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SUMMARY
In this paper, a weighted-neighbor-based cooperation control of multi-quadrotor systems is investi-
gated. A formation tracking problem is treated, where the reference formation trajectory (RFT) is
not given a priori. The RFT is only available to some of the quadrotors (i.e. the leaders). In order to
attain the fast convergence of the agents, we propose an algorithm to calculate the neighbors’ weights
in decentralized way. Then, the weights are used to compose the formation controller. Compared to
the widely used average-neighbor-based control method, the proposed control protocol can increase
the convergence speed of the cooperation error. Since the formation control is improved in topolog-
ical scale, the utilization of the proposed algorithms can be extended on any multi-robot systems.
We show the improvement of the proposed control protocol by theoretical proof, simulation, and
real-time experiments.
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1. Introduction
The consensus of high-order nonlinear multi-agent systems has attracted attention in the area of
robotics. Specifically, research on multi-quadrotor systems increases progressively in application
such as large object transportation.1–3 It is a typical formation tracking problem, in which the robots
keep a formation pattern while tracking some external given reference formation trajectory (RFT).

In practice, the robot usually has limited sensing/communicating range, such that the connectivity
of the topology is probably broken in case of aggressive formation tracking. Therefore, research on
increasing the converging speed of the cooperative error has practical significance. In general, to
improve the converging speed of a multi-robot system, we can carry out with two scales, that is,
individual scale and topological scale.

Individual scale: The optimal convergence rate of multi-agent systems is investigated, such as
in refs. [4, 5]. The optimal tracking control of large-scale networked system is developed by using
integral reinforcement learning method.6 The fast converging problem of the consensus of networked
high-order agents is investigated in ref. [4], where the authors show the possibility of augmenting the
consensus speed by designing a linear control input of the leader. The author in ref. [5] reveals that
the converging speed of a discrete multi-agent system cannot be improved by enlarging memory
slot of agents in special cases. In ref. [7], the distributed Kalman filter is proposed for trajectory
estimation. The authors in ref. [8] propose a nonlinear feedback control method, using which the
aggressive trajectory tracking is achieved. In order to achieve aggressive trajectory tracking goal, the
authors in the GRASP laboratory also propose a geometric control of quadrotor dynamics [16]. The
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trajectory given to the leader is prescribed by a serial of polynomials. The leader is considered as a
special agent, which computes its desired trajectory and broadcasts to all follower robots a message
containing the polynomial coefficients and time intervals that fully specify the trajectory.

Topological scale: In some optimal consensus speed literature,9–11 the iteration matrix “W =
I − αL,” which is built based on Laplacian, is designed to achieve arbitrary consensus speed. In these
papers, the neighbors of an agent are considered to be equally weighted, that is, the average-neighbor-
based method is used. It then results in symmetric adjacency matrices in the case of undirected
graphs. The average-neighbor-based method is sometimes related to average neighbors in litera-
ture.12, 13 For a multi-robot system, the robots are average if they are “a priori indistinguishable.”.14

The conception of anonymity is firstly introduced and implemented on quadrotors by the GRASP
laboratory.12, 13 In ref. [15], the authors also developed a decentralized method to perform mutual
localization for multiple mobile robots with average relative measurement. This type of formation has
advantages of scalable agents’ number and robustness with respect to agents’ failure. The controller
is also designed using the average of neighbors’ states.

We propose this work aiming at attaining aggressive formation tracking in topological scale.
Different from the existing work, we investigate the weighed-neighbor-based formation tracking con-
trol to improve the tracking performance w.r.t. the average-neighbor-based method. Nevertheless,
we should note that the proposed method in this paper can also be combined with the methods
investigated in the individual scale.

Although the terminology “weighted Laplacian” appears in some previous papers, we do not share
the same idea. In the paper,17 the authors proposed a “weighted Laplacian matrix” which is based
on the incidence matrix and a diagonal matrix containing some weights scalars on the diagonal. This
approach is different from ours. Firstly, the “weighted Laplacian matrix” is always symmetric. In
our case, the Laplacian can be non-symmetric. In fact, if the weights matrix is changed, the gain
of the cooperative controller is changed. But in our work, we change the weight while keeping the
gain invariant. In ref. [18], the authors investigate the approach to assign the node and edge weights
of graphs using convex optimization to impose bounds on their Laplacian spectra. The weighted
Laplacian is constructed by left multiplying a positive-definite diagonal matrix on the traditional
Laplacian. They are more focus on the effects of the highest eigenvalue of the Laplacian. In ref.
[19], the bipartite consensus problem is considered, where the edge weights are matrix-valued. The
objective is different from that of our paper.

We investigate the accelerating formation tracking problem of multiple quadrotors with two con-
straints. First, the RFT is not given a priory and not predictable. Second, the leader cannot inform
any other agents the information of the RFT through any ways. The follower can only obtain the
instantaneous states of its neighbors. Then, the contribution of the paper is threefold. A weighted-
neighbors-based control algorithm is proposed. For each agent, a protocol of updating the weights of
its neighbors is designed, such that the consequent adjacency matrix can be non-symmetric, although
the graph is undirected. Furthermore, an interaction matrix is developed for the analysis of stability
and converging speed rather than Laplacian. In addition, an iterative algorithm is given to online
calculate the weights in a distributed way.

Comparing to the average-neighbor-based algorithm, we show the improvement of converging
speed of the multi-quadrotor navigation by using our proposed weighted-neighbor-based control
algorithm, through theoretical proof, simulation, and also real-time experiments.

The rest of the paper is organized as follows. Some preliminaries about the quadrotor dynamics
and interaction matrix are given in Section 2. The weighted-neighbor-based control is proposed in
Section 3. In Section 4, we discuss the analysis of stability and convergence rate of the multi-robot
system. The main results proposed in this paper are validated by simulation and experiments, which
is given in Section 5. A conclusion and perspective is given in Section 6.

2. Preliminaries

2.1. Quadrotor model
A quadrotor contains two pairs of counter-rotating rotors and propellers, located at the vertices of
the crossed arms, as shown in Fig. 1. When a propeller rotates, an upward thrust and a torque par-
allel to the plane of the rotor are generated. The thrusts of the four rotors compose a total thrust
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Fig. 1. Quadrotor schema. The inputs are four thrust forces generated by the four propellers. The attitude is
represented by the Euler angles φ, θ , and ψ , giving the rotation matrix R.

FT = f1 + f2 + f3 + f4. The torques of the four rotors compose a moment, which can generate the
yaw movement. The different thrusts of the four rotors can generate the moments for pitch and roll
movements. Then, the dynamics of a quadrotor is modeled as the motion of rigid body in 3-D space
under a thrust force and three moments. As Euler angles representation is used, the state of quadro-
tors is represented in an inertial frame oexeye and a body-fixed frame obxbyb. We denote the unit
directional vectors of the inertial reference frame by {e1, e2, e3}, while the unit directional vectors of
the body-fixed frame by {b1, b2, b3}.

Modeled as a rigid body, the quadrotor dynamics are represented as follows:⎧⎪⎨
⎪⎩

mẌi = −mge3 + RiFTi e3

Ṙi = RiS(�i)

J�̇i + S(�i)J�i = τi

(1)

where Xi = [Xi, Yi, Zi]T is the coordinates of the center of mass of a quadrotor in inertial frame,
and FTi is the thrust force. The diagonal matrix J represents the moments of inertia in body
frame. We denote the unit directional vectors of the inertial reference frame by e1 = [1, 0, 0]T , e2 =
[0, 1, 0]T , e3 = [0, 0, 1]T . The angular velocity of the quadrotor i in the body-fixed frame is repre-
sented by �i = [ιi, κi, ςi]T . For avoiding the calculation of cross product, we introduce the function
S(·) :R3 →R

3×3. It represents an operation that transforms a vector in R
3 to a skew-symmetric

matrix R
3×3. Given two arbitrary vectors v1, v2 ∈R

3, the function S(·) satisfies the property
S(v1) · v2 = v1 × v2.

Let us denote the torque vector as follows: τi = [τφi, τθi, τψi]T ∈R
3. Notations φi, θi, and ψi rep-

resent roll, pitch, and yaw angles. Then, according to (1), the translational dynamics is derived as
follows:

Ẍi = (sinψi sin φi + cosψi cos φi sin θi)
FTi

m

Ÿi = (cos φi sinψi sin θi − cosψi sin φi)
FTi

m
(2)

Z̈i = −g + (cos θi cos φi)
FTi

m
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Let us define the rotation matrices RT
x , RT

y , and RT
z with the three axes of the inertia frame,

respectively. The rotation Ri from the body-fixed frame to the inertial frame is the sequence of
roll-pitch-yaw (namely, φ − θ −ψ), thus Ri = Rz(ψi)Ry(θi)Rx(φi). Then, we obtain the relation of
body-fixed angular velocity and the derivative of the Euler angles as follows:

�i =
⎡
⎢⎣
ιi

κi

ςi

⎤
⎥⎦=RT

i ψ̇ie3 + θ̇iR
T
x (φi)R

T
y (θi)e2

+ φ̇iR
T
x (φi)e1

= [RT
x (φi)e1 RT

x (φi)RT
y (θi)e2 RT

i e3
] ·
⎡
⎢⎣
φ̇i

θ̇i

ψ̇i

⎤
⎥⎦= Ti ·

⎡
⎢⎣
φ̇i

θ̇i

ψ̇i

⎤
⎥⎦

(3)

where Ti = [RT
x (φi)e1 RT

x (φi)RT
y (θi)e2 RT

i e3]. The derivatives of (3) satisfy

⎡
⎢⎣
ι̇i

κ̇i

ς̇i

⎤
⎥⎦= Ti ·

⎡
⎢⎣
φ̈i

θ̈i

ψ̈i

⎤
⎥⎦+ T̄i ·

⎡
⎢⎣
φ̇iθ̇i

φ̇iψ̇i

θ̇iψ̇i

⎤
⎥⎦

where T̄i is as follows:

T̄i =
⎡
⎢⎣

0 0 − cos θi

− sin φi cos θi cos φi − sin θi sin φi

− cos φi − cos θi sin φi − sin θi cos φi

⎤
⎥⎦ (4)

Now if we denote T̃i = −T−1
i T̄i, the rotational dynamics yields⎡

⎢⎣
φ̈i

θ̈i

ψ̈i

⎤
⎥⎦= (JTi)

−1τi + T̃i ·
⎡
⎢⎣
φ̇iθ̇i

φ̇iψ̇i

θ̇iψ̇i

⎤
⎥⎦+ (JTi)

−1ST

⎛
⎜⎝Ti ·

⎡
⎢⎣
φ̇i

θ̇i

ψ̇i

⎤
⎥⎦
⎞
⎟⎠ JTi ·

⎡
⎢⎣
φ̇i

θ̇i

ψ̇i

⎤
⎥⎦ (5)

Remark 1: It is obvious to see that when the roll (or pitch) angle equals to π/2, the quadrotor
cannot maintain its altitude since the total thrust is perpendicular to the gravity. The gimbal lock
problem is caused by kinematic singularities. As a result, we define the case of singularity as a
failure of control. In other words, the pitch and roll angles should be controlled within ±π/2.

2.2. Interaction matrix
In a multi-quadrotor system, the interaction topology of the quadrotors or agents can be repre-
sented using a graph G = (V, E) with the sets of vertices V and edges E . The set of vertices V =
{1, 2, . . . , n} is composed of the indices of agents. |V | represents the cardinality of the set V , which
satisfies |V | = n. The set of edges is represented by E ⊆ V × V . If an edge exists between two ver-
tices, the two vertices are called adjacent. A graph G is said to be undirected if (i, j) ∈ E ⇔ (j, i) ∈ E .
A graph is simple if self-loops or repeated edges do not exist. We consider simple undirected graphs
in this paper.

A path between two vertices i, j is a sequence of edges in a graph of the form (i, i1), (i1, i2), . . .,
(ik, j). A graph G is connected if there is a path between any two vertices, otherwise it is disconnected.
The adjacency matrix of G is denoted by GA = [ωa

ij] ∈ Rn×n, where ωa
ij represents the entry on the ith

row jth column of matrix GA. Since the simple graph is considered, we have ωa
ii = 0. ωa

ij > 0 if (i, j) ∈
E , otherwise ωa

ij = 0. The degree matrix of G is denoted by GD = diag
{∑n

j=1 ω
a
1j, . . . ,

∑n
j=1 ω

a
nj

}
.

The neighbor set Ni = {j ∈ V : (i, j) ∈ E} of agent i is composed of the indices of the agents j,
which has interaction with the agent i. In other words, if ωa

ij > 0, then agent j is a neighbor of agent i.
The number of neighbors of agent i is equal to |Ni|.
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We also define a role matrix GL = diag{ωl
1, . . . , ω

l
n} distinguishing the role of agents. If ωl

i > 0,
then agent i is a leader. Otherwise, if ωl

i = 0, agent i is a follower, for i ∈ V . Then, the leader set is
defined as VL = {i ∈ V :ωl

i > 0}. The leader set VL ⊂ V is a subset of V , which contains the indices
of the leaders. Particularly, all the quadrotors are leaders, when VL = V . The indices of the followers
are contained in the complementary set of VL, namely V − VL.

The interaction matrix G for L-F formation is defined as follows:

G = GD − GA + GL (6)

Let us note that the component GD − GA is normally called the Laplacian in graph theory. Since we
are here concerned by the L-F formation, we use the interaction matrix G to represent the interac-
tions of agents. Obviously, if no leader exists in the group, namely leaderless formation structure,
the matrix GL will be equal to zero. In this case, the matrix G is equal to the Laplacian of the
graph.

According to the properties of Laplacian, we conclude the interaction matrix G satisfies

• Gij ≤ 0, for i, j ∈ V and i 	= j.
• ∑n

j=1 Gij =ωl
i, for i ∈ V .

3. Weighted-Neighbor-based Formation Control

3.1. Dynamics decoupling
According to (2) and (5), the quadrotor is a coupled-nonlinear system. Since a quadrotor is under-
actuated, it is also a four-order system. The motion of translation of a quadrotor is decided by
quadrotor’s attitude, that is, its dynamics can be divided into rotational and translational dynam-
ics. The quadrotor closed-loop dynamics perform therefore in two time scales, that is, the slow and
fast time scales. Concerning the fast time scale, we can design a high-gain feedback control for the
attitude (rotational dynamics).8 The formation controller is designed considering only the reduced
model, that is, the translational dynamics in slow time scale. The attitude angles satisfy the following
equations:

θi = θd
i +θi, φi = φd

i +φi, and ψi =ψd
i +ψi,

where θd
i , φd

i , and ψd
i are desired angles, θi, φi, and ψi are tracking errors of the angles, which

can be assumed to be zero by designing a high-gain-based attitude controller according to singular
perturbation theory, which is investigated in ref. [8]. Considering that the absolute value of the pitch
and roll attitude angles in the multi-UAV system keep smaller than π

2 , we can propose the thrust force
as follows:

FTi =
(uZ

i + g)m

cos θi cos φi
, (7)

where uZ
i is the altitude controller. According to the third line in Eq. (2), we can obtain that Z̈i = uZ

i ,
if FTi is selected by Eq. (7). Then the design of uZ

i can be any kinds of controllers, such as PID.
This design is also validated by real-time experiments in refs. [8] and [22]. Thus, the control of the
quadrotor in z-axis is decoupled from that in x and y axes.

Let us denote vi = [uX
i , uY

i , uZ
i ]T , and

vi = (uZ
i + g)

⎡
⎢⎢⎣

sinψd
i cosψd

i 0

− cosψd
i sinψd

i 0

0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

tan φd
i

cos θd
i

− φd
i

tan θd
i − θd

i

1
uZ

i +g
uZ

i

⎤
⎥⎥⎥⎦ (8)
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Then, using (7) and (8), the translational model yields Ẍi = uX
i , Ÿi = uY

i , and Z̈i = uZ
i . According

to the above analysis, we conclude that we can design the formation controller in x, y, and z axes
separately. Thus, the controller design for the high-order multi-agent system transforms to the design
of multiple second-order-agent system.

Thereafter, we only consider the dynamics on one axis (x-axis for example) in the following
analysis. The controller on y and z axes can be obtained in a similar way. Let us denote xi = [Xi, Ẋi]T ,
we can then rewrite dynamics of xi in state space as follows: ẋi = Axi + Bui, where we abbreviate
uX

i by ui. This abbreviation will be used throughout the rest of the paper. Matrices A and B satisfy

A =
[

0 1
0 0

]
and B = [0, 1]T .

3.2. Formation measurement
In the cooperation of quadrotors, each UAV can obtain or sense the states (position and velocity) of
its neighboring UAVs. It calculates relative positions and velocities zij = xi − xj, i ∈ V , j ∈Ni. If a
UAV is a leader, it can also obtain the relative position and velocity with respect to the navigation
reference (NR) zi0 = xi −R, i ∈ VL, where we denote by R= [r, ṙ]T the NR.

In real applications, the measurement can be realized by the following setup. Each agent can be
equipped by a global positioning sensor, such as GPS in outdoor environment and UWB anchors in
indoor environment; the GPS is not used when the role of the agent is a follower, for the sake of
saving energy. The follower just uses other sensors to detect relative distance and orientation to its
neighbors, for example, the ultra-sonic sensors installed on the robot.

3.2.1. Weighted-neighbor-based measurement. In general, the formation measurement can be writ-
ten as follows:

zi =
n∑

j=1

ωa
ijzij +ωl

izi0 (9)

where ωa
ij and ωl

i are some weights. The weight ωa
ij ≥ 0 represents one UAV’s knowledge of other

UAVs. Specifically, if UAV j is a neighbor of i (e.g. in terms of sensing range), then ωa
ij is nonzero.

The weight ωl
i ≥ 0 represents the ability of acquiring the RFT (by communication or vision). When

ωl
i is nonzero, then i ∈ VL.
The average-neighbor-based measurement is a special case of the weighted-neighbor-based mea-

surement, where ωa
ij =ωa

ji > 0, when i ∈Ni. In the mostly used case, where {ωa
ij =ωa

ji = 1|i ∈Ni},
and {i ∈ VL|ωl

i = 1}, the average-neighbor-based measurement can be rewritten as zi =∑j∈Ni
zij +

ωl
izi0. If a normalized Laplacian is taken into account,21 the foregoing measurement becomes

zi = 1
|Ni|
∑

j∈Ni
zij +ωl

izi0, where {ωa
ij = 1

|Ni| |j ∈Ni}.
In this work, we consider a more general case, where the neighbors’ weights of an agent can be

different, that is, ωa
ij 	=ωa

ji, j ∈Ni. Indeed, the condition {ωa
ij =ωa

ji|i ∈Nj} can be removed, even in an
undirected graph.

3.2.2. Overall error measurement. Let us define three vectors ga
i = [ωa

i1, . . . , ω
a
i(i−1), 0, ωa

i(i+1)

. . . , ωa
in]T , gd

i = [0, . . . , 0,
∑n

j=1 ω
a
ij, 0, . . . , 0]T , and gl

i = [0, . . . , 0, ωl
i, 0, . . . , 0]T . The vectors gd

i

and gl
i have zero entries except the i-th entry. The full state vector of n quadrotors is defined by

x = [xT
1 , xT

2 , . . . , xT
n

]T
, then (9) can be rewritten as follows:

zi =
((

gd
i − ga

i + gl
i

)T ⊗ I2

)
· x −

((
gl

i

)T ⊗ I2

)
· (1n ⊗R) (10)

where I2 ∈R
2×2 represents the identity matrix and 1n ∈R

n represents a vector with all the entries
equivalent to 1. The symbol “⊗” represents the Kronecker product.

According to the definitions of the members of matrices GA and GL in Section 2, we conclude that
GA = [ga

1, . . . , ga
n

]T
, GD = [gd

1, . . . , gd
n]T and GL = [gl

1, . . . , gl
n

]T
.
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Fig. 2. The interaction topology of multiple quadrotors. The black nodes are vertices in the graph, which
represents the interacting relations of UAVs.

The weighted error measurement of UAV i (either a leader or a follower) can be rewritten in (11)

zi =ωl
i(xi − r(t))+∑j∈Ni

ωa
ij(xi − xj) (11)

We assume that the RFT R given to the leader(s) is slowly changing such that we have r̈ = 0.

3.3. Weights assignment
In order to introduce the assignments of the weights ωa

ij, we firstly introduce the notion of “distance
of vertices” (DOV) in graph theory. The distance between two vertices is the length of a shortest path
between them. For example, in Fig. 2, a topology of seven vertices is shown. Between vertices 1 and
5, the distance is equal to 2, because the shortest path is 1 − 3 − 5. The distance of a vertex to itself
is zero.

Let us denote by “di” the DOV of an UAV to a leader UAV. Then, the weights ωa
ij in (11) are given

according to dj. The smaller the distance dj is, the bigger the weight is assigned. Obviously, dj is a
non-negative integer for each vertex in a graph.

When an agent (quadrotor) has multiple neighbors, the importance of them is differentiated.
Intuitively, the neighbor who has smaller DOV to the leader should have higher weights. In the exam-
ple of Fig. 2, vertex 3 (which stands for quadrotor 3) has four neighbors, that is, N3 = {1, 2, 5, 6}.
Among them, vertex 1’s DOV is zero, since it is the leader. Therefore, its weight should be the high-
est in N3. Similarly, according to the calculation of the DOVs of the N3, we conclude that the design
of the weighted-neighbor-based control should satisfy ωa

31 >ω
a
32 >ω

a
35 =ωa

36.
In order to calculate the weights ωa

ij, we first define a Priority Coefficient (abbreviated by “PrC”)
for each UAV, which is a positive scalar represented by pi. The PrC is given by pi = di + 1. The
leader’s PrC is 1. The PrCs of the followers that are the neighbors of the leader are equal to 2, etc.

The PrCs are calculated online and on-board quadrotor processor. We use pi(k) to represent the
PrC of UAV i at the k-th sampling instant. The calculation of pi(k) is given by Algorithm 1. According
to Algorithm 1, a UAV, which has a smaller PrC, is closer to the leader. The weights ωa

ij, j ∈Ni are
calculated according to the PrCs (pj(k), j ∈Ni) of the neighbors of UAV i.

In this paper, we principally investigate the assignment of ωa
ij. We simply give the assignment

weights ωl
i ∈ {1, 0} to specify the role of a quadrotor, which is either a leader or a follower.

The formation control algorithm runs in every UAV instead of running in a central UAV or ground
station. Furthermore, each UAV takes its own decision depending only on neighboring UAVs’ posi-
tions and velocities (and the RFT, if it is a leader) instead of all the other UAVs. In addition, the PrCs
are diffused by using communication (e.g. through WiFi); therefore, the formation control strategy
is distributed.

An example of the calculation of weighted-neighbor-based error measurement (defined in (11))
by using Algorithms 1 and 2 is given in ref. [20].

3.4. Formation control
Let us denote by dij = [dX

ij , ḋX
ij ]T the desired spatial distance of UAV i and j (if they are neighbors)

on xe-axis. To introduce the proposed weighted formation control strategy, we suppose that the rigid
formation is taken into account, such that the second member of the vector dij is zero.

Let us define the tracking error vector as follows:

ei = xi − r − di0 (12)
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Algorithm 1 Update PrC pi for UAV i
Require:

PrCs of neighbors: pj(k), j ∈Ni. // k is the current iteration step
Ensure:

Updated PrC of UAV i: pi(k + 1).
1: for j = 1; j<= n; j + + do
2: if UAV j is a neighbor of i then
3: per[j] = pj(k)
4: else
5: per[j] = n //Store pj(k), j ∈Ni into vector per[n]
6: end if
7: end for
8: if UAV i is a leader then
9: pi(k + 1)= 1

10: else
11: pi(k + 1)= σn(min{per[j]} + 1) // where σn(·)= sgn(·)min{n, | · |}
12: end if
13: return pi(k + 1) //UAV i transmits pi(k + 1) to others within its neighborhood.

Algorithm 2 Calculate weighted error measurement for UAV i
Require:

Positions (Xj, Yj), velocities (Ẋj, Ẏj) and PrCs pj(k)
where j ∈Ni

Ensure:
Weighted error measurement zi // shown in equation (11)

1: for j = 1; j<= n; j + + do
2: if UAV j is a neighbor of i then

3: ωa
ij(k)=

1
pj(k)∑

j∈Ni
1

pj(k)

4: else
5: ωa

ij(k)= 0
6: end if
7: end for
8: if UAV i is a leader then
9: ωl

i(k)= 1
10: else
11: ωl

i(k)= 0
12: end if
13: return zi =∑j∈Ni

ωa
ij(xi − xj)+ωl

i(xi − r(t))

where di0 = [dX
i0, 0]T is a constant offset vector. Then, we can write the error dynamics for UAV i (on

xe-axis) as ėi = Aei + Bui. Note that r̈ ≈ 0, the RFT then satisfies Ṙ= AR.
For the overall system, the error dynamics is

ė =Ae +Bu (13)

where u(k)= [u1, u2, · · · , un]T . According to Eqs. (12), (13), we can include that the L-F consensus
will be achieved, if the overall error “e” converges to zero. We propose a distributed control law ui

for UAV i (either a leader or a follower) as follows:

ui = −K
(

zi −∑n
j=1 ω

a
ijdij −ωl

idi0

)
(14)
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where K ∈R
1×2 is a gain matrix. The weights ωa

ij and ωl
i are calculated by using Algorithms 1 and 2.

When ωa
ij = 0, we have j /∈Ni. We can rewrite∑

j∈Ni
ωa

ij(xi − xj)=∑n
j=1 ω

a
ij(xi − xj) (15)

We note that xi − xj − dij = xi −R− xj +R− (di0 + d0j). If we replace zi in (14) by (11) and using

(15) and (12), then we obtain ui = −K
(
(
∑n

j=1 ω
a
ij +ωl

i)ei −∑n
j=1 ω

a
ijej

)
. According to ui, we can

write the controller outputs “u” of all the UAVs in matrix form as follows:

u = −K ·
⎛
⎜⎝
⎡
⎢⎣
∑n

j=1 ω
a
1j +ωl

11 . . . −ωa
1n

...
. . .

...

−ωa
n1 . . .

∑n
j=1 ω

a
nj +ωl

nn

⎤
⎥⎦⊗ I2

⎞
⎟⎠· e (16)

where K= In ⊗ K. We notice that the matrix before the Kronecker product symbol in the foregoing
Eq. (16) is the interaction matrix G. Then, (16) is rewritten as

u = −K · (G ⊗ I2) · e (17)

4. Stability Analysis
Since the objective of the formation control is to force the tracking error vector (defined in Eq. (12),
i = {1, 2, . . . , n}) converge to zero, the stability of the system (13) is analyzed when the formation
controller (14) is used.

4.1. Convergence condition
It is important to note that the interaction matrix G can be not symmetric since different weights are
used in the formation controller. In order to show the stability of system (13), we need to show that
the matrix G is invertible. Therefore, we introduce the following lemma.

Lemma 1. Let G =⋃1≤j≤|V| Gj be an undirected simple graph, where Gj represents connected
subgraphs of G. For any two subgraphs Gja and Gjb , their node sets satisfy Vja ∩ Vjb =�. Then the
interconnection matrix G in Eq. (6) has only positive eigenvalues, if V j

L 	=�.

The proof is similar to Lemma 1 in ref. [20].
In Lemma 1, we show the cases when the interaction matrix G is positive definite. We replace

“u” in Eq. (13) by Eq. (17), then we have ė = (A−BK·(G ⊗ I2)) · e. By using the mixed-product
property of Kronecker product, we can rewrite the foregoing equation as follows:

ė = (In ⊗ A − (G ⊗ BK)) · e (18)

Proposition 1. The origin of (18) is asymptotically stable, if λmin(G) > 0.

Proof. According to matrices B and K, we are able to find n elementary matrices S1, . . . , Sn,
which render G ⊗ BK as follows:

(
�n

i=1Si
)
(G ⊗ BK)

(
�n

i=1Si
)T =

[
0 0

k1G k2G

]

If we denote S =�n
i=1Si and set ẽ = Se, then we have ˙̃e =Acẽ, where Ac satisfies

Ac =
[

0 In

−k1G −k2G

]
(19)

We denote vector [ET
1 , ET

2 ]T by an eigenvector of matrix Ac, where E1, E2 ∈ Rn. Then, we have{
E2 = λE1

−k1GE1 − k2GE2 = λE2

where λ represents an eigenvalue of Ac. Thus, we simplify the foregoing equation as (−k1 −
k2λ)GE1 = λ2E1, which means that E1 is an eigenvector of matrix G with eigenvalue λi(G). In this
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notation, we have (−k1 − k2λ)λi(G)= λ2. We rewriting this equation as λ2 + k2λi(G)λ+ k1λi(G)=
0. Therefore, if λmin(G) > 0, then

Re(λ)≤ Re

⎛
⎝−k2λmin(G)+

√
k2

2λ
2
min(G)− 4k1λmin(G)

2

⎞
⎠< 0 (20)

Thus Ac is Hurwitz, the origin of (18) is asymptotically stable. �
According to inequality (20), we have the following corollary.

Corollary 1. Given some constant gains k1 and k2, the converging speed of e in (18) is
proportional to λmin(G).

According to (20), we observe that λ is proportional to λmin(G); therefore, we have the result of
Corollary 1.

4.2. Convergence speed
According to Corollary 1, we known that the minimum eigenvalue of the interaction matrix can
decide the converging speed of the system (18). In the sequel, we investigate how the weighted-
neighbor-based control increases the converging speed compared to the average-neighbor-based
control.

We define W1 = diag{∑j∈N1
p−1

j (k),
∑

j∈N2
p−1

j (k), . . . ,
∑

j∈Nn
p−1

j (k)} and W2 =
diag {p1(k), p2(k), . . . , pn(k)} as two weights matrices, where the scalar pi(k) represents the
PrC of UAV i ∈ V . According to Algorithm 2, the weighted interaction matrix is obtained as follows:

G = GL + In − W−1
1 · GA · W−1

2 (21)

In general, an interaction matrix G of a weighted topology is not symmetric, although the graph is
undirected. However, we can prove that the eigenvalues of G are always real, which is shown in the
following lemma.

Lemma 2. The eigenvalues of the interaction matrix G are real.

Proof. We can observe that matrices W1 and W2 are invertible and positive-definite. We set T =
W

− 1
2

1 W
1
2

2 and carry out similarity transformation T−1GT , which yields

T−1GT =
(

W
− 1

2
1 W

1
2

2

)−1
G
(

W
− 1

2
1 W

1
2

2

)
= GL + In − W

− 1
2

2 W
− 1

2
1 GAW

− 1
2

1 W
− 1

2
2

We recall that matrices GL, GD, W1, and W2 are diagonal, and GA is symmetric. We obtain that
T−1GT is symmetric, whose eigenvalues are real. Therefore, the interaction matrix G is similar to a
symmetric matrix, such that its eigenvalues are real. �

The distribution of the eigenvalues of the interaction matrix on the real axis is investigated by the
following corollary.

Corollary 2. If the weighted interaction matrix satisfies (21), then λ(G) ∈R and 0<λ(G)≤ 3.

The proof is in Appendix A.
Let us denote by G′ the interaction matrix of multiple quadrotors with average formation control.

G′ then yields

G′ = GL + In − (GD)−1 · GA (22)

Proposition 2. In the weighted and average neighbor-based formation control strategies, the
corresponding interaction matrices are, respectively, (21) and (22). Then, their smallest eigenvalues
of their interaction matrices yield

λmin(G)≥ λmin(G
′)

Proof. Without loss of generality, we suppose that the UAVs have only one leader. We also assume
that the vertices 1, 2, . . . , n (which correspond to UAVs 1, 2, . . . , n) are sorted in increasing order
of distances in the graph. Then, we conclude that in each row of the weighted interaction matrix G,
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the magnitude of the non-diagonal and nonzero entries are decreasing. On the contrary to G, in the
unweighted interaction matrix G′, the non-diagonal entries in a row are equal. For both matrices G
and G′, we found that their Gershgorin circles are the same as shown in Fig. A.1.

In order to illustrate the distribution of the smallest eigenvalues of matrices G and G′, we carry
out a similar transformation on the interaction matrices G and G′. The idea is to increase the radius
of the Gershgorin circle, whose center is (1 +ωl

i, 0), while at the same time, to reduce the radius of
the Gershgorin circle whose center is (1, 0). Then, the transformation matrix T is the product of n
diagonal matrices

T = Tn × · · · × T1 =

⎛
⎜⎜⎝

1
. . .

1
vn

⎞
⎟⎟⎠× · · · ×

⎛
⎜⎜⎝

v1

1
. . .

1

⎞
⎟⎟⎠

where v1 > v2 > · · ·> vn = 1 are positive scalars. Additionally, vi − vi+1 > vi+1 − vi+2, where i =
{1, 2, . . . , n − 2}. We note that according to Lemma 1, in each row of both matrices G and G′, at
least one nonzero entry exists before the diagonal entry in that row. Then, the scalars vi are selected
with the following constraint:

n∑
j=1,j	=i

1

|Ni|viv
−1
j < 1 (23)

We now apply the similar transformations TGT−1 and TG′T−1 in (24) and (25), to see the
difference on their Gershgorin circles.

TGT−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 +ωl
1 −ωa

12v1v−1
2 . . . −ωa

1nv1v−1
n

−ωa
21v2v−1

1 1 −ωa
23v2v−1

3 . . . −ωa
2nv2v−1

n

−ωa
31v3v−1

1 −ωa
32v3v−1

2 1
. . .

...
...

...
. . .

. . . −ωa
n−1nvn−1v−1

n

−ωa
n1vnv−1

1 . . . −ωa
nn−1vnv−1

n−1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(24)

TG′T−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 +ωl
1 − 1

|N1|v1v−1
2 . . . − 1

|N1|v1v−1
n

− 1
|N2|v2v−1

1 1 − 1
|N2|v2v−1

3 . . . − 1
|N2|v2v−1

n

− 1
|N3|v3v−1

1 − 1
|N3|v3v−1

2 1
. . .

...

...
...

. . .
. . . − 1

|Nn−1|
− 1

|Nn|vnv−1
1 . . . − 1

|Nn|vnv−1
n−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(25)

According to Algorithm 2, we know that

• In the first rows of TGT−1 and TG′T−1, the sums of the magnitudes of the non-diagonal entries of
TGT−1 and TG′T−1 are equal.

• In the rows i = {2, . . . , n}, since ωa
ij is decreasing and vivj are increasing, we have∑n

j=1,j	=i ωijviv
−1
j ≤∑n

j=1,j	=i
1

|Ni|viv
−1
j

• According to (23), the radius of the Gershgorin circles whose center is (1,0) is smaller than 1.

The eigenvalues of a matrix are continuously changing when the matrix’s entries vary continuously.
It is obvious that the continuous change of the entries will lead to a continuous change of the distri-
bution of the Gershgorin circle. Therefore, the Gershgorin circles of matrix TGT−1 with the center
point (1, 0) have smaller radius than that of matrix TG′T−1, which implies that the distribution of the
eigenvalues of the matrix TGT−1 is further from the origin than the matrix TG′T−1. According to the
principle of continuity, we conclude that λmin(G) > λmin(G′). �
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Fig. 3. The experimental setup of the real-time experiments.

According to (1), we conclude that for a multiple quadrotors system, if the weighed-neighbor-
based formation controller is used, the convergence speed of the tracking error (12) is greater
than using the average-neighbor-based formation controller. Furthermore, since the topology is dis-
connected when the interaction matrix is singular, a formation, whose minimum eigenvalue of its
interaction matrix is greater, is less likely to become disconnected.

5. Simulation and Experiments
The Heudiasyc laboratory has developed a PC-based simulator-experiment framework for control-
ling a quadrotor and also a formation of quadrotors.8 Within this framework, control algorithms are
implemented on UAVs rather than on a PC. There does not exist a central controller that sends control
signals to UAVs.

In the simulator, the complete UAV dynamics are implemented. The flight of the UAVs is animated
using a high performance real-time 3D engine Irrlicht.1 The experimental setup is shown in Fig. 3. In
the experiments, the motion capture system OptiTrack2 is used to localize the UAVs in the formation.

The Parrot AR.Drone 2 quadrotors3 are used for real-time experiments. We have completely
changed the software provided by AR.Drone 2 quadrotors. The on-board Linux system has been
deleted and replaced by Poky 12.04 system. Some techniques in the Paparazzi UAV5 Project, such as
communication protocol, are applied here in order to implement our own algorithms on the quadro-
tors. We have then used the available sensors and the materials of Parrot quadrotors with our proper
low-level and high-level controllers.

5.1. Simulation results
5.1.1. Comparison of average/weighted-neighbor-based formations. The average-neighbor-based
controller (26), proposed in ref. [21], is used for purpose of comparison.

ui(k)=
{−K(xi − r(t)), i ∈ VL

−K
(∑

j∈Ni

1
|Ni| (xi − xj − dij)

)
, i ∈ V − VL

(26)

1http://irrlicht.sourceforge.net/.
2http://optitrack.com/.
3https://www.parrot.com/global/drones/parrot-ardrone-20-elite-edition.
4https://www.yoctoproject.org/software-item/poky/.
5https://wiki.paparazziuav.org/wiki/Main_Page.
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Fig. 4. Formations of four UAVs (UAV 1 is the leader and UAV 2, 3, 4 are followers) with average (left) and
weighted (right) neighbor-based formation control.

where K = diag{1.39, 1.2}. We note that in (26), the neighbors of one UAV have no special weights
and they are undifferentiated. Furthermore, the motion of the leader only depends on the reference
signal, as defined in the work.23

In our proposed controller (14), we give the same gain matrix K as in (26). Then, we proceed the
following two cooperation scenarios.

Scenario 1 Aggregation of four UAVs
In this test, each UAV can detect neighbors within an area of d = 3 m around itself, and the

desired inter-distance is 1.5 m. The initial positions are as follows: UAV 1, (0, 0, 1); UAV 2,
(−1.49,−2.6, 1); UAV 3, (1.49,−2.6, 1); and UAV 4, (0,−4, 1). All the UAVs have zero initial
velocities. The goal of cooperation is to aggregate all the UAVs around a destination point at (2, 3, 1)
and to keep a rectangular formation pattern.

Figure 4 shows the comparison of the average and weighted-neighbor-based cooperation con-
trollers, whose corresponding interaction matrices are G1 and G2 in (27).

G1 =

⎛
⎜⎜⎜⎝

1 0 0 0

− 1
3 1 − 1

3 − 1
3

− 1
3 − 1

3 1 − 1
3

0 − 1
2 − 1

2 1

⎞
⎟⎟⎟⎠ G2 =

⎛
⎜⎜⎜⎝

2 − 1
2 − 1

2 0

− 6
11 1 − 3

11 − 2
11

− 6
11 − 3

11 1 − 2
11

0 − 1
2 − 1

2 1

⎞
⎟⎟⎟⎠ (27)

In Fig. 4 (left), we observe that the aggregation is failed, since the followers are outside of the
leader’s neighborhood few seconds after the formation has begun. However, in Fig. 4 (right), under
the same initial conditions, the UAVs can finally achieve the goal of aggregation. This simula-
tion shows that our control strategy with weighted neighbors has better robustness in connectivity
preserving than the strategy with average neighbors, in terms of topology maintenance.

Scenario 2 Platooning of four UAVs
In this test, a platooning of four UAVs is carried out, the RFT is a stationary point at (1, 0, 1). The

initial positions of the four UAVs are (0, 0, 1), (−1.5, 0, 1), (−3, 0, 1), and (−4.5, 0, 1). Figure 5
shows the planar translational motion curves. We observe that the convergence speed by using the
weighted-neighbor-based formation controller (in Fig. 5 (right)) is faster than the average-neighbor-
based formation controller (in Fig. 5 (left)). On the other hand, the improvement appears in Fig.
6 describing the inter-distance of UAVs. Indeed, we observe that one peak is smaller by using our
proposed method and the convergence to the desired inter-distance is also faster.

In Fig. 6 (left), the maximum inter-distance of UAVs 1 and 2 is up to 1.8 m, where its desired value
is 1.5 m. While in Fig. 6 (right), the inter-distance d12 is less than 1.75 m. Although the maximum
deviation of d23 and d34 is getting larger, they are always smaller than 1.75 m. Consider the limited
field of detection, we can observe that the proposed control method can reduce the tendency of
disconnection of the topology, which can be concluded as another improvement on the average-
neighbor-based control.
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Fig. 5. X and Y curves of a platooning of four UAVs with average (left) and weighted (right) neighbor-based
formation control.
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Fig. 6. Inter-distances of the four UAVs with average (left) and weighted (right) neighbor-based formation
control.
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Fig. 7. X and Y curves of the platooning of four quadrotors. Average (left) and weighted (right) neighbor-based
formation control.

5.2. Experimental results
Scenario 1 Platooning of four UAVs

A real-time platooning of four UAVs is carried out in experiments. Figures 7 and 8 respectively
show the translational curves and the magnitudes of the inter-distance of the quadrotors.

In Fig. 7 (right), we can observe that the UAVs 2, 3, and 4 have faster response to the UAV 1
(which is the leader) than that in Fig. 7 (left). Indeed, the proposed weighted-neighbor-based cooper-
ation control can reduce the inertia of the multi-agent system than that using average-neighbor-based
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Fig. 8. Inter-distances of the quadrotors. Average (left) and weighted (right) neighbor-based formation control

Fig. 9. The snapshots of the quadrotors in formation of rectangle while tracking a trajectory “8” given to the
leader, which is switchable.

control. Similar results can be drawn from observing Fig. 8. The maximum peak of the inter-distance
deviation in Fig. 8 (right) is smaller than that in Fig. 8 (left).

In real-time experiments shown in Figs. 7 and 8, the data of quadrotors before taking off and after
landing are also recorded. We should note that the cooperation control does not work during the
taking off and landing period. Therefore, on the left side of Figs. 7 and 8, the quadrotors start to take
off after around 5 s and land after 38 s. On the right side of Figs. 7 and 8, the quadrotors start to take
off after around 5s and land after 48 s.

Scenario 2 Formation with dynamical weights
In this scenario, we implement a formation of four quadrotors tracking a trajectory of the “8”

pattern. The leader changes between UAV 1 and UAV 2. The UAV 1 is initially assigned as a leader.
In this case, according to Algorithms 1 and 2, the interaction matrix dynamically changes between
G1 and G2.

G1 =

⎛
⎜⎜⎜⎝

2 − 1
2 0 − 1

2

− 3
4 1 − 1

4 0

0 − 1
2 1 − 1

2

− 3
4 0 − 1

4 1

⎞
⎟⎟⎟⎠G2 =

⎛
⎜⎜⎜⎝

1 − 3
4 0 − 1

4

− 1
2 2 − 1

2 0

0 − 3
4 1 − 1

4

− 1
2 0 − 1

2 1

⎞
⎟⎟⎟⎠

The snapshots of the real-time experiment are given in Fig. 9. The interaction topology of the four
quadrotors is shown in Fig. 10. The corresponding video is attached with this paper and is available
on https://www.youtube.com/watch?v=KNzlogp4pgofeature=youtu.be The UAVs attain the center of
the “8" trajectory. Each time the change of leader shows the real-time feasibility of such a dynamical
weights calculation of the multi-quadrotor system.

In the video, the latency of the followers w.r.t. the leader is observed. Among the quadrotors,
only the leader can obtain the referenced formation trajectory. Some of the followers (1 and 2) are
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Fig. 10. Four quadrotors formation with one leader and three followers. The white lines represent the edges of
interaction. The red/blue rectangles represent the leader/followers.

connected with the leader and follower 3 is not directly connected with the leader. The motion of
follower 3 is based on followers 1 and 2. Since each quadrotor is a system with inertia, the motion of
the leader will not cause a simultaneous motion of followers 1 and 2. The motion of followers 1 and
2 will not cause a simultaneous motion of follower 3. Therefore, we observe the latency of followers
1 and 2 w.r.t. the leader, and latency of follower 3 w.r.t. followers 1 and 2. Therefore, the difference
of follower 3 w.r.t. the leader is more significant. This phenomenon of latency will become obvious
as the increasing of the number of agents. Nevertheless, the proposed formation tracking control can
reduce the latency which is shown in Figs. 5 and 7 for instance.

6. Conclusion
In this paper, a distributed weighted-neighbor-based control has been proposed for multi-robot sys-
tems, especially for multi-quadrotor systems. An algorithm is given to online calculate the weights.
The stability analysis is proceeded in terms of interaction matrix, which can be non-symmetric in
our case. We prove that the weighted-neighbor-based control can improve the converging speed of
the error state of the quadrotors, compared to the average-neighbor-based control. These theoretical
results are validated by simulation and real-time experiments, which show faster convergence rates
of UAVs cooperation error and its capacity of dynamically updating the weights, thus to change the
role of UAVs.

Some interesting work such as proving stabilities with switching topologies, implementing the
proposed control in an environment with obstacles, and combining algorithms for collision avoidance
of quadrotors can be proceeded in the future.
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Appendix
A. Proof of Corollary 2

Proof. We prove this corollary using Gershgorin circle theorem. The Gershgorin circle theorem
can be used to bound the spectrum of a square matrix. According to lemma 1, lemma 2, and the
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Fig. A.1. Gershgorin circle

Gershgorin circle theorem, we can draw the Gershgorin circle as in Fig.A.1. Since the eigenvalues
are always within the Gershgorin circles, then we can obtain that the eigenvalues of matrix G satisfy
0<λ(G)≤ 3. �
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