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OPTIMAL INFLATION TARGETING
RULE UNDER POSITIVE HAZARD
FUNCTIONS FOR PRICE CHANGES

GIOVANNI DI BARTOLOMEO AND MARCO DI PIETRO
Sapienza University of Rome

This paper reconsiders optimal inflation targeting in a model where persistence is
generated by rational choices of the price makers because of a time-dependent pricing
mechanism. In this framework, which generalizes the traditional Calvo model, inflation
persistence is intrinsic, as it is micro-founded assuming that firms’ pricing decisions
depend on the time elapsed from the last price reset. We use a linear–quadratic approach
to study the welfare effects and optimal policies. We disentangled two distortion sources
showing how welfare falls in both the average of the probability of changing prices and its
distribution among different firms. Described the underlying distortions of our setup, we
analyze its normative implications for optimal inflation. The issues of uncertainty and
robustness are also considered: By using robust control techniques, we, in fact, consider
the consequences of implementing a “wrong” monetary rule due to a misinterpretation of
sources of inflation inertia.

Keywords: Time-Dependent Price Adjustments, Intrinsic Inflation Persistence, Optimal
Stabilization Policy, Policy Robustness

1. INTRODUCTION

Developments of New Keynesian theory show that modern central bankers should
pursue a flexible-inflation targeting to implement optimal policy. Optimal flexible-
inflation targeting consists of a commitment to a targeting rule that allows short-run
departures of projected inflation from the long-run target rate [Woodford (2003,
Chap. 1)]. A very general feature of the optimal targeting is that optimal policies are
almost always history-dependent. Hence, an optimal policy rule should react to the
economy’s recent history of some target variables and not simply to the set of their
possible state-contingent paths. The rationale is that by committing to a history-
dependent rule, central bankers can “manipulate” private sector expectations to
improve the current trade-off they face.
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This paper reconsiders the issue of optimal inflation targeting in a model
where persistence is generated by a time-dependent pricing model. By deriv-
ing the optimal inflation targeting rule in this environment, we aim to answer
policy questions such as: What is the degree to which an optimal target criterion
should be history-dependent? What sort of additional variables ought to matter
in a target criterion in a model with inflation intrinsic (or structural) inertia?
In our context, inflation persistence is obtained from the assumption that pric-
ing decisions depend on the time spent from the last price reset. A welfare
measure consistent with our framework and optimal targeting policy is ob-
tained by using the linear–quadratic (LQ) approach proposed by Rotemberg and
Woodford (1997) and further extended by, among others, Woodford (2002, 2003)
and Benigno and Woodford (2005, 2012). Moreover, we use our measure to
analyze the peculiar distortions stemming from intrinsic inflation persistence gen-
erated by a vintage-dependent pricing mechanism. Our approximation, in fact,
makes explicit how welfare costs are generated by time-dependent pricing ad-
justments. These costs are distinct from those associated with relative price dis-
persion and consumption fluctuations that appear in the standard New Keynesian
model.

We borrow from Sheedy (2007a, 2010) a log-linear economy representation
that departs from the standard Calvo mechanism assuming that a firm has a higher
probability of changing its price the longer it has kept it unchanged. This price
assumption leads to a hybrid time-dependent Phillips curve exhibiting intrinsic
inertia à la Fuhrer and Moore (1995), as it also embeds a backward term for
inflation. Formally, our pricing model implies a nonnegative hazard function.

Our model presents a richer pricing mechanism, implying the existence of
different distortions compared to the Calvo model. Unlike Calvo, where distortions
are only related to one feature of the price-setting mechanism, i.e., the probability
of resetting a price, in our environment distortions can also be associated with
different distributions of the probability of updating a price, since this may be not
the same among firms.

We follow Woodford’s (2003) approach assuming the presence of an output
or employment subsidy that offsets the distortions due to the market power of
monopolistically competitive price-setters, so that the steady state under a zero-
inflation policy involves an efficient level of output.1 We consider an approximation
around an efficient steady state to compare our results with those of Steinsson
(2003) and Giannoni and Woodford (2005), who investigate alternative models
with inflation persistence.

Steinsson (2003) considers optimal policies in the Galı́ and Gertler (1999) setup,
where a fraction of the producers in the economy set their prices according to a
rule-of-thumb, thus generating structural inflation persistence.2 The Phillips curve
is a convex combination of a forward- and a backward-looking inflation term. As
long as the relative importance of the backward term relatively to the forward one
increases, he finds that slumps (booms) are more persistent; commitment to an
optimal inflation targeting rule implies more gradual policies; losses under optimal

https://doi.org/10.1017/S1365100516000535 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000535


OPTIMAL INFLATION TARGETING 137

policies grow. By contrast, the relative gains of commitment over discretion fall
in the degree of inflation inertia. Thus, the relative advantage of manipulating
expectations that characterize the commitment decreases.

Giannoni and Woodford (2005) also investigate optimal inflation targeting in
a New Keynesian model where inflation persistence is achieved via indexation
to past inflation [see Christiano et al. (2005)]. They derive a closed form for the
inflation targeting rule and show that optimal deviations from the long-run inflation
target should also depend on past inflation. They find that as the degree of inflation
inertia increases, optimal policies imply higher variability in inflation.

Another paper closely related to our work is Sheedy (2007b), who considers
a very general setup where no specific assumptions about price stickiness are
imposed and attempts to derive some general principles about optimal policies,
i.e., some robust insights. The aim of Sheedy (2007b) is to look at optimal policy
under a general perspective; the case of positive hazard functions for price changes
with no differences across sectors is used as an example. We somehow complement
his work: In fact, we focus only on positive hazard functions for price changes,
investigating the nature of the distortions stemming from this assumption and its
implications for optimal targeting policy. Specifically, regarding optimal policies,
we differ from him since we investigate the welfare properties of the optimal
inflation targeting and the impact on it of different degrees of structural persistence.
Furthermore, we consider the relative gains of optimal inflation targeting over
alternative policy regimes.3

Therefore, we also study the consequences of implementing “wrong” targeting
rules due to a misinterpretation of sources of inflation persistence by assuming
a considerable amount of uncertainty concerning the correct specification of the
model representing the economy. Inspired by Sbordone (2007), we look at the
robustness of these targeting policies by using robust control techniques.

The rest of the paper is organized as follows. Section 2 presents the economic
setup considered, the derivation of our welfare measure, and explores the nature of
macro-distortions induced by our pricing model. Section 3 studies the implication
of inflation inertia for the conduct of optimal targeting policies. We analyze how a
change in the hazard slope affects the welfare gain of a commitment over discre-
tion. Furthermore, we consider the cost for the Government of misunderstanding
the sources of persistence in implementing its optimal policy. The final section
concludes.

2. HAZARD FUNCTIONS, WELFARE, AND DISTORTIONS

2.1. The Price-Setting Mechanism

The core of the New Keynesian approach is price stickiness, i.e., a situation in
which the nominal price is resistant to change. The most common way to introduce
it is the Calvo staggered contracts model,4 where each firm faces a sort of lottery
for resetting price. In every period of time, each firm has a constant probability
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of being able to change its price. The alternative mechanism we consider here is
instead a lottery where the probability of resetting the price, defined by a hazard
function, is a function of time. In line of principle, a hazard function can be
upward or downward sloping. According to the macro-empirical evidence found
in Sheedy (2007a, 2010) and in Di Bartolomeo and Di Pietro (2015),5 we assume
that a firm has a higher probability of updating its price the longer it has kept it
unchanged (i.e., positive slope). Now, the firm faces a probability distribution over
possible probabilities of resetting conditional to the time elapsed from the last
adjustment.

Formally, in order to derive the Phillips curve, we first need to specify the hazard
function, which is defined as the event rate at time h conditional on survival until
time h or later, where the event is “be able to reset the price.” The hazard function
can be written as

α (h) = αp +
min(h−1,n)∑

j=1
ϕp (j)

{
h−1∏

k=h−j

[1 − α (k)]

}−1

, (1)

where α (h) is the probability of changing a price, which was last reset h periods
ago, αp is the initial level of the hazard, ϕp (j) is its slope, n is the number of
parameters that control the slope (for n = 1, the slope is governed by only one
parameter), and ϕp (j) = ϕp.

Knowing (1), representative firm i chooses its price to maximize the profit, as it
enjoys monopolistic power on the goods market, constrained by the total demand
for its product (i.e., Yt (i) = (Pt (i)/Pt )

−εp Yt , where Pt(i)/Pt is the relative price,
Yt is the aggregate demand, and εp is the firm’s price elasticity). We assume that
a representative firm has the following production function: Yt (i) = AtNt(i)

1−δ ,
where labor (Nt ) is the only factor of production, At denotes the technology, and
δ ∈ (0, 1). Formally, representative firm i solves

max
P ∗

t (i)

∞∑
t=0

ςtE0β
t

⎧⎨
⎩Pt(i)

(
Pt(i)

Pt

)−εp

Yt − Wt

[
1

At

(
Pt(i)

Pt

)−εp

Yt

] 1
1−δ

⎫⎬
⎭ , (2)

where ςl = ∏l
h=1 (1 − αh) with ς0 = 1 representing the probability that a price

remains fixed for l periods (survival function) and β is the discount factor.
By assuming a competitive labor market, under very common assumptions in a

New Keynesian framework, the solution of the problem (2) leads to the following
log-linear inflation equation6:

πt = 	1πt−1 + β	2Etπt+1 − β2	1Etπt+2 + κxt + ut , (3)

where πt is the inflation rate, xt is the output gap, and ut is an i.i.d. cost push
shock. If not differently stated, we indicate deviations from the steady state with
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lowercase letters. Coefficients in equation (3) are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

	1 = ϕp(
1 − αp

) − ϕp

[
1 − β

(
1 − αp

)] , 	2 = 1 + (1 − β) 	1,

κ =
(
αp + ϕp

) [
1 − β

(
1 − αp

) + β2ϕp

]
(
1 − αp

) − ϕp

[
1 − β

(
1 − αp

)] �p,

with �p = (σ + γ+δ

1−δ
) 1−δ

1−δ+δεp
, where σ and γ are parameters characterizing

the representative consumer’s utility function [see equation (4) given later]. It is
worth noting that a steeper hazard, given by a higher ϕp, entails a more persistent
component of the Phillips curve as 	1 increases.

Equation (3) is our Phillips curve. Coefficient κ measures its slope and also
depends on the hazard function parameters (αp, ϕp). This Phillips curve captures
the intrinsic component of inflation inertia, since it has a backward term. The
negative coefficient attached to πt+2 must be interpreted as a reduction in the total
degree of its forwardness. Equation (3) nests the standard New Keynesian Phillips
curve as a special case for ϕp = 0 (flat hazard): Under this case, αp represents the
expected probability of price adjustment.

The underlying intuition of equation (3) can be explained as follows. Observing
a temporary shock to the real marginal cost, optimizing firms at t0 will raise their
relative prices.7 As a result, the general level of prices will also rise. Then, at t1,
optimizing firms can be of two kinds (selection effect): those who have changed
their price at t0 and those who have not. The former need to reduce their relative
prices (rollback) and the latter need to increase (catch-up)—since now the shock
is vanished, but average relative prices are higher and nominal quantities should
be aligned to the new general level of prices. In Calvo’s setup, the two opposite
effects cancel out. Under a positive hazard function, it is more likely to extract
in Calvo’s lottery a firm who has not adjusted its price than one who has done it.
Therefore, the catch-up effect tends to prevail over the rollback, creating inflation
inertia as inflation tends to continue to be positive. This explains the lagged term in
equation (3). A symmetric argument explains the negative coefficient associated
with Etπt+2. The inflation persistence implied by equation (3) is thus structural
since we observe it, but the fundamentals explaining inflation themselves exhibit
no persistence.

2.2. A Consistent Welfare Measure

The welfare loss derives from a second-order Taylor approximation of the repre-
sentative household’s utility function and mainly depends on the form that takes
the price dispersion. The details of the approach developed by Rotemberg and
Woodford (1997, 1999) are widely discussed in Woodford (2003, Chap. 6), Galı́
(2008, Chap. 4), and Benigno and Woodford (2012). As we differ from them
mainly for the price dispersion, the derivation of the welfare-based function is
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not detailed. The reader is referred, e.g., to Galı́ (2008, Chap. 4) for a complete
derivation of the welfare function.

We assume a utility function taking the following separable form:

Ut =
(

C1−σ
t

1 − σ
− N

1+γ
t

1 + γ

)
, (4)

where Ct is consumption, and σ and γ are parameters.
A second-order approximation of equation (4) is

Ut − U � UcY

(
yt + 1 − σ

2
y2

t

)
+ UnN

(
nt + 1 + γ

2
n2

t

)
+ t.i.p. + O (∥∥ξ 3

∥∥)
,

(5)
where σ = −Ucc

Uc
Y , γ = Unn

Un
N , U , Y , and N are steady-state values, and t.i.p.

denotes the terms independent of policy. Note that to obtain equation (5), we have
used the aggregate resource constraint Ct = Yt . Accordingly, the welfare loss can
be written as follows:

W = −1

2
E0

∞∑
t=0

βt

[
εp

�
vari {pt(i)} +

(
σ + γ + δ

1 − δ

)
x2

t

]
+ t.i.p. + O (∥∥ξ 3

∥∥)
.

(6)
In order to specify our welfare criterion, we need to find an expression that

relates vari {pt(i)} to πt . In our framework, as shown by Sheedy (2007a), the
aggregate price level evolves as

log Pt =
∞∑

h=0
θh log P ∗

t−h, (7)

where P ∗
t stands for the reset price and θh denotes the share of firms using a price

that last changed h periods ago. Thus, the price level is an average of past reset
prices weighted by the share of firms using such price at time t .

By making use of equation (7) and exploiting the properties of the variance,
we can show that the discounted sum of price dispersion evolves in the following
way:

∞∑
t=0

βt�t =
∑∞

t=0 βt

[
(πt−ϕpπt−1)

2

αp+ϕp
− π2

t

]
1 − β

(
1 − αp − ϕp

) + O (∥∥ξ 3
∥∥)

. (8)

The proof is given in the appendix.
We substitute equation (8) into equation (6) and obtain our welfare measure:

W = −�
1

2
E0

∞∑
t=0

βt
(
π2

t + �1x
2
t + �2π

2
t−1 + �3πtπt−1

) + t.i.p. + O (∥∥ξ 3
∥∥)

,

(9)
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FIGURE 1. Different distributions of the reset probability with the same mean.

where � = εp

�

1−αp−ϕp

[1−β(1−αp−ϕp)](αp+ϕp)
, �1 = 1

�
(σ + γ+δ

1−δ
), �2 = ϕ2

p

1−αp−ϕp
, and

�3 = −2 ϕp

1−αp−ϕp
.

As for the Phillips curve, our welfare function (9) encompasses that deriving
from a Calvo price setting for ϕp = 0: In such a case, the weight attached to
backward inflation drops to zero.

2.3. Averages and Distributions of Reset Probability and Distortions

In the standard Calvo pricing model, the source of distortions is the (average)
probability of resetting prices, which is constant among firms at each instant of
time. Distortions and price duration are in fact mapped one by one to this probabil-
ity. In other words, firms are ex ante homogeneous, facing the same probability of
being extracted in Calvo’s lottery. In our generalization of Calvo (1983), we can,
instead, disentangle two sources of distortions stemming from the average and
the distribution of the probability of resetting prices. Here, reset probability is not
constant, unless the hazard is flat. Firms are ex ante heterogeneous, as each faces a
different probability of resetting prices according to the time elapsed since the last
reset.8 Distortions are related to the average probability of resetting prices (as in
the Calvo standard model), but now they also depend on how the reset probability
is distributed among firms.

A given average probability of resetting prices (i.e., average reset probability,
ARP) can be obtained for different slopes of the hazard function (ϕp)—we use the
following relationship: ARP = αp+ϕp. For instance, we can obtain three different
scenarios consistent with ARP = 0.3 associated with three different distributions
of the reset probability across firms, as illustrated in Figure 1.

All the panels of Figure 1 imply ARP = 0.3, but Panel (a) is built by assuming
ϕp = 0 (Calvo price model); in Panel (b), ϕp = 0.1; in Panel (c), ϕp = 0.25.

The figure shows that as long as the hazard function becomes steeper, there is
more cross-sectional dispersion that implies a low probability of resetting prices
for firms that have recently adjusted their prices and a high probability for the
firms that set their prices in the far past. It is clear that in Panel (c) there is a
greater dispersion in the probability to adjust a price, i.e., there is heterogeneity
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TABLE 1. Welfare loss for different price-setting schemes

Hazard function slope (ϕp)

Average reset probability (ARP) 0 0.1 0.25

0.4 1.000 1.230 1.647
0.3 1.348 1.685 2.338
0.25 1.509 1.897 2.686

in the resetting probability across firms. Similar figures can be drawn for different
average probabilities.

Given the average reset probability, we can refer to scenario (a) as Calvo,
scenario (b) as the mid-dispersion case, and scenario (c) as the high-dispersion
case. It is worth noting that given the ARP level, Panel (a) shows that the probability
of being able to post a new price is constant and equal among all the firms in the
Calvo scenario. By contrast, if the dispersion in the reset probability is not zero,
given the ARP level, more dispersion implies a lower individual probability for
firms that have recently changed their prices and a higher probability for those
that did it in the far past to compensate and keep the ARP constant.

Table 19 reports the welfare effects associated with several average probabilities
with different dispersions. For the sake of comparison, we consider the same
monetary policy rule in all cases.10 We express the welfare effects in the more
common form of welfare loss, which are further normalized to the Calvo scenario
with a reset probability equal to 0.4 (i.e., our baseline). The table is built on a
standard calibration of model parameters. We set the discount factor (β) equal to
0.99. The labor share is 2/3 so we set δ = 0.33. We assume a net price mark-up
of 20% setting εp = 6; we consider a log-linear utility function calibrating σ = 1
and γ = 2. The process governing the cost push shock is a white noise. Our
qualitative results are independent of the calibration.

The table shows that a decrease in the ARP induces more distortions as in the
traditional setup. Moreover, here, distortions also increase in the dispersion of the
reset probability.

It is well known, in Calvo’s setup, that the welfare losses associated with
the lower values for ARP are related to the price dispersion. In a flexible-price
environment, the optimal pricing rule is always to apply a mark-up over the
marginal cost. However, when prices are sticky, firms do not know when they will
be able to reoptimize; thus, they must balance the cost to apply a mark-up over the
current marginal cost against the benefit of staying close to the profit maximizing
mark-up over time following their inflation expectations about the future and reset
probabilities. This balance is costly and induces distortions because it implies an ex
post heterogeneity and a difference in the relative prices that induces misallocation
of resources. Distortions vanish in the zero-inflation long run when all relative
prices are equal.
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Positive hazard functions imply a sort of price race that enhances the distortions
due to price dispersion associated with stickiness described above. By definition,
everything equal (i.e., the ARP), positive hazard functions lead to more cross-
sectional dispersion in the reset probability. As long as the probability of firms
that have recently adjusted falls, the probability of the other firms must rise. After
a period of a temporary positive shock to the real marginal cost, firms extracted
from Calvo’s lottery adjust their relative price—some will lower their prices due to
the rollback, whereas others will increase them due to the catch-up. If the rollback
and catch-up do not compensate each other, the general level of price will move
and some firms will be forced to follow it. Specifically, average price will increase.
In the next period, rollbackers need to reduce less their price but catch-up firms
need to rise it more because of the increase in the price level. Since the latter are
more likely to be extracted, relative prices will take more time to be equalized at
the long-run value; therefore, welfare costs are magnified.

The next subsection investigates how these two features of the price-setting
process affect the conduct of monetary policy under different assumptions about
the policy regime (discretion and commitment), and how they affect the relative
gains of the latter over the former.

3. INFLATION TARGETING AND INTRINSIC INERTIA

3.1. Optimal Targeting Rule

The general Government’s problem consists of maximizing (9) subject to (3),
conditional to the policy regime. Formally, the Government’s problem at some
point of time t can be expressed as a minimization of the following Lagrangian
expression:

min
{πt+j }+∞

j=0, {xt+j }+∞
j=0

Et

∞∑
j=0

βj

[
1

2

(
π2

t+j + �1x
2
t+j + �2π

2
t+j−1 + �3πt+jπt+j−1

)

+ λt+j

(
πt+j − 	1πt+j−1 − β	2πt+j+1 + β2	1πt+j+2 − κxt+j − ut+j

) ]
,

(10)

where λt+j is the Lagrangian multiplier.
By solving the above problem for the “timeless perspective” regime [Woodford

(2003)], at a generic time t , we obtain the following optimal flexible targeting
rule:

πt = − �1

κ(1 + �2β)

×
[
xt − 	1βEtxt+1 − 	2xt−1 + 	1xt−2 + �3

2

κ

�1
(πt−1 + βEtπt+1)

]
.

(11)
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FIGURE 2. Optimal response to a cost push shock (high-dispersion scenario).

Optimal policy imposes to deviate from the long-run inflation target by consid-
ering past values of output and inflation and expected inflation.

As usual, optimal targeting under the timeless perspective regime is character-
ized by the fact that the Government, by reacting to the past output gap, affects
current inflation expectations and obtains a more favorable trade-off between
inflation and output at the cost of a longer stabilization (solving the so-called
stabilization bias problem). Compared to the standard textbook case, our Phillips
curve (3) implies a trade-off between inflation and output gap, which also depends
on lagged inflation (πt−1) and an additional forward term (Etπt+2). Thus, in order
to manipulate expectations, the Government now finds it optimal to react also to
the expected future output gap (Etxt+1) and its past value for an additional lag
(xt−2). Moreover, our optimal inflation targeting rule calls for responding also to
both a backward and an expected value of inflation. If ϕp = 0, 	1 drops to zero
and the textbook case is obtained—as both lagged inflation and the additional
forward term no longer affect the Phillips curve trade-off.

In order to implement optimal policy, as argued by Svensson and Woodford
(2005), a history-dependent target criterion is necessary. In fact, no target criterion
that involves only the projected paths of the target variables from the present
time onward is able to determine an equilibrium with the optimal responses to
disturbances.

3.2. The Gains of Commitment

We study the effects of optimal targeting by numerical methods. Our simulation
is performed by using the calibration reported in Section 2.3.

We illustrate the optimal targeting policy in Figure 2, which plots the impulse
response functions to a one-standard-deviation cost push innovation in the high-
dispersion scenario, assuming an average reset probability equal to 0.3.11 We plot
the dynamic responses for both the optimal targeting rule (11) and a discretionary
policy (noninertial rule).

https://doi.org/10.1017/S1365100516000535 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000535


OPTIMAL INFLATION TARGETING 145

FIGURE 3. Inflation and output gap equilibrium path under an optimal inflation targeting
rule.

It is clear from Figure 2 that when an optimal inflation targeting rule is im-
plemented (solid line), the variability of both inflation and output gap is reduced
with respect to the case in which monetary policy is conducted according to a
noninertial policy rule (dotted line): This entails smaller welfare losses. Under an
optimal targeting rule, inflation initially jumps and then undershoots converging
progressively to its steady state. Looking at the output gap equilibrium path, it
remains below zero for a time and exhibits a gradual convergence to its long-run
value. What we observe is that an optimal targeting policy involves a history-
dependent behavior: The optimal rule should consider both current and past values
of the target variables (in our case inflation and output gap).

In Figure 3, we consider the impulse response functions associated with optimal
inflation targeting for different degrees of inertia. Specifically, we consider the
three scenarios discussed in Section 2.3 (i.e., Calvo, mid-dispersion, and high
dispersion under a common average reset probability equal to 0.3).

The path followed by inflation and output gap is the same in each scenario.
They differ only on a quantitative point of view. A greater dispersion in the
reset probability leads to a larger variability in both inflation and output gap,
and, as a consequence, higher losses. As inflation becomes more persistent, the
deflation experienced by the economy is harder and involves a larger fall in the
output gap that returns to its steady state more slowly. In other words, in the
presence of a greater dispersion in the reset probability, it is more difficult to
stabilize the economy. The intuition of the result is twofold. As explained, this
is due to the existence of inflation persistence, which makes a disinflation more
costly. Moreover, in our setup, a dispersion in the reset probability also leads to
additional stabilization costs, since manipulation of expectations becomes more
difficult when dispersion increases because of the presence of two expectation
terms in the Phillips curve (with opposite signs).

Following Steinsson (2003), it is interesting to compare the relative perfor-
mance of an optimal inflation targeting with respect to a noninertial discretionary
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TABLE 2. Gains from commitment and inflation inertia

Hazard function slope (ϕp) % gain from commitment

0 31.2
0.05 34.4
0.10 38.0
0.15 42.0
0.20 46.5
0.25 51.5
0.30 55.8

rule for different degrees of inertia. Table 2 shows the relative gains of an optimal
commitment on discretion—computed according to the utility-based welfare max-
imization. We consider different slopes for the hazard function starting from Calvo
(ϕp = 0) to the high-dispersion scenario (ϕp = 0.3). In all cases, we keep fixed
the average probability of changing prices (ARP) at 0.3. It is worth remembering
that the inflation intrinsic persistence grows with ϕp. Thus, the table reports the
percentage gains of an optimal inflation targeting for different degrees of inflation
inertia.

The greater the ϕp, the higher the relative gain of commitment. This result
differs from Steinsson (2003), who finds that the gain falls in the degree of
inflation persistence. Indeed, he finds some increasing gains for low degrees of
inertia. Gains of commitment are mainly related to the Government ability to
manipulate expectations in order to improve the inflation–output gap trade-off.

In Steinsson (2003), inflation inertia is introduced by a simple rule-of-thumb,
and results come out from the fact that as the backward component of the Phillips
curve increases, the forward-looking one falls, reducing the gain from commit-
ment. By contrast, in our model, inflation inertia is driven by the slope of the
hazard function and grows with the dispersion of the reset probability among
firms. Optimizing firms know that, in the period immediately after their resets,
they will be very unlikely to change their prices again [see Figure 1(c)]. Thus, in
choosing a new price, each firm gives much importance to the future state of the
economy, when the price will probably be allowed to reset again. As a consequence,
commitment gains are higher in a world with high dispersion as expectations on the
future state of the economy matter more. Thus, here, implementing a policy rule
that is able to influence private sector expectations may lead to an improvement
of the inflation–output gap trade-off.

The relative effects of inflation inertia on the optimal policy regimes are thus not
general, but they depend on the way intrinsic inflation persistence is introduced.

3.3. Targeting and Misinterpretation of Persistence Sources

Now, we assume model uncertainty and consider the cost of misunderstanding
the true sources of inflation persistence. In the spirit of Sbordone (2007), we
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compare the dynamics of implementing a stabilization policy when the policy
maker overestimates the degree of intrinsic persistence with those arising from
ignoring actual structural persistence. At the end of the section, by using robust
control techniques (specifically, Savage’s minimax regret criterion), we look at
robust policies.12

We consider two specifications, in both setting ARP = 0.3. The first specifica-
tion is a purely forward-looking New Keynesian Phillips curve (ϕp = 0), in which
persistence is extrinsic, i.e., it depends on the autocorrelation of the cost push
shock. The second is the high-dispersion scenario (ϕp = 0.25) that endogenously
generates (intrinsic) inflation persistence by way of a lagged inflation term in the
Phillips curve.

In each specification, we compute the two welfare losses associated with a
conduct for monetary policy, where the Government attributes the observed per-
sistence to an extrinsic or intrinsic nature. Of course, for each specification, only
one policy rule is “correct,” whereas the other is based on a misinterpretation of
the source of inflation persistence. Formally, the two rules are as follows:

πt = −�1

κ
(xt − 	2xt−1) , (12)

πt = − �1

κ(1 + �2β)

×
[
xt − 	1βEtxt+1 − 	2xt−1 + 	1xt−2 + κ�3

2�1
(πt−1 + βEtπt+1)

]
,

(13)

where equation (12) is the optimal commitment for the standard Calvo case (ex-
trinsic persistence, i.e., ϕp = 0) and equation (13) denotes the optimal inflation
targeting rule followed when inertia is intrinsic, i.e., ϕp = 0.25. Formally, we
want to investigate whether there are welfare losses in acting following equation
(13) when inflation is characterized by intrinsic inertia, and we repeat the same
exercise by implementing (12) in a context where inertia is driven by the serial
correlation of the shock (i.e., it is extrinsic).

Losses in the two specifications under different policy rules are presented in
Table 3. In the last row of the table, we also compute the percentage loss deriving
from the implementation of an optimal stabilization policy under wrong policy-
maker beliefs about the nature of inertia.13

Central bankers’ misunderstandings are always costly. Conducting a stabiliza-
tion policy under a wrong belief about the true source of inertia always entails
welfare worsening due to an inefficient management of expectations.15 Table 3
illustrates how misunderstanding the true source of persistence implies an addi-
tional loss in both specifications. In percent terms, the additional losses are about
0.3% when the true model is a purely forward-looking Phillips (i.e., extrinsic in-
ertia) and 0.2% when inflation persistence is intrinsic. Ignoring intrinsic inflation
inertia leads to a smaller additional loss.
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TABLE 3. Welfare loss for different targeting rules14

True source of inflation persistence

Extrinsic (ϕp = 0) Intrinsic (ϕp = 0.25)

Targeting policy:
Rule (12) 1.000 1.259
Rule (13) 1.003 1.256

Loss difference (%) 0.3 0.2

TABLE 4. Regret for different targeting rules

True source of inflation persistence

Extrinsic(ϕp = 0) Intrinsic (ϕp = 0.25)

Targeting policy:
Rule (12) 0 0.0025
Rule (13) 0.0029 0

Both misunderstandings lead to some costs, so in a context of model uncer-
tainty, it is interesting to consider policy robustness. In a framework of our kind,
as emphasized by Brock et al. (2007) and Sbordone (2007), a good robustness
criterion is to select from among different policy rules by using the minimax regret
criterion developed by Savage (1951).16 The regret is the difference between the
loss incurred by implementing certain policy in a certain given specification and
the loss obtained by using the optimal policy in that given specification. Robust
policy is derived from Table 4, where we report the regret for the two different
rules (policies) in our two alternative specifications of the economy. The robust
policy is then chosen by applying Savage’s criterion.

The table confirms the results found in Table 3. Making a mistake about the
origin of inflation inertia always involves incremental costs: A regret of 0.0029
arises when persistence is entirely generated by a serially correlated shock, whereas
the regret is 0.0025 when the persistence is due to a backward component in the
Phillips curve. The regret is minimized by the rule (12). Thus, under model uncer-
tainty, the policy maker should always conduct monetary policy by implementing
a targeting rule derived ignoring intrinsic inertia.

The intuition of our result is as follows. Now, the central bank faces uncertainty
on the effects of targeting on the economy since the true model is unknown. If
the true source of persistence is extrinsic, but the central bank assumes that it is
intrinsic, too loose policies compared to the optimal one will be implemented. By
contrast, when the central bank wrongly assumes that the true source of persistence
is structural, monetary policy is too aggressive to inflation. In an LQ context
of model uncertainty,17 the effects of “wrong” policies are not symmetric: Too
aggressive policies are more costly; hence, robust policy actions should be more
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cautious [Brainard (1967)]. In our case, when the central bank misunderstands the
true model of the economy, the overreaction in the case of intrinsic persistence
costs more than the underreaction in the case of extrinsic persistence. As a result,
if persistence is driven by structural factors, the costs of a wrong policy are
higher. Thus, under model uncertainty, robust policy implies to ignore extrinsic
persistence.

4. CONCLUSIONS

In this paper, we reconsider optimal inflation targeting in a model with intrinsic
inflation persistence by using Rotemberg and Woodford’s (1997) LQ approach.
Inflation inertia was micro-founded assuming that the probability to update a
price for each firm is a function of time; specifically, in our model, firms’ pricing
decisions depend on the time spent from the last price reset. By our welfare
approximation, we explored the nature of macro-distortions induced by our pricing
model and its implications for the optimal monetary policy.

By generalizing standard Calvo’s price mechanism, we disentangled two sources
of distortions by considering both the average (as in Calvo) and the cross-
distribution across firms of the probability of resetting prices. We showed that, in
addition to the welfare costs due to a higher average, further welfare losses are
generated by increases in the dispersion of the probability of resetting prices.

After computing optimal inflation targeting policy, we found that the effects
of inflation inertia on the optimal policy are different from those stemming from
alternative models of inflation persistence based on rule-of-thumb assumptions
or indexation mechanisms. In our setup, the relative gain of commitment over
discretion increases in the degree of the inflation persistence as—once intrinsic
inflation is introduced by a positive hazard function—the interaction between the
different components of the Phillips curve becomes complex. Therefore, relative
effects of inflation inertia on the optimal policy regimes are at least not general,
but they depend on the way intrinsic inflation persistence is introduced.

Assuming model uncertainty, we finally analyzed the effects on optimal mone-
tary policy of misinterpreting the sources of inflation inertia, which can be either
intrinsic (driven by a backward component of the Phillips curve) or extrinsic
(driven by the shock autocorrelation). Implementing the wrong rule is always
costly, whatever the right model is. Moreover, using robust control techniques, we
found that robust policy requires to ignore intrinsic persistence and to implement
a simple textbook timeless perspective policy. The result comes from general
Brainard’s cautious principle.

NOTES

1. The approach can be, however, generalized to the case of a distorted steady state [Benigno and
Woodford (2012)].

2. See also Amato and Laubach (2003).
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3. It is worth noticing that, although Sheedy (2007b) does not provide welfare comparison under
different regimes, he derives alternative policy rules. Among these, he computes a sort of discretionary
optimal policy. This rule, labeled “Markovian,” is obtained by ignoring the effects of the policy on
lagged terms (see example 2 in his paper). We instead compare the effects of optimal inflation targeting
to the traditional discretionary policy obtained by the solution of the Bellman equation as in Walsh
(2003, Section 8.4.5). The two discretionary policies do not lead to the same results (results are
available upon request).

4. Common alternatives include the Rotemberg (1982) price model, sticky information, and state-
dependent models. See Walsh’s (2010, Chap. 6) textbook for details.

5. Di Bartolomeo and Di Pietro (2015) also check the stability of the slope with respect to policy
regime changes. They conclude that the positive hazard slope is regime invariant. See Benati (2008,
2009) for a general discussion on the point.

6. The reader is referred to Sheedy (2007a) for the complete derivation. For the sake of simplicity,
we assume n = 1. An alternative, but equivalent, derivation is described in Sheedy (2010).

7. Although they will not fully exploit the mark-up over the marginal cost since they expect that
tomorrow the shock will vanish, but they do not known if they will be able to reset the price again.

8. Of course, two firms who have reset at the same time have the same probability to readjust.
9. The table is built by considering a transitory cost push shock. Thus, it reports conditional welfare.

10. We consider a policy consistent with a Taylor rule, which only responds to current inflation by a
coefficient equal to 1.5. The same results hold if optimal policies are instead considered. More details
are available upon request.

11. Simulations are performed by using Söderlind’s (1999) toolkit.
12. For a review of the issue, see Hansen and Sargent (2011) and references therein.
13. In the online Appendix, we provide the inflation and output gap IRFs to a cost push shock under

model uncertainty.
14. Losses are normalized to the case of correct policy without inflation structural persistence (where

the welfare loss is the smallest). An alternative consists of expressing all of them in consumption
equivalent terms. The loss difference measures the additional cost of implementing the wrong policy.

15. It is worth noting that the result is not trivial since optimal timeless rules can be dominated by
other inertial rules. See Blake (2001) or Jensen and McCallum (2002) for a discussion.

16. See Stoye (2011) for its axiomatization. A brief explanation of this criterion is provided in the
online appendix.

17. Effects can be modified in more complicated models.
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APPENDIX

The welfare function can be derived in three steps. We can write the cross-sectional mean
and variance as P̄t ≡ Eipt (i) and �

p
t = vari [pt(i)], where we define pt(i) = log Pt(i).

1. As shown by Sheedy (2007a), the aggregate price level evolves according to
equation (7) and thus the cross-sectional mean can be written as

P̄t = Ei [pt(i)] = (
1 − αp

)
[Eipt−1(i)] − ϕp [Eipt−2(i)] + (

αp + ϕp

)
p∗

t , (A.1)

from which we obtain

p∗
t − P̄t−1 = πt − ϕpπt−1

αp + ϕp

. (A.2)

2. The cross-sectional variance is

�t = vari

[
pt(i) − P̄t−1

]
= Ei

{[
pt(i) − P̄t−1

]2
}

− {
Ei

[
pt(i) − P̄t−1

]}2

= Ei

{[
pt(i) − P̄t−1

]2
}

− π 2
t , (A.3)

where, by equation (A.1), the first right-hand-side term is

Ei

{[
pt(i)− P̄t−1

]2
}

= (
1 − αp

)
Ei

{[
pt−1(i)− P̄t−1

]2
}

− ϕpEi

{[
pt−2(i)− P̄t−1

]2
}

+ (
αp + ϕp

) [
p∗

t − P̄t−1

]2
. (A.4)

By using �t−1 = Ei

{[
pt−1(i) − P̄t−1

]2
}

, �t−2 = Ei

{[
pt−2(i) − P̄t−1

]2
}

, and plugging

(A.2) and (A.4) into (A.3), we obtain

�t = (
1 − αp

)
�t−1 − ϕp�t−2 +

(
πt − ϕpπt−1

)2

αp + ϕp

− π 2
t + O (∥∥ξ 3

∥∥)
. (A.5)

3. Then, integrating (A.5) and by discounting over all periods t ≥ 0, we obtain
equation (8), i.e.,

∞∑
t=0

βt�t = 1

1 − β
(
1 − αp − ϕp

) ∞∑
t=0

βt

[(
πt − ϕpπt−1

)2

αp + ϕp

− π 2
t

]
+ O (∥∥ξ 3

∥∥)
. (A.6)

Finally, substituting equation (A.6) into equation (6) gives an expression for the welfare

W = −1

2
E0

∞∑
t=0

βt

[
εp

�

(
αp + ϕp

)−1 (
πt − ϕpπt−1

)2 − π 2
t

1 − β
(
1 − αp − ϕp

) +
(

σ + γ + δ

1 − δ

)
x2

t

]

+ t.i.p. + O (∥∥ξ 3
∥∥)

. (A.7)
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