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Mechanisms of flow tripping by discrete
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The effects of a spanwise row of finite-size cylindrical roughness elements in a
laminar, compressible, three-dimensional boundary layer on a wing profile are
investigated by direct numerical simulations (DNS). Large elements are capable
of immediately tripping turbulent flow by either a strong, purely convective or an
absolute/global instability in the near wake. First we focus on an understanding of
the steady near-field past a finite-size roughness element in the swept-wing flow,
comparing it to a respective case in unswept flow. Then, the mechanisms leading to
immediate turbulence tripping are elaborated by gradually increasing the roughness
height and varying the disturbance background level. The quasi-critical roughness
Reynolds number above which turbulence sets in rapidly is found to be Rekk,qcrit≈ 560
and global instability is found only for values well above 600 using nonlinear DNS;
therefore the values do not differ significantly from two-dimensional boundary layers
if the full velocity vector at the roughness height is taken to build Rekk. A detailed
simulation study of elements in the critical range indicates a changeover from a
purely convective to a global instability near the critical height. Finally, we perform
a three-dimensional global stability analysis of the flow field to gain insight into the
early stages of the temporal disturbance growth in the quasi-critical and over-critical
cases, starting from a steady state enforced by damping of unsteady disturbances.

Key words: absolute/convective instability, boundary layer stability, transition to turbulence

1. Introduction

Due to the rapid growth of civil air traffic and ambitious goals for the reduction of
pollutant emissions, the development of eco-efficient aircraft requires elaborate fuel
saving technologies. Laminar flow control (LFC) on wings and tail empennage offers
a great potential to decrease the overall drag and has lately gained attention due to
test campaigns and even implementation of large-scale production by leading aircraft
manufacturers. Promising efforts rely on approaches such as leading-edge suction or
natural laminar flow. Such methods delay the transition to turbulent flow, but their
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Flow-tripping roughness in a swept-wing boundary layer 159

capability to relaminarise an already turbulent boundary layer is limited. Accordingly,
premature transition due to surface imperfections such as discrete roughness elements
has to be prevented and is therefore a scenario of great practical importance.

Since the 1950s, numerous publications have been dedicated to investigating the
near-field flow structures of isolated roughness elements in two-dimensional boundary
layers, and finding the criteria for a ‘critical’ roughness, triggering transition to
turbulence immediately; an overview is given below. While most investigations
were and still are devoted to the transition-promoting effect of roughness elements
in two-dimensional symmetric boundary layers, the swept-back wings of modern
aircraft produce a three-dimensional boundary-layer profile characterised by cross-flow
instability, especially in the leading-edge region. In the present work, we address the
validity of existing studies for a three-dimensional base flow as present on an infinite
swept wing.

For two-dimensional boundary layers, Gregory & Walker (1956) published one
of the first systematic investigations of discrete, cylindrical roughness elements and
their effect on transition. They identified a steady horseshoe vortex in front of, and
spiral vortices behind, the elements. When reaching a certain roughness height, the
latter broke down and gave rise to periodic vortex shedding, ultimately leading to
turbulent flow. While for modest roughness size the flow downstream appeared almost
unaffected, the emergence of a turbulent wedge was found to occur rather abruptly
when a critical roughness height was reached. Together with the work by Klanfer
& Owen (1953), a Reynolds number Rekk,crit based on the roughness height and
the downstream velocity of the undisturbed flow at the position of the tip of the
roughness was found to be the best measure to describe the effect of the element
on the boundary layer. Following studies by Mochizuki (1961), Tani (1961) and Tani
et al. (1962) also addressed the influence of free-stream turbulence and the pressure
gradient. Von Doenhoff & Braslow (1961) collected published data and found that
Rekk,crit increases with the aspect ratio ra = k/d, with k being the roughness height
and d the roughness diameter. For spanwise oriented roughness arrays they found
that the spacing between the elements is only a relevant parameter for values below
three times the roughness diameter – for larger spacing, the roughness elements can
be treated as isolated. Sedney (1973) compiled a survey of the findings in the 1950s
and 1960s.

A closer look on the near-field flow structures around isolated roughness elements
was undertaken by Baker (1979) in an investigation of the formation of horseshoe
vortices. Kendall (1981) classified the downstream disturbance evolution behind a
roughness element into a near wake, where the velocity deficit due to the recirculation
zone dominates, and a far wake dominated by the vertical displacement of streamwise
momentum as an effect of the streamwise legs of the horseshoe-vortex system. Acarlar
& Smith (1987) conducted extensive water-tunnel measurements of the flow past a
hemispherical roughness element. They again found a horseshoe vortex, but focused
on the role of unsteady hairpin vortices in the roughness-promoted transition process
and attributed a key role to these structures. Klebanoff, Cleveland & Tidstrom (1992)
addressed the strong inflectional velocity profiles in the near wake and found a
correlation with the wall-normal maxima of the velocity fluctuations. When the latter
reached nonlinear amplitudes, rapid transition to turbulent flow was observed.

For roughness elements with subcritical height, low-speed streaks form due to
the lift-up effect (Landahl 1980) as the boundary layer develops downstream. One
of the first results indicating transient growth behind isolated roughness elements
was reported by Gaster, Grosch & Jackson (1994). For a series of experiments with
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a shallow oscillating bump, they observed the growth of a spanwise disturbance
mode that could not be explained by linear theories. Accompanying simulations by
Joslin & Grosch (1995) qualitatively confirmed the findings and detected a pair of
counter-rotating streamwise vortices evolving to the sides of the bump, causing a
low-speed-streak growth in the downstream centreline by the lift-up effect. A series
of experiments aimed at the understanding of roughness-induced transient growth was
conducted by, e.g. White & Ergin (2003), Ergin & White (2005, 2006), Denissen &
White (2008); the major findings are compiled in White (2005). White & Ergin (2003)
observed that the energy associated with transiently amplified disturbances scales
with Re2

kk for roughness elements. Direct numerical simulations (DNS) by Fischer
& Choudhari (2004) and Choudhari & Fischer (2005), mimicking the experimental
set-up, confirmed this empirical rule up to at least Rekk ≈ 250, and also addressed
effects of roughness shape and spacing. All observed transient disturbances, however,
are found to be ‘suboptimal’, i.e. all experimentally and numerically observed
amplitude ratios are far below what is predicted by optimal disturbance theory
(see Andersson, Berggren & Henningson 1999; Luchini 2000; Tumin & Reshotko
2001). Consequently, Choudhari & Fischer (2005) state that the relevance of transient
streak growth caused by decaying symmetrical vortex pairs for roughness-induced
transition is questionable. Rather, again periodic vortex shedding set in at a certain
roughness height, Rekk = 435, in their simulations.

Measurements of unsteady velocity fluctuations by Ergin & White (2006) showed
a correlation of fluctuation maxima and inflection points in the downstream velocity
component of the time-averaged flow. The dominant frequency band compared well
with results from a simple model for the Kelvin–Helmholtz instability. Therefore,
the earlier findings by Klebanoff et al. (1992) were substantiated, making clear that
transient growth is not involved in the near-field turbulence-tripping mechanism by
discrete roughness elements.

DNS with roughness elements employing an overset-grid approach were performed
by Rizzetta & Visbal (2007). The cylindrical roughness elements were meshed by
a cylindrical mesh embedded in a Cartesian background grid block. The flow under
consideration and the roughness geometry were adopted from Ergin & White (2006).
Time-mean streamwise-velocity contours match experimental results by, e.g. Denissen
& White (2008). A subcritical roughness configuration revealed the existence of
a system of two horseshoe vortices. For a critical roughness element, velocity
fluctuations corresponding to inflection points in the time-mean velocity contours
were correlated with the emergence of hairpin vortex shedding, leading to rapid
transition.

Another series of DNS intended to reproduce the results by Ergin & White (2006)
was performed by Stephani & Goldstein (2009), Drews et al. (2011) and Doolittle,
Drews & Goldstein (2014). The cylindrical roughness elements were modelled by
an immersed boundary method, imposing the no-slip condition on specified grid
points. The resulting shape was consequently jagged, and the series of investigations
shows a non-negligible resolution dependence. The simulations by Doolittle et al.
(2014) further addressed the formation of horseshoe vortices in front of the roughness
and found good agreement with the systematic investigation by Baker (1979). Zhou,
Wang & Fan (2010) simulated the flow past a hemispherical roughness element and
compared their results with Klebanoff et al. (1992). Quantitative differences in the
wall-normal distribution of the downstream velocity fluctuations are attributed to
different incoming turbulence levels. In the simulations, these fluctuations could be
linked to the existence of hairpin vortices.
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Bernardini, Pirozzoli & Orlandi (2012), Bernardini et al. (2014) also conducted a
DNS series on a set-up mimicking the conditions of Ergin & White (2006). They
spanned a wide parameter space by varying parameters of the oncoming flow and the
roughness geometry. Based on this data base, a turbulence-tripping criterion taking the
blocked mass flux into account was derived, scaling out the influence of Mach number
and roughness shape.

Stability analyses of the highly three-dimensional flow in the near wake of
roughness elements have been performed by different approaches, see Theofilis
(2011) for a review on topical stability analysis methods. Biglobal stability analysis
to investigate roughness wakes in planes perpendicular to the main flow was mainly
used in supersonic boundary layers, see, e.g. Groskopf, Kloker & Marxen (2010);
recent studies for subsonic boundary-layer flow are reported by Denissen & White
(2013) and Shin, Rist & Krämer (2015). The two-dimensional unstable eigenfunctions
were either of varicose or sinuous type, where a dominant varicose mode could
be connected to the three-dimensional shear layer developing downstream of the
roughness.

Loiseau et al. (2014) performed an extensive investigation of the global stability
of a configuration adopted from the turbulence-tripping case in the experiments by
Fransson et al. (2005). Based on a comparison with the experimental data, the authors
find the flow tripping by the roughness to be connected to a global instability of
the flow field. By varying the aspect ratio ra = k/d of the cylindrical roughness
element, two mechanisms acting as a wavemaker, the core of the absolute instability,
could be identified. First, for ra < 1, the wavemaker has a varicose appearance and
is located in the shear layer evolving from the top of the roughness. This scenario
most likely corresponds to the observations made in previous studies. Second, for
ra > 1, an antisymmetric wavemaker similar to the generator of a von Kármán
vortex street is present in the shear layers emanating from the lateral edges of the
roughness. Although an antisymmetric modulation is found in an accompanying
unsteady nonlinear DNS, the transition process appears to be dominated by almost
symmetric hairpin vortices. The reason for this observation remains unclear.

Investigations of the flow past discrete roughness elements in three-dimensional
swept-wing boundary layers are scarce and mainly concentrate on micron-sized
roughness elements that are in the so-called ‘linear’ range of receptivity, where a
surface imperfection induces a characteristic local disturbance flow field that may
be superposed on the base flow. Note, however, that the strength of the disturbance
flow field may depend nonlinearly on roughness parameters such as as the height,
as shown by Luchini (2013) for a generic boundary layer and Choudhari & Duck
(1996) and Kurz & Kloker (2014b) for swept-wing flow. In the presence of cross-flow
instability, such shallow roughness elements induce unstable steady cross-flow modes;
a review on related receptivity studies is given in Kurz & Kloker (2014b). A practical
application in the scope of LFC is the stabilisation of a three-dimensional boundary
layer by the induction of a control mode, as suggested by Saric, Carrillo & Reibert
(1998) and the recent associated DNS by Hosseini et al. (2013); see also the detailed
simulations by Wassermann & Kloker (2002).

The flow past a spanwise-periodic array of roughness elements having a height
of approximately 30 % of the local displacement thickness was computed by Piot,
Casalis & Terracol (2007). Due to the short simulation time, the flow downstream
of the roughness array comprised steady cross-flow modes and slowly decaying
travelling cross-flow waves, the latter resulting from the sudden introduction of the
roughness elements into the undisturbed base state at the beginning of the simulation.
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A saddle-point analysis presented in Piot & Casalis (2009) shows that the observed
unsteady modes are indeed damped. Further, Piot & Casalis (2009) again point out
that a decay may be counteracted by an undue pressure feedback from the outflow
boundary condition, as has been discussed by Buell & Huerre (1988) and Kloker,
Konzelmann & Fasel (1993).

Larger roughness elements with heights of the order of the local displacement
thickness still induce high-amplitude cross-flow vortices invoking (convective)
secondary instability shortly downstream, but the flow in the vicinity of the roughness
becomes more complex due to the formation of steady vortex systems and a
recirculation region. DNS with a spanwise array of such roughnesses were performed
by Brynjell-Rahkola et al. (2015) who also presented preliminary results from a
global stability analysis. DNS by Kurz & Kloker (2014a) showed that disturbance
growth in the near wake may directly contaminate the flow by unsteady vortex
shedding; the analogies to a respective two-dimensional boundary-layer case are
highlighted in Kurz & Kloker (2015b). As observed by Kurz & Kloker (2015a), this
scenario may be promoted by either a strong convective or a global instability caused
by the recirculation zone in the near wake of the roughness element.

In the present work, we compare a subcritical roughness case in the three-
dimensional swept-wing flow to a respective two-dimensional base-flow case, before
we focus on the three-dimensional case. The roughness height is increased, and the
background disturbance level is varied in order to find the critical roughness Reynolds
number Rekk,crit. For a quasi-critical and distinctly over-critical Rekk, we investigate the
temporal evolution of unsteady disturbances starting from an artificial steady solution,
in order to characterise the nature of the dominant instability mechanism. Finally,
global stability analyses of these two cases are performed.

2. Numerical method
All data presented in the present investigation are based on DNS. In order to

observe the temporal disturbance growth for near-critical roughness elements, we
employ various numerical techniques in our compressible flow solver.

2.1. Direct numerical simulations
DNS are performed using a sixth-order accurate, compact finite-difference flow solver,
solving the time-dependent, three-dimensional, compressible Navier–Stokes equations
in non-dimensional conservative formulation. Time integration is accomplished by an
explicit fourth-order Runge–Kutta scheme. Details on the simulation code, the base-
flow computation as well as the numerical set-up including the representation of the
roughness and the boundary conditions can be found in Kurz & Kloker (2014b) and
are summarized briefly below.

The base flow past a swept wing with infinite span is computed by the Reynolds-
averaged Navier–Stokes (RANS) solver TAU with second-order accuracy. The laminar
solution in the front part of the wing is transferred to a structured high-resolution
DNS grid by a high-order Lagrangian interpolation and further converged in two
steps by a two-dimensional DNS. For the three-dimensional unsteady DNS we use
characteristic boundary conditions at inflow boundary, free-stream boundary and
outflow boundary in conjunction with sponge layers based on a volume-forcing term.
Further, the computational grid is stretched perpendicular to the wall and in the
downstream direction in front of the outflow boundary to eliminate high-wavenumber
disturbances in conjunction with a tenth-order compact spatial filter. At the wall we
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impose the no-slip condition, an isothermal formulation keeping the adiabatic wall
temperature of the base flow without roughness and a pressure extrapolation from the
domain interior.

2.2. Selective frequency damping
Artificial steady solutions of globally unstable flows are obtained with our DNS code
employing the method called selective frequency damping (SFD), see Akervik et al.
(2006). This is realized by adding a source term to the right-hand side of the Navier–
Stokes equations, acting as a temporal filter,

∂Q
∂t
= ∂Q

∂t

∣∣∣∣
Navier–Stokes

− χ(I − T)Q, (2.1)

with the vector of the conservative variables Q, time t, gain factor χ , temporal filter
kernel T and identity matrix I . As the solution converges towards a steady state,
the filter term vanishes (I→ T), leaving a solution of the unmodified Navier–Stokes
equations.

2.3. Nonlinear disturbance formulation
In practice, the SFD source term will never be exactly zero, but has a small finite
value. Hence, if the SFD is simply switched off to observe the (linear) temporal
evolution of the flow starting from the steady state, there is a small pulse-like
temporal discontinuity due to the sudden removal of the filter term. Instead, we
employ a nonlinear disturbance formulation for the temporal evolution simulations,
where the temporal derivative of the state at the last time step of the damped
simulation, Q0, is forced to zero by subtracting the ‘base-flow derivative’

∂Q
∂t
= ∂Q

∂t

∣∣∣∣
Navier–Stokes

− ∂Q0

∂t
. (2.2)

Thereby, the passage from the SFD steady state to the unsteady DNS is smoothed.
Although the small source term is kept, the temporal damping effect is switched off
immediately, since there is no further adjustment of it to numerical background noise
or incoming disturbances in the flow.

2.4. Global stability analysis
The stability analysis of the compressible, fully three-dimensional flow field around
the roughness element is defined by the global mode ansatz

q′(x, t)= q̂(x)e−iωt + c.c., (2.3)

with perturbation state vector q′ and the complex eigenfunction q̂ = (û, v̂, ŵ, ρ̂, T̂)T,
position vector x, i=√−1 and angular frequency ω ∈ C; for an overview of global
linear stability analysis, see Theofilis (2011). In order to solve the associated
eigenvalue problem, the compressible Navier–Stokes equations in disturbance
formulation were linearised around a steady-state solution by cancellation of
higher-order disturbance terms. Thus, we can write

∂q′

∂t
= Lq′, (2.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

24
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.240


164 H. B. E. Kurz and M. J. Kloker

with the discrete linearised Navier–Stokes operator L, being represented by an n× n
– matrix. The associated eigenvalue problem is defined as

Lq̂= λq̂, (2.5)

with the eigenvalues λj = −iωj and eigenvectors q̂j of the system matrix. The
dimension of the system is n= 5NξNηNz =O(108) in the present case, where Nξ , Nη,
Nz are the number of grid points in chordwise, wall-normal and spanwise directions,
respectively. Although modern iterative Krylov-subspace methods are capable of
tackling large eigenvalue problems, L is simply too large to be stored explicitly in
main memory, even on state-of-the-art super computers. Therefore, we employ a
matrix-free time-stepper approach as proposed by Edwards et al. (1994), and used
for complex flows by, among others, Barkley, Gomes & Henderson (2002), Bagheri
et al. (2009) and recently Loiseau et al. (2014). For that purpose, the transformed
eigenvalue problem

eL1tq̂= σ q̂, (2.6)

with the fixed time interval 1t and the transformed eigenvalues σj is solved by
a matrix-free Rayleigh–Ritz method based on a Krylov subspace. We employ the
Krylov–Schur method implemented in the software library SLEPc (Hernandez,
Roman & Vidal 2005), an algorithm similar to the classical Arnoldi iteration with
an effective restarting procedure, developed by Stewart (2002). In this work, we use
1t = 1.277 × 10−4, corresponding to 300 time steps of the Navier–Stokes solver, a
subspace dimension of 480 and a convergence criterion for the eigenvalues of 10−8.

3. Flow configuration
The flow under consideration is characterised by generic jet-transport-aircraft

free-stream conditions and the wing profile defined in the European Commission FP7
project ‘RECEPT’.

3.1. Base flow
We consider the compressible boundary-layer flow over a modified laminar NACA
671 − 215 profile with infinite span. The chord length perpendicular to the leading
edge is L̄ = 2.0 m (the overbar denotes dimensional values) serving as reference
length for non-dimensionalisation of the wall-parallel coordinates, whereas all other
length scales are related to the displacement thickness (in compressible formulation)
in the streamline-oriented coordinate system, δ̄1,s,R = 1.7 × 10−4 m, evaluated at the
downstream position of the roughness, xR = 0.02. The sweep angle is β] = 35◦
and the angle of attack measured in a plane perpendicular to the leading edge is
α] =−6.1◦.

A steady reference solution is computed with the Reynolds-averaged Navier–Stokes
(RANS) solver TAU with fixed transition at xtr = 0.2 on both upper and lower sides.
The free-stream velocity magnitude Q̄∞ = 191.8 m s−1 serves as reference value
for non-dimensionalisation of all velocity components; the chordwise and spanwise
velocity components are Ū∞= 157.1 m s−1 and W̄∞= 110.0 m s−1, respectively. The
flow is further characterised by Ma∞ = Q̄∞/ā∞ = 0.65, where ā∞ is the free-stream
speed of sound, and ReQ= Q̄∞ρ̄∞(L̄/ cosβ])/µ̄∞=10.3×106, with free-stream values
of the density ρ̄∞ and dynamic viscosity µ̄∞. The resulting flow on the considered
upper wing side has a stagnation line at x = 0.01 and subsequent acceleration up
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FIGURE 1. Distribution of the pressure coefficient cp on the upper side of the swept-wing
profile. The inset shows two-dimensional streamlines (thin, spanwise velocity component
w set to zero) and three-dimensional streamlines (thick), the latter starting close to the
boundary-layer edge in the stagnation-line region. The dashed line depicts the prescribed
transition location xtr = 0.2 for the base-flow computation. The curvilinear tangential
system (ξ , η, z) has its origin at the leading edge.

Grid x/L ηmax 1ξuni 1ηwall 1z χη,bl χη Nξ ×Nη ×Nz

Reference, 0.0550–0.0851 274 0.150 0.0242 0.184 1.025 1.055 1258× 188× 128
two-dimensional
Reference 0.0149–0.0454 333 0.196 0.0294 0.184 1.025 1.055 1258× 188× 128
High resolution 0.0149–0.0452 334 0.141 0.0208 0.140 1.015 1.054 1764× 256× 168

TABLE 1. Parameters for the reference grids and the high-resolution grid used for a
resolution study. The reference length for the two-dimensional grid is δ̄1,R,2D = 2.07 ×
10−4 m, for the other grids it is δ̄1,s,R = 1.7× 10−4 m. For definitions, see § 3.1.

to x= 0.7. The distribution of the pressure coefficient cp = (p− p∞)/(0.5ρ∞Q2
∞) on

the upper wing side is given in figure 1. For details on the stability properties and
boundary-layer parameters, see Kurz & Kloker (2014b).

The numerical domain Ω1 used for the DNS is spanned by a structured grid with
a downstream extent 0.015< x< 0.0325 and uniformly spaced grid points along the
wall, cf. figure 2 and table 1. The domain is extended in downstream direction by a
stretched outflow zone up to x= 0.0454, cf. § 2.1. The domain height is ηmax= 333×
δ1,s,R, whereas the wall-normal point distribution is relaxed by a variable stretching
factor in η-direction, i.e. χη,bl in the boundary-layer region and χη above. The periodic
z-direction has an extent of λz,0/δ1,s,R= 23.52, corresponding to the wavelength of the
most unstable steady cross-flow mode. Note that the spanwise wavelength leading to
the local maximum amplification rate and the wavelength first reaching the transition
N-factor N = 9 almost coincide. This reference grid has a total resolution of Nξ ×
Nη ×Nz = 1258× 188× 128= 30× 106 points.

For a resolution study, we use a numerical grid where the step sizes in all three
directions are reduced by approximately

√
2, see table 1 for the exact values. The total

number of grid points for this high-resolution grid is 1764 × 256 × 168 = 76 × 106.
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FIGURE 2. DNS set-up on the reference grid; the stretched outflow zone is truncated. For
clarity, two, ten and eight grid lines are skipped in wall-parallel, downstream and spanwise
directions, respectively. The disturbance strip is located at x = 0.018, the roughness at
xR = 0.02. Base-flow streamlines are given at various (i) wall-normal positions in the
boundary layer and (ii) downstream positions along the boundary-layer edge. The inset
shows a roughness with height k= 1.5 in full resolution.

Figure 3 shows the recirculation zones developing upstream and downstream of a
roughness element with a height of 1.5 × δ1,s,R, cf. § 3.3. For both the reference
and the high-resolution grid, the shapes of the reversed flow regions are in excellent
agreement. High-resolution results for the nonlinear, unsteady disturbance evolution
downstream of the same roughness elements are given in figures 8(d) and 9(b), again
showing good agreement with the respective data obtained on the reference grid.
Therefore, the use of the reference grid for all our simulations is justified.

For comparison, we define a two-dimensional base flow on the same wing geometry
by omitting the spanwise velocity component in the oncoming free stream. This results
in a comparable chordwise boundary-layer thickness as in the three-dimensional case.
With the modified free-stream conditions, we obtain Ma∞,2D = 0.53 and ReU,2D =
6.9 × 106. The flow is again computed with TAU, table 1 gives the associated grid
parameters for the DNS. The reference length for all two-dimensional results shown
within this study is the displacement thickness δ̄1,R,2D= 2.07× 10−4 m, corresponding
to roughness position xR,2D=0.06. The reference velocity for the two-dimensional case
is Ū∞ = 157.1 m s−1.

3.2. Coordinate systems
We use four different coordinate systems for the simulations and evaluation. In the
Cartesian global coordinate system (x, y, z), as used in the DNS, x is aligned with
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0.00100.0005

Reference

High resolution

0.0015

1.0

0

2.0

FIGURE 3. Regions of reversed flow in a cross-cut through the centre of a roughness with
k= 1.5, Rekk = 564, marked by contours of ur =−1× 10−4, for two grid resolutions. The
η-axis is stretched by a factor of 2 for clarity.

the shortest distance between leading and trailing edge, y points upwards and z is
parallel to the leading edge, cf. figure 2. The origin collapses with the leading edge.
The associated velocity components are denoted (ug, vg,wg).

The tangential coordinate system (ξ , η, z), depicted in figure 1, with velocity
components (u, v,w), is of curvilinear type and has the same origin and the identical
spanwise coordinate z, while ξ runs perpendicular to the leading edge along the upper
profile surface and η is defined to be the wall-normal direction everywhere. When
plotting this system on a Cartesian grid, the flow field is slightly distorted and the
surface appears flat.

Based on the tangential system, the flow field may be further transformed to
a rotated coordinate system (ξr, η, zr) with velocity components (ur, v, wr) for
visualisation purposes. The origin is shifted to the centre of a roughness element.
Therefore, the flow field is rotated about the η axis by the arbitrarily chosen angle
φr = 55◦ so as to be aligned with the steady cross-flow vortices. For cases in the
two-dimensional boundary layer, we choose φr = 0◦, that is, only the origin is shifted
compared to the tangential system.

The fourth coordinate system (ξs, η, zs) is closely related to the r-system, but its first
coordinate is locally aligned with the projection of the boundary-layer edge velocity
vector to the surface. The respective velocity components are (us, v,ws). In particular,
us is evaluated in order to measure the downstream development of boundary-layer
disturbances.

3.3. Roughness elements
The roughness elements are represented by a smoothed circular disk as illustrated in
the inset in figure 2, with the shape of the shoulders being defined by a hyperbolic
tangent function, cf., e.g. Kurz & Kloker (2014b). The latter is defined in polar
coordinates

ηR(r, φ)= k
2

{
tanh

[
SR

k

(
d
2
− r
)]
+ 1
}
, r > 0, 0 6 φ < 2π, (3.1)

with k and d = λz,0/4 being the nominal height and diameter, respectively, also
defining the aspect ratio ra = k/d, the slope factor SR and the maximum slope
angle φR. In the three-dimensional case, the roughness centre is placed at xR = 0.02,
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Base flow xR/L k/δ1(,s),R(,2D) d/δ1(,s),R(,2D) ra SR φR (deg.) Rekk Grid

Three-dimensional 0.02 1.375 5.882 0.2338 2.0 45.0 487 Reference
Three-dimensional 0.02 1.500 5.882 0.2550 2.0 45.0 564 Reference
Three-dimensional 0.02 1.500 5.882 0.2550 2.0 45.0 564 High resolution
Three-dimensional 0.02 2.000 5.882 0.3400 2.0 45.0 881 Reference
Two-dimensional 0.06 1.365 5.882 0.2320 2.0 45.0 487 Reference,

two-dimensional

TABLE 2. Shape and flow parameters of investigated roughness configurations. For
three-dimensional base flows, the reference length is δ̄1,s,R = 1.7 × 10−4 m, for the
two-dimensional base flow we use δ̄1,R,2D = 2.07 × 10−4 m. For further definitions, see
§ 3.3.

ξR = 0.0285, Reδ1,s,R = 500; in the two-dimensional case, it is centred at xR,2D = 0.06,
ξR,2D = 0.0718, Reδ1,R,2D = 499. All roughness elements considered in this work
are listed in table 2. Note that smooth roughness shapes lead to a somewhat less
transition-critical behaviour than sharp elements, as indicated in a recent investigation
by Loiseau et al. (2015).

The effect of the elements on the boundary-layer flow is characterised by the
roughness Reynolds number based on the height and the velocity magnitude in the
undisturbed base flow corresponding to the position of the roughness tip:

Rekk = |ū(k̄)|k̄ρ̄(k̄)
µ̄(k̄)

, (3.2)

with u= (u, v,w)T. Note that ū may be not exactly parallel to the wall.
In the DNS, the smooth roughness elements are introduced by a local elevation of

wall grid points, compressing the wall-parallel mesh layers within a defined height
above the roughness. The wall-normal grid lines keep their orientation.

3.4. Disturbance source
In order to control the level of background disturbances in the boundary layer, we
introduce controlled disturbances by a spatially confined, time-harmonic blowing and
suction strip at the wall, its centre being located upstream of the roughness element
at x = 0.0178, ξ = 0.0260, see figure 2. The vertical mass flux (ρvg)dist through the
disturbance strip follows the distribution function

(ρvg)dist = Â sin(πx∗)e−(πx∗)2/
√

2 cos(γ0z)︸ ︷︷ ︸
Ds

1
50

50∑
h=1

cos(hω0t)︸ ︷︷ ︸
Dt

, x∗ ∈ [−1; 1], (3.3)

with the amplitude Â, which was set to 2.5 × 10−3 for the low-noise set-up and to
2.5× 10−2 for the high-noise set-up; the spatial and temporal modulations are denoted
Ds and Dt, respectively. The normalised downstream coordinate x∗ corresponds to the
physical range 0.0176< x< 0.0181 and 0.0258< ξ < 0.0263, respectively. Multiples
h of the fundamental angular frequency ω0 = 328 are prescribed, where ω0 is close
to the frequency of the most amplified cross-flow wave. The fundamental spanwise
wavenumber γ0 = 2π/λz,0 conforms to the locally and integrally most amplified
steady cross-flow mode. We superpose frequencies with h= 1–50, producing periodic
disturbance pulses; in the initial phase, the disturbance is ramped up.
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FIGURE 4. Near-field vortex systems with inner vortex pairs (IV) and horseshoe-vortex
legs (HV), induced by discrete roughness elements: (a) two-dimensional base flow, k =
1.365, Rekk= 487, (b) three-dimensional base flow, k= 1.375, Rekk= 487, with streamlines
of the base state without roughness. Vortices are visualised by isosurfaces at λ∗2 =−2.0×
10−4, structures above roughness elements are blanked. The shading indicates positive and
negative values of ω∗ξ,r, the vorticity component along ξr.

4. Steady vortex system and recirculation zone
First, we compare the steady vortex systems forming around a subcritical roughness

in both a two-dimensional and a three-dimensional boundary layer. The element in the
former case has a height of k= 1.365, Rekk= 487 and is placed at xR,2D= 0.06, where
the local Reynolds number Reδ1,R,2D is identical to the respective value in direction of
the local edge velocity Reδ1,s,R in the three-dimensional case, cf. § 3.3. Note that the
associated shape factors, based on the incompressible displacement and momentum
thickness, are H12,inc,2D = 2.31 and H12,s,inc = 2.47 for the two-dimensional and the
three-dimensional cases, respectively.

Figure 4(a) shows vortical structures in the two-dimensional case, visualised by the
λ∗2-criterion (asterisk denotes evaluation on coordinates normalised by δ1(,s),R(,2D)). Here,
the isosurfaces are coloured by the vorticity component along ξr, where white shading
corresponds to a clockwise sense of rotation when looking downstream, as indicated
by the arrows. The oncoming flow impinges on the upstream shoulder of the element,
where spanwise vorticity is accumulated and rolls up to form a system of horseshoe
vortices. Two counter-rotating horseshoe-vortex cores are observed. Downstream of
the element, the outer vortex pair consists of the legs of the strongest (innermost)
HV; the interruption of the λ∗2-surfaces for 5.0 < ξr/δ1,R,2D < 10.0 is an effect of
the superposition of the vortices with lateral flow from outer regions towards the
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FIGURE 5. Two-dimensional case with k= 1.365, Rekk = 487: contours of ũr (solid lines,
0.05–0.95, with increment 0.1; dashed line: ũr = 0) in cross-cuts at (a) ξr/δ1,R,2D = 10.0,
(b) ξr/δ1,R,2D= 20.0 and (c) ξr/δ1,R,2D= 30.0. The shading depicts the downstream vorticity
component ω∗ξ,r. Isocontours of λ∗2 for −5.0× 10−4 to −2.0× 10−4, with increment 10−4,
are indicated by thick solid lines, as is the roughness contour.

symmetry plane, cf. the contraction of streamlines behind the element in figure 7(a).
The clash of the near-wall lateral flow from both sides at the symmetry plane leads to
a wall-normal ejection of fluid, inducing the inner vortex pair (IV) aft of the element
with a reverse rotation sense and causing a low-speed streak downstream.

Contours of the downstream velocity component in the rotated system ũr,
normalised by the local edge velocity (tilde denotes normalised values), are
given in figure 5(a–c) by the thin solid lines for the three downstream locations
ξr/δ1,R,2D = 10.0, 20.0 and 30.0. The positions of the vortex structures are marked
by isocontours of λ∗2 (thick solid lines), together with the downstream vorticity
component ω∗ξ,r depicted by the shading. The flow field is symmetric and the rotation
sense of the streamwise vortices is clearly illustrated by ω∗ξ,r. Around the downstream
centreline, a distinct low-speed streak is created by the inner vortex pair through the
lift-up of low-momentum fluid away from the wall, as is best seen in figure 5(b,c).
The same mechanism gives rise to somewhat weaker low-speed streaks in the outer
lateral regions due to the horseshoe-vortex legs.

Figure 4(b) illustrates the vortex structures around a roughness element with
k= 1.375, Rekk= 487 in the three-dimensional boundary layer. The flow field becomes
asymmetric, but since the coordinate system is aligned with the local flow direction
at the boundary-layer edge, some similarities with the two-dimensional case become
apparent. Three horseshoe-vortex cores are identified in front of the element; the
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FIGURE 6. Three-dimensional case with k= 1.375,Rekk= 487: contours of ũr (solid lines,
0.05–0.95, with increment 0.1; dashed line: ũr = 0) in cross-cuts at (a) ξr/δ1,s,R = 10.0,
(b) ξr/δ1,s,R = 20.0 and (c) ξr/δ1,s,R = 30.0. The shading depicts the downstream vorticity
component ω∗ξ,r. Isocontours of λ∗2 for −5.0 × 10−4 to −2.0 × 10−4, with increment
10−4, are indicated by thick solid lines, as is the roughness contour.

strongest perseveres. The upper horseshoe leg in figure 4(b) has a sense of rotation
conforming to that of a cross-flow vortex, and is supported by the flow. The lower
leg has a similar extent as in the two-dimensional case. As in figure 4(a), an inner
vortex pair is observed close to the lateral centreline of the roughness. Again, the
vortex with a rotation sense conforming to the basic cross-flow direction is supported
by the flow, while the other leg is only visible up to ξr/δ1,s,R = 27.0.

The contours of ũr are shown in figure 6(a–c) for the three-dimensional base flow.
The downstream vorticity component ω∗ξ,r (shading) is dominated by the cross-flow
ws, which is from right to left in the figure. Only for ξr/δ1,s,R = 10.0, figure 6(a),
the roughness induces a distinct spanwise modulation of ω∗ξ,r. Further downstream, the
flow field consists of a layer with negative ω∗ξ,r close to the wall and a region of
positive ω∗ξ,r in the boundary layer above, housing the two dominant vortex legs of the
HV and the IV, each being of similar strength in all three cross-cuts. The IV leg with
a positive sense of rotation appears stronger than the respective HV leg, indicated by
the stronger gradient of λ∗2, i.e. the levels shown are closer. Interestingly, the counter-
clockwise rotating IV leg is only visible at ξr/δ1,s,R= 20.0, figure 6(b), and is located
closer to the wall than its counterpart; further, the velocity contours of ũr look like a
turnover profile created by large-amplitude steady cross-flow vortices. In fact, the left
IV leg in the figure seems to be induced on the updraught side of the right leg in a
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FIGURE 7. Recirculation zones in front of and behind roughness elements, visualised by
isosurfaces at ur = −1 × 10−4. (a) Two-dimensional base flow, k = 1.365, Rekk = 487,
(b) three-dimensional base flow, k = 1.375, Rekk = 487. Streamlines are introduced at
ξr/δ1(,s),R(,2D) =−7, at a wall distance η/δ1(,s),R(,2D) = 1.

similar fashion to a secondary steady cross-flow vortex, cf. Bonfigli & Kloker (2007),
and not directly by the roughness.

According to the literature, critical-roughness-induced transition is closely linked
to unsteady disturbance growth in the recirculation zone behind the elements.
Figure 7 compares the regions of negative ur for the two- and three-dimensional
cases, respectively. In each case, two recirculation regions are observed in front of
and behind the roughness, respectively. In the two-dimensional case, figure 7(a),
the isosurfaces at ur = −1 × 10−4 are symmetric with respect to zr = 0; the aft
region is attached to the roughness and extends up to ξr/δ1,R,2D = 12.5. With
the three-dimensional base flow, figure 7(b), the reversed-flow region in front of
the roughness is again symmetric, but the aft recirculation region shows a weak
asymmetry after approximately one roughness diameter downstream of the element.
Its downstream end is again located at ξr/δ1,s,R = 12.5. Apparently, the lateral
flow displacement due to the blockage effect of the roughness is stronger than
the cross-flow in the boundary layer (being approximately 8.5 % at this position in
the smooth-wall flow), therefore masking the asymmetry in the close vicinity of
the element. This is confirmed by the streamlines introduced at the left borders of
figure 7(a,b) at η/δ1(,s),R(,2D) = 1. The shape and extent of the recirculation zones are
very similar for the two- and three-dimensional cases.

Based on this observation, one may expect similar behaviour of the flow around
roughness elements in two- and three-dimensional boundary layers with respect to
unsteady disturbance growth in the recirculation zone – but not necessarily in the far
wake.

5. Flow tripping
We now concentrate on the effects of discrete roughness elements in the three-

dimensional boundary layer. Two transition scenarios can be observed, primarily
dictated by the value of the roughness Reynolds number Rekk: (i) the leg of the
horseshoe vortex corresponding to the basic cross-flow vortex rotation sense is
amplified to a high-amplitude cross-flow vortex. Convective secondary instability sets
in further downstream, rapidly leading to turbulent flow; (ii) the inherent instability
in the recirculation zone behind the element amplifies background disturbances to
highly nonlinear amplitudes that persevere and contaminate the flow. Depending
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on the roughness height, the latter scenario is caused either by strong convective
instability of the recirculation zone or absolute instability in the region around the
element. Elements that trigger turbulent flow in close vicinity of the element are
referred to as near-critical, quasi-critical or (over-)critical roughness elements as will
be elucidated hereafter; the roughness Reynolds number Rekk,crit constitutes the border
between quasi-critical and critical.

Indeed, the decision of which scenario governs the downstream flow is also a matter
of the background disturbance level. Computations for elements with k= 1.375,Rekk=
487, where the instability in the aft recirculation zone is still of convective nature,
highlight this dependency by the introduction of controlled pulse-like disturbances.
We now employ the disturbance strip with two different amplitudes, cf. § 3.4. The
simulation results are evaluated by λ2-visualisations in the rotated coordinate system
showing three fundamental spanwise wavelengths, and by Fourier expansions in time,
with frequencies (h = ω/ω0) and double Fourier expansions in time and spanwise
direction, characterised by the tuple (h, j), where j = γ /γ0. We perform the Fourier
decompositions on the downstream disturbance velocity component ũ′s in the edge
streamline coordinate system, normalised by the local edge velocity and extract the
maximum in η–z-planes.

Figure 8(a) shows a snapshot of the wake of the element with k= 1.375,Rekk= 487
for the low-noise disturbance strip. The periodic quasi-Dirac pulse gives rise to
periodically appearing wave packets, being convected downstream. These coherent
vortex structures undergo a growth in a confined area behind the elements, and
then decay again. This observation is further backed by the Fourier amplitudes
of the temporal harmonic h = 14 (cf. figure 9(a), dashed line), showing a strong
convective growth right behind the element up to ξ = 0.0315. The subsequent decay
eventually undergoes a changeover to secondary instability of the cross-flow vortices
at ξ = 0.037. This is manifested in the λ2-visualisation by a weak modulation of the
primary cross-flow vortices.

Temporal Fourier amplitudes for the high-noise set-up, marked by the solid line in
figure 9(a), show similar growth rates up to ξ = 0.030, but then undergo a nonlinear
saturation. Figure 8(b) shows that the initially parallel vortices in the leftmost wave
packet begin to break down to smaller structures. The wave packet between ξ = 0.036
and ξ = 0.039, generated by the previous pulse, has already broken down to small-
scale structures. Following the previous definition, this element would be labelled near
critical; the gaps between the wave packets reveal that the near wake only acts as an
amplifier of the incoming pulses, but not as a wavemaker, i.e. there is no region of
absolute instability.

The next roughness under consideration has a height of k = 1.5, Rekk = 564, and
the disturbance strip is not active, i.e. the incoming background disturbance level is
lower than in the previous cases. The flow field is shown in figure 8(c): Within some
ten roughness diameters downstream, the boundary layer is contaminated by unsteady
vortex structures and transitions to a turbulent state. A convective growth phase up to
ξ = 0.03 is identified for the dashed line in figure 9(b), before the amplitudes saturate
at approximately 10−1; this element is considered quasi-critical, not fully but largely
independent of the disturbance background level.

By increasing the roughness height to k= 2.0, Rekk = 881, the near wake becomes
absolutely unstable, and thus the flow globally unstable. Consequently, disturbances
behind the roughness are temporally amplified until they reach highly nonlinear
amplitudes, leading to turbulent structures emanating directly from the roughness
elements, see figure 8(d). Fourier amplitudes in figure 9(b) show a sharp rise of the
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FIGURE 8. Snapshots of flow past the roughness elements in the rotated coordinate
system: (a) k = 1.375, Rekk = 487, low noise, (b) k = 1.375, Rekk = 487, high noise, (c)
k= 1.5, Rekk = 564, no controlled disturbance input, (d) k= 1.5, Rekk = 564, no controlled
disturbance input, high resolution, (e) k= 2.0, Rekk = 881, no controlled disturbance input.
Isosurfaces at λ2 = −2.0 × 104, structures above roughness elements are blanked. The
black (negative) and white (positive) shading indicates the sign of the streamwise vorticity
component ωξ,r.

unsteady disturbances right at the position of the roughness. Note that these results
are again obtained without the introduction of a controlled disturbance background;
the uncontrolled numerical noise suffices.

Based on the four cases shown, the critical roughness Reynolds number for the
smooth roughness elements under consideration can be formally given as Rekk,crit &564.
For free-flight conditions, the low-noise disturbance background is more adequate than
the high-noise case, therefore we conclude Rekk,qcrit≈560 to be useful. In the following
section, we show that flow past the roughness with k= 1.5, Rekk = 564, although not
being globally unstable, is insensitive to the disturbance level in the oncoming flow
for large times if there was once a large enough disturbance. In order to relate our
findings to previous findings in two-dimensional boundary layers, figure 10 compares
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FIGURE 9. Temporal amplitudes of frequency h=ω/ω0= 14 for the four cases shown in
figure 8. (a) k = 1.375, Rekk = 487, two noise levels, (b) no controlled disturbance input,
two roughness heights. The dotted vertical lines indicate the roughness position.
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FIGURE 10. Correlation of the critical roughness Reynolds number Rekk,crit in terms of
the inverse aspect ratio d/k= 1/ra for two-dimensional base flows (reproduction of figure
2 in Von Doenhoff & Braslow (1961)). The encircled diamonds mark the present results
for roughness elements in a three-dimensional base flow.

our results to the data collected by Von Doenhoff & Braslow (1961). The quasi-critical
element with k = 1.5, Rekk = 564, lies at the upper bound of the clustered region of
the data points. Note that the smoothed roughness shape increases the critical value of
the roughness Reynolds number slightly, i.e. the respective values for a sharp cylinder
are expected to lie somewhat below our results and therefore well inside the data of
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FIGURE 11. Phase 1: modal amplitudes of startup process after SFD for roughness
elements with k = 1.5, Rekk = 564, no controlled disturbance input: (a) period 1, (b)
period 2, (c) period 5. The dotted vertical lines indicate the roughness position.

Von Doenhoff & Braslow (1961). Thus, our results show that the three-dimensionality
of the boundary layer is not crucial for the value of the (quasi-)critical Reynolds
number, but for Rekk < Rekk,qcrit, the inherent generation of growing cross-flow vortex
modes makes the effect of increasing roughness height much smoother than in the
two-dimensional case: transition moves forward more continuously.

6. Changeover from convective to global instability
First, we look at k= 1.5, Rekk = 564. A steady flow field is obtained by SFD, then

an unsteady DNS in disturbance formulation is conducted, organised in three phases:
In phase 1, the simulation is started without the introduction of controlled disturbances
and runs for five fundamental periods; only numerical background noise is present. In
phase 2, we switch on the disturbance strip with low amplitude (cf. § 3.4) for four
fundamental periods, with a temporal envelope ramping the amplitude up and down,
i.e. the peak amplitude is reached three times. For phase 3, the disturbance input is
switched off again.

6.1. Element with k= 1.5, Rekk = 564, phase 1: no controlled disturbance input
The startup process in phase 1 is illustrated in figures 11 and 12. With increasing time,
the background noise is amplified in a region behind the element, and the disturbances
undergo a spatial (convective) growth as they travel downstream. Figure 11 shows
modal amplitudes of the startup process, each evaluated over one fundamental period.
Note that these results are obtained by a Fourier analysis assuming a periodic
behaviour in time and therefore constitute a certain averaging of the transient,
non-periodic simulation data. The first Fourier plot shows an amplification behind the
roughness. In figure 11(b), the dominant modes at ξ = 0.031 have already reached
a time-periodic state after a growth over approximately five orders of magnitude (cf.
figure 11c); a further downstream growth is not yet visible. The Fourier results for
periods 4 and 5 are almost identical, figure 11(c) shows data for period 5. No further
elevation of the overall disturbance level is expected for longer simulation times,
especially since the temporal amplitude evolution shortly behind the roughness has
saturated.

Therefore, all involved instability mechanisms are still of convective nature.
Figure 13(a) shows the temporal evolution of in-plane maxima of the disturbance
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FIGURE 12. Phase 1: vortex visualisations of startup process after SFD for roughness
elements in rotated coordinate system with k= 1.5, Rekk = 564, no controlled disturbance
input: representative of periods 1–5. Isosurfaces at λ2 = −2.0 × 104, structures above
roughness elements are blanked. The black (negative) and white (positive) shading
indicates the sign of the streamwise vorticity component ωξ,r.
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FIGURE 13. Temporal evolution of in-plane maxima of disturbance velocity u′r for
several η–zr-planes in a range of two roughness diameters behind the element. Each line
corresponds to one ξr-location. (a) k= 1.5,Rekk = 564, (b) k= 2.0,Rekk = 881. ÂDt shows
the temporal modulation of the disturbance strip amplitude, the three arrows mark the
respective responses in the roughness wake.

velocity u′r for several η–zr-planes in a range of two element diameters behind the
roughness; phase 1 is represented by the first five periods. The mean value of all
lines settles at approximately 10−12 after t/T0 = 3; no further temporal growth is
observed. Evidently, the flow is not globally unstable at these conditions.

Since the disturbance level stays very low, the flow field remains steady from
a macroscopic point of view. The vortex visualisation in figure 12 is therefore
representative of periods 1–5.

6.2. Element with k= 1.5, Rekk = 564, phase 2: controlled disturbance input
We now activate the low-amplitude pulsing upstream of the element, cf. figure 13(a).
The disturbance strip is active for four periods. The input raises the overall disturbance
level in the computational domain, as can be seen in figure 14(a). Behind the element,
the amplitudes are again amplified by four orders of magnitude, up to almost 10 %.
Later stages of the startup after the disturbance input is switched on are given in
figure 14(b,c) and show how the disturbances saturate at this level and spread over the
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FIGURE 14. Phase 2: modal amplitudes of startup process after SFD for roughness
elements with k= 1.5,Rekk= 564, with active disturbance input: (a) period 7, (b) period 8,
(c) period 9. The dotted vertical lines indicate the roughness position.

downstream domain. The relevant stretch for phase 2 in figure 13(a) is 5< t/T0 < 9.
Shortly after the disturbance source is activated, the amplitudes shoot up sharply.
Note that the disturbance strip introduces both acoustic disturbances and vorticity
disturbances: the former quickly spread over the domain, see figure 18(a), and raise
the associated u′-disturbance level in the domain to approximately 10−6, whereas the
convectively transported vorticity disturbances are mainly produced by the pulse-like
amplitude maxima and therefore come into play only after t/T0 = 6, see the arrows
in figure 13(a). The disturbance level raises until the end of phase 2.

The λ2-visualisations in figure 15 show how the temporal peaks in the disturbance
input initiate quasi-discrete wave packets. In figure 15(a), the first pulse has passed
the element, leading to a wave packet at ξ = 0.032. In figure 15(b), the centre of the
latter has travelled downstream to approximately ξ = 0.037 and has broken down to
a turbulent strip, while the following wave packet at ξ = 0.032 resembles the one in
figure 15(a). The third snapshot, figure 15(c), shows all three wave packets induced by
the input pulses. When comparing the wave packets closest to the roughness elements
in all snapshots, the one in figure 15(c) seems somewhat more developed than in the
two previous figures, although the input from the disturbance strip is the same for all
snapshots. Since we found a convective instability behaviour of the flow in § 6.1, this
observation can only be explained by either some additional disturbance source or a
nonlinearly induced change in the stability characteristics.

6.3. Element with k= 1.5, Rekk = 564, phase 3: no controlled disturbance input
When the controlled disturbance input is switched off, the disturbances behind the
roughness elements grow further until the downstream flow field is turbulent after
only some 5–10 roughness diameters, see figures 16 and 17. Figure 13(a) shown
a constant amplitude level for t/T0 > 9. Although a region of absolute instability
could not be found in phase 1, this flow behaves in a globally unstable manner. A
possible explanation is a pressure feedback mechanism where the turbulence induced
by the temporary disturbance input either changes the base flow in the region of
the element and thereby the stability characteristics, or induces strong acoustic noise
that travels upstream and is receptive at the roughness. Figure 18(b) depicts the
disturbance dilatation at the beginning of phase 3 in a longitudinal cut through
the roughness centre. Along the wall, the turbulent boundary layer can be seen,
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FIGURE 15. Phase 2: vortex visualisations of startup process after SFD for roughness
elements in rotated coordinate system with k = 1.5, Rekk = 564, with active disturbance
input: last time step of (a) period 7, (b) period 8, (c) period 9. Isosurfaces at λ2 =
−2.0 × 104, structures above roughness elements are blanked. The black (negative) and
white (positive) shading indicates the sign of the streamwise vorticity component ωξ,r.
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FIGURE 16. Phase 3: modal amplitudes of startup process after SFD for roughness
elements with k = 1.5, Rekk = 564, no controlled disturbance input: (a) period 6, (b)
period 8, (c) period 10. The dotted vertical lines indicate the roughness position.

while arched contours outside the boundary layer represent acoustic wave fronts.
Clearly, the latter originate from the vortex structures and travel both upstream and
downstream, therefore being able to generate new disturbances at the roughness
element. Supplementary movie 1, available at http://dx.doi.org/10.1017/jfm.2016.240,
shows the time evolution of the structures for all three phases considered in figures 12,
15 and 17.
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FIGURE 17. Phase 3: vortex visualisations of startup process after SFD for roughness
elements in rotated coordinate system with k= 1.5, Rekk = 564, no controlled disturbance
input: last time step of (a) period 6, (b) period 8, (c) period 10. Isosurfaces at λ2 =
−2.0 × 104, structures above roughness elements are blanked. The black (negative) and
white (positive) shading indicates the sign of the streamwise vorticity component ωξ,r.
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FIGURE 18. Visualisation of the acoustic field by contours of the disturbance dilatation
div(u′) in a cut at constant z through the roughness centre. (a) t/T0 = 6, acoustic signal
radiated from the active disturbance strip, with every second wall-parallel grid line starting
from index 100 from the wall. (b) t/T0= 10, noise created by the turbulent boundary-layer
structures. The roughness is situated at ξ = 0.285. The axes are plotted to scale.

6.4. Element with k= 2.0, Rekk = 881, no controlled disturbance input
As discussed in § 5, the element with k = 2.0, Rekk = 881 causes global instability.
This can be investigated by a similar approach as before: we employ SFD to
obtain a steady flow field and then switch to the disturbance formulation without
temporal filtering. The simulation is run over several fundamental periods without the
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FIGURE 19. Modal amplitudes of startup process after SFD for roughness elements with
k=2.0,Rekk=881, no controlled disturbance input: (a) period 1, (b) period 2, (c) period 5.
The dotted vertical lines indicate the roughness position.

introduction of controlled disturbances, i.e. the disturbance background at the inflow
is close to machine accuracy, cf. figure 19(a).

For period 1 (figure 19a), strong amplification right behind the element is observed.
For period 2 (figure 19b), there is further convective growth downstream but also
timewise growth in the roughness region and for period 5 (figure 19c) the modal
amplitudes already indicate turbulent flow downstream of the element.

Figure 20 shows λ2-vortex visualisations of the last time step of periods 1, 2 and
5, respectively. Figure 20(a) still shows the steady vortex system obtained by means
of SFD. In figure 20(b), finger vortices emerging from the secondary instability
mechanism of the steady cross-flow vortices can be observed. The underlying
instability mechanism is of convective nature, cf. Wassermann & Kloker (2002),
however, the disturbances are fed by a temporally growing disturbance source
(‘wavemaker’) in the recirculation zone right behind the roughness elements. This
growing disturbance amplitude continuously shifts the point where the finger vortices
can be seen upstream. Eventually, the amplitudes in the region of absolute instability
have grown large enough to directly trip turbulent flow, as can be seen in figure 20(c).
Note that the shown snapshot does not yet correspond to the fully saturated state, as
temporal growth still goes on, see figure 13(b).

Figure 20(a) shows an interaction of vortices originating from adjacent roughness
elements, therefore it may be suspected that the spanwise roughness spacing influences
the results. A variation of the spanwise spacing with λz= 2/3λz,0 and λz= 2λz,0 shows
only a weak dependence of the flow-tripping quality on the distance between the
elements, see figure 21. The Fourier amplitudes in figure 22 show an overshoot of
h = 14 and h = 15 behind the roughness for λz = 2λz,0, but the absolute instability
in the recirculation zone leads to the same sharp rise of the amplitudes over the
roughness elements in all cases. At ξ =0.034, where the complex steady vortex system
in figure 20(a) reduces to only one cross-flow vortex per roughness element, the level
of unsteady disturbance amplitudes has saturated at the same level for all spanwise
spacings.

The temporal evolution of the in-plane maxima of the disturbance velocity u′r behind
the roughness element is presented in figure 13(b). After a short phase of moderate
growth, a distinct region of exponential growth in time can be observed, followed
by moderate growth again. (Note that the temporal growth has not saturated yet at
t/T0 = 5.) The straight lines in the middle region indicate a dominant zero-frequency
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FIGURE 20. Vortex visualisations of startup process after SFD for roughness elements in
rotated coordinate system with k = 2.0, Rekk = 881, no controlled disturbance input: last
time step of (a) period 1, (b) period 2, (c) period 5. Isosurfaces at λ2 = −2.0 × 104,
structures above roughness elements are blanked. The black (negative) and white (positive)
shading indicates the sign of the streamwise vorticity component ωξ,r.
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FIGURE 21. Snapshots of flow past the roughness elements with k= 2.0, Rekk = 881 for
different spanwise spacings: (a) 2/3λz,0, (b) λz,0, (c) 2λz,0, no controlled disturbance input.
Isosurfaces at λ2 = −2.0 × 104, structures above roughness elements are blanked. The
black (negative) and white (positive) shading indicates the sign of the streamwise vorticity
component ωξ,r.

disturbance in this phase. In order to investigate the root of this behaviour, a dynamic
mode decomposition (DMD), see Schmid (2010), of this confined time frame and
ξr < 0.002 is performed. The eigenvalue spectrum shown in figure 23(a) contains a
set of discrete amplified low-frequency modes and a partially amplified branch at
higher frequencies. If the DMD is performed on the time signal before the sharp
rise, the discrete low-frequency modes disappear (not shown). The global modes
corresponding to the marked modes in the spectrum are given in figure 23(b) by
isosurfaces at ±10 % of the maximum downstream velocity disturbance. The shape
of modes I and II resembles the steady vortices in figure 23(c). Therefore, these
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FIGURE 22. Modal amplitudes behind roughness elements with k = 2.0, Rekk = 881 for
different spanwise spacings: (a) 2/3λz,0, (b) λz,0, (c) 2λz,0, no controlled disturbance input.
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FIGURE 23. DMD for k = 2.0, Rekk = 881 in the confined time frame specified in
figure 13(b) and ξr < 0.002. (a) Global spectrum with frequency ωr and temporal growth
rate ωi, (b) selected global modes, visualised by isosurfaces of the downstream velocity
disturbance, i.e. ±0.1 max(Re{ûr}), (c) isosurfaces show vortices at λ2 =−2.0× 104, the
shading indicates the sign of ωξ,r, cf., e.g. figure 20.

modes are likely to represent a change in strength of the steady vortex system.
This in turn may be explained by a modification of the inviscid flow due to an
upstream effect of the turbulent boundary layer evolving downstream, explaining the
out of line behaviour in the mid region of figure 13(b). The shape of mode III is
reminiscent of the unsteady vortices shed from the roughness elements in later stages
of the simulation, cf. figure 20(c). Supplementary movie 2 shows the time evolution
according to figure 20.

In conclusion, both roughness elements with Rekk= 564 and Rekk= 881 trigger more
or less immediate turbulence, although the above analysis yields real temporal growth
only for the larger roughness. For the smaller element, the enhanced noise level in
the computational domain due to the downstream appearance of turbulence leads to
a self-sustained vortex shedding, once the disturbance level is temporarily increased.
This highlights that for large roughness elements in a cross-flow-dominated boundary
layer, where the convective growth of a wave packet is not limited to the near wake,
the quasi-critical roughness height is not strictly linked to the presence of a global
instability, but may be reached before temporal growth in the linear sense, i.e. in three-
dimensional global instability analysis, is observed.
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FIGURE 24. Global eigenvalue spectra for two roughness heights, with frequencies ωr,
h=ωr/ω0, and growth rates ωi. The global modes associated with the encircled symbols
are depicted in the figures below.

7. Global stability analysis

A global stability analysis is performed for the two roughness elements with Rekk=
564 and Rekk = 881, based on the steady solutions obtained by means of SFD. The
global eigenvalue spectra for both cases are given in figure 24. Note that the global
stability solver is built upon a verified linearised version of the DNS solver, where,
however, the spatial filter for the stretched outflow zone is not yet available with
domain decomposition. Instead, we rely on a sponge zone only.

For k = 1.5, Rekk = 564, the analysis yields a branch of eigenvalues with positive
temporal growth rates, with a maximum at h= 15, matching well the most amplified
frequency band in the nonlinear simulations. However, the positive values of ωi

indicate already a global instability, being in contradiction to the findings in § 6.1.
Global stability analyses of a roughness wake in a two-dimensional boundary layer
by Loiseau et al. (2014) and a jet in cross-flow by Peplinski, Schlatter & Henningson
(2015) show a strong sensitivity of the growth rates to the domain length and the
outflow boundary conditions, especially when they are close to neutral stability. Since
the observed eigenmodes are localised in the downstream direction in these cases, the
authors were able to weaken the sensitivity by using a longer computational domain
such that the dominant eigenmodes have decayed considerably before they reach the
outflow. In the present flow, however, the secondary instability of the steady cross-flow
vortices leads to a convective amplification of unsteady fluctuations, so eigenfunctions
do not decay but grow as they approach the outflow, see figure 25(a). Thus, the
approach used by Loiseau et al. (2014) and Peplinski et al. (2015) to mitigate the
influence of the outflow boundary does not apply here. As a consequence, we rely
on the nonlinear DNS in order to determine whether the flow is globally unstable
or not, but use the global modes to give insight in the instability mechanisms and
the early linear growth dynamics. A detailed study addressing the sensitivity on the
outflow zone treatment is given in appendix A.

7.1. Global modes for k= 1.5, Rekk = 564
To illustrate the spatial amplitude distribution and its dependence on frequency, we
plot isosurfaces of the real part of the complex, streamwise-velocity eigenfunction
in the rotated system, at ±0.05 maxΩ1(Re{ûr}) where Ω1 denotes the computational
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FIGURE 25. Global modes for the roughness case with k= 1.5, Rekk = 564, illustrated by
the real part of the rotated complex eigenfunction at ±0.05 maxΩ1(Re{ûr}). (a) Mode IV,
ω = 2750+ 50i, (b) mode V, ω = 4840+ 165i. The light grey shading shows the steady
vortex system obtained by SFD.

domain. The global mode IV in figure 25(a) corresponds to the eigenmode in
figure 24 with the lowest frequency, i.e. h= 8. The mode shows two regions of high
amplitude, one in the near wake located on the dominant inner-vortex leg, and one
in the far wake on the fully developed cross-flow vortex. As can be seen in the
perspective view in figure 26, the two regions are separated by the location where
the inner-vortex leg runs into the horseshoe-vortex leg and vanishes. The amplitude
distributions |ûr| in the far wake show the familiar shape of a type II mode, see,
among others, Balachandar, Streett & Malik (1992), Koch et al. (2000) and Bonfigli &
Kloker (2007), located at the location of maximal wall-normal gradient of the velocity
component in the rotated system weighted by the wall distance, y(∂ ũr/∂y). Therefore,
the underlying physical mechanism is the secondary instability of cross-flow vortices
– an inflectional Kelvin–Helmholtz type instability. Coming back to the near wake,
the amplitude distributions show some similarities. Again, the maxima are located
on the updraught side of a steady streamwise vortex, but here on the IV leg, in fact
being stronger than the HV leg at this downstream location. As the IV decays, the
contours of the underlying base flow become less distorted, making the eigenfunction
decay as well. In analogy to steady cross-flow vortices, the near-wake instability may
therefore be interpreted as a secondary instability of the transiently growing IV leg.

Figure 25(b) shows the global mode V, associated with the most amplified
eigenmode at h = 15. The levels for the isosurfaces are selected as before, but
here only the near-wake part of the mode is visible. The far-wake part of the
mode is also existent, but does not reach the isosurface level. This indicates that the
dominant near-wake instabilities have somewhat higher frequencies than the secondary
cross-flow instability.

7.2. Global modes for k= 2.0, Rekk = 881
For the largest roughness element under consideration, the steady vortex system in
the SFD solution shows a qualitative difference to all cases with smaller roughness
elements: the streamwise vortices approaching the outflow develop from the IV leg
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FIGURE 26. Global mode IV with ω = 2750 + 50i for the roughness case with k =
1.5, Rekk = 564, illustrated by contours of the amplitude part of the rotated complex
eigenfunction, |ûr|. Black lines indicate plane contours of the base-flow velocity ub,r,
the light grey shading shows the steady vortex system obtained by SFD. The η-axis is
stretched by a factor of 2 for clarity.
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FIGURE 27. Global modes for the roughness case with k= 2.0, Rekk = 881, illustrated by
the real part of the complex eigenfunction at ±0.05 maxΩ1(Re{ûr}). (a) Mode VI, ω =
3300 + 350i, (b) mode VII, ω = 6130 + 600i. The light grey shading shows the steady
vortex system obtained by SFD.

instead of the HV leg. Consequently, the global modes in figure 27 can no longer
be separated into a near-wake and a far-wake region, but spread over the downstream
extent of the domain without interruption. The global mode VII in figure 27(b) reaches
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a maximum at ξ = 0.035 and then starts to decay. This is connected to the transient
nature of the underlying streamwise vortex, that has not yet merged with a horseshoe-
vortex leg and developed to an ordinary cross-flow vortex. Note that the maximum of
the eigenfunction is not in the region of absolute instability/the wavemaker region –
but downstream due to the strong convective growth.

8. Conclusions

A detailed DNS study of the effect of cylindrical, finite-size, discrete roughness
elements in a three-dimensional boundary layer on a swept wing in the high subsonic
flow range has been performed. The diameter-to-height ratio used is approximately
3–4, and the elements are considered in a spanwise row with a spanwise distance
corresponding to the most amplified steady cross-flow vortex mode. The main
objective was to highlight the physical mechanisms leading to immediate transition
due to the presence of the, then critical, roughness, and to compare the results to the
well-documented findings for two-dimensional boundary layers.

For subcritical roughness elements, the steady flow fields surrounding the roughness
elements in two- and three-dimensional boundary layers show similar features
if viewed in the local streamline coordinate system: a set of horseshoe vortices
wrapping around the roughness, a large recirculation zone behind the element that is
only slightly asymmetric in the three-dimensional case and a set of counter-rotating
streamwise inner vortices emerging from the recirculation zone. However, for the
three-dimensional case, the vortex structures become asymmetric shortly behind the
roughness, where one leg of the inner-vortex system and of one horseshoe vortex
are supported by the basic cross-flow. Those vortices merge downstream of the near
wake, and lead eventually to one steady cross-flow vortex; transition is initiated by
secondary instability of the generated cross-flow vortices in the far wake. We note
that in a three-dimensional boundary layer even a far-subcritical roughness is felt
downstream due to the generation of exponentially growing cross-flow vortex modes,
contrary to two-dimensional flows.

For quasi-critical or critical roughness elements, a purely convective or absolute
instability, respectively, in the recirculation zone and near wake leads to unsteady
vortex shedding and turbulent flow. The quasi-critical roughness Reynolds number is
found to be in the range 500<Rekk,qcrit < 560 depending on the background noise and
compares well with experimental data obtained in two-dimensional boundary layers at
low Mach number. Thus, neither the three-dimensionality of the boundary layer nor
a high subsonic Mach number has a dominant effect on Rekk,crit if the full velocity
vector and the local kinematic viscosity at the roughness height are taken to calculate
Rekk.

The instability mechanism leading to turbulence tripping evidently is not necessarily
a global instability. Rather our nonlinear DNS show that in the quasi-critical range,
a purely convective instability behind the roughness may be sufficient to cause
(intermittent) turbulence approximately 30–40 displacement thicknesses downstream.
Eventually the generated upstream-travelling acoustic waves induce a self-sustaining
process if a sufficiently large disturbance passed once. This feedback loop makes the
flow field behave like a globally unstable flow.

We also performed a global stability analysis of three-dimensional flow fields
made artificially steady. It is based on a matrix-free time-stepper framework using
a linearised version of the compressible DNS code. The analysis predicts global
instability, albeit weakly, already in the quasi-critical case with Rekk = 564. The
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direct, nonlinear DNS shows global instability only for values somewhat higher than
that. This result, however, is most likely due to the vulnerability of such instability
methods for flow fields close to the first bifurcation, and has also been found by
other authors for two-dimensional base flows. (We note again that in our case the
outflow treatment in the global solver set-up with a linearised DNS code is currently
not as advanced as in the nonlinear DNS code.) In the (quasi-)critical case, the global
eigenfunctions show large amplitudes in the medium-wake region of the roughness
and further downstream on the steady cross-flow vortices. The former is localized
in downstream direction and driven by the locally strong one leg of the inner-vortex
system originating in the near wake, while the latter corresponds to secondary
cross-flow instability of type II. For larger roughness elements with Rekk = 881, the
scenario is only dominated by the altered behaviour of the stronger inner-vortex leg
in the considered computational domain. This leads to eigenfunctions that decay as
they approach the outflow boundary of the considered domain.
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Appendix A. Accuracy of the global stability analysis
A.1. Validation with nonlinear DNS code

As a validation of the stability results obtained from the global analysis in § 7,
the eigenfunction with the most amplified eigenvalue is added to the temporally
stabilised solution. The following startup process in a nonlinear simulation, using the
outflow boundary treatment from the linearised stability computations is presented
in figure 28(a,b) for the two roughness cases with Rekk = 564 and Rekk = 881. The
lowest envelopes correspond to a time shortly after the beginning of the simulation,
the following lines are for increments of 0.1T0 = 0.1(2π/ω0). For both roughness
elements the envelope shape is kept and the amplitudes increase in time. Thus, the
temporal evolution at the beginning of the simulation confirms the existence of
temporal modal disturbance growth. The respective growth rates were approximated
based on the temporal evolution of the envelope amplitudes at ξ =0.037; the dominant
frequencies in the nonlinear simulation were determined by a Fourier analysis. The
results shown in figure 28(c) (large hollow symbols) are very close to the eigenvalues
of the introduced modes (solid symbols). Overall, the short-time behaviour in the
nonlinear simulation with the outflow treatment of the linear simulations is consistent
with the global stability results, therefore validating the implementation of the global
stability solver and the linearised compressible Navier–Stokes equations.

However, for simulation times longer than 0.5T0, the temporal growth in the
vicinity of the roughness elements is not consistent. For Rekk = 564, the growth
stops and decay sets in, while the envelope shape begins to differ starting from
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FIGURE 28. Temporal evolution of the envelope of the most unstable global mode,
nonlinear simulation with ‘linear code’ outflow treatment. The interval between the lines
is 0.1T0, the dashed line is at t = T0. (a) k = 1.5, Rekk = 564, (b) k = 2.0, Rekk = 881.
(c) Hollow symbols: converged spectrum; solid symbols: introduced modes; large hollow
symbols: eigenvalues reconstructed from nonlinear simulation.

the roughness, see the dashed line in figure 28(a) corresponding to t = T0. For
Rekk = 881, figure 28(b), the temporal growth behind the roughness is ongoing, but at
a lower growth rate than at the beginning. This ‘transient’ behaviour may be related
to the boundary treatment, especially to spurious acoustic reflections at the outflow
when spatial filtering is not applied with the streamwise grid stretching; respective
investigations are ongoing.

A.2. Sensitivity to the outflow boundary condition and the grid resolution
In order to investigate the sensitivity of our global stability analysis to the outflow
boundary condition, the downstream extent of the numerical domain as well as the
outflow boundary condition were varied. Figure 29(a) shows the spatial envelope
maxηz{|û|} over all converged eigenfunctions for the k = 1.5, Rekk = 564 roughness;
we show the complete downstream extent of the DNS domain including the stretched
outflow zone starting at ξ = 0.0424. Up to approximately ξ = 0.036, the growth
is dominated by the near-wake instability, before a kink in the lines indicates the
changeover to the convective secondary instability of the steady cross-flow modes in
the SFD solution. The relatively large amplitude in the downstream region is believed
to cause the sensitivity to the outflow boundary condition. In an attempt to decrease
the amplitude at the outflow, the domain was truncated or the sponge region in front of
the outflow boundary was extended in upstream direction, see table 3. The amplitudes
for configurations B-D are shown in figure 29(b–d). (The dashed lines in figure 29d
showing a second peak at ξ = 0.038 correspond to low-frequency modes with small
positive or negative temporal growth rates, see the encircled symbols in figure 30b.)
The associated global spectra are shown in figure 30, where the dependence on the
numerical set-up is clearly visible. However, the maximum amplification rate as well
as the amplified frequency range compare in all cases. The same holds for spectra
obtained on the high-resolution grid for configurations A and D.

For the roughness with k= 2.0, Rekk = 881, the amplitudes in figure 31(a) may be
assigned to three groups, according to the downstream position where the maximum
is reached: Eigenfunctions with the highest frequencies reach their maximum at
ξ = 0.032, followed by a group of highest temporal growth rates having their
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Configuration Grid ξstretch ξsponge ξoutflow

A Reference 0.0424 0.0443 0.0506
B Reference, truncated — 0.0389 0.0393
C Reference, truncated — 0.0356 0.0360
D Reference 0.0424 0.0352 0.0506

TABLE 3. Configurations used for the sensitivity study, with ξstretch being the beginning of
the stretched outflow zone (if applicable), ξsponge the location where the volume forcing in
front of the outflow boundary sets in and the position of the outflow boundary ξoutflow.
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0.03 0.04 0.05 0.03 0.04 0.05 0.03 0.04 0.05 0.03 0.04 0.05

(a) (b) (c) (d )

FIGURE 29. Envelopes of all converged global eigenfunctions for k = 1.5, Rekk = 564,
obtained with the different numerical set-ups given in table 3: (a) reference configuration
A, (b) truncated configuration B, (c) truncated configuration C, (d) configuration D with
extended sponge zone in front of the outflow boundary.

0

200

400

2000 4000 6000 2000 4000 6000
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D
D, high resolution

(a) (b)

FIGURE 30. (Colour online) Global eigenvalue spectra for k = 1.5, Rekk = 564, obtained
with the different numerical set-ups given in table 3: (a) reference configuration A,
truncated configuration B; (b) truncated configuration C, configuration D with extended
sponge zone in front of the outflow boundary.

amplitude peak at ξ = 0.036, before the low frequency modes reach their maximum
at ξ = 0.040. Again, we perform a second global stability analysis with the extended
sponge zone on front of the outflow boundary starting at ξ = 0.0353; the respective
envelopes of the eigenfunctions are given in figure 31(b). Here, the overall sensitivity
of the spectra given in figure 31(c) is weaker, however, especially in the most
amplified frequency range 4250 < ωr < 7000, the deviations are largest, which may
be connected to the fact that the sponge zone begins close to the point where
the connected eigenfunctions reach their spatial maximum. A grid study with the
high-resolution grid yields somewhat larger maximum amplification rates. We note
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FIGURE 31. (Colour online) Envelopes of all converged global eigenfunctions for
k = 2.0, Rekk = 881, obtained with different numerical set-ups given in table 3: (a)
reference configuration A, (b) configuration D with extended sponge zone in front of
the outflow boundary. (c) Associated global eigenvalue spectra: reference configuration A,
configuration D with extended sponge zone in front of the outflow boundary.

that the outflow zone of the high-resolution mesh has the same physical length as
the reference grid, but the resolution is not relaxed to the same large step size. Thus,
the dissipation effect in the outflow zone is weaker.

In conclusion, a dependence of the global spectra on the outflow boundary condition
and its position is especially evident for the roughness with k = 1.5, Rekk = 564, but
stays within an acceptable low tolerance level, corroborating the validity of the basic
findings.
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