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Instability of secondary vortices generated by a
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In this work, we investigate the approach of a descending vortex pair to a horizontal
ground plane. As in previous studies, the primary vortices exhibit a ‘rebound’, due to
the separation of secondary opposite-sign vortices underneath each primary vortex. On
each side of the flow, the weaker secondary vortex can become three-dimensionally
unstable, as it advects around the stronger primary vortex. It has been suggested
in several recent numerical simulations that elliptic instability is the origin of such
waviness in the secondary vortices. In the present research, we employ a technique
whereby the primary vortices are visualized separately from the secondary vortices; in
fact, we are able to mark the secondary vortex separation, often leaving the primary
vortices invisible. We find that the vortices are bent as a whole in a Crow-type
‘displacement’ mode, and, by keeping the primary vortices invisible, we are able to
see both sides of the flow simultaneously, showing that the instability perturbations
on the secondary vortices are antisymmetric. Triggered by previous research on four-
vortex aircraft wake flows, we analyse one half of the flow as an unequal-strength
counter-rotating pair, noting that it is essential to take into account the angular velocity
of the weak vortex around the stronger primary vortex in the analysis. In contrast
with previous results for the vortex–ground interaction, we find that the measured
secondary vortex wavelength corresponds well with the displacement bending mode,
similar to the Crow-type instability. We have analysed the elliptic instability modes, by
employing the approximate dispersion relation of Le Dizés & Laporte (J. Fluid Mech.,
vol. 471, 2002, p. 169) in our problem, finding that the experimental wavelength is
distinctly longer than predicted for the higher-order elliptic modes. Finally, we observe
that the secondary vortices deform into a distinct waviness along their lengths, and this
places two rows of highly stretched vertical segments of the vortices in between the
horizontal primary vortices. The two rows of alternating-sign vortices translate towards
each other and ultimately merge into a single vortex row. A simple point vortex row
model is able to predict trajectories of such vortex rows, and the net result of the
model’s ‘orbital’ or ‘passing’ modes is to bring like-sign vortices, from each secondary
vortex row, close to each other, such that merging may ensue in the experiments.

Key words: vortex dynamics, vortex instability

† Present address: Department of Mathematics, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA 02139, USA. Email address for correspondence:
dmh@math.mit.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

10
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:dmh@math.mit.edu
https://doi.org/10.1017/jfm.2012.108


Instability of secondary vortices generated by a vortex pair in ground effect 149

1. Introduction
The study of vortex–ground interactions has practical applications, as well as

relevance to turbulence. For instance, coherent vortices embedded in the boundary
layer are critical ingredients in the self-sustaining nature of turbulent flow (see the
reviews of Cantwell 1981; Robinson 1991; Panton 2001). Panton (2001) describes
the process by which a vortex can roll up boundary layer vorticity generated at
the wall and eject an offspring or secondary vortex. Understanding the dynamics
of elementary vortex–wall interactions, which is the interest of the present study,
can provide insight into mechanisms by which large-scale two-dimensional vortical
structures can lead to multi-scaled highly three-dimensional flows. A well-known
practical application concerns wing tip vortices generated near a ground plane, which
is part of a comprehensive review by Spalart (1998). Such a pair of counter-rotating
wake vortices created by an aircraft in flight can impose a significant hazard to trailing
aircraft in the form of a sustained rolling moment, and provides a limit to maximum
traffic that can be handled at airports. Further applications for vortex–wall interactions
include the vortex structures generated by actuation of manoeuvring surfaces mounted
on underwater bodies, or indeed the use of vortex generators that serve to generate
streamwise vortices to manipulate turbulent boundary layers on a wing surface – see
Velte, Hansen & Okluov (2009) and the review by Lin (2002).

The approach of a two-dimensional counter-rotating inviscid point vortex pair to a
wall was investigated by Lamb (1932), who showed that the vortices move apart along
hyperbolic trajectories. In actual measurements of flight vortex data presented by Dee
& Nicholas (1968), the vortices appeared to ‘rebound’ as they approached the surface.
This curious effect was successfully explained by Harvey & Perry (1971) and later
in simulations by Peace & Riley (1983); as the vortex pair approaches the wall, a
boundary layer is formed at the wall beneath each vortex of opposite-signed vorticity,
which can separate to form a discrete secondary vortex. This induces an upward
velocity on the original primary vortex, causing the apparent ‘rebound’. Orlandi (1990)
identified the possibility of multiple rebounds, each associated with an additional
detachment of vorticity at the wall. A number of other two-dimensional numerical
simulations have been conducted in order to explore the effects of ambient turbulence,
cross-winds and stratification, many of which are discussed in the comprehensive
review paper by Spalart (1998). The more recent simulations by Clercx & Bruneau
(2006) and Kramer, Clercx & van Heijst (2007) have demonstrated that the evolution
of small-scale vorticity at the wall can have a profound impact on the resulting
dynamics, suggesting that a high resolution is needed for convergence.

As an illustration of the secondary vorticity generation from an essentially two-
dimensional flow, we include in figure 1 a visualization of the interaction between
an approaching vortex pair with a horizontal ground plane, using laser-induced
fluorescence (LIF). We employ a technique where we mark primary and secondary
vorticity with different dye sources (explained in § 2). Secondary vorticity has already
separated from the wall into discrete vortices, causing the primary vortices to rebound
away from the wall, as discussed above.

The study of the three-dimensional evolution of a vortex pair out of ground
effect has been a topic of considerable interest due to its aerodynamic applications,
in particular aircraft wake interactions. The wake vortices left behind aircraft can
sometimes be observed through the condensation of water in their low-pressure cores,
forming ‘contrails’, which can develop a symmetric waviness, with a wavelength
several times that of the initial vortex spacing. Ultimately, through vortex reconnection,
the flow can evolve into a periodic configuration of vortex rings. These rings can be
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150 D. M. Harris and C. H. K. Williamson

FIGURE 1. Counter-rotating vortex pair in ground effect. The primary vortices (coloured red)
descend downwards under their own self-induced velocity and create a boundary layer at the
wall, which can ultimately separate and form secondary vortices (green) of opposite rotation.
The lower half of the image is a mirror reflection of the vortices in the polished ground plane.
This particular image has appeared in the Gallery of Fluid Motion, American Physical Society
(Harris, Miller & Williamson 2010).

remarkably similar in the laboratory (Leweke & Williamson 2011) to those observed
in the sky at significantly higher Reynolds numbers (Crow 1970). In fact, Crow
was the first to analyse the instability of a vortex pair, showing how a sinusoidal
perturbation of the vortex core (moving as a whole) may grow exponentially due to
the presence of the strain rate field of the neighbouring vortex. Widnall, Bliss & Tsai
(1974) found that shorter wavelengths are also unstable if one considers perturbations
with a more complex internal structure. They suggested that the vanishing of the
rotation rate of a perturbation on the vortex core allowed the disturbance to be
amplified by an externally imposed strain field. The self-induced rotation rates were
originally predicted for a Rankine vortex by Kelvin (1880).

Widnall’s theory corresponds well with the analysis of Moore & Saffman (1975)
and Tsai & Widnall (1976), who considered a single vortex in an externally imposed
strain field. Since that time, Bayly (1986), Pierrehumbert (1986) and Waleffe (1990)
demonstrated that two-dimensional flows with elliptical streamlines are unstable to
three-dimensional perturbations, and this is often referred to as the ‘elliptic instability’.
Short-wavelength instability in a vortex pair was observed experimentally by Leweke
& Williamson (1998), who also demonstrated that the growth rates associated with
the elliptic instability, and those higher radial modes described by Widnall et al.
(1974), are identical in the low-strain limit, and agree surprisingly well with the modes
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observed experimentally. They discovered that the flow evolves with a particular anti-
phase relationship between the instabilities in the two vortices, and defined this as a
‘cooperative’ elliptic instability.

In order to make accurate comparisons with experiment, a continuous vorticity
distribution needs to be used. Widnall, Bliss & Zalay (1971) demonstrated that the
long-wave instability of a Lamb–Oseen vortex could be described by the instability
of an ‘equivalent’ Rankine vortex. This equivalence for the long-wave instability
was most recently verified experimentally by Billant, Brancher & Chomaz (1999).
Leweke & Williamson (2011) considered the instability of a Lamb–Chaplygin vortex
pair, finding good comparison with the experimental measurements of Leweke &
Williamson (1998). The short-wave instabilities on a Lamb–Oseen vortex were also
analysed by Eloy & Le Dizés (1999), and later extended to vortices of unequal
strength and core size (Le Dizés & Laporte 2002), whose results are relevant to the
current study.

A visual overview of the well-known instabilities for vortex pairs is shown in
figure 2. In isolation from the ground, we show in figure 2(a) the long-wavelength
Crow instability (of wavelength several times the initial vortex spacing), and in
figure 2(b) the short-wavelength cooperative elliptic instability (of wavelength of the
order of the vortex core size). These images are not shown to the same scale. The
Crow instability clearly shows the bending displacement mode, whereby the vortex
tube is bent as a whole, in this case in a symmetric fashion. The vortex tubes
on each side of the flow reconnect to form a periodic array of vortex rings. The
elliptic instability involves more detailed and complex internal deformations within
the vortex tubes, and shows an antisymmetric most unstable mode. On the other
hand, the secondary vortices generated by vortex–ground interactions are most unstable
to an antisymmetric mode, which looks from visualization in figure 2(c) to be of
the displacement type, where the vortex tubes are bent as a whole, at least in a
low-Reynolds-number regime. It should be mentioned that, in isolation from a ground
plane, a vortex pair can simultaneously exhibit the (short-wave) elliptic instability and
the (long-wave) Crow instability, if the Reynolds number is sufficiently large. In the
present case, we suspect that the secondary vortices created by ground interaction
undergo a displacement Crow-type instability, and at sufficiently high Reynolds
numbers may also exhibit an elliptic instability.

The study of the three-dimensional interaction of a vortex with a wall has also been
investigated. Luton & Ragab (1997) find that the secondary vortex is unstable in the
presence of the primary vortex (at ReΓ = 2196), and it becomes wrapped around the
primary vortex, forming periodic loops of vorticity. They state that the most unstable
wavelength compares very well with the theory for the second radial mode of Widnall
et al. (1974), in essence proposing that the instability of the secondary vortex is of
the elliptic type, although no further evidence supports this conclusion. In deducing
this result, the unequal strength of the primary and secondary vortices is not taken
into account. We shall show that, in this flow, it is critical to include the additional
effects of orbital rotation of the pair, which results from the unequal strength of the
vortices. Additionally, Luton & Ragab (1997) scale the wavelength of the secondary
vortex instability on the core size of the primary vortex, whereas we suggest that the
more relevant scaling should be with the core size of the secondary vortex.

In the computational work of Moet (2003), Georges et al. (2006) and Duponcheel
et al. (2009) at higher Reynolds numbers than Luton & Ragab (1997) (Re of the
order of 103–105), there is strong evidence that the structure of the instability is indeed
of elliptic instability type (second radial mode). Periodic loops of vorticity are also
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152 D. M. Harris and C. H. K. Williamson

(b)

(c)

(a)

FIGURE 2. Comparisons of the principal instabilities associated with a counter-rotating
vortex pair, as visualized in experiment. (a) Long-wave Crow instability. (b) Short-wave
elliptic instability (Leweke & Williamson 1998). (c) Instability of the secondary vortices
generated in ground effect; only the secondary vortices are shown here, because the primary
vortices are purposely invisible, as they are not marked with dye. (Images are not to same
scale.)

observed in the work of Duponcheel et al. (2009), although they state that the loops in
their simulation originate from the outer layers of the secondary vortex, rather than the
distortion of the entire secondary vortex, as we observe in the present study.

To summarize the above, in all papers that mention the source of secondary vortex
instability, the origin of the instability is recognized to be of an elliptic type. However,
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at least in the low-Reynolds-number regime of the present study, we shall present
experimental and analytical evidence to show that it is of the displacement mode or
Crow-type instability.

At this point, we introduce a whole body of research, which actually has direct
relevance, but which as yet has not been associated with this problem. The flow
in question has vortex pairs on each side of the wake (either co-rotating pairs, or
counter-rotating pairs). Crouch (1997), and later Fabre, Jacquin & Loof (2002), have
analysed the dynamics of such four-vortex flows, where a central motivation was
to study whether such a vortex configuration from aircraft would break up earlier
than a two-vortex wake. In the case of counter-rotating vortex pairs on either side
of the wake, Ortega, Bristol & Savaş (2003) found experimentally that the weaker
vortices become highly deformed, with an antisymmetric phase relationship, and that
the wavelength is of the order of the initial primary vortex spacing. The weaker
vortex can ultimately pinch off into vortex rings, which progress towards the stronger
vortex on the opposite side of the flow. Related observations are made in the present
experiments, as will be discussed later.

In subsequent analysis by Bristol, Ortega & Savaş (2004), it is shown that the
instability of the four-vortex system is well represented by considering simply the
isolated dynamics of one of the vortex pairs. They take account of the effect of
the orbital rotation resulting from the unequal strength of the pair, which can have
a significant impact on the unstable wavelength and growth of the instability. These
studies are primarily concerned with trailing vortices generated from wing flaps, and
also from the wing tips. However, the case comprising counter-rotating pairs on each
side of the wake is remarkably similar to the problem at hand.

In the present study, we investigate the approach of a descending vortex pair to a
horizontal ground plane in experiment, and rationalize our observations by analysis of
the flow. Following a description of the experimental details in § 2, we follow with a
presentation of the two-dimensional vortex dynamics in § 3, exhibiting the well-known
phenomenon of vortex ‘rebound’. In § 4, we focus on the three-dimensional instability
of the flow. We find that the secondary vortices are bent as a whole in a ‘displacement’
mode, and, by keeping the primary vortices ‘invisible’ (selectively visualizing the
secondaries only), we are able to see both sides of the flow simultaneously, showing
that the instability perturbations on the secondary vortices are antisymmetric. In § 5,
we analyse the three-dimensional instability, noting the similarity of our flow field
with the recent studies on four-vortex aircraft wake flows. In contrast with previous
(numerical) results for the vortex–ground interaction, which all indicate an elliptic
instability, we find that the measured secondary vortex wavelength corresponds well
with the displacement bending mode. We also analyse the elliptic instability modes, by
employing the approximate dispersion relation of Le Dizés & Laporte (2002) in our
problem, finding that the experimental wavelength is distinctly longer than predicted
for the higher-order elliptic modes. However, elliptic instability is likely to occur at
higher Reynolds numbers, as suggested from recent numerical studies.

Finally, in § 6, we observe that the secondary vortices deform into a distinct
waviness along their lengths, and this places two rows of highly stretched vertical
segments of the vortices in between the horizontal primary vortices. The two rows
of alternating-sign vortices translate towards each other and ultimately merge into a
single vortex row. We model these dynamics by a system of point vortices. The overall
conclusions follow in § 7.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

10
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.108


154 D. M. Harris and C. H. K. Williamson

(d
eg

.)

t (s)

H

S

B

4

6

8

10

12

14

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

(b)(a)

FIGURE 3. (a) Schematic of the vortex pair generator; S = 5.2 cm, B = 10.3 cm, H = 6 cm.
(b) Angular motion of plate as a function of time, based on the motion prescribed by Leweke
& Williamson (2011).

2. Experimental details
The vortex dynamics and instabilities of the present study are investigated with

the vortex generator tank at Cornell University, which was originally constructed by
Thomas Leweke in 1995, and is described in previous works (Leweke & Williamson
1998, 2011). The flow is investigated in a glass-walled water tank of dimensions
180 cm × 45 cm × 60 cm. The apparatus consists of two anodized aluminium plates
170 cm in length, hinged at a common horizontal base, a cross-section of which is
shown in figure 3(a). The flaps are closed simultaneously using a computer-controlled
stepper motor. As the flaps are closed, the displaced fluid between the plates is ejected
vertically downwards through the gap, forming the primary vortex pair, as shown in
figure 3(a). The motion history of the plates is presented in figure 3(b) and was
designed by Leweke & Williamson (2011) to consistently produce uniform laminar
vortex pairs. The plates were also designed so that a very small-amplitude sinusoidal
perturbation could be introduced along the plate edge with an amplitude of 0.5 mm.
However, the uniform (straight) plate edges were used in general for work presented,
except where explicitly noted.

For the present study, the tank was fitted with a submerged ground plane of clear
acrylic, which spans nearly the entire length of the tank. A rendering of the facility is
presented in figure 4. Fogg (2001) determined a minimum height at which the vortex
generation process is unaffected by the presence of the ground plane. We exceed this
recommended height for the present study and we ensure that instabilities do not
develop on the primary vortex pair prior to its interaction with the ground.

In order to visualize the primary vortex pair, we paint the flaps with a fluorescent
dye prior to lowering the plate apparatus into the water tank. The flow is then
illuminated with a 5 W argon laser and the images recorded on a high-resolution
digital single-lens reflex (DSLR) camera. To distinctly mark the secondary vortices,
fluorescent dye is pooled on the ground plane, prior to each experiment. This
technique allows for the visualization of the secondary vortices independently of the
primary vortices as evidenced in figure 5.

Quantitative flow measurements were made by using particle image velocimetry
(PIV) using the methods described by Leweke & Williamson (1998, 2011). The fluid
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Water tank

Ground plane

Flaps

FIGURE 4. Schematic of the vortex generation facility. The original version of this facility
was built by Thomas Leweke in 1995.

is seeded with micro-particles prior to the experiment (with a mean diameter of 75 µm
and density of 1.03 g cm−3), and we illuminate the plane of interest with a thin
(3 mm) sheet of laser light. During the experiment a sequence of greyscale images
are captured using a charge-coupled device (CCD) camera. Velocity fields are then
calculated by processing successive images (1/30 s separation) using a multiple-step
cross-correlation method incorporating window shifting, which is described extensively
by Leweke & Williamson (1998). Typical image size for this study was 800 × 400
pixels (17.2 cm × 8.6 cm) with typical final velocity fields composed of 80 × 40
velocity vectors (with vectors spaced approximately 2 mm apart). Note that we present
contour plots of vorticity throughout the paper only to demonstrate the qualitative
evolution of the vorticity distribution, rather than any precise numerical values.

The PIV measurements allowed for the determination of the initial conditions of
the flow, and the subsequent dynamics. As the vortex pair descends away from the
generation mechanism, the vertical (azimuthal) velocity is measured along a horizontal
line passing through the centres of the vortices. The measured velocity profile is well
described by the superposition of two Lamb–Oseen vortices (Gaussian distribution of
vorticity), each with the azimuthal velocity profile

vφ(r)= Γ

2πr

[
1− exp

(
− r2

a2

)]
, (2.1)

where Γ is the circulation of the vortex, r is the distance from the centre, and
a is a distance characterizing the core size of the vortex. A least-squares best-fit
method, following Leweke & Williamson (1998), is performed to determine the
initial circulation (Γo) and core size (ao), as well as the initial vortex spacing (bo).
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(b)

(c)

(a)

FIGURE 5. Demonstration of the selective visualization of primary or secondary vortices. (a)
Visualization of primary vorticity generated at flap edges during vortex generation process.
(b,c) Visualization of secondary vorticity (separated from the wall boundary layer), while
keeping the primary vortices invisible. A small amount of residual dye remained on the left
flap, resulting in a faint left primary vortex.

An example of such a fit is shown in figure 6(a). Typical measurements for this
investigation are bo = 1.7 cm and ao/b= 0.35. The associated Reynolds number of the
flow is defined as Re = Γo/ν, where ν is the kinematic viscosity of the water. The
Reynolds number can be varied by changing the overall duration of the flap motion
(up to Re≈ 3000).

A non-dimensional time t∗ for the evolution of the primary vortices is defined by

t∗ = t
Γo

2πb2
o

. (2.2)

We define the origin of the time (t∗ = 0) to be when the height of the descending
vortex pair reaches 3.5 cm or approximately 2bo above the ground plane. The vortices
are at this height after the generation process is complete, but before the ground
interaction significantly affects their trajectories.

We define d as the measurement of the distance between the primary and secondary
vortices, a1 and a2 to represent their respective core sizes, and Γ1 and Γ2 to represent
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FIGURE 6. (a) Least-squares fit of azimuthal velocities of two superposed Lamb–Oseen
vortices (——), profile of independent Lamb–Oseen vortices (left, −−; right, − · −) with
sample vertical velocity data at a line passing through the vortex centres (◦). (b) Schematic
of observed flow and definition of parameters. Solid circles represent the primary vortices,
whereas the dashed circles represent the secondary vortices.

their circulations, as shown in figure 6(b). Defining a core size of the evolving
secondary vortex is not straightforward, however, so we use the estimate suggested
by Duponcheel et al. (2009) in their numerical study of the same flow. This estimate
takes circular contours of integration centred on the secondary vortex and determines
the azimuthal velocity of an axisymmetric vortex with an equivalent circulation. The
radius at which this velocity is a maximum is taken to be an estimate of the core size
of the secondary vortex:

vφ,max = vφ(rc)=max
r

(
Γ (r)

2πr

)
. (2.3)

Applying the above to an axisymmetric Lamb–Oseen vortex equation (2.1) yields

rc = 1.12a. (2.4)

For the case of the secondary vortex, we use this equation to relate the measured
radius of maximum velocity rc to the parameter a where needed.

Additionally, we have characterized the error of the parameter measurements by
performing five independent experiments with identical flap motion and assessing
the variation in the measured quantities derived from the PIV data. This test was
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conducted at various Reynolds numbers spanning our range of interest, and the
results were consistent between tests. This method yielded typical uncertainties for
the initial conditions of the flow calculated from the Lamb–Oseen fit as 1Γo/Γo ≈ 4 %,
1bo/bo ≈ 5 % and 1ao/ao ≈ 5 %. When wavy perturbations (of amplitude 0.5 mm)
to the flap edges are introduced (only when explicitly noted), the measured initial
parameters of the flow fall within the uncertainties reported above, indicating that
the vortex generation process is largely unaffected by the introduction of the very
small-amplitude perturbations.

The calculation of vorticity fields is subject to error in analysis; in general, the
peak vorticity values are reduced as the level of smoothing is increased. In order
to calculate the circulation values Γ1, Γs and Γ2, a line integral is calculated using
an interpolated velocity field over a specified integration contour. The circulation
value was only weakly sensitive to the level of smoothing, as vorticity magnitude is
not used in the computation. Typical uncertainties in circulations are 1Γ1/Γ1 ≈ 4 %,
1Γs/Γs ≈ 10 % and 1Γ2/Γ2 ≈ 10 %.

The reported secondary vortex core size (rc) and primary to secondary vortex
spacing (d) is taken at the time when the secondary vortex circulation (Γ2) reaches
a maximum, with a typical uncertainty of 1rc/rc ≈ 10 % and 1d/d ≈ 10 %. Instability
wavelengths of the secondary vortex (λ) were measured directly from the digital
images enlarged in image processing software. Variation in the measured wavelength
(within a single experiment and over many experiments) was 1λ/λ ≈ 20 %, which
reflects a somewhat broad spectrum of unstable wavelengths.

3. Two-dimensional vortex–wall interaction
In this section, we shall characterize the dynamics of the two-dimensional vorticity,

as the primary vortices interact with the ground plane. It is essential to understand
the two-dimensional flow prior to studying the three-dimensional instabilities of the
vortices.

The evolution of the flow at a low Reynolds number (Re = 1260) is shown in
figure 7, using LIF in a cross-section cutting through the axes of the vortices, as well
as using digital PIV measurements to determine vorticity at the times corresponding to
the flow visualization images. The primary vortex pair translates vertically downwards
from the flaps (see t∗ = 1.0), and a boundary layer starts to develop along the ground
plane under each vortex. The layer of opposite vorticity is subjected to an adverse
pressure gradient, separates from the wall (t∗ = 2.7) and begins to induce an upward
velocity on the primary vortex pair, leading to the well-known ‘rebound’ of the
primary vortices (t∗ = 4.0). A discrete secondary vortex sheds, and is advected around
the stronger primary vortex (t∗ = 5.0). As the secondary vortices reach the region
in between the primary pair, they begin to lose their once coherent structure in the
cross-sectional view (t∗ = 6.4), and the flow becomes highly three-dimensional. An
additional weaker secondary vortex is formed at this time, and the rebound process
will repeat itself, although in a weaker fashion, as will be seen below.

The trajectory of the primary vortex pair is measured from the flow visualization,
and a typical trajectory is displayed in figure 8, showing clearly the vortex rebound
phenomenon, as originally explained by Harvey & Perry (1971). The solid lines are
the hyperbolic trajectories of a pair of point vortices, originally deduced by Lamb
(1932). The secondary vortices orbit the primary vortices, as a result of their unequal
strength, and the primary vortices follow a spiral trajectory. We observe a second
rebound, which is associated with the generation of an additional secondary vortex,
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(b)(a) 1.0
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4.0

5.0

6.4

–2–3 –1 2 310 –2–3 –1 2 310

FIGURE 7. Evolution of a counter-rotating vortex pair in ground effect (Re = 1260) from
(a) flow visualization and (b) vorticity contours from PIV data. Normalized times (t∗)
during experiment of adjacent images are the same. The PIV vorticity contour plots in
panel (b) are only meant to demonstrate the qualitative evolution of the vorticity distribution,
rather than any precise numerical values. The vorticity contour levels are redefined at each
time step.

as mentioned earlier. During the early stages of the experiment, when the flow
is still effectively two-dimensional, the trajectories are highly reproducible in each
experiment. Once three-dimensional effects dominate the flow, the trajectories can
become slightly asymmetric, with more variability, as might be expected, although the
general qualitative features persist.

The generation of a secondary vortex and the possibility of multiple rebounds are
consistent with the results of the numerical simulations of Orlandi (1990) at Reynolds
numbers of the order of 103. He noted that a well-resolved simulation of this flow
requires a high spatial resolution to achieve grid independence. More recently, careful
numerical investigations over a range of Reynolds numbers (O(102–104)) have been
conducted by Clercx & Bruneau (2006) and Kramer et al. (2007) in which very
similar phenomena are observed. They also observe multiple rebounds of the primary
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Actual vortex
trajectory

Ideal vortex
trajectory

0

0.5
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–2.0 –1.5 –1.0 – 0.5 0 0.5 1.0 1.5 2.0

FIGURE 8. Primary vortex trajectories (◦) as measured in experiment compared with
hyperbolic trajectory (—) of a point vortex pair approaching a horizontal boundary, as
deduced by Lamb (1932).

vortices, but the amplitude of the later rebounds is greater than observed in the
present experiments. This is probably due to additional three-dimensional effects (in
the experiments), which can lead to an enhanced dissipation of the flow. They found
that small-scale vorticity generated at the wall can dramatically affect the resulting
dynamics, thus requiring a high resolution for convergence. They conclude that this
seemingly simple two-dimensional flow is actually extremely difficult to compute, and
simulations must be done with care. It is additionally proposed that this particular
flow be used for a benchmarking tool to evaluate future numerical algorithms. This
problem was also simulated by Türk, Coors & Jacob (1999) up to a much higher
Reynolds number (O(102–106)), with some similar results, although it is probable that
some critical small-scale structures would not be resolved owing to the high Reynolds
numbers.

To further characterize the two-dimensional flow field development, we show in
figure 11(a) the time evolution of the height of the primary vortex above the ground
plane. Correspondingly, in figure 11(b) we find the evolution of the primary vortex
strength (Γ1), the entire secondary vorticity including the wall vorticity (Γs) and the
discrete secondary vortex as it evolves in time (Γ2) for a sample experiment. We have
included a few typical error bars (based on the error discussion in § 2). The shedding
of a discrete secondary vortex represents the vorticity, which has a distinct peak of
its own away from the wall vorticity. (A measure of Γ2 is given as follows. We find
the locus of points marking the maximum secondary vorticity at each height above the
wall. Along that locus, as a discrete vortex forms, there will be a minimum, and above
this minimum we integrate the secondary vorticity to determine the vortex strength,
Γ2.) An essential point to note here is that the primary rebound starts around the time
that the discrete secondary vortex (Γ2) sheds from the ground vorticity (Γs) at the time
(t∗ ≈ 2). At the same point, the circulation of the primary vortex starts to decay as a
result of mixing and diffusion.

As the Reynolds number is increased in figure 10 to Re = 2150, the secondary
vortex is shed more rapidly from the wall vorticity. The increased evidence of non-
symmetric vorticity in these images suggests that three-dimensionality develops earlier
in the orbit of the secondary vortex. In particular, in the visualization of figure 10, at
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Actual vortex motion

Ideal vortex motion

0

0.5

1.0

1.5

2.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 60

(b)

(a)

N
or

m
al

iz
ed

 c
ir

cu
la

tio
n

FIGURE 9. (a) Mean height of primary vortex pair above wall versus time. Rebound occurs
at t∗ ≈ 2. (b) Time evolution of mean primary vortex circulation (Γ1), total secondary
circulation (Γs) and circulation of shed secondary vortex (Γ2). Circulations are normalized
by initial primary vortex strength, Γo. A few typical error bars are shown.

time t∗ = 4.8, we can see that the left-side secondary vortex is separating from the
primary vortex, while the right-side secondary vortex is moving closer to the primary
vortex. Apparently, there is a tendency for the secondary vortex instabilities to be
out of phase on each side of the flow field, even at this stage. This kind of phase
relationship is a common feature of the secondary vortex instability, as will be seen
later in the paper, from different views of the flow.

Finally, we show the variation of the core size and the strength of the secondary
vortex versus Reynolds number in figure 11. We have included a few typical error
bars (based on the error discussion in § 2). The core size gradually decreases as the
Reynolds number increases, which might be expected since diffusion becomes less
significant as the secondary vortex is advected around the primary vortex. The trend
suggested by our experimental data agrees favourably with the simulation results at
higher Re of Duponcheel et al. (2009), and is presented in figure 11(a). To examine
the secondary vortex strength, we include data from the two-dimensional numerical
simulations of Gupta (2003), as well as data from the simulations of Kramer et al.
(2007) to yield a plot of data in figure 11(b). It is important to note that the definition
of Reynolds number given in Kramer et al. (2007) differs from that of the current
work, and thus an equivalent Reynolds number must be estimated. The complete data
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(b)(a)
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FIGURE 10. Evolution of a counter-rotating vortex pair in ground effect (Re = 2150) from
(a) flow visualization and (b) vorticity contours from PIV data. Note the earlier loss of
symmetry and more discrete secondary vortex as compared to the lower Re experiment shown
in figure 7. The vorticity contour levels in panel (b) are redefined at each time step; the
measurements are only intended to demonstrate the qualitative evolution of vorticity.

are well fitted by the linear relation

Γ2

ν
= c(Re− Rec), (3.1)

where c= 0.41 and Rec = 430.
Interestingly, the presence of an offset along the Re axis suggests a critical Reynolds

number, Rec, below which one might expect that a discrete secondary vortex is not
formed. A second interesting feature about the form of equation (3.1) is that it
suggests that the strength ratio of Γ2/Γo asymptotes to a value c in the limit of high
Re, which becomes more apparent in the presentation of the data in figure 11(c). We
do not expect this to hold for all Re, as turbulent effects will become increasingly
important for high Reynolds numbers.

4. Three-dimensional instability of the secondary vortices
In this section we characterize the three-dimensional development of the flow,

which manifests itself even in the two-dimensional cross-sectional images in figure 7.
To explore the precise nature of the three-dimensionality, we use the same dye
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FIGURE 11. (a) Secondary vortex core size versus Re: •, present experiments; �,
Duponcheel et al. (2009). (b) Secondary vortex strength versus Re: •, present experiments;
◦, Gupta (2003); 4, Kramer et al. (2007); with fitted curve (—) of form specified by (3.1).
(c) Ratio of secondary vortex strength to initial primary vortex strength versus Re: the dashed
line represents the asymptotic limit of strength ratio suggested by best fitting using the form
of (3.1).

visualization techniques as presented in § 2, but in this case we illuminate the entire
flow as well as cross-sections. In this and all further sections, we consider the case
where Re = 1260. We find that the secondary vortex develops a waviness as it orbits
around the stronger primary vortex, as observed by previous simulations. In order
to appreciate what we shall study in the visualizations, we show a qualitative three-
dimensional rendering of the observed flow in figure 12(a). The secondary vortices
become strongly deformed in a sinuous fashion between the primary vortices, after
they have been advected around the primary vortices. We have also illustrated the
anti-phase relationship between the sinuous perturbation on each of the secondary
vortices, which will become clear in the flow visualizations below.

We first visualize the flow in figure 13(a) from the same perspective as in the two-
dimensional investigation, and we find that the secondary vortex structure has been
reoriented such that the principal vorticity lies along the circumference of the primary
vortex. To gain insight into the nature of the three-dimensionality, we visualize the
flow from above in figure 13(b) and from the side in figure 13(c). It is now clear that
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x

y
z

(b)

(a)

FIGURE 12. Colour rendering of the qualitative features of the three-dimensional flow.
(a) Secondary vortices are shown as highly deformed thin tubes in between primary vortices,
which are represented by undeformed thick tubes. The yellow plane represents the ground.
(b) Secondary vortices only, with sheet of laser light shown as the green plane parallel to
ground.

periodic structures have emerged from the once straight secondary vortex. Figure 13(c)
shows the flow during the incipient stages of the instability, as the secondary vortex is
roughly above the primary vortex.

Using the dye visualization technique as described in § 2, we selectively mark
only the secondary vortices with dye, rather than the primaries. Images taken from
three different experiments are presented in figure 14. The secondary vortices are
between the primary vortices (which are invisible), demonstrating the value in the
ability to observe the secondary vortices exclusively. We find an antisymmetric
phase relationship in the instability of the secondary vortices in all experiments,
suggesting the action of a cooperative instability. As most evident in figure 14(a),
we observe a range of unstable wavelengths along the secondary vortex, in all of
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(b)

(c)

(a)

FIGURE 13. Three orthogonal views of the fully illuminated three-dimensional flow.
(a) Axial view, same perspective as images in figure 7. (b) Top view as secondary vortices
pass between primary vortices. (c) Side view of incipient instability of secondary vortices as
they pass just above the primary vortices. Note the distinct antisymmetric phase relationship
of the instability in panels (b) and (c).

the experiments. Remarkably, the antisymmetric phase relationship of the secondary
vortices uniformly persists despite this variance. The variation in wavelength, and the
location of the maxima in the perturbations along the secondary vortices, was random
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(c)

(a)

(b)

FIGURE 14. Visualization of secondary vortices only, with the primary vortices remaining
invisible. The images are each from different experiments with the same initial conditions.
(a) Demonstration that there is some range of unstable numbers, indicating that the instability
mechanism has a range of wavelength selection. The antisymmetric phase relationship
persists despite the fluctuation in wavelength. (b,c) Additional visualizations focusing on
the highly deformed secondary vortices, again demonstrating the observed phase relationship.

between experiments, suggesting that the instability responds to ambient background
perturbations in the fluid rather than some feature of the experimental apparatus.

To visualize the instability of the secondary vortices with further clarity, we
introduce very small-amplitude sinusoidal perturbations to the edges of the flaps.
This method is similar to that used by Leweke & Williamson (2011) for their
investigation of long-wave instabilities of an isolated vortex pair. The series of images
in figure 15 display the evolution of the instability using this method. The structure
and development of the instability remain nearly identical to those of the unperturbed
case, but the period is more regular. What is perhaps most remarkable about these
experiments is that the antisymmetric phase relationship was observed regardless of
the relative phase of the initial perturbations. This suggests that the specific instability
mechanism observed in the present flow is quite robust. The initial phase of the flap
perturbations for the specific experiment shown in figure 15 differed by 90◦, and thus
were neither symmetric nor antisymmetric.

Although not apparent in the present images, the vertical segments of vorticity on
either half of the flow field, between the primary vortices, move in towards each other,
away from their parent primary vortex. Simultaneously, the lower horizontal segments,
which connect each vertical tube, become tightly wound around the primary vortex.

These observations are similar to recent work with a four-vortex wing wake, in
isolation of any ground plane (Ortega et al. 2003). They observe that the weaker
vortex (which is generated from a wing flap in their case) becomes highly deformed
in a similar antisymmetric phase relationship, between the wing tip vortices. The
flap vortices (equivalent to our secondary vortices here) eventually break apart into
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(b)

(c)

(a)

FIGURE 15. In these experiments, we have introduced a very small-amplitude (0.5 mm)
sinusoidal perturbation at the flap tips. (a) The secondary vortices are beginning their descent
between the primary vortices; the instability has already begun to develop. (b) The secondary
vortices are advected further by the primary vortices. (c) Secondary vortices have evolved
into nearly vertical vortex segments connected by short horizontal vortex segments. In the
experiment shown, the relative phase of the initial perturbations is neither symmetric nor
antisymmetric, but rather differ by 90◦.

two distinct rows of periodic vortex rings, which move in towards each other. In
calculations of the stability of the four-vortex system, Fabre et al. (2002) found that
the most unstable mode, for cases where the flap vortex was much weaker than the
tip vortex, has an antisymmetric phase relationship with a short wavelength, which
primarily develops on the weaker vortex. Our observed flow is also quite similar to
the instability of secondary vortices identified in the simulation results of Luton &
Ragab (1997). However, their simulation employed a symmetric boundary condition
such that only half of the flow was simulated, not allowing for the observation of a
phase relationship of the instability.
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5. Origin of three-dimensional instability
In this section, we shall analyse the instability of a vortex pair interacting with

a wall, with the intent to determine the origin, and most unstable wavelength, of
the secondary vortex instability in the presence of the primary vortex. The essential
flow in question is represented in figure 6(b), and is very similar to the four-vortex
flow analysed by Bristol et al. (2004) representing an aircraft wake, in the absence
of a ground plane. Bristol et al. found that an analysis that examined only half of
the flow in figure 6(b) (the counter-rotating unequal-strength vortex pair in isolation,
in the right half-plane, for example) could accurately represent the instability of the
secondary vortex in the complete flow field. We shall utilize and extend their stability
analysis for the four-vortex aircraft wake configuration to our case of the vortex pair
interacting with a wall. Hitherto, the realization of the similarities between these two
flows has not been made, and we shall find the approach of Bristol et al. to yield good
predictions of instability in our flow.

The early work of Crow (1970) and Widnall et al. (1974) analysed the instability of
an equal-strength vortex pair. In essence, the physical key to analysing stability in this
case is to understand that, for instability, the plane containing the sinuous perturbation
(along the vortex axis) needs to be frozen in the extensional strain rate field of the
neighbouring vortex, subsequently leading to exponential growth. For this to happen,
the self-induced rotation (about the vortex axis) of the wave within the vortex needs
to be balanced by the effect of the mean strain rate field from the neighbouring vortex
as well as the effect on rotation due to the perturbation flow field of the neighbouring
vortex, which is not in general insignificant. However, a principal contribution from
Bristol et al. (2004) is to recognize that a further effect comes into play when the
counter-rotating vortices have unequal strength. An extra term that serves to rotate the
perturbation has to be added to the analysis of Crow, namely the angular speed of the
unequal vortex pair, as they rotate around one another.

We shall follow the analysis of Bristol et al. (2004) in the following section, and
bring their analysis to bear on our flow problem. However, it should be noted that
they only analysed the displacement bending mode instability for unequal counter-
rotating vortices. We therefore extend this analysis to higher modes such as the elliptic
instability modes by making use of an approximate dispersion relation for Kelvin
modes on the Lamb–Oseen vortex, as deduced by Le Dizés & Laporte (2002). We
are able to confirm our approach with good agreement between our analysis and some
very recent simulation results of So, Ryan & Sheard (2011). We then compare the
experimental measurements of instability wavelength of the secondary vortices with
the most unstable wavelengths coming from our analysis, which will provide evidence
of the origin of our instability.

5.1. Linear stability analysis of an unequal-strength counter-rotating pair
If we wish to examine the stability of the weaker vortex in the presence of the
stronger vortex, we define a time scale for the instability as

τ = 2πd2

Γ1
. (5.1)

We also define a parameter Λ that represents the relative strength of the weaker vortex
(vortex 2) to the stronger vortex (vortex 1),

Λ≡ Γ2

Γ1
, (5.2)
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which will be negative for counter-rotating vortex pairs. The special case where
Λ = −1 corresponds to the equal-strength pair as examined by Crow (1970) and
Widnall et al. (1974). It can also be shown that for a� d the vortices orbit around
their vorticity centroid at the angular rate

Ω = 1+Λ
τ

. (5.3)

The plane normal to the axis of each vortex we define as the x–y plane, while the
direction parallel to the axis of the vortex we shall refer to as the z direction. Then,
(xi, yi) gives the location of the centre of the vortex in some plane of constant z, where
i refers to vortices 1 and 2. The unperturbed location of the vortex centre for vortex i
is located at (xi = 0, yi = 0). Following the analysis of Crow (1970) and the extension
by Bristol et al. (2004), we sinusoidally perturb the location of the core of each vortex
in the radial direction. The perturbations are given by

r̂i = ri exp
(
α

t

τ
+ ikzi

)
, (5.4)

where α is the non-dimensional complex growth rate and k is the axial wavenumber.
Note that ri = (xi, yi) and are allowed to be complex. The perturbation is unstable
when the real part of α is positive. We do not lose any generality in assuming the
above form of the perturbations, as any arbitrary function can be recovered through
superposition of these modes using Fourier analysis. Assuming that the perturbations
are small, the linearized problem reduces to solving the following eigenvalue problem:

αx̂1 =−Λŷ1 +Λψ ŷ2 + σ1τ ŷ1 +Ωτ ŷ1, (5.5a)

αŷ1 =−Λx̂1 +Λχ x̂2 − σ1τ x̂1 −Ωτ x̂1, (5.5b)

αx̂2 =−ŷ2 + ψ x̂2 +Λσ2τ x̂2 +Ωτ ŷ2, (5.5c)

αŷ2 =−x̂2 + χ x̂1 −Λσ2τ x̂2 −Ωτ x̂2. (5.5d)

These equations describe the evolution of perturbations on a vortex pair in a rotating
frame of reference, so that the orientation of the pair appears stationary. In the manner
of Crow (1970) and Bristol et al. (2004), we describe here the physical significance
of each of the terms in the above equations. Terms of similar physical relevance
are aligned in vertical columns. The column on the left-hand side represents the
normalized exponential growth rate of the perturbations, α. The first term on the right-
hand side represents the effect from the mean strain rate of the neighbouring vortex.
A vortex is exposed to a field of pure strain due to the presence of the neighbouring
vortex. The primary extensional axis of the field is at a 45◦ angle from the line
connecting the two vortices, and thus, when the perturbations are frozen close to this
plane of maximal stretching, the perturbations can grow exponentially in amplitude.

If this were the only term considered on the right-hand side, the flow would
be unstable for all wavenumbers, with a growth rate equal to the extensional
strain imposed by the neighbouring vortex (α = 1). The second term represents the
alterations of the imposed velocity field due to the perturbations of the neighbouring
vortex. The forms of these terms, often referred to as the mutual induction terms, are
presented by Crow as

χ(β)= βK1(β), (5.6)
ψ(β)= β2K0(β)+ βK1(β), (5.7)
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where β = kd, and K0(β) and K1(β) are modified Bessel functions of the second
kind. A few key observations can be made. For very short wavelengths (β →∞),
both mutual induction functions, χ and ψ , tend to vanish. In this limit, the combined
effects of the short-wave perturbations on the neighbouring vortex tend to cancel out.
However, in the long-wave limit (β → 0), the mutual induction functions approach
unity, which represents a shift in the effective origin of the strain rate field imposed by
the neighbouring vortex. For long waves, this effect is of the same order as the effects
of the strain rate field.

The third term on the right-hand side of (5.5) represents the self-induced rotation
of the vortex core due to its own perturbations, deduced by Kelvin (1880) for
the Rankine vortex, and commonly called Kelvin waves. Crow (1970) used a cut-
off method to calculate this self-induced rotation rate, which is valid for long
waves (ka� 1). However, we shall use a dispersion relation that is shown to be
valid for a broader range of wavenumbers, the form of which will be discussed shortly.

A key contribution of Bristol et al. (2004) is to recognize that one needs an
additional term (given as the fourth column of terms on the right-hand side of (5.5)),
which accounts for the orbital rotation of the unequal-strength vortex pair, equivalent
to analysing the flow in a reference frame rotating with the vortices. For instability, we
require that the perturbation be stationary in the rotating reference frame of the pair,
so that the perturbation lies close to or along the maximum stretching axis induced
by the neighbouring vortex. Bristol et al. (2004) demonstrated that this additional term
can have a significant effect on the resulting characteristics of the instability.

It still remains to calculate the self-induced rotation rate of the perturbation.
Following the analysis of Bristol et al. (2004), we begin by considering the equation
for the self-induced rotation rate (Γi) of a Rankine vortex as presented by Saffman
(1992):

σi = Γi

2πa2
R,i

(
2k√
κ2

n + k2
− 1

)
for m= 1, (5.8)

where κn is the the nth root of the dispersion relation for a Rankine vortex (finite core
of uniform vorticity with radius aR), also presented by Saffman (1992). The quantity
‘m’ represents the azimuthal wavenumber, and takes only integer values. Moore &
Saffman (1975) demonstrated that global resonance is possible if two simultaneous
perturbations in an external strain field have azimuthal wavenumbers ma and mb that
satisfy the relation |ma − mb| = 2. The instabilities predicted by Crow (1970) and
Widnall et al. (1974) correspond to the resonant interaction of two helical waves with
m = ±1. It is mentioned by Jacquin et al. (2003) that this instability mechanism is
only possible in the Lamb–Oseen vortex for the case where m = ±1, and thus we
restrict our attention to this case. Owing to symmetry, σi(m = +1) = −σi(m = −1),
and we can consider only the m = 1 wave without loss of generality. The quantity
‘n’ takes discrete non-negative integer values (n = 0, 1, 2, . . .) and refers to the radial
wavenumber or, equivalently, the number of radial nodes.

The first radial mode of instability (n = 0) was predicted by Crow (1970) where
the vortex core is essentially displaced without internal deformations (see for example
figure 2a). For this reason, we shall refer to this as the ‘displacement mode’. The
second radial mode (n = 1) corresponds to the short-wave mode predicted by Widnall
et al. (1974), analysed by Moore & Saffman (1975), and later observed in experiment
by Leweke & Williamson (1998) (see for example figure 2b). As previously described,
this mode is closely related to the elliptic instability and will be referred to as such.
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It is additionally important to note that this model only accounts for the externally
imposed strain due to the presence of the other vortex, when in reality the strain at the
centre of the vortex will be a result of both this externally imposed strain as well as
internal strain related to deformation of the vortex core (Robinson & Saffman 1984).
This difference will primarily affect the ellipticity of the streamlines and the growth
rate of the instability, as discussed in Leweke & Williamson (1998).

In order to apply the analysis to our experiments, we wish to consider the instability
of a more realistic distributed vortex rather than simply the Rankine vortex. It
was shown by Widnall et al. (1971) that the self-induced rotation rates for long
displacement perturbations (ka� 1) were equivalent for both the Rankine (with core
radius aR) and the Lamb–Oseen vortices (with core radius a) provided that

a= 0.735aR. (5.9)

However, Bristol et al. (2004) demonstrated by numerical simulation that this
equivalence holds reasonably well even for displacement waves with kaR of the
order of unity. In addition, we wish to calculate the self-induced rotation rates of
the higher radial modes, although the equivalence given in (5.9) is only shown to
apply to the displacement mode. In this paper, we obtain good estimates for the
self-induced rotation rates of the higher radial modes (n > 1) for the Lamb–Oseen
vortex by employing some results from Le Dizés & Laporte (2002). They present a
linear relation that serves as an approximation of the actual dispersion relation, which
we interpret for use in our problem:

σi = Γi

2πa2
i

[
kai − (0.57+ 1.69n)

2.9+ 4.5n

]
for n> 1, m= 1 (5.10)

which is a good estimate for the range of wavenumbers that satisfy

0.22+ 1.15n< kai < 0.92+ 2.23n. (5.11)

By inspection of the exact dispersion curves, also presented by Le Dizés & Laporte
(2002), it is evident that, for wavenumbers below the range given in (5.11), the
linear fit no longer serves as a reasonable approximation. For wavenumbers above the
range prescribed in (5.11), the approximation begins to diverge gradually from the
exact curve. The actual self-induced rotation rate continues to increase monotonically,
suggesting that the linear fit can still be useful to predict qualitative trends. Equipped
with the appropriate dispersion relations for the self-induced rotation velocities of
perturbations on the core of a Gaussian vortex, we solve to find the growth rate for
each selected wavenumber, obtaining the real part of each eigenvalue α.

In order to evaluate the performance of this stability analysis, we compare the
results with existing data from numerical simulation performed by So et al. (2011),
who considered the three-dimensional instability of an isolated unequal-strength
counter-rotating Lamb–Oseen vortex pair in an unbounded geometry. The value of Λ
was varied from −1 to −0.1, with the core sizes both fixed at a/d = 0.25 throughout
all simulations. The most unstable wavenumber for each detectable Kelvin mode was
reported. We compare our linear stability analysis with the simulations of So et al.
(2011) in figure 16, yielding reasonable agreement. The results from the simplified
linear model compare favourably with the numerical simulation, despite the relatively
large core size of the vortices considered. As projected, the use of the approximate
dispersion relation for the higher radial modes manages to capture the overall trends of
the data nicely.
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FIGURE 16. The most unstable wavenumber (ka)max versus the strength ratio Λ of an
unequal-strength counter-rotating pair, as predicted by the present linear stability analysis
(lines) and the numerical simulations of So et al. (2011) (symbols). The modes represented
are the displacement mode (—, ◦), the elliptic instability (−−, 4) and the third radial mode
(· · · · · ·, �).

An important trend found from the stability analysis, and reflected also in the
simulations, is the fact that the most unstable wavelength decreases as the secondary
vortex becomes weaker compared to the primary vortex. Another significant point to
make is that a measurement of experimental wavelength alone is not sufficient to
predict which instability mode is dominant. For example, the simulation demonstrates
that the most unstable wavenumber for the Λ = −0.2, n = 0 mode is kai = 2.0, which
is approximately the same wavenumber found for the n= 1 mode for vortices of equal
strength.

In essence, it seems clear that incorrect conclusions could conceivably be reached if
one compares only wavelength measurements to a theory that does not account for the
effects of orbital rotation.

5.2. Analysis of the origin of secondary vortex instability

In order to apply the linear stability analysis presented in § 5.1 to the present flow,
we recognize that a number of assumptions must be made. We assume that the theory
holds for vortices of finite core size, which may be highly distorted in the presence of
a stronger vortex. We assume that the instability of the secondary vortex is primarily
dominated by the adjacent primary vortex, and that the effects of the additional vortex
pair across the plane of symmetry are negligible. The strain rate imposed by the
presence of the additional pair will scale approximately as (d/b)2, where b is the
spacing between the two primary vortices. Note that this ratio is not constant in our
experiment, as the proximity of the wall causes the vortex centroids to move apart over
time. We estimate that d/b ≈ 1/4 at the onset of instability, which suggests that the
importance of the mirror pair is only minor.

We now apply the linear stability analysis to investigate the origin of our observed
short-wave instability of the secondary vortices. Using the experimental measurements
from the PIV data for the core size and strengths of the vortices, we use the theory to
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predict the most unstable wavenumber of the first two instability modes:

(kd)max = 3.53 (displacement mode, theoretical), (5.12a)
(kd)max = 11.7 (elliptic instability, theoretical). (5.12b)

We can compare this with the experimentally measured instability wavenumber:

(kd)exp = 4.8± 1.1 (experimental). (5.13)

The experimental measurements are presented visually in figure 17, compared with
curves representing the most unstable wavenumbers for the first two radial modes, as
predicted by the linear stability analysis of § 5.1. Figure 17(a) shows the variation
of the most unstable wavenumber versus the vortex strength ratio, while figure 17(b)
demonstrates the influence of core size on the predictions. In essence, the stability
theory provides evidence that the origin of the instability is the displacement (n = 0)
mode, rather than an elliptic instability, as suggested in previous studies.

As a point of interest, we note that, in figure 17(b), the wavenumber (kd) of
the elliptic instability is shown to decrease for vortices of increasing core size for
the range shown. However, if the elliptic instability wavenumber is considered with
the more appropriate scaling (as ka rather than kd), the instability wavenumber (ka)
increases with increasing core size.

It is clear from the shape of the curves in figure 17 that, even if we allow for
considerable error in the measurement of strength ratio or core size, we remain with
the conclusion that the instability is dominated by the displacement mode.

This is consistent with our observations in flow visualization, as presented in § 4,
where the deformation of the secondary vortices is clearly of the displacement type,
illustrating bending of the complete vortex, without evidence of complex internal
deformations indicative of elliptic instability.

The range of observed wavelengths observed in experiment, as evident in figure 14,
is represented by the vertical bars extending from the experimental data point in
figure 17. The observation of a range of wavelengths is consistent with the theory,
which suggests that, as the vortex strength ratio is decreased, the band of unstable
wavenumbers is widened.

Finally, we observe that the wavelength of the secondary vortex instability is clearly
selected before there is any apparent deformation of the primary vortex. This is
particularly clear in figure 18, where the secondary vortex is shown to have already
undergone significant deformation, yet the primary vortex remains almost perfectly
straight. This observation confirms our assertion in § 2 that instabilities do not develop
on the primary vortex pair prior to its interaction with the secondary vortex.

5.3. Discussion of related studies of secondary vortex instability
In table 1, we compile data coming from previous studies of secondary vortex
instability, all of which comprise numerical simulations. There seem to be two
common approaches to the three-dimensional problem. The first method, taken by
Luton & Ragab (1997) as well as Duponcheel et al. (2009), is direct numerical
simulation (DNS), where the Navier–Stokes equations are solved numerically. As
Reynolds number is increased, the smallest relevant lengths scales in the problem
are further reduced, requiring an increase in resolution, which can quickly become
prohibitively costly. Both Luton & Ragab (1997) and Duponcheel et al. (2009)
demonstrate that their respective simulations are properly resolved, at the Reynolds
numbers they select, at least with respect to the characteristics of secondary vortex
instability. Moet (2003) and Georges et al. (2006) use a large-eddy simulation (LES),
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FIGURE 17. Variation of most unstable wavenumber (kd)max versus (a) vortex strength ratio
and (b) core size, using experimentally measured parameters. The solid lines represent the
first two radial modes (n = 0, 1), as predicted by the linear stability analysis. The filled circle
represents the mean wavenumber measured in our experiments, and the vertical bars extend
one standard deviation above and below the mean value. The dashed lines represent the most
unstable wavenumbers for the displacement mode (n = 0) predicted by using (a) core size
±15 % and (b) strength ratio ±10 % different from the experimentally measured value.

whereby the smallest length scales are modelled using a subgrid-scale (SGS) model,
reducing the range of length scales that must be resolved and allowing for higher-
Reynolds-number cases to be investigated more practically. To account for the smaller-
scale vorticity generated at the wall, Georges et al. (2006) employ a ‘wall-resolved’
LES method, which resolves the finer scales of the flow in the proximity of the wall.
High resolution at the wall was demonstrated to be essential in the two-dimensional
simulations of Clercx & Bruneau (2006) and Kramer et al. (2007). Fewer published
works are available as compared to the two-dimensional case, possibly due to the
greatly increased computational demand.

Both Luton & Ragab (1997) and Duponcheel et al. (2009), as well as Moet (2003)
and Georges et al. (2006), attribute their secondary vortex instability to elliptic
instability or radial modes (n = 1). In the latter three studies, it is shown that the
incipient axial vorticity perturbation structure has the distribution indicative of an
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Secondary vortex

Primary vortex

FIGURE 18. Incipient instability of secondary vortex as it passes over the top of the primary
vortex. Only one of the primary vortices is marked here. The secondary vortex has already
undergone significant deformation while the primary vortex remains almost completely
straight.

Re Resolution rc1/bo rc2/bo λ/bo λ/rc2

Present results Exp. 1260 — 0.39 0.30 0.98 3.27
Luton & Ragab (1997) DNS 2196 64× 64× 128 0.25 — 0.80 —
Duponcheel et al. (2009) DNS 3500 512× 320× 256 0.22 0.25 0.57 2.29
Duponcheel et al. (2009) DNS 5200 512× 320× 256 0.19 0.23 0.40 1.74
Georges et al. (2006) LES 20 000 512× 256× 256 0.05 — 0.29 —
Moet (2003) LES 294 000 111× 139× 32 0.10 — 0.25 —

TABLE 1. Comparison of studies investigating the instability of the secondary vortex
generated by a counter-rotating vortex pair in ground effect. The most unstable wavelength
identified in each study is given by λ. As indicated in the second column, the results are
either from experiment (Exp.), direct numerical simulation (DNS), or large-eddy simulation
(LES).

elliptic instability (see e.g. Waleffe 1990). In some locations, the structure of the
instability brings the outer layers of the secondary vortex closer to the primary, which
then become wrapped around the primary vortex. In the case of Luton & Ragab (1997)
and Duponcheel et al. (2009), the initial conditions of the vortex pair simulations are
similar to those of the present study, and we shall primarily focus on these two studies
in this section.

Luton & Ragab (1997) find a most preferred wavelength of 3.20rc, which they state
‘agrees extremely well with the analysis of Widnall et al. (1974) which predicts 3.22rc,
for the second radial mode’. This would appear to provide evidence that the secondary
vortex is subject to an elliptic instability. They also detect a further instability of
shorter wavelength, which they propose is a representation of the third radial mode
(n = 2). However, in scaling their secondary instability wavelength, they use the core
radius of the larger primary vortex, rather than the radius of the smaller secondary
vortex itself. The secondary vortex is the one that exhibits a large-amplitude instability
in the presence of a stronger (almost straight) primary vortex. Additionally, their
analysis does not take into account the angular rotation of the two unequal vortices,
which would significantly affect the prediction of most unstable wavelength, as we
have shown in the previous sections.

If we similarly chose to scale our experimental instability wavelength of the
secondary vortex with the core size of the primary vortex, we find ka1 = 2.24. The
value predicted by Eloy & Le Dizés (1999) for the most unstable wavenumber for
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the elliptic instability of the equal-strength counter-rotating Lamb–Oseen vortex pair
is ka = 2.26, which compares very well. We would conclude, as did Luton & Ragab
(1997), that our secondary vortex exhibited an elliptic instability (second radial mode,
n= 1).

However, the above deduction would be erroneous. In fact, we find that the stability
theory presented in the previous sections predicts a theoretical elliptic instability
wavelength of ka2 = 4.21, when based on the secondary vortex radius, and including
the effects of unequal vortices on the analysis. This more complete analysis points to
the origin of the instability, in our work, as the Crow-type displacement mode.

In the work of Duponcheel et al. (2009), the elliptic instability observed via the
vorticity perturbations is shown to correspond to the highest peak in the axial energy
spectra, which is λ/bo = 0.4 for the simulation at Re = 5200. However, they also
mention that a further peak is present with a longer wavelength corresponding to
λ/bo = 1.0, yet the origin of this peak is not discussed.

The wavelengths of the instability observed in the present experiments are
λ/bo = 1.0 ± 0.1, which is comparable to the most unstable wavelength observed
in the simulation of Luton & Ragab (1997) (λ/bo = 0.8), and to the second peak in the
spectra of Duponcheel et al. (2009), mentioned above. It seems conceivable that both
of these previous studies exhibit the Crow-type displacement mode. In fact, the images
showing the deformations of the secondary vortex in the Luton & Ragab (1997) study
appear to represent primarily the bending of the secondary vortex as a whole. The
fact that an elliptic instability, of shorter wavelength, initially makes itself felt in the
research of Duponcheel et al. (2009) could perhaps be related to the higher Reynolds
numbers of that study, enabling the elliptic instability to manifest itself early in the
development of the flow.

6. Dynamics and merging of vortex rows
In this section, we shall analyse and further illustrate the tendency of the deformed

secondary vortices on each side of the flow to translate towards each other and to
merge into a single row of vortical structures in the centre of the flow field, between
the two primary vortices. We shall briefly analyse the dynamics of periodic rows of
point vortices. We will see that there are essentially three different types of vortex
dynamics possible. Two of these types lead to the vortex rows from each side of the
flow translating towards each other, and to possible vortex merging, and thereby to the
interesting phenomenon whereby two rows of vortices combine to form a single row.

As the secondary vortex becomes highly distorted due to the bending instability in
the presence of the primary vortex, as shown clearly in the side view sequence of
figure 15, the highly stretched vertical vortex tubes appear to pair up and translate
towards the centre of the flow configuration. If we visualize the evolution of the
secondary vortices by using a thin horizontal light sheet parallel to the ground plane
(as shown in figure 12b), and viewing the flow vertically as indicated by the white
arrow, we can most clearly observe these interesting dynamics. In these studies, the
plate edge has the very small perturbation (of amplitude 0.5 mm) mentioned in § 2.

The vortex evolution is clearly shown in this light sheet in figure 19. We have
chosen to mark only the secondary vorticity with dye, which is key to clear
visualization of the phenomena. We observe two ‘infinite’ rows of miniature counter-
rotating vortex pairs in the plane of the light sheet, which are advected into the region
between the primary vortices. The two rows approach each other and begin to interact
in figure 19(b). From here we typically observe in figure 19(c) that the two rows
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(a)

(b)

(c)

FIGURE 19. Evolution of secondary vortices in the cross-sectional view described by
figure 12(b). (a) The deformed secondary vortices begin to descend through the light sheet.
(b) The emergence of two ‘infinite’ rows of vortex pairs (vertical segments) is now apparent.
(c) The rows move in towards each other, and ultimately merge into a single row. In these
experiments, we have introduced a very small-amplitude (0.5 mm) sinusoidal perturbation at
the flap tips.

merge into a single row of alternating-sign vortices. This is clearly demonstrated by
way of PIV measurements presented in figure 20. We believe that this is the first
experimental evidence of the merging of two rows of alternating-sign vortices into a
single row.
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(b)

(c)

(a)

FIGURE 20. Contours of vorticity as calculated using PIV data from a single experiment,
measured in a horizontal plane (as shown, for example, in figure 12b) at a height of y≈ 1.5bo,
with a window of approximately 5bo × 2bo. (a) Two periodic rows of counter-rotating vortices
emerge between the primary vortices. (b) The rows move in towards each other and begin
to merge. (c) The merging process is completed, and a single periodic row of counter-
rotating vortices results. The vorticity contours levels are redefined at each time step; the
measurements are only intended to demonstrate the qualitative evolution of vorticity. In these
experiments, we have introduced a very small-amplitude (0.5 mm) sinusoidal perturbation at
the flap tips.

As a further illustration of this phenomenon, we shall now consider a two-
dimensional point vortex model to represent the dynamics of the vertical vortex
segments cutting through the light sheet. The flow field and relevant parameters are
defined in figure 21, where the flow is infinitely periodic in L (the wavelength of the
secondary vortex instability). A similar analysis showing vortex trajectories for such
a four-vortex row system described below has been presented in Williamson (1982)
and in Stremler et al. (2011), where the motivation was to represent the dynamics
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y
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L

xo
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(x1, y1)(x4 – L, y4) (x4, y4) (x1 L, y1)

(x3, y3)(x2, y2)

FIGURE 21. Schematic diagram defining the parameters of the point vortex model. The
entire flow is periodic in L, which in the present application is equivalent to the wavelength of
the instability.

of vortices in the wake of a bluff body or an oscillating aerofoil. The reader is also
referred to extensive works on this kind of approach to understanding vortex dynamics,
using point vortex analysis, as carried out by Hassan Aref and his group (see e.g. Aref
& Stremler 1996, 1999).

To simplify the problem, we assume the vortices to be all of equal strength Γ , and
we consider a number of spatial symmetries:

x1 =−x2 − 1
2 L, y1 =−y2,

x3 =−x2, y3 = y2,

x4 = x2 + 1
2 L, y4 =−y2.

(6.1)

This represents the fact that we have assumed that each miniature vortex pair is
equally spaced from one another, and identical otherwise. We can now describe the
initial flow field using only two parameters, the initial pair spacing 0< xo < L, and the
initial row separation 0 6 yo <∞ (see figure 21). Note that xo ∈ {0,L} are degenerate
cases where vortices of opposite sign coincide, and are ignored here. The equation for
the velocity induced by a periodic row of point vortices of strength Γ that are aligned
along the x axis with spacing L is given by

u(x, y)= −Γ
2L

sinh(2πy/L)

cosh(2πy/L)− cos(2πx/L)
, (6.2a)

v(x, y)= Γ

2L

sin(2πx/L)

cosh(2πy/L)− cos(2πx/L)
, (6.2b)

where u is the velocity in the x direction and v is the velocity in the y direction (see
Saffman 1992). We normalize these equations by the length scale L/(4π) and time
scale L2/(2πΓ ), yielding

U(X,Y)= − sinh(Y/2)
cosh(Y/2)− cos(X/2)

, (6.3a)

V(X,Y)= sin(X/2)
cosh(Y/2)− cos(X/2)

, (6.3b)
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where X and Y are now non-dimensional positions, and U and V are the corresponding
non-dimensional velocities. The point vortices will move with the induced velocity
field created by all the other vortices in the flow. Our flow of interest can be
represented by four infinite rows of like-sign vortices, as indicated in figure 21 by
the subscripts 1–4. A single vortex row is stationary, and will move under the induced
effects of the other three rows. For example, we can describe the motion of row 2 by
the first-order equations

Ẋ2 = U(X2 − X1,Y2 − Y1)− U(X2 − X3,Y2 − Y3)− U(X2 − X4,Y2 − Y4), (6.4a)

Ẏ2 = V(X2 − X1,Y2 − Y1)− V(X2 − X3,Y2 − Y3)− V(X2 − X4,Y2 − Y4), (6.4b)

where the dot represents the rate of change with respect to the normalized time. Using
the symmetry relations provided in (6.1), the motion of row 2 described by equation
(6.4) is reduced to a function of only the location of row 2. After simplifying the
expression and dropping the subscripts, we find

Ẋ = − sinh Y(1− cos X)

(cosh Y + cos X)(cosh Y + 1)
, (6.5a)

Ẏ = − sin X(1+ cosh Y)

(cosh Y + cos X)(1− cos X)
. (6.5b)

Keeping in mind that Ẏ/Ẋ is equivalent to dY/dX, we can then write the slope of a
trajectory at any point as

dY

dX
= sin X (1+ cosh Y)2

sinh Y (1− cos X)2
. (6.6)

This equation is integrable, and thus we can find that a conserved quantity K exists for
this flow:

K = cos X + cosh Y

(1+ cosh Y)(1− cos X)
. (6.7)

Each value K (which is determined by the initial conditions xo and yo) represents
a different trajectory in the x–y plane. For fixed (and finite) yo, we find that three
characteristically different types of trajectories are possible by varying xo between 0
and L.

For small value of xo, we observe that the rows move in towards each other while
also moving closer to their respective partner, as shown in figure 22(a). We describe
this as the ‘passing’ mode, as the rows pass through each other, after which the vortex
‘partners’ begin to spread laterally again while the rows continuously move vertically
apart.

For intermediate values of xo, we have the case shown in figure 22(b), where
co-rotating pairs, composed of one vortex from each initial row, orbit around one
another indefinitely in an ‘orbiting’ mode.

For larger values of xo, the rows move away from each other at the onset, and
continue to do so endlessly in a ‘runaway’ mode, as shown in figure 22(c). Note that
the vortices in the passing mode, once the rows have passed each other, will eventually
follow the same trajectory as the vortices in the runaway mode, and thus cannot be
distinguished solely by the value of K that defines their trajectory.

Figure 22(d) shows a plot of selected vortex (row) trajectories given by (6.7). There
are two distinct regions separated by a separatrix (dashed line) in the shape of a
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(b)

(c)

(d)

(a)

0.5

0

–0.5
1.00.80.60.40.20–0.2–0.4–0.6–0.8–1.0

0.5

0

–0.5
1.00.80.60.40.20–0.2–0.4–0.6–0.8–1.0

0.5

0

–0.5
1.00.80.60.40.20–0.2–0.4–0.6–0.8–1.0

0.5

0

–0.5
1.00.80.60.40.20–0.2–0.4–0.6–0.8–1.0

FIGURE 22. Example trajectories for yo = 0.5, as xo is varied. (a) Passing mode, xo = 0.3.
(b) Orbiting mode, xo = 0.4. (c) Runaway mode, xo = 0.7. (d) Complete phase plane
of solutions. Each curve represents a different value of the conserved quantity K. The
separatrices defining the three different regimes are shown as dashed lines.

vertically oriented cat’s eye. Trajectories within the separatrix are those representing
the orbiting modes, whereas the trajectories outside of the separatrix represent the
passing and runaway modes. These different regions can be distinguished by different
values of K: 

0< K < 1
2 orbiting mode,

K = 1
2 separatrix,

K > 1
2 passing or runaway mode.

(6.8)
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Orbiting

Passing Runaway

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.25 0.50 0.75 1.000

FIGURE 23. Regime diagram for varied initial conditions xo and yo. Within each region, one
predicts qualitatively similar dynamics. The passing mode is found for small values of xo/L,
the orbiting mode for intermediate values, and the runaway mode for larger values.

Also note that K = 0 (for xo = L/2 and yo = 0) represents a degenerate case where
vortices of like sign overlap each other, representing a single infinite vortex row of
alternating signs, which is a stationary configuration. This is observed in the final
stages of the flow, where vortices of like sign have merged at Y = 0, as evident in
figure 20(c). Figure 23 demonstrates that the appearance of a particular mode can be
predicted using the two parameters that define the initial conditions of the flow, xo

and yo.
If one allows for the viscous diffusion of the vortex cores, it is clear that, in the

orbiting case, each pair of co-rotating vortices will eventually merge into a single
vortex (see Meunier et al. 2002; Cerretelli & Williamson 2003). It appears likely
that conditions for merger will also occur for some passing mode trajectories. The
flow visualizations in figure 19 and the PIV measurements in figure 20 demonstrate
such merging of the like-signed vortices. On the other hand, we interpret the passing
mode to occur in the images of four-vortex (wing wake) experiments, found in Ortega
et al. (2003). In the context of vortex–ground interactions, it is possible that different
types of secondary vortex trajectories might be observed under different conditions, for
example at higher Reynolds numbers. The present vortex dynamics model serves to
illustrate possible trajectories of the secondary vortex segments that evolve between
the primary vortex structures in this complex flow.

7. Conclusions
In the present work, we study the approach of a descending vortex pair to a

horizontal ground plane. We employ a vortex generator submerged in a water tank
facility, whereby the closing of flaps hinged to a common base eject fluid vertically
downwards, generating a vortex pair.

We briefly present the observed two-dimensional vortex dynamics, and show that the
flow underneath an approaching vortex forms a boundary layer on the ground plane.
This bounded vorticity can separate to form one or more discrete secondary vortices,
of opposite sign to the primary vortex, as found in previous studies. Discrete vortices
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are advected around the primary vortex, and induce the primary vortex to apparently
‘rebound’ from the surface. We explore the effects of Re on the characteristics of the
secondary vortex generated in ground effect.

As found in previous work, the weaker secondary vortex can become three-
dimensionally unstable, in the presence of the stronger primary vortices. It has been
suggested in several recent numerical simulations that elliptic instability (n = 1, 2) is
the origin of such waviness in the secondary vortices (Luton & Ragab 1997; Moet
2003; Georges et al. 2006; Duponcheel et al. 2009).

In the present research, we employ a technique whereby the primary vortices are
visualized separately from the secondary vortices. Fluorescent dye painted onto the
flaps is used to mark the primary vortices. However, we also pool dye on the ground
plane before an experiment, to mark the secondary vortex separation, often leaving
the primary vortices invisible. The use of this simple technique allows us to clearly
observe the secondary vortex instability, and indicates that the vortices are bent as
a whole in a ‘displacement’ mode (n = 0). The technique, whereby we keep the
primary vortices invisible, allows us to see both sides of the flow simultaneously and
demonstrates that the instability perturbations on the secondary vortices develop with a
distinct antisymmetric phase relationship.

We recognize that another flow, namely the four-vortex wake from a wing with
flaps, as studied recently by Crouch (1997), Ortega et al. (2003) and Bristol et al.
(2004), is distinctly similar to our flow field here, although the connection between
these flows has not yet been made clear in previous studies. The four-vortex wake
comprises a primary wing tip vortex, and a secondary vortex from a wing flap (which
can be of opposite sign), on each side of the wake. We analyse the present vortex
system by considering a counter-rotating pair, with unequal vortex strength, which is
one half of the four-vortex wing wake, as studied by Bristol et al. (2004), and note
that it is essential to take into account the angular velocity of the weak vortex around
the stronger primary vortex in the analysis. We find that the measured secondary
vortex wavelength is close to the most unstable wavelength predicted analytically for
the displacement bending mode (n = 0), similar to the Crow-type instability. The
deduction that we have a displacement mode corresponds well with observations,
where it is clear that the secondary vortex deforms as a whole. We have analysed
the higher-order elliptic instability modes (n = 1, 2), by employing the approximate
dispersion relation of Le Dizés & Laporte (2002), for the first time in this flow field
comprising unequal vortices. We find that the experimental wavelength is distinctly
longer than predicted for the higher-order modes.

The fact that the results of Luton & Ragab (1997) suggest a higher mode
instability (n = 1, 2), when the visualization of their numerical simulations suggests
a displacement bending mode (n = 0), seems to be related to the fact that they scale
the secondary vortex instability on the size of the primary vortex, rather than the
secondary vortex itself, and also that their analysis does not take into account the
angular rotation effects of the weaker vortex about the stronger one. In fact, in the
present work, if we disregard such angular rotation effects in the analysis, we also find
results suggesting higher-order instability modes as the origin of our three-dimensional
instability. However, this would lead to an incorrect deduction, and illustrates the
importance of taking into account angular rotation effects for the unequal vortices.

We must also consider the fact that some numerical studies (Moet 2003; Georges
et al. 2006; Duponcheel et al. 2009) provide evidence for the existence of an elliptic
instability mode (n = 1), at early times in the simulations, but we note that this
appears at higher Reynolds numbers than the present case that was studied in detail.
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It was found in Leweke & Williamson (1998) that instabilities could occur together,
in the case of an isolated vortex pair; for example, the elliptic instability occurred
above a certain critical Reynolds number, simultaneously with the longer-wavelength
Crow instability. In the present case, it appears possible that higher-Reynolds-number
experiments will exhibit both the elliptic instability as well as subsequently the
displacement bending mode instability, which would be consistent with the evidence
for the elliptic instability in the numerical simulations.

One of the important aspects of the secondary vortex instability and the development
of turbulence in the vortices from aircraft, as discussed by Duponcheel et al. (2009),
is the resulting decay of the vortices. Such three-dimensional instabilities found here
for counter-rotating vortices, lead to turbulence and decay, in a manner similar to
many other flows, such as in wakes, jets and shear flows. In the case of the vortex
dynamics in a mixing layer (see Brown & Roshko 1974; Konrad 1977; Breidenthal
1981), although in this case the circulation between the two streams remains constant,
the three-dimensional instabilities, and the corresponding streamwise vortices, are
responsible for the important ‘mixing transition’ (Bernal & Roshko 1986). In essence,
the evolution of turbulent fine-scale structures from three-dimensional instabilities, as
observed here in this particular flow, is well known to be generic to shear flows at
sufficiently high Reynolds numbers.

Finally, we observe that the secondary vortices deform into a distinct waviness along
their lengths, in the presence of the primary vortices, and this places two rows of
highly stretched vertical segments of the vortices in between the horizontal primary
vortices. The two rows of alternating-sign vortices evolve into miniature vortex pairs,
which translate towards each other and ultimately merge into a single vortex row
of alternating sign in the centre of the flow field between the primaries. A simple
point vortex row model is able to predict trajectories of such vortex rows, which is
consistent with the vortex dynamics observed experimentally. The net result of the
model’s ‘orbital’ or ‘passing’ modes is to bring like-sign vortices, from each secondary
vortex row, close to each other, such that merging ensues in the experiments.
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