∣∣∣ � ‖∂τΨ‖L∞‖R‖2
L2 .

For the energy

E =
∫

(∂t∂
−1
x R)2 + R2 + (∂xR)2 + 2εαΨR2 + 2

3ε(3+2α)/2R3 dx,

the following hold: in the α > 0 case we have that for all M > 0 there exist C1 and
ε1 > 0 such that for all ε ∈ (0, ε1) we have

‖R‖H1 � C1E
1/2
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as long as E � M ; in the α = 0 case the energy E is an upper bound for the squared
H1-norm for ‖Ψ‖L∞ sufficiently small but independent of 0 < ε � 1. Therefore, E
satisfies the inequality

dE

dt
� Cε1+αE + Cε(3+2α)/2E3/2 + Cε1+αE1/2

� 2Cε1+αE + Cε(3+2α)/2E3/2 + Cε1+α, (2.2)

with a constant C independent of ε ∈ (0, ε1). Under the assumption Cε1/2E1/2 � 1
we obtain

dE

dt
� (2C + 1)ε1+αE + Cε1+α.

Gronwall’s inequality immediately gives the bound

sup
t∈[0,T0/ε1+α]

E(t) = CT0e(2C+1)T0 =: M = O(1).

Finally, choosing ε2 > 0 so small that Cε
1/2
2 M1/2 � 1 gives the required estimate

for all ε ∈ (0, ε0) with ε0 = min(ε1, ε2) > 0 in all three cases.

Remark 2.4. The Boussinesq model (1.1) is a semilinear dispersive system, and so
we have local existence and uniqueness of solutions. The variation-of-constant for-
mula associated with the first-order system for the variables u and ∂t(∂4

x − ∂2
x)−1/2u

is a contraction in the space C([−T∗, T∗], Hθ × Hθ) for every θ > 1
2 if T∗ > 0 is

sufficiently small. The local existence and uniqueness of solutions combined with
the previous estimates, for instance, yield the existence and uniqueness of solutions
for all t ∈ [0, T0/ε3] in the KdV case and all t ∈ [0, T0/ε] in the Whitham case.

3. Derivation of the amplitude equations

In this section we return to the spatially periodic situation. The derivation of the
amplitude equations is less obvious than in the spatially homogeneous case. In
order to derive the amplitude equations, we expand (1.9) into the eigenfunctions
of the linear problem. As in [2], after this expansion we are back in the spatially
homogeneous set-up, except that the Fourier transform has been replaced by the
Bloch transform.

3.1. Spectral properties

The linearized problem

∂2
t u(x, t) = ∂x(a(x)∂xu(x, t)) − ∂2

x(b(x)∂2
xu(x, t)) (3.1)

is solved by so-called Bloch modes

u(x, t) = w(x)eilxeiωt,

with w being 2π-periodic w.r.t. x satisfying

−(∂x + il)(a(x)(∂x + il)w(x)) + (∂x + il)2(b(x)(∂x + il)2w(x)) = ω2w(x).
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The left-hand side defines a self-adjoint elliptic operator Ll(∂x) : Hθ+4 → Hθ.
Hence, for fixed l, there exists a countable set of eigenvalues λn(l), with n ∈ N,
ordered such that λn+1(l) � λn(l), with associated eigenfunctions wn(x, l).

Lemma 3.1. For l = 0, the operator L0(∂x) possesses the simple eigenvalue λ1(0) =
0 associated with the eigenfunction w̃1(0, x) = 1.

Proof. Obviously, we have L0(∂x)1 = 0. Moreover, we have

(w, L0(∂x)w)L2 =
∫ 1/2

−1/2
a(x)(∂xw(x))2 dx +

∫ 1/2

−1/2
b(x)(∂2

xw(x))2 dx � 0.

Hence, L0(∂x)w = 0 implies ∂xw = 0. From the 2π-periodicity it follows that
w = const. Hence, λ1(0) = 0 is a simple eigenvalue.

It is well known that the curves l �→ λn(l) and l �→ w̃n(l, ·) are smooth w.r.t. l
for simple eigenvalues. Hence, there exists a δ0 > 0 such that for l ∈ [−δ0, δ0] the
smallest eigenvalue λ1(l) is separated from the rest of the spectrum. Since Ll(∂x)
is self-adjoint and positive definite for all l we have λ1(l) � 0 for all l. In the KdV
equation only odd spatial derivatives occur, and in the Whitham system only even
spatial derivatives occur. This is a consequence of the following lemma.

Lemma 3.2. The curve l �→ λ1(l) for l ∈ [−δ0, δ0] is an even real-valued function.
The associated eigenfunctions satisfy w̃1(l, x) = w̃1(−l, x). Under the assumption
that the coefficient functions a and b are even, the eigenfunctions possess an expan-
sion

w̃1(l, x) =
∞∑

j=0

(il)jgj(x),

with g0(x) = 1,
∫ 2π

0 gj(x) dx = 0 for j � 1,

g2j(x) = g2j(−x) ∈ R and g2j+1(x) = −g2j+1(−x) ∈ R.

Proof. The first two statements follow from the fact that for fixed l the operator
Ll(∂x) is self-adjoint and from the fact that (1.9) is a real problem. For (il)0 we
obtain

−∂x(a(x)∂xg0(x)) + ∂2
x(b(x)∂2

xg0(x)) = 0,

which is, as we already know, solved uniquely by g0(x) = 1. For (il)1 we obtain

−∂x(a(x)∂xg1(x)) + ∂2
x(b(x)∂2

xg1(x)) − ∂xa(x) = 0.

The term ∂xa(x) is odd. The subspace of odd functions is invariant for the differ-
ential operator L0(∂x) = −∂x(a(x)(∂x·)) + ∂2

x(b(x)∂2
x·). Moreover, in this subspace

its spectrum is bounded away from zero such that this equation possesses a unique
odd solution, g1 = g1(x). For (il)2 we obtain

−∂x(a(x)∂xg2(x)) + ∂2
x(b(x)∂2

xg2(x)) + 1 + f2(x) = 1

with f2(x) an even function depending on a, b, g0 and g1 and possessing vanishing
mean value. In the subspace of vanishing mean value the differential operator L0(∂x)
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possesses a spectrum bounded away from zero such that this equation possesses
a unique even solution g2 = g2(x). With the same arguments the next orders
with the stated properties can be computed. The convergence of the series in a
neighbourhood of l = 0 in Hθ for every θ � 0 follows from the smoothness of
the curve of simple eigenfunctions w.r.t. l and the smoothness of the coefficient
functions a, b and c w.r.t. x.

The KdV equation, the inviscid Burgers equation and the Whitham system
describe the modes associated with the curve λ1 close to l = 0. Therefore, in order
to derive these amplitude equations we consider the Bloch transform

u(x, t) =
∫ 1/2

−1/2
ũ(l, x, t)eilx dx

of (1.9), namely

∂2
t ũ(l, x, t) = −Ll(∂x)ũ(l, x, t) + Nl(∂x)(ũ)(l, x, t), (3.2)

where

Nl(∂x)(ũ)(l, x, t) = (∂x + il)
(

c(x)(∂x + il)
∫ 1/2

−1/2
ũ(l − m, x, t)ũ(m, x, t) dm

)
.

Then we make the ansatz

ũ(l, x, t) = χ[−δ0/2,δ0/2](l)ũ1(l, t)w̃1(l, x) + ṽ(l, x, t)

with ∫ 2π

0
w̃1(l, x)ṽ(l, x, t) dx = 0

for l ∈ [− 1
2δ0,

1
2δ0] and find

∂2
t ũ1(l, t) = −λ1(l)ũ1(l, t) + Pc(l)Nl(∂x)(ũ)(l, t),

∂2
t ṽ(l, x, t) = −Ll(∂x)ṽ(l, x, t) + Ps(l)Nl(∂x)(ũ)(l, x, t),

where

(Pcũ)(l, t) =
1
2π

χ[−δ0/2,δ0/2](l)
∫ 2π

0
w̃1(l, x)ũ(l, x, t) dx,

(Psũ)(l, x, t) = ũ(l, x, t) − (Pcũ)(l, t)w1(l, x).

All amplitude equations we have in mind can be derived in a very similar way.
They describe the evolution of the ũ1 modes that are concentrated in an O(ε)
neighbourhood of the Bloch wavenumber l = 0. In all three cases we make an
ansatz

ũ1(l, t) = ε−1εαχ[−δ0/4,δ0/4]

(
l

ε

)
Â

(
l

ε
, ε1+αt

)
eilct (3.3)

with α = 2 and c > 0 for the KdV approximation, α ∈ (0, 2) and c > 0 for the
inviscid Burgers approximation and α = 0 and c = 0 for the Whitham approxima-
tion (see the caption of figure 1). The amplitude Â will be defined in Fourier space,
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and the cut-off function χ[−δ0/4,δ0/4](l/ε) allows us to transfer Â into Bloch space.
In the following we use the abbreviation

Ã

(
l

ε
, ε1+αt

)
= χ[−δ0/4,δ0/4]

(
l

ε

)
Â

(
l

ε
, ε1+αt

)
. (3.4)

For each of the three approximations we have to derive the associated amplitude
equation and to compute and estimate the residual terms

Res(ũ)(l, x, t) = −∂2
t ũ(l, x, t) − Ll(∂x)ũ(l, x, t) + Nl(∂x)(ũ)(l, x, t).

3.2. Derivation of the KdV and the inviscid Burgers equations

The amplitude equations we have in mind have derivatives in front of the non-
linear terms. Hence, before deriving these equations we need to prove a number of
properties about the nonlinear terms. We introduce the kernels s1

11(l, l−m, m), . . . ,
sv

vv(l, l − m, m) by

(PcNl(∂x)(ũ))(l, t) =
∫ 1/2

−1/2
s1
11(l, l − m, m)ũ1(l − m, t)ũ1(m, t) dm

+
∫ 1/2

−1/2
s1
1v(l, l − m, m)ũ1(l − m, t)ṽ(m, x, t) dm

+
∫ 1/2

−1/2
s1

v1(l, l − m, m)ṽ(l − m, x, t)ũ1(m, t) dm

+
∫ 1/2

−1/2
s1

vv(l, l − m, m)ṽ(l − m, x, t)ṽ(m, x, t) dm

and

(PsNl(∂x)(ũ))(l, x, t) =
∫ 1/2

−1/2
sv
11(l, l − m, m)ũ1(l − m, t)ũ1(m, t) dm

+
∫ 1/2

−1/2
sv
1v(l, l − m, m)ũ1(l − m, t)ṽ(m, x, t) dm

+
∫ 1/2

−1/2
sv

v1(l, l − m, m)ṽ(l − m, x, t)ũ1(m, t) dm

+
∫ 1/2

−1/2
sv

vv(l, l − m, m)ṽ(l − m, x, t)ṽ(m, x, t) dm.

For the derivation of the KdV and Burgers equations we need the following.

Lemma 3.3. We have

|s1
11(l, l − m, m) − ν2l

2| � C|l|(l2 + (l − m)2 + m2),

where

ν2 = − 1
2π

∫ 2π

0
c(x)(1 + ∂xg1(x))2 dx. (3.5)
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R. Bauer, W.-P. Düll and G. Schneider

Proof. Due to lemma 3.2 we have

w̃1(l, x) = 1 + ilg1(x) + O(l2), (3.6)

where g1(x) ∈ R with
∫ 2π

0 g1(x) dx = 0. This expansion yields

2πs1
11(l, l − m, m)

=
∫ 2π

0
w̃1(l, x)(∂x + il)(c(x)(∂x + il)(w̃1(l − m, x)w̃1(m, x))) dx

=
∫ 2π

0
(1 − ilg1(x) + O(l2))(∂x + il)

× (c(x)(∂x + il)((1 + i(l − m)g1(x) + O((l − m)2))

× (1 + img1(x) + O(m2)))) dx

= −
∫ 2π

0
c(x)((∂x − il)(1 − ilg1(x) + O(l2)))

× ((∂x + il)((1 + i(l − m)g1(x) + O((l − m)2))

× (1 + img1(x) + O(m2)))) dx

= −
∫ 2π

0
c(x)(−il − il∂xg1(x) + O(l2))

× ((∂x + il)((1 + ilg1(x) + O((l − m)2 + m2))) dx

= −
∫ 2π

0
c(x)(−il − il∂xg1(x) + O(l2))

× (il + il∂xg1(x) + O((l − m)2 + m2))) dx

= ν2l
2 + O(|l|(l2 + (l − m)2 + m2)).

We remark at this point that, due to the fact that a, b and c are assumed to be
even, we have for reasons of symmetry that the higher-order terms are not only
O(|l|(l2 + (l − m)2 + m2)) but also O(l4 + (l − m)4 + m4) (see below).

The following derivation of amplitude equations in Fourier or Bloch space is
straightforward and documented in various papers. We refer the reader to [22, ch. 5]
for an introduction.

3.2.1. The KdV equation

We start with the KdV approximation ε2Ψ , which is defined via (3.3) for α = 2
and is inserted into Res(ũ). We find with ũ1(l, t) = εÃ(K, T )E, E = eiεKct, T = ε3t
and l = εK that

Pc(Res(ũ))(l, t) = −∂2
t ũ1(l, t) − λ1(l)ũ1(l, t)

+
∫ 1/2

−1/2
s1
11(l, l − m, m)ũ1(l − m, t)ũ1(m, t) dm

202

https://doi.org/10.1017/S0308210518000227 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210518000227


KdV, Burgers and Whitham limits for a Boussinesq model

= ε3c2K2Ã(K, T )E − 2ε5icK(∂T Ã(K, T ))E − ε7(∂2
T Ã(K, T ))E

− 1
2ε3λ′′

1(0)K2Ã(K, T )E − 1
24ε5λ′′′′

1 (0)K4Ã(K, T )E + O(ε7)

+ ε5
∫ 1/(2ε)

−1/(2ε)
ν2K

2Ã(K − M, T )Ã(M, T ) dME + O(ε6).

If Â(·, T ) ∈ L2
s, then the error made by replacing

∫ 1/(2ε)
−1/(2ε) · · · dM by

∫ ∞
−∞ · · · dM

is O(εs−1/2). Hence, by equating the coefficients of ε3 and ε5 to zero we find c2 =
1
2λ′′

1(0) and Â satisfying

−2ic∂T Â(K, T ) − 1
24λ′′′′

1 (0)K3Â(K, T ) +
∫ ∞

−∞
ν2KÂ(K − M, T )Â(M, T ) dM = 0,

and A satisfying the KdV equation

2c∂T A(X, T ) + 1
24λ′′′′

1 (0)∂3
XA(X, T ) + ν2∂X(A(X, T )2) = 0, (3.7)

respectively.

3.2.2. The inviscid Burgers equation

Due to the explanations given in Appendix A we restrict our analysis to the α = 1
case. We insert the inviscid Burgers approximation εαΨ , which is defined via (3.3)
for α = 1, into Res(ũ). We find with ũ1(l, t) = Ã(K, T )E, E = eiεKct, T = ε2t and
l = εK that

Pc(Res(ũ))(l, t) = −∂2
t ũ1(l, t) − λ1(l)ũ1(l, t)

+
∫ 1/2

−1/2
s1
11(l, l − m, m)ũ1(l − m, t)ũ1(m, t) dm

= ε2c2K2Ã(K, T )E − 2ε3icK(∂T Ã(K, T ))E − ε4(∂2
T Ã(K, T ))E

− 1
2ε2λ′′

1(0)K2Ã(K, T )E − 1
24ε4λ′′′′

1 (0)K4Ã(K, T )E + O(ε4)

+ ε3
∫ 1/(2ε)

−1/(2ε)
ν2K

2Ã(K − M, T )Ã(M, T ) dME + O(ε4).

We proceed as above and equate the coefficients of ε2 and ε3 to zero. We find
c2 = 1

2λ′′
1(0) and Â satisfying

−2ic∂T Â(K, T ) +
∫ ∞

−∞
ν2KÂ(K − M, T )Â(M, T ) dM = 0

and A satisfying the inviscid Burgers equation

2c∂T A(X, T ) + ν2∂X(A(X, T )2) = 0, (3.8)

respectively.

3.3. Derivation of the Whitham system

The derivation of the Whitham system is much more involved, since it must
include the ṽ part. Due to the symmetry assumption (SYM) with u = u(x, t),
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u = u(−x, t) is also a solution of (1.9). As a consequence, in (1.9) all terms must
contain an even number of ∂x-derivatives. Since in Bloch space

u(−x, t) =
∫ 1/2

−1/2
ũ(−x, l)e−ilx dl

= −
∫ −1/2

1/2
ũ(−x,−l)eilx dl

=
∫ 1/2

−1/2
ũ(−x,−l)eilx dl

with ũ = ũ(l, x, t), ũ = ũ(−l, −x, t) is also a solution of the Bloch-wave-transformed
system (3.2). As a consequence, in (3.2) all terms must contain an even number of
∂x-derivatives or il, i(l−m), or im factors, i.e. for instance il∂x can occur, but −l2∂x

cannot. Before we start the derivation of the Whitham system, we additionally need
that at least one l factor occurs in some of the kernel functions sj

j1j2
.

Lemma 3.4. We have

(a) |s1
vv(l, l − m, m)| � C|l|,

(b) |sv
11(l, l − m, m)| � C(|l| + (l − m)2 + m2).

Proof.
(a) Using the expansion (3.6) yields, after some integration by parts, that∫ 2π

0
w̃1(l, x)(∂x + il)

(
c(x)(∂x + il)

∫ 1/2

−1/2
ṽ(l − m, x, t)ṽ(m, x, t) dm

)
dx

=
∫ 1/2

−1/2

∫ 2π

0
c(x)(−il + il∂xg1(x) + O(l2))(∂x + il)(ṽ(l − m, x, t)ṽ(m, x, t)) dxdm

= O(l).

(b) As above we obtain

sv
11(l, l − m, m)

=
∫ 2π

0
ṽ(l, x)(∂x + il)(c(x)(∂x + il)(w̃1(l − m, x)w̃1(m, x))) dx

=
∫ 2π

0
ṽ(l, x)(∂x + il)

× (c(x)(∂x + il)((1 + i(l − m)g1(x) + O((l − m)2))

× (1 + img1(x) + O(m2)))) dx

=
∫ 2π

0
ṽ(l, x)(∂x + il)(c(x)(il + il∂xg1(x) + O((l − m)2 + m2))) dx

= O(|l| + (l − m)2 + m2).
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For the derivation of the Whitham system we make the following ansatz:

ũ1(l, t) = ε−1Ã(K, T ) and ṽ(l, x, t) = B̃(K, x, T ). (3.9)

where T = εt and l = εK. With ũ(l, x, t) = ũ1(l, t)w̃1(l, x) + ṽ(l, x, t) we find that

Pc(Res(ũ))(l, t) = −∂2
t ũ1(l, t) − λ1(l)ũ1(l, t) + Pc(l)Nl(∂x)(ũ)(l, t)

= −ε∂2
T Ã(K, T ) − 1

2ελ′′
1(0)K2Ã(K, T ) + O(ε3)

+ Pc(εK)NεK(∂x)(ũ)(εK, T/ε)

and

Ps(Res(ũ))(l, x, t) = −∂2
t ṽ(l, x, t) − Ll(∂x)ṽ(l, x, t) + Ps(l)Nl(∂x)(ũ)(l, x, t)

= −ε2∂2
T B̃(K, x, T ) − L̃εK(∂x)B̃(K, x, T )

+ Ps(l)NεK(∂x)(ũ)(εK, x, T/ε).

Since Ps(εK)NεK(∂x)(ũ) is quadratic w.r.t. ũ and since L̃εK is invertible on the
range of Ps(εK), we can use the implicit function theorem to solve

−L̃εK(∂x)B̃(K, x, T ) + Ps(εK)NεK(∂x)(ũ)(εK, x, T/ε) = 0

w.r.t. B̃ = H(Ã)(K, x, T ) for sufficiently small Ã. Note that we have kept our
notation and wrote T/ε in the arguments of N , although in fact it depends only on
T . We insert B̃ = H(Ã)(K, x, T ) into the first equation and obtain

Pc(Res(ũ))(l, t) = −ε∂2
T Ã(K, T ) − 1

2ελ′′
1(0)K2Ã(K, T ) + O(ε3)

+ Pc(εK)NεK(∂x)(ε−1Ã(K, T )w̃1(εK, x)

+ H(Ã)(K, x, T ))(εK, T/ε).

The Whitham system occurs by expanding the right-hand side w.r.t. ε and by
equating the coefficient in front of ε1 to zero. We obtain in a first step

∂2
T Ã(K, T ) + 1

2λ′′
1(0)K2Ã(K, T ) + G̃(Ã)(K, T ) = 0,

where G̃ is a nonlinear function that can be written as

G̃(Ã)(K, T ) = −χ[−δ0/4,δ0/4](εK)
∞∑

j=2

sj iK
∫ 1/(2ε)

−1/(2ε)
Ã∗(j−1)(K − M)iMÃ(M) dM

with coefficients sj . The factor iK comes from lemmas 3.3 and 3.4(a); the factor
iM comes from the fact that we need an even number of such factors due to the
reflection symmetry. Due to the long-wave character of the approximation we have
exactly two such factors at ε. Replacing the Bloch transform Ã(K, T ) by the Fourier
transform Ã(K, T ) via (3.4) finally gives Whitham’s system,

∂2
T Â(K, T ) + 1

2λ′′
1(0)K2Â(K, T ) + Ĝ(Â)(K, T ) = 0, (3.10)

in Fourier space, where Ĝ is a nonlinear function that can be written as

Ĝ(Â)(K, T ) = −
∞∑

j=2

sj iK
∫ ∞

−∞
Â∗(j−1)(K − M)iMÂ(M) dM.
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In physical space we have

G(A)(X, T ) = −
∞∑

j=2

sj∂X(Aj−1∂XA) = −∂2
X

∞∑
j=2

sjA
j/j

such that Whitham’s system can finally be written as

∂2
T A = ∂2

XH(A) with H(A) = − 1
2λ′′

1(0)A −
∞∑

j=2

sjA
j/j. (3.11)

4. Estimates for the residual

After the derivation of the amplitude equations, we estimate the so-called residual,
i.e. the terms that do not cancel after inserting the approximation into (1.9). In
order to obtain estimates as in the spatially homogeneous case for the residual terms
in terms of ε we have to modify our approximations with higher-order terms.

The improved KdV approximation. For the construction of the improved KdV
approximation we proceed as for the derivation of the Whitham system. With
E = eiεKct, T = ε3t and l = εK we make the ansatz

ũ1(l, t) = εÃ(K, T )E,

ṽ(l, x, t) = ε4B̃(K, x, T )E + ε5B̃2(K, x, T )E + ε3B̃3(K, x, T )E.

With ũ(l, x, t) = ũ1(l, t)w̃1(l, x) + ṽ(l, x, t), T = εt and l = εK we find that

Pc(Res(ũ))(l, t) = −∂2
t ũ1(l, t) − λ1(l)ũ1(l, t) + Pc(l)Nl(∂x)(ũ)(l, t)

= ε3c2K2Ã(K, T )E − 2ε5icK(∂T Ã(K, T ))E − ε7(∂2
T Ã(K, T ))E

− 1
2ε3λ′′

1(0)K2Ã(K, T )E − ε5λ′′′′
1 (0)K4Ã(K, T )E/24 + O(ε7)

+ ε5
∫ 1/(2ε)

−1/(2ε)
ν2K

2Ã(K − M, T )Ã(M, T ) dME + O(ε7)

= O(ε7)

if we choose c and Ã as above. We have O(ε7) and not O(ε6) since Pc(Res(ũ))(l, t)
does not depend on x and has to be even w.r.t. factors in l, i.e. ε5K4Ã(K, T ) is
allowed, but ε6K5Ã(K, T ) is not. Next we have

Ps(Res(ũ))(l, x, t)

= −∂2
t ṽ(l, x, t) − Ll(∂x)ṽ(l, x, t) + Ps(l)Nl(∂x)(ũ)(l, x, t)

= c2K2(ε6B̃(K, x, T ) + ε7B̃2(K, x, T ) + ε8B̃3(K, x, T ))E

− 2icK(ε8∂T B̃(K, x, T ) + ε9∂T B̃2(K, x, T ) + ε10∂T B̃3(K, x, T ))E

− (ε10∂2
T B̃(K, x, T ) + ε11∂2

T B̃2(K, x, T ) + ε12∂2
T B̃3(K, x, T ))E

− (ε4L̃εK(∂x)B̃(K, x, T ) + ε5L̃εK(∂x)B̃2(K, x, T )

+ ε6L̃εK(∂x)B̃3(K, x, T ))E + Ps(εK)NεK(∂x)(ũ)(εK, x, T/ε),
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where we expand

Ps(l)NεK(∂x)(ũ)(εK, x, T/ε)

= (ε4F4(Ã) + ε5F5(Ã) + ε6F6(Ã, B̃) + O(ε7))(K, x, T )E.

If we set

0 = −L̃εK(∂x)B̃(K, x, T ) + ε4F4(Ã)(K, x, T ),

0 = −L̃εK(∂x)B̃2(K, x, T ) + ε4F5(Ã)(K, x, T ),

0 = −L̃εK(∂x)B̃3(K, x, T ) + ε4F6(Ã, B̃)(K, x, T ) + c2K2B̃(K, x, T ),

we finally have
Ps(Res(ũ))(l, x, t) = O(ε7).

The functions B̃, B̃2 and B̃3 are well defined since L̃εK can be inverted on the range
of Ps(εK).

The improved inviscid Burgers approximation. We leave this part to the reader;
we refer to Appendix A, where the modified approximation is discussed for the
spatially homogeneous situation.

The improved Whitham approximation. We need the residual formally to be of
order O(ε3). With the previous approximation we have O(ε3) for the Pc-part of the
residual again due to symmetry, but we only have O(ε2) for the Ps-part. As above,
we modify our ansatz to

ũ1(l, t) = ε−1Ã(K, T ) and ṽ(l, x, t) = B̃(K, x, T ) + ε2B̃2(K, x, T ).

We define Ã and B̃ exactly as above, and B̃2 as a solution of

−∂2
T B̃(K, x, T ) − L̃εK(∂x)B̃2(K, x, T ) = 0,

which is again well defined due the fact that L̃εK can be inverted on the range of
Ps(εK).

For all three approximations we gain a factor ε1/2 when we estimate the error in
L2-based spaces, due to the scaling properties of the L2-norm. Since the error made
by the various approximations will be estimated in physical space via energy esti-
mates, we conclude the following for the KdV approximation, the inviscid Burgers
approximation and the Whitham approximation, respectively.

Lemma 4.1. Let A ∈ C([0, T0], H6) be a solution of the KdV equation (3.7). Then
there exist ε0 > 0 and Cres such that for all ε ∈ (0, ε0) we have

sup
t∈[0,T0/ε3]

‖Res(ε2Ψ(·, t, ε))‖H1 � Cresε
15/2

and

sup
t∈[0,T0/ε3]

‖∂−1
x Res(ε2Ψ(·, t, ε))‖H1 � Cresε

13/2.
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Lemma 4.2. Let α = 1 and let A ∈ C([0, T0], H4) be a solution of the inviscid
Burgers equation (3.8). Then there exist ε0 > 0 and Cres such that for all ε ∈ (0, ε0)
we have

sup
t∈[0,T0/ε1+α]

‖Res(εαΨ(·, t, ε))‖H1 � Cresε
(7+4α)/2

and

sup
t∈[0,T0/ε1+α]

‖∂−1
x Res(εαΨ(·, t, ε))‖H1 � Cresε

(5+4α)/2.

Lemma 4.3. Let A ∈ C([0, T0], H4) be a solution of the Whitham equation (3.11).
Then there exist ε0 > 0 and Cres such that for all ε ∈ (0, ε0) we have

sup
t∈[0,T0/ε]

‖Res(Ψ(·, t, ε))‖H1 � Cresε
7/2

and

sup
t∈[0,T0/ε]

‖∂−1
x Res(Ψ(·, t, ε))‖H1 � Cresε

5/2.

5. The error estimates

As for the spatially homogeneous case, the proofs for the KdV approximations
follow more or less line for line the proofs for the justification of the inviscid Burgers
equation and of the Whitham system. Our approximation results are as follows.

Theorem 5.1. Let A ∈ C([0, T0], H6(R)) be a solution of the KdV equation (3.7).
Then there exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) we have solutions
u ∈ C([0, T0/ε3], H2) of the spatially periodic Boussinesq model (1.9) with

sup
t∈[0,T0/ε3]

‖u(·, t) − ε2A(ε(· − t), ε3t)‖H2 � Cε5/2.

Theorem 5.2. Let α = 1 and let A ∈ C([0, T0], H4(R)) be a solution of the inviscid
Burgers equation (3.8). Then there exist ε0 > 0 and C > 0 such that for all ε ∈
(0, ε0) we have solutions u ∈ C([0, T0/ε3], H2) of the spatially periodic Boussinesq
model (1.9) with

sup
t∈[0,T0/ε1+α]

‖u(·, t) − εαA(ε(· − t), ε1+αt)‖H2 � Cε(1+2α)/2.

Theorem 5.3. There exists a C1 > 0 such that the following holds. Let U ∈
C([0, T0], H4) be a solution of the Whitham system (3.11) with

sup
T∈[0,T0]

‖U(·, T )‖H4 � C1.

Then there exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) we have solutions
u ∈ C0([0, T0/ε3], H2) of our spatially periodic Boussinesq model (1.9), such that

sup
t∈[0,T0/ε3]

‖u(·, t) − U(ε·, εt)‖H2 � C2ε
1/2.

208

https://doi.org/10.1017/S0308210518000227 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210518000227


KdV, Burgers and Whitham limits for a Boussinesq model

Proof of theorems 5.1–5.3. Since we already have the estimates for the residuals in
lemmas 4.1–4.3, from this point onwards the remaining estimates can be handled in
exactly the same way. The α = 0 case corresponds to the Whitham approximation,
and the α = 2 case to the KdV approximation.

The difference ε(3+2α)/2R = u − εαΨ satisfies

∂2
t R = ∂x(a∂xR) − ∂2

x(b∂2
xR) + 2∂x(c∂x(εαΨR))

+ ε(3+2α)/2∂x(c∂x(R2)) + ε−(3+2α)/2 Res(εαΨ). (5.1)

The first three terms on the right-hand side can be written as

∂x(a∂xR) − ∂2
x(b∂2

xR) + 2∂x(cεαΨ∂xR) + 2∂x(c(∂xεαΨ)R).

The last term is of order O(ε1+α) due to the long-wave character of the approxi-
mation εαΨ . More essentially, the first three terms can be written as ∂x(B(∂xR)),
where B is the self-adjoint operator

B = (a + 2cεαΨ) − ∂x(b∂x).

In the α > 0 case for sufficiently small ε > 0 and in the α = 0 case for suffi-
ciently small ‖Ψ‖C0

b
, the linear operator B is positive definite. Hence, there exists

a positive-definite self-adjoint operator A with A2 = B. The associated operator
norm ‖ · ‖A = ‖A · ‖L2 is then equivalent to the H1-norm, and A−1 is a bounded
operator from L2 to H1. Hence, the equation for the error can be written as

∂2
t R = ∂x(A2(∂xR)) + 2∂x(c(∂xεαΨ)R)

+ ε(3+2α)/2∂x(c∂x(R2)) + ε−(3+2α)/2 Res(εαΨ). (5.2)

In order to bound the solutions of (5.2), we use energy estimates. Therefore, we first
multiply (5.2) by ∂tR and integrate the expression obtained w.r.t. x. We obtain∫

(∂tR)∂2
t R dx = 1

2∂t

∫
(∂tR)2 dx

and∫
(∂tR)∂x(A2(∂xR)) dx = −

∫
(∂t∂xR)(A2(∂xR)) dx

= −
∫

(A∂t∂xR)(A∂xR) dx

= −
∫

(∂t(A∂xR))(A∂xR) dx −
∫

([∂t,A]∂xR)(A∂xR) dx

= − 1
2∂t

∫
(A∂xR)2 dx−

∫
([∂t,A]∂xR)(A∂xR) dx,

where

[∂t,A]· = ∂t(A·) − A∂t·
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is the commutator of the operators A and ∂t. Moreover, we estimate∣∣∣∣
∫

(∂tR)2∂x(c(∂xεαΨ)R) dx

∣∣∣∣ � Cε1+α‖∂tR‖L2‖R‖H1 ,

∣∣∣∣
∫

(∂tR)ε(3+2α)/2∂x(c∂x(R2)) dx

∣∣∣∣ � Cε(3+2α)/2‖∂tR‖L2‖R‖2
H2 ,∣∣∣∣

∫
(∂tR)ε−(3+2α)/2 Res(εαΨ) dx

∣∣∣∣ � Cε2+α‖∂tR‖L2 ,

using lemmas 4.1–4.3. Finally, we have

[∂t,A]∂xR = (∂tA)∂xR

such that ∫
([∂t,A]∂xR)(A∂xR) dx =

∫
((∂tA)∂xR)(A∂xR) dx.

In order to control this term we first note that

(∂tA)A + A∂tA = ∂t(A2) = 2c∂t(εαΨ)

and

((∂tA)u, v)L2 = (u, (∂tA)v)L2 ,

which follows from differentiating the associated formula for A w.r.t. t such that∣∣∣∣2
∫

((∂tA)∂xR)(A∂xR) dx

∣∣∣∣ =
∣∣∣∣
∫

(A(∂tA)∂xR)∂xR + ∂xR(∂tA(A∂xR)) dx

∣∣∣∣
=

∣∣∣∣
∫

∂xR(A∂tA + (∂tA)A)∂xR dx

∣∣∣∣
=

∣∣∣∣
∫

2c(∂t(εαΨ))(∂xR)2 dx

∣∣∣∣
� 2 sup

x∈R

|c(x)∂t(εαΨ(x, t))|‖∂xR‖2
L2

= O(ε1+α)‖∂xR‖2
L2 .

In order to obtain a bound for the L2-norm of R and not just of its derivatives, we
next multiply ‘∂−1

x (5.2)’ by A−2∂−1
x ∂tR and integrate the expression obtained in

this way w.r.t. x. We find∫
(A−2∂−1

x ∂tR)∂−1
x ∂2

t R dx =
∫

(A−1∂−1
x ∂tR)A−1∂t∂

−1
x ∂tR dx

= 1
2∂t

∫
(A−1∂−1

x ∂tR)2 dx

−
∫

(A−1∂−1
x ∂tR)[∂t,A−1]∂−1

x ∂tR dx,∫
(A−2∂−1

x ∂tR)∂−1
x ∂xA2∂xR dx = − 1

2∂t

∫
R2 dx.
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Moreover, using A−1 : L2 → H1 and the self-adjointness of A−1 we estimate∣∣∣∣
∫

(A−2∂−1
x ∂tR)2∂−1

x ∂x(c(∂xεαΨ)R) dx

∣∣∣∣
=

∣∣∣∣
∫

(A−1∂−1
x ∂tR)2A−1(c(∂xεαΨ)R) dx

∣∣∣∣
� Cε1+α‖∂−1

x ∂tR‖L2‖R‖L2 ,∣∣∣∣
∫

(A−2∂−1
x ∂tR)ε(3+2α)/2∂−1

x ∂x(c∂x(R2)) dx

∣∣∣∣
=

∣∣∣∣
∫

(A−1∂−1
x ∂tR)ε(3+2α)/2A−1(c∂x(R2)) dx

∣∣∣∣
� Cε(3+2α)/2‖∂−1

x ∂tR‖L2‖R‖2
H1 ,∣∣∣∣

∫
(A−2∂−1

x ∂tR)ε−(3+2α)/2∂−1
x Res(εαΨ) dx

∣∣∣∣
� Cε1+α‖∂−1

x ∂tR‖L2 ,

again using lemmas 4.1–4.3. Finally, we have

[∂t,A−1]∂xR = (∂tA−1)∂xR

such that∫
(A−1∂−1

x ∂tR)[∂t,A−1]∂−1
x ∂tR dx =

∫
(A−1∂−1

x ∂tR)(∂tA−1)∂−1
x ∂tR dx.

We write this as half of∫
((∂tA−1)∂−1

x ∂tR)(A−1∂−1
x ∂tR) dx +

∫
(A−1∂−1

x ∂tR)(∂tA−1)∂−1
x ∂tR dx

=
∫

(∂−1
x ∂tR)((∂tA−1)A−1 + A−1∂tA−1)∂−1

x ∂tR dx

=
∫

(∂−1
x ∂tR)(∂t(A−2))∂−1

x ∂tR dx

=: s1.

From
∂t(A2A−2) = (∂t(A2))A−2 + A2∂t(A−2) = 0

it follows that

∂t(A−2) = −A−2(∂t(A2))A−2 = −A−2(∂t(εαΨ))A−2

such that

s1 =
∫

(A−2∂−1
x ∂tR)(∂t(εαΨ))(A−2∂−1

x ∂tR) dx = O(ε1+α)‖A−2∂−1
x ∂tR‖2

L2 ,

which can be bounded by O(ε1+α)‖A−1∂−1
x ∂tR‖2

L2 . If we define

E(t) = 1
2 (‖∂tR‖2

L2 + ‖A−1∂−1
x ∂tR‖2

L2 + ‖R‖2
L2 + ‖A∂xR‖2

L2),
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we find

d
dt

E � C1ε
1+αE + C2ε

(3+2α)/2E3/2 + C3ε
1+αE1/2

� C1ε
1+αE + C2ε

(3+2α)/2E3/2 + C3ε
1+α + C3ε

1+αE,

with constants C1, C2 and C3 independent of 0 < ε � 1 since all the ‖∂tR‖L2 ,
‖A−1∂−1

x ∂tR‖L2 , and so on, appearing above can be estimated by E1/2. Choosing
ε1/2E1/2 � 1 gives

d
dt

E(t) � (C1 + C2 + C3)ε1+αE + C3ε
1+α,

which can be estimated with Gronwall’s inequality and yields

E(t) � C3T0e(C1+C2+C3)T0 =: M

for all 0 � ε1+αt � T0. Choosing ε0 > 0 so small that ε
1/2
0 M1/2 � 1 gives the

required estimate first for E(t). Since in the α > 0 case for sufficiently small ε > 0
and the α = 0 case for sufficiently small ‖Ψ‖C2

b
the quantity E1/2 is equivalent to

the H2-norm of R, the proof of theorems 5.1–5.3 is complete.

6. Discussion

This section gives some heuristic arguments for why the previous approach works
and demonstrates the approach in a larger framework.

The error equation (2.1) of the spatially homogeneous Boussinesq equation (1.1)
can be written at lowest order in the form of a Hamiltonian system:

∂t

(
R

w

)
=

(
w

∂2
xR − ∂4

xR + εαΨ∂2
xR + O(ε1+α)

)
=

(
0 1

−1 0

) (
∂RH

∂wH

)
,

with the Hamiltonian

H = 1
2

∫
w2 + (∂xR)2 + (∂2

xR)2 + εαΨ(∂xR)2 dx,

where for this presentation we have used ∂xΨ = O(ε). This Hamiltonian is a part of
our energy, and it can be used to estimate parts of the H2-norm. Since Ψ depends
on t, the Hamiltonian is not conserved, but we have

d
dt

H = ∇H · ∂t

(
R

w

)
+ ∂tH = 0 + O(ε1+α) (6.1)

since ∂tΨ = O(ε) due to the long-wave character of the approximation.
The spatially periodic case can be understood in a similar way. The error equation

(5.2) of the spatially homogeneous Boussinesq equation (1.9) can be written at
lowest order in the form of a Hamiltonian system:

∂t

(
R

w

)
=

(
w

∂x(A2(∂xR)) + O(ε1+α)

)
=

(
0 1

−1 0

) (
∂RH

∂wH

)
+ O(ε1+α),
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with the Hamiltonian

H = 1
2

∫
w2 + (A∂xR)2 dx,

where for this presentation we have used ∂xΨ = O(ε). This Hamiltonian is also a
part of our energy, and it can be used to estimate parts of the H2-norm. Since A
depends via Ψ on t the Hamiltonian is not conserved, but again we have (6.1) since
∂tΨ = O(ε) due to the long-wave character of the approximation.

As stated earlier, this paper was originally intended as the next step in general-
izing a method developed in [9] for the justification of the KdV approximation in
situations when the KdV modes are resonant with other long wave modes in [15]
and for the justification of the Whitham approximation, respectively. The normal
form transforms used in the proofs of [9, 15] leave the energy surfaces invariant
and can therefore be avoided by our ‘good’ choice of energy. Hence, the toy prob-
lem considered in [9, 15] can also be handled with the approach presented here if
the nonlinear terms are modified in such a way that a Hamiltonian structure is
observed.
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Appendix A. The inviscid Burgers approximation

This appendix provides more details about the derivation and the justification via
error estimates for the inviscid Burgers approximation. Inserting the ansatz

εαΨ(x, t) = εαA(ε(x − t), ε1+αt)

with α ∈ (0, 2) into the homogeneous Boussinesq equation (1.9) gives the residual

Res(u)(x, t) = −∂2
t u(x, t) + ∂2

xu(x, t) − ∂4
xu(x, t) + ∂2

x(u(x, t)2)

= εα+4∂4
XA + ε3α+2∂2

T A

and A satisfying the inviscid Burgers equation

∂T A = − 1
2∂X(A2)

if the coefficient of ε2α+2 is set to zero. However, the residual is too large for the
analysis in § 2. By adding higher-order terms to the approximation we obtain the
estimates stated in remark 2.3:

‖Res(εαΨ(·, t, ε))‖L2 = O(ε(7+4α)/2), ‖∂−1
x Res(εαΨ(·, t, ε))‖L2 = O(ε(5+4α)/2).

We consider the improved approximation:

εαΨ(x, t) = εαA(ε(x − t), ε1+αt) + εβB(ε(x − t), ε1+αt)
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with β = min{2α, 2}. For the residual we find

Res(ε2Ψ) = −2ε2+α+β∂T ∂XB − ε2+2α+β∂2
T B − ε4+β∂4

XB + 2ε2+α+β∂2
X(AB)

+ ε2+2β∂2
X(B2) + εα+4∂4

XA + ε3α+2∂2
T A.

We choose B satisfying
2∂T B = 2∂X(AB) + g

where

g =

⎧⎪⎪⎨
⎪⎪⎩

∂−1
X ∂2

T A for α ∈ (0, 1),

∂−1
X ∂2

T A + ∂3
XA for α = 1,

∂3
XA for α ∈ (1, 2).

By this choice we obtain

|Res(ε2Ψ)| = O(max{χα�=1(α) min{εα+4, ε3α+2}, ε2+2α+β , ε4+β , ε2+2β}).

Hence, for α = 1 only, where β = 2, this is of order O(ε4+2α), which is the formal
order necessary to obtain the L2 bound. For all other values of α, additional terms
are necessary. For α → 0 and α → 2 the number of such terms goes to infinity and
increasing regularity is necessary. We refrain from discussing the solvability of this
system of amplitude equations. This question is non-trivial since for α = 1 the term
∂−1

X ∂2
T A has to be computed, which is possible as the temporal derivatives can be

expressed as spatial derivatives via the inviscid Burgers equation:

∂2
T A = − 1

2∂T ∂X(A2) = −∂X(A∂T A) = 1
2∂X(A∂X(A2)) = 1

3∂2
X(A3).

The estimate for ∂−1
x Res(εαΨ) can also be obtained using this expression, since

∂2
T B can now also be expressed as spatial derivatives.

Appendix B. Higher regularity results

This appendix explains how the approximation results can be transferred from H2

to Hm with m � 2. Due to the x-dependent coefficients, energy estimates for the
spatial derivatives turn out to be rather complicated. However, by considering time
derivatives the previous ideas and energies still can be used. The spatial derivatives
can then be estimated via the equation for the error, i.e.

LR = ∂2
t R − 2∂x(c∂x(εαΨR)) − R − ε(3+2α)/2∂x(c∂x(R2)) − ε−(3+2α)/2 Res(ε2Ψ),

(B 1)
where

LR = ∂x(a∂xR) − ∂2
x(b∂2

xR) − R.

The operator L is invertible and maps Hs into Hs+4, and Cm([0, T0/ε1+α], Hs) into
Cm([0, T0/ε1+α], Hs+4), respectively. For R ∈ Cm([0, T0/ε1+α], Hs), the right-hand
side of (B 1) is in

Cm−2([0, T0/ε1+α], Hs) ∩ Cm([0, T0/ε1+α], Hs−2).

An application of L−1 to (B 1) shows that

R ∈ Cm−2([0, T0/ε1+α], Hs+4) ∩ Cm([0, T0/ε1+α], Hs+2).

1
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Iterating this process shows that temporal derivatives can be transformed into
spatial derivatives.

It remains to obtain the estimates for the temporal derivatives. In order to do so
we differentiate the equation for the error m times w.r.t. t. We obtain an equation
of the form

∂2
t (∂m

t R) = ∂x(A2(∂x(∂m
t R))) + 2∂x(c(∂xεαΨ)(∂m

t R)) + O(ε1+α) (B 2)

due to the fact that whenever a time derivative falls on A or Ψ another ε is gained.
To bound the solutions of (B 2), we use energy estimates. Therefore, we first multi-
ply (B 2) by ∂m+1

t R and integrate the expression obtained w.r.t. x. Next, as above,
we multiply ‘∂−1

x (B 2)’ by A−2∂−1
x ∂tR and integrate the expression obtained in this

way w.r.t. x.
If we define

Em(t) = 1
2 (‖∂m+1

t R‖2
L2 + ‖A−1∂−1

x ∂m+1
t R‖2

L2 + ‖∂m
t R‖2

L2 + ‖A∂x∂m
t R‖2

L2).

we find

d
dt

Em � C1ε
1+αEm + C2ε

(3+2α)/2E3/2
m + C3ε

1+α,

with constants C1, C2 and C3 independent of 0 < ε � 1 and Em = E + · · · + Em.
Summing all estimates for the Ej for j = 0, . . . , m yields a similar inequality for Em.
Applying Gronwall’s inequality to this inequality gives, for example, the following
result.

Theorem B.1. Fix s ∈ N and let A ∈ C([0, T0], H6+s(R)) be a solution of the KdV
equation (3.7). Then there exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) we
have solutions u ∈ C([0, T0/ε3], H2+s) of the spatially periodic Boussinesq model
(1.9) with

sup
t∈[0,T0/ε3]

‖u(·, t) − ε2A(ε(· − t), ε3t)w̃1(0)(·)‖H2+s � Cε5/2.

Theorems 5.2 and 5.3 can be reformulated similarly.

Appendix C. Bloch transform on the real line

In this appendix we recall some basic properties of the Bloch transform. Our pre-
sentation follows [16]. The Bloch transform T generalizes the Fourier transform F
from spatially homogeneous problems to spatially periodic problems. The Bloch
transform is (formally) defined by

ũ(l, x) = (T u)(l, x) =
∑
j∈Z

eijxû(l + j), (C 1)

where û(ξ) = (Fu)(ξ), ξ ∈ R, is the Fourier transform of u. The inverse of the
Bloch transform is given by

u(x) = (T −1ũ)(x) =
∫ 1/2

−1/2
eilxũ(l, x) dl. (C 2)
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By construction, ũ(l, x) is extended from (l, x) ∈ T1×T2π to (l, x) ∈ R×R according
to the continuation conditions:

ũ(l, x) = ũ(l, x + 2π) and ũ(l, x) = ũ(l + 1, x)eix. (C 3)

The following lemma specifies the well-known property of the Bloch transform act-
ing on Sobolev function spaces.

Lemma C.1. The Bloch transform T is an isomorphism between

Hs(R) and L2(T1, H
s(T2π)),

where L2(T1, H
s(T2π)) is equipped with the norm

‖ũ‖L2(T1,Hs(T2π)) =
( ∫ 1/2

−1/2
‖ũ(l, ·)‖2

Hs(T2π)dl

)1/2

.

Multiplication of two functions u(x) and v(x) in x-space corresponds to some
convolution in Bloch space:

(ũ � ṽ)(l, x) =
∫ 1/2

−1/2
ũ(l − m, x)ṽ(m, x) dm, (C 4)

where the continuation conditions (C 3) have to be used for |l−m| > 1
2 . If χ : R → R

is 2π periodic, then
T (χu)(l, x) = χ(x)(T u)(l, x). (C 5)

The relations (C 4) and (C 5) are well known and can be proved with the defini-
tion (C 1).
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