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SUMMARY
The influence of ground irregularities on the behavior of a
wheeled mobile robot (WMR) navigating on uneven
surfaces is addressed. The paper studies the vibratory
movements induced on the body of the WMR, in order to
analyze its ability for carrying out on-board tasks, and on
the accuracy of the data collected by its external sensorial
systems. The adhesion capability of the wheels of the WMR
on this uneven terrain is also studied, since it conditions the
braking, traction and steering performance. The method is
applied to the WMR RAM.

KEYWORDS: Mobile robot; Ride analysis; Uneven terrain;
External sensors; Dynamic performance.

1. INTRODUCTION
Mechanical vibrations on a wheeled mobile robot (WMR)
influence the dynamic behavior of its sprung mass, the body
of the robot, as well as the behavior of its unsprung mass,
this mainly being the wheels of the robot. These factors tend
to assume a greater significance with an increase in velocity
for all mobile robots.

Both matters are addressed in this paper, since the
dynamical movements of the body of the robot must be
taken into account in order to study the on-board object
manipulation ability, by checking the accuracy of the tasks
carried out, and to assure the quality of the data acquired by
external sensors linked to the sprung mass that could require
its own suspension system. Regarding the unsprung masses,
it is well known that the performance of the steering, driving
and braking systems of a WMR are directly related to the
maximum tangential forces available at the wheel-ground
contact surface, and that these maximum forces can be
computed as a function of:

• The adhesion and elastic characteristics of the wheels and
of the ground; this can be assumed constant while the
robot is navigating on the same terrain.

• The brake or traction torque commanded by the robot
control.

• The lateral forces at the wheels related to the curvature of
the path and the velocity of the robot, which is also
commanded by its control.

• The forces normal to the ground at wheels; these are
usually assumed to be constant by most WMR, but they
experiment dynamical variations when navigating on
uneven surfaces, even for stationary trajectories.

Mechanical vibrations in a WMR, i.e. Iow frequency
vibrations, are mainly generated from two excitation
sources: existing mobile elements within the robot and
uneven rolling surfaces.

In the first group, the principal excitations are induced by
the wheels and their associated elements and by the engine
group and/or the transmission. However, for most WMR
these mass groups are of a small size, and thus the related
excitations have little influence, while it is the behavior of
its driving and steering transmissions that result more
significantly affected.

Regarding the second group, the ground vertical profile of
the rolling surface on each wheel is the principal excitation
source of the vehicle. The profile is usually modeled as
random functions with Gaussian probability distributions,
providing large local irregularities in the form of ramp or
step functions which are added in order to simulate bumps,
curbs . . . These are isolated and treated separately.1 The
roughness of the terrain is a broad band random function
defined in terms of its statistics parameters, as the widely
used spectral density, Szs, which is generally described in
terms of the spatial frequency, �, in cycles per meter (in
order to separate the collected data from the velocity of the
vehicle used for the measurements).

The function Szs is obtained from the analysis of each
surface, but it has been observed that terrains of similar
composition and structure present close values for this
parameter.2 Several studies3�5 show a typical decrease of Szs

when � increases, and a great similarity in the content of
their frequency spectra on different rolling.6 They show how
wavelength and amplitude of the surface profile can be
characterized by Szs modeled as a decreasing function of
(�)n, with varying n values from 2 to 4. The maximum value
of the function depends on the roughness of the modeled
surface, but the slopes and inflection points remain constant.
Moreover, in all models Szs acquires greater values for all
frequencies as the quality of the terrain decreases.

The aim of this paper is to describe a method to identify
the main characteristics of the riding response of the body of
a WMR and of its wheels when navigating on uneven
terrains and, in particuiar, the statistical characteristics
of the linear and angular vibration of its body and of
the dynamic normal forces at its wheels as related to the
adhesion capabilities. The method is focused on the WMR
RAM.7 For this purpose the paper is organized as follows: In
Section 2 the spectral densities of the outputs from the
transfer functions of the model and the spectral density of
the excitations at wheels are evaluated; in Section 3 a
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dynamic model of the WMR RAM to evaluate the transfer
functions of interest is addressed; in Section 4 the spectral
densities of the inputs are evaluated; in Section 5 the outputs
of interest for RAM in two cases, when navigating on
straight trajectories and when navigating in curved trajecto-
ries, are computed; in Section 6 the results computed with
the approached method are shown and discussed and,
finally, in Section 7 the conclusions of the paper are
presented.

2. CHARACTERIZATION OF THE RIDING
RESPONSE OF A WMR ON AN UNEVEN ROAD
Vertical surface profile can be expressed as a linear
combination of shifted impulses, �(t), therefore the excita-
tion at the i-th wheel is given by:

zsi(t)=� �

��

zsi(�) � (t��) d� (1)

The output ai(t), as the response of the variable a(t) to the
excitation on the i-th wheel, is related to zsi(t) through
the corresponding impulse response function, ha

i (�), in the
convolution integral:

ai(t)=� �

�

ha
i (�)zsi(t��) dt (2)

and, if the system is linear, the global response of a(t) to the
excitations at all the wheels is given by:

a(t)=�
i
� �

�

ha
i (�) zsi(t��) dt (3)

When the ground profile is modeled as a stationary random
vibration with a Gauss distribution the mean excitation
values are zero, and then the autocorrelation of the output
can be evaluated as a function of the autocorrelation of the
input; this is the case when the source of excitation is
the ground roughness at the wheels of WMRs. Thus,
naming R ii to the autocorrelation of the function zsi(t) at the
i-th wheel, the autocorrelation of the output a(t) of the robot
model can be evaluated as:8

R aa(�)=�
i
��

�
��

�

ha
i (�) ha

i (�) R ii(�����) d� d� (4)

Since the ground is characterized by its spectral density, the
relation input-output to be found is a relation between their
respective spectral densities. As it is known, the Fourier
transform of the impulse response is the transfer function
between input and output in the frequency domain.
Therefore, naming SAA as the spectral density corresponding
to the output a(t), HA

i (s) as the transfer function of this
variable when excited by the input at the i-th wheels, HA*

i (s)
as its complex conjugate, and Sij(s), for i= j as the spectral
density of the ground excitation at the i-th wheel, and for
i≠ j as the cross spectral density between the inputs at i-th
and the j-th wheels, from (4) it can be written:

SA =�4

i=1
�4

j=1

HA*
i Sij HA

j (5)

3. DYNAMIC MODEL OF THE WMR RAM
RAM is a WMR designed for navigation with high
maneuverability in indoor and outdoor industrial environ-
ments.7 Its mechanical configuration consists of four wheels
located at the vertices of a rhombus, one of whose diagonals
is the longitudinal axis of the vehicle (see Figure 1). The
two lateral wheels, wheels 2 and 4, are a semi-track B away
from RAM’s geometric center and are centered on the
longitudinal axis of the robot, they are driven and unsteered
parallel wheels. The front and rear wheels, wheels 1 and 3,
are a semi-wheelbase L away from RAM’s geometric center
and are centered on its transverse axis. They are steering
wheels. Completely independent servomechanisms power
the two driven wheels. The two steering wheels are linked
by a mechanical system that imposes steering angles of
equal magnitude and opposite sign on both. Since the robot
is only expected to have to negotiate small grades, it only
incorporates suspension systems at the two lateral wheels.
These are two independent spring/damper sets in parallel
configuration.

The guide point of the robot is positioned at the cross
point of its lateral and longitudinal axis, which coincides
with the robot’s gravity center (gc) and with its  geometrical
center in a plan view.

The dynamic model used for the study of the ride quality
of RAM is fully approached in references [9, 10]. As a brief
description, the robot is modeled as three concentrated
masses shown in Figure 2: a mass M located at the gc of the
sprung mass and with mass moment of inertia matrix Ī; and
two masses, mss =[m2 m4]

t, located at the gc of the two semi-
sprung masses.11 Mass M has six degrees of freedom (dof)
expressed by its linear velocity, 

→
V, with three orthogonal

components [ẋ ẏ ż], and its angular velocity 
→
	. [
̇ �̇ �̇].

Fig. 1. Mechanical configuration of the WMR RAM.

Fig. 2. Dynamic model of RAM and its state variables.
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While the motions of m2 and m4 are restricted to the
displacement relative to M in the direction of the axis
normal to the ground, their relative velocities are
zs =[zs2 zs4]

t. Finally, there are four other masses located at
the geometric center of each wheel, whose only dof is its
angular velocity around the wheel’s axis, =[1 2 3 4],
and with moment of inertia I =[I1 I2 I3 I4].

Each suspension system between M and mss is modeled
by a spring-damper set in parallel configuration in
the direction of the relative motions, cs =[cs2 cs4] being the
vector of the vertical compressions of suspension systems.

Regarding the rubber wheels, their behavior in normal;
direction to the ground is modeled as a spring-damper set
with constant coefficients11, where c=[c1 c2 c3 c4] is the
vector of the vertical compressions of wheels.

The excitation sources, as justified in Section 1, are the
vertical profile of the rolling surface in contact with each of
its four wheels, {zs1(t), zs2(t), zs3(t), zs4(t)}, respectively.

To study the ride quality of a WMR, only the pitch, roll,
and bounce of the vehicle body and of its wheels with
suspension have to be taken into consideration as dof. Thus
for RAM the vector of the displacements of the state
variables yields:

x(t)=[z2(t) z4(t) z (t) 
(t) �(t)]t (6)

where the components of x(t), shown in Figure 2, are the
bounce displacement of the wheels with suspension, z2(t)
and z4(t), since it is the only movement with respect to
the sprung mass allowed to the unsprung masses by the
suspensions, and the bounce, z(t), pitch, 
(t), and roll, �(t),
displacement of the body of RAM.

To determine the transfer function for each variable of
x(t) it is necessary to use a linearised model of RAM. For
this purpose the model is linearised by neglecting the effect
of gyroscopic moments and centrifugal forces acting on the
gc of the robot, that are of low magnitude at the normally
low navigating velocities of a wheeled robot, and by
considering linear models for the tangential forces at the
ground contact level, i.e. the longitudinal and lateral forces
at wheel patches, which will not affect the ride behavior as
argued below. Thus, the dynamic model of the WMR can be
written as:

[M] ẍ(t)+[C] ẋ(t)+[K] x(t)=u(t) (7)

where [M] is the mass matrix, [C] the damping matrix, [K]
the stiffness matrix and u(t) the excitation vector of the
system from the ground profile.

The coefficients of the linearised dynamic model of
Figure 2 take the form:10,11

K=Sim

kr2 +ks2 0

kr4 +ks4

�ks2

�ks4

kr1 +kr3 +ks2 +ks4

ks2B

�ks4B

� (ks2 �ks4)B

(ks2 +ks4)B
2

0

0

� (kr1 �kr3)L

0

(kr1 +kr3)L
2

(8)

C=Sim

Rr2 +Rs2 0

Rr4 +Rs4

Rs2

Rs4

(Rr1 +Rr3 +Rs2 +Rs4)

Rs2B

�Rs4B

� (Rs2 Rs4)B

(Rs2 +Rs4)B
2

0

0

� (Rr1 �Rr3)L

0

(Rr1 +Rr3)L
2

(9)

u(t)=

�Rr2żs2 �kr2zs2 +m2g

�Rr4żs4 �kr4zs4 +m4g

�Rr1żs1 �Rr3żs3 �kr1zs1 �kr3zs3 +Mg

h � Fyi

L(Rr1żs1 �Rr3żs3 +kr1zs1kr3zs3)+h � F�

(10)

M=Diag {m2, m4, M, Ix, Iy} (11)

3.1. Transfer function for the movement of the WMR’s
body
To compute the transfer function of (5) when the output a(t)
is one of the variables in the vector x(t) and the inputs are
the ground irregularities, initially the Laplace transforma-
tion of model of (7) is evaluated assuming null initial
conditions; thus the model in the s domain results in:

[M] s2 X(s)+[C] s X(s)+[K] X(s)=U(s)

⇒ [T (s)]X (s)=U (s) (12)

where:

[T(s)]=[M]s2 +[C]s+[K] (13)

and:

X(s)=� [x(t)]

U(s)=� [u(t)]� (14)

Gravitational effects and the tangential forces at the wheel-
ground contact are null, since they are not the vibratory
excitation sources under study. Thus, the excitation vector,
from (10), can be written as:

U(s)=[D][E]ZS(s) (15)

where [D] is the matrix:

[D]=

0

0

�1

0

L

�1

0

0

0

0

0

0

�1

0

�L

0

�1

0

0

0

(16)

[E(s)] is a diagonal matrix including the elastic constants of
the wheels:

[E(s)]=Diag. {Rr1s+kr1, Rr2s+kr2, Rr3s+kr3, Rr4s+kr4} (17)

and ZS(s) is the vector that sums up the surface profile
spectra at wheels as:

ZS(s)=ZS1(s)+ZS2(s)+ZS3(s)+ZS4(s) (18)
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where ZSi(s) is the vector that considers the excitation at the
i-th wheel, written respectively as:

ZS1(s)=[ZS1(s) 0 0 0]t

ZS2(s)=[0 ZS2(s) 0 0]t

ZS3(s)=[0 0 ZS3(s) 0]t (19)

ZS4(s)=[0 0 0 ZS4(s)]t

Therefore, the frequency response of the WMR in the
studied dof when navigating on an uneven road, is obtained
by substituting (15) into (12) as:

[X(s)]=[T(s)]�1[D][E(s)]ZS(s) (20)

And the transfer function between the variable at the k-th
component of x(t) and the excitation at the i-th wheel is
given by:

Hk
i (s)=

Xk(s)

ZSi(s)
(21)

computed after calculating the vector X(s), using equation
(20), where ZSi(s) from (19) replaces ZS(s), where matrixes
[T(s)], [D] and [E(s)] are introduced as previously described
in (13), (16) and (17), respectively, and the denominator is
given by (19).

3.2. Transfer functions for the forces normal to the wheel-
ground contact
Regarding the performances of the systems of WMRs that
interact with the environment through its wheels, steering,
driving and braking systems, their dynamic behavior is
directly related to the forces normal to the ground at the
wheel patch, as was stated in Section 1.

The vertical behavior of elastic wheels was modeled as a
linear spring in parallel with a damper11. Thus the normal
force acting on each wheel-ground contact is given for all
four wheels by:

fz(t)=

fz1(t)

fz2(t)

fz3(t)

fz4(t)

=

Rr1ċ1(t)+kr1c1(t)

Rr2ċ2(t)+kr2c2(t)

Rr3ċ3(t)+kr3c3(t)

Rr4ċ4(t)+kr4c4(t)

(22)

where Rri is the vertical damping coefficient of the i-th
wheel, kri is its vertical stiffness, and ci is its vertical
compression, as shown in Figure 2.

The transformation of (22) to the frequency domain,
using the diagonal matrix [E] defined in (17) is:

Fz(s)=

Fz1(s)

Fz2(s)

Fz3(s)

Fz4(s)

=

(Rr1s+kr1)C1(s)

(Rr2s+kr2)C2(s)

(Rr3s+kr3)C3(s)

(Rr4s+kr4)C4(s)

=[E]

C1(s)

C2(s)

C3(s)

C4(s)

(23)

For the RAM model of Section 2 the compression vector,
with [D] defined in (16), is given by:

[C1(s) C2(s) C3(s) C4(s)]t =� [D]tX(S)+ZS(s) (24)

Thus, the normal contact forces can be written as:

Fz(s)=[E(s)] (ZS(s)� [D]tX(s)) (25)

By substituting the robot response calculated in (20) into
(25), it results in:

Fz(s)=[E(s)]([I]� [D]t[T(s)]�1[D][E(s)]) ZS(s) (26)

where T(s) is the matrix given in (13).
The transfer function between the input in the i-th wheel

and the normal contact force developed in the h-th wheel is
obtained from expression (26) when ZS(s) is substituted by
the corresponding excitation, as shown in (19), and
rearranged:

Hi
wh =

Fi
zh(s)

ZSi(s)
(27)

where Fi
zh(s) is the normal force at the patch of the h-th

wheel when the i-th wheel is excited.

4. SPECTRAL DENSITIES AND CROSS SPECTRAL
DENSITIES OF THE EXCITATION
To evaluate the robot response of (5), it is necessary to
know, as well as the transfer functions (21) or (27):

(a) The spectral density of vertical profile of the rolling
surface, Sii: it has been extensively studied by different
researchers, as it was described in Section 1, but it is
most frequently described in terms of the spatial
frequency, � expressed in cycles/m as szs(�); in robotics
it is necessary to compute it as a function of the
temporal frequency, or  expressed in rad/s as S*zs()
or as f expressed in Hz as S**zs(f), especially to evaluate
the behavior of the sensorial systems or to suit the
adhesion performances to the robot control character-
istics. This change of variable is governed by the
navigation velocity of the robot V, that relates
the mentioned frequencies as:

�=


2�V
=

f

V
(28)

Since the effective value of the signal must remain
invariant under the change of variable, it must be
verified that:

� �

0

Szs(�) d�= � �

��

Szs*() d= � �

��

Szs**(f) df (29)

Therefore by applying (28) to (29) it is found that:

Szs(�)=4�V Szs*()=V Szs**(f) (30)

And these are the spectral densities of the inputs at
wheels, thus:

Sii =Szs*() or Sii =Szs**(f) (31)
(b) The cross-spectral densities between wheel inputs.

These will depend on the trajectory considered:

(1) 1f the robot navigates in a curved trajectory, it can
be assumed that the inputs are not correlated, then:

Sij =0 for i≠ j (32)
(2) If the robot navigates in a straight trajectory, the

input to wheels following the same track will be
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correlated, while there will not be a correlation
between any other pair of inputs. For RAM, the
only possible correlated input will be those of
the rear and front wheels.

Some authors consider that a correlation exists
between the inputs to wheels following parallel
tracks.8 But that is the case when the vehicle runs
on a rolling surface generated as an isotropic
bidimensional random process with circular sym-
metry from the unidimensional spectral density of
any of the ground models mentioned in Section 1.
However, the ground is not an isotropic surface,
except in the case that the working distances are
very short (less than two meters12), which does not
occur for trajectories habitually planned by
WMRs.

The cross-spectral density between excitations
on the rear and front wheels of RAM is determined
as the Fourier transform of its correlation, R13, as:

S13()=
1

2�� �

�

R13 e� jt dt (33)

While R13 is given by:

R13(�)=Lim
T → �

1

T� T

0

zs1(t) zs3(t+�) dt (34)

where the ground excitation on the front and the
rear wheels is given by the same function but
shifted a distance equal to the vehicle wheelbase,
2L. Thus, when the robot navigates at a velocity V,
these functions result in:

zs1(x)=zs3(x+2L) ⇒ zs3(t+�)=zs1�t+�
2L

V � (35)

Therefore:

R13(�)=Lim
T → � �1

T� T

0

zs1(t) zs3�t
2L

V
+��dt�

⇒ R13(�)=R11��
2L

V � (36)

By substituting the result in (33), the cross-spectral density
equals the rolling surface spectral density phase shifted an
angle equal to 2L/V:

S13()=S11() ei 
2L

V (37)

Moreover, the cross spectral densities between these wheels,
1 and 3, will meet:8

S31 =S*13 (38)

5. SPECTRAL DENSITIES OF THE OUTPUTS
By introducing the spectral densities obtained and cross
spectral densities of the excitations in (5) and developing the
result of (21) for each of the components of the movements
studied into the vector x(t), on one hand, and the result of
(27) for a generic h-th wheel on the other, the following
results are found:

5.1. Navigation on a straight trajectory
The resulting spectral densities for bounce, pitch and roll of
the robot body and for the normal forces at its wheels are,
respectively:

Sz =�4

i=1

Hi
z* Sii Hz

i +(H1
z* S13 Hz

3 +H3
z* S31 Hz

1)

=�4

i=1

Hi
z* Sii Hz

i +(H1
z* S13 Hz

3 +H3
z* S*13 Hz

1)

S
 =�4

i=1

Hi

* H


i Sii + (H1

* S13 H


3 +H3

* S31 H


1)

=�4

i=1

Hi

* H


i Sii + (H1

* S13 H


3 +H3

* S*13 H


1) (39)

S� =�4

i=1

H1
�* H�

1 Sii + (H1
�* S13 H�

3 +H3
�* S31 H�

1)

=�4

i=1

H1
�* H�

1 Sii + (H1
�* S13 H�

3 +H3
�* S*13 H�

1)

Swh =�4

i=1

Hi
wh* Hwh

i Sii + (H1
wh* S13 Hwh

3 +H3
wh* S31 Hwh

1 )

=�4

i=1

Hi
wh* Hwh

i Sii + (H1
wh* S13 Hwh

3 +H3
wh* S*13 Hwh

1 )

Which is further simplified considering that the transfer
functions for the RAM prototype meet:

Hz
1 =Hz

3 ; H

1 =�H


3 ; H�
1 =�H�

3

Hz
2 =Hz

4 ; H

2 =�H


4 ; H�
2 =�H�

4

(40)

Then (39) can be rewritten as:

Sz =�4

i=1

Hi
z* Sii Hz

i +H1
z*(S13 +S*13) Hz

1

S
 =�4

i=1

Hi

* Sii H


i +H1

*(S13 +S*13) H


1 (41)

S� =�4

i=1

H1
�* Sii H�

1 +H1
�*(S13 +S*13) H�

1

Swh =�4

i=1

Hi
wh* Sii Hwh

i +H1
wh* S13 Hwh

3 +H3
wh* S*13 Hwh

1
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5.2. Navigation on a curved trajectory
In these cases the spectral densities of the outputs can be
evaluated by:

Sz =�4

i=1

Hi
z* Sii Hz

i

S
 =�4

i=1

Hi

* Sii H


i (42)

S� =�4

i=1

H1
�* Sii H�

1

Swh =�4

i=1

Hi
wh* Sii Hwh

i

6. RESULTS 
Several experimental studies of the statistical character-
ization of the ground vertical profile in most terrains can be
found in the literature,1–5 the different measurements
yielding very similar conclusions, as stated in Section 1. For
the scope of this paper, the ground vertical profile proposed
by Anon3 for a standard roadway was used as an excitation
input to the model of RAM, although functions for
evaluating surface vertical profile on other types of terrain
and with expressions proposed by other authors have been
corroborated showing similar results.

6.1. Study of the WMR body behavior
The characteristics of the movements of the RAM’s body
found by applying the method described in this paper are
presented and discussed in this Section, firstly for curved
trajectories and, later, analyzing the distinctive results on
straight paths.

6.1.1. Navigation on curved trajectories. Figure 3 shows
the temporal frequency response for the bounce, roll and
pitch of the RAM at three different navigation velocities. It
is observed that faster velocities generate higher spectral
densities, all cases exhibiting a characteristic monotonical
decrease when f is increased. If the outputs are expressed in
terms of the spatial frequency of the ground excitation, �,
then Sz, S
 and S� would remain constant, but this is not a
result of interest since the data collected by the electronic
sensors of WMRs or used by their controls, depend on their
sample frequency disregarding the navigation velocity.

Figure 4 shows the modulus of the transfer function for
each dof. The influence of the natural frequencies of the
robot body of RAM9,10 (11.2 Hz for bounce, 13.8 Hz for roll
and 1.5 Hz for pitch) can be recognized; each movement is
obviously mainly influenced by its own natural frequency.
The figure shows that for the configuration of RAM, roll is
only induced by the lateral wheels (with suspension); thus
the axis normal to the one that links them is the roll axis
of the robot, i.e. its longitudinal axis; while pitch is
only generated by the central wheels of RAM (without

Fig. 3. Spectral density of the movements of the RAM’s body at different navigation velocities on curved trajectories.

Fig. 4. Modulus of the transfer function between the movements of the RAM’s body and the excitation at the i-th wheel.
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suspension), thus the axis normal to the one that links them
is its pitch axis of the robot, i.e. its transversal axis.

It is also observed in this figure that the angular
movement generated by the wheels with suspension, has
lower transmissibility than the one generated through
suspension systems. Obviously the suspension systems
damp the excitation.

It is usual to study mechanical vibrations of vehicles in
terms of their root mean square value (RMS). To make the
evaluation of the RMS possible of the movements caused by
ground irregularities, it is necessary to select a lower bound
for the frequency of excitation, since Szs tends to infinity
when � tends to zero. This lower frequency is chosen as a
function of the robot wheelbase as in reference [1]:

�lim =
N

2L
; N=4 (43)

As an example, in Figure 5 the RMS of the vertical
movement generated by bounce, roll and pitch of the most
distant point from the gc of RAM (the cross point of the roll
and pitch axis of the robot)9 is plotted. All displacements
present an increasing linear rate law with the navigation
velocity. Again, the highest importance of the bounce
movements and the lowest magnitude of roll movements are
shown.

These results show that it is important to carefully select
the location of the external sensors in order to improve the
accuracy of the data collection. For this example, it is

obvious that positions close to the roll, and above all to the
pitch axis, imply smaller movements than positions far from
it, but this is not an important point since the major
disturbances are caused by the bounce movements, espe-
cially at high velocities, even at the most distant point from
the axis.

6.1.2. Navigation on straight trajectories. Figure 6 dis-
plays the spectral density when the rear and front wheels run
along the same track. The results are similar to those of
Section 6.1.1., but bounce and pitch exhibit the effect of the
correlation between the wheels that run on the same track.
This correlation does not influence roll movements because
they are induced only by the lateral wheels of RAM that
always run on different tracks.

Because of this wheelbase coupling, the value of Sz
reaches a local maximum at the frequencies for which the
excitations on rear and front wheels are in phase and a local
minimum when they are in antiphase, yet S� shows the
inverse effect. Thus the local maxima are located at
frequencies dependent on the navigation velocity, namely:

f coupling
bounce =

N

2L
V

f coupling
pitch =

2N+1

2 · 2L
V

N=1, 2, 3 . . . (44)

As an example, Figure 7 shows the RMS for both dof at the
guide point on curved and on straight trajectories to point
out the effect of the wheelbase coupling. It is observed that
the magnitude of the bounce increases in straight paths and
the magnitude of pitch decreases, facts that become more
significant for high velocities. Thus for the configuration of
RAM, when the fact under study is located at the guide
point for low to moderate navigation velocities, it is
sufficient to study the effect of uneven roads on curved
trajectories, disregarding the wheelbase coupling phenome-
non, since a less heavy movement is considered and the
results would be using a safety factor greater than one. But
it could be necessary to analyze straight trajectories for high
velocities if the study demands exactitude.

Fig. 5. Movement of the most distant point from the pitch and roll
axis vs navigation velocity.

Fig. 6. Spectral density of the movements of the RAM’s body at different navigation velocities on straight trajectories.
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It is evident that the effects of ground irregularities on any
other point of the body of the robot must be individually
analyzed.

6.2. Study of the wheel-ground normal forces
As was explained in Section 1, the adherence capacity of the
robot wheels and therefore the performances of its steering,
braking or traction systems, are directly linked to the forces
normal to the wheel patch. Therefore the dynamic magni-
tude of this load when navigating on uneven roads must be
analyzed.

The mechanical configuration of RAM makes its wheels
exhibit longitudinal and transversal symmetrical results
when the ground unevenness is studied. Therefore the
results presented in this Section refer only to a driven wheel
or wheel without suspension, that represents or rear or front
wheel, and to a steering wheel or wheel with suspension,
that represents or left or right wheel.

6.2.1. Navigation on curved trajectories. Figure 8 shows
the frequency response of the normal loads on driven and
steering wheels for three navigation velocities. It is
observed that the higher the robot velocity, the higher the
spectral density at low frequencies for the region that
influences the adherence capacity. It is also observed that, as
well as for low frequencies, the major values of Swh appear
around the natural frequencies of the wheels (11.2 Hz for a
wheel without suspension and 9.7 Hz for a wheel with
suspension)9. As expected, the suspension systems damp Swh

at driven wheels and the maximum value of the spectral
density is lower than for wheels without suspension.

To study the dynamic performance of the WMR, a
dynamic load factor for its wheels, DLF, is evaluated as the
ratio of the RMS of the dynamic load to the static load on
the wheel, using the threshold for �lim of (43). Figure 9
shows the results versus navigation velocity. It is observed
that DLF increases with V presenting two differentiated
regions:

• For low velocity: DLF is approximately a quadratic
function of V and its magnitude is lower for driven than
for steered wheels.

• For high velocity: DLF is approximately a linear function
of V and its magnitude is higher for driven than for
steered wheels. This is because the suspension systems
make the navigation smoother for the body motion but
they allow the driven wheels to be unloaded. However, it
must be said that the robot dynamic model of this paper
does not take into account the possible separation of the
wheel from the ground, and this fact is likely to occur at
high velocities in wheels without a suspension system.

Vibratory effects with DLF lower than 20% are not expected
to reduce the adherence capacity of a wheel, and the
influence of the ground irregularities can be neglected for
RAM at not very high velocities (not available at present).

6.2.2. Navigation on straight trajectories. Figure 10
shows the spectral density of normal loads on wheels for the
robot running on a straight trajectory. The results are similar
to that of Section 6.2.1. but there is a ripple superimposed
that is generated by the wheelbase coupling; the event is less
important for wheels where the suspension system smoothes
the resonance peaks caused by the coupling.

Fig. 7. Bounce and pitch of the guide point.

Fig. 8. Spectral density of the normal load at the wheel contact at different navigation velocities on curved trajectories.
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The consequence of the coupling is clearer in Figure 11
which plots DLF versus robot velocity. It can be seen
that the velocities which decrease the magnitude of DLF
for the wheels without suspension, increase this factor for
the wheels with suspension, and vice versa. But the
wheelbase coupling phenomenon is not very significant in
any case and it can be disregarded when evaluating the
performances of the wheels of RAM.

7. CONCLUSIONS
This paper deals with a linearized dynamic model of a
WMR to analyze, on one hand, the frequency response of
the body movements, bounce, pitch and roll, since they
condition the on-board ability and accuracy of the data

collected by the external sensorial system and, on the
other hand, the frequency response of the forces normal to
the wheel-ground contact, since it can condition the
performances of the steering, braking and traction systems.
The mechanical vibrations are generated by the ground
roughness when the robot is navigating on uneven terrain,
the major vibratory excitation source for WMR. These
irregularities are characterized by the spectral density of the
rolling surface vertical profile.

For this purpose, the transfer functions between each
output of interest and the vertical displacement of the
wheels are evaluated for the WMR RAM as well as
the spectral densities and cross spectral densities of the
excitations, distinguished when the robot navigates on
curved or straight trajectories. These spectral densities are
expressed in terms of sample frequency from the extensive
experimental data available in the literature for the vertical
profile of several terrains.

From the results presented in the paper regarding the
dynamic behavior of the body of the robot it can be
concluded that the most important vibrations are of low
frequency and that their magnitude increase when the
navigation velocity increases. As expected, it is also
observed that the movements of the body generated by the
wheels with suspension are lower than when this system is
not built in the excited wheel. But not all the dofs have the
same degree of effect on the behavior of a specific point of
the body, so the location of the point of interest must be
specifically studied in order to analyze how any improve-

Fig. 9. DLF of RAM’s wheels vs navigation velocity.

Fig. 10. Spectral density of the normal load at the wheel contact at different navigation velocities on straight trajectories.

Fig. 11. DLF of RAM’s wheels vs navigation velocity on curved and on straight trajectories.
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ment on the suspension system can influence its dynamic
performances.

When straight trajectories are analyzed a wheelbase
coupling phenomenon is observed, that generates a ripple in
the spectral density of bounce and pitch at frequencies
depending on the navigation velocity. This result demon-
strates the need of avoiding those navigation velocities that
generate frequencies of excitation at the peaks of the
frequency response: An important fact when the robot
navigates on rolling surfaces with continuously distributed
irregularities.

Regarding the dynamic normal loads on wheels, the
paper shows that the RMS of their spectral density also
increases with the navigation velocity. Their major magni-
tude appears at low frequencies and especially around the
bounce natural frequency of the robot body for the
configuration of RAM.

The dynamic load factor (DLF) has been computed for all
wheels to evaluate the influence of the road irregularities on
their adhesion capability. The results indicate that it
increases as a linear function of the robot velocity for slow
trajectories and as a quadratic function for fast trajectories.
But the values always remain low enough to be disregarded
as an influence on uneven terrains when evaluating the
traction, braking or maneuverability capacity for the
navigation velocities of RAM on standard roads. Any other
case must be studied in the way approached in the paper.

In straight trajectories, the wheelbase coupling between
wheels that follow the same track modifies the DLF, mainly
in wheels without suspension. The results indicate that the
performance and maneuverability of WMRs must take into
account the road roughness mainly when they navigates at

high velocities, but they allow the authors to neglect the
phenomenon for the case studied.
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