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A mathematical model of rhythmic motion of a charged droplet between two
parallel electrodes is developed in this study. The work is motivated by recent
experimental findings that report oscillatory behaviour of water in oil droplets under
a direct current electric field. The model considers the presence of a charged droplet
placed in a dielectric medium. The droplet is immediately attracted to the electrode
with the opposite polarity. When approaching the electrode, the electric charge is
electrochemically reversed within the droplet, which is then repelled to the other
electrode. The entire process can periodically repeat. The model is able to track
a deformable liquid–liquid interface, the dynamics of the wetting process at the
electrodes and the dynamics of electrochemical charge transfer between the droplet
and the electrodes. The dependences of the oscillation frequency, charge acquired
by the droplet and charging time on several model parameters (surface charge
density on electrodes, kinetic parameter of charging, droplet–electrode contact angle,
droplet size, liquid permittivity) are examined. Qualitative agreement of the model
predictions with available experimental data is obtained, e.g. the oscillation frequency
increases with growing electric field strength or droplet size. Our model represents
the first successful attempt to predict oscillatory motion of aqueous droplets by a
pseudo-three-dimensional two-phase approach. Our model also strongly supports the
theory that the oscillatory motion relies on the combination of electrochemical charge
injection at the electrodes and electrostatic attraction/repulsion processes.

Key words: drops, MHD and electrohydrodynamics, micro-/nano-fluid dynamics

1. Introduction
Various microfluidic applications exploit multiphase flow of different types (Gunther

& Jensen 2006; Zhao 2013). One of them, called slug or segmented flow (Cahill
2014), is often generated at T or Y bifurcations of microfluidic channels (Dessimoz
et al. 2008) or in flow-focusing devices (Li et al. 2013). Two-phase flows of two
immiscible liquids or gas–liquid flows are usually formed; however, more complex
three-phase systems such as gas–(liquid–liquid) flows have been reported (Cech,
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Pribyl & Snita 2013; Ladosz, Rigger & von Rohr 2016). Slug flow is characterized
by continuous formation of small droplets or bubbles of one phase regularly dispersed
in another immiscible phase. Droplets then move along a microfluidic channel or
microcapillary. Regular separation of phases provides constant residence time of
all slugs in a microfluidic device (Arndt, Thoming & Baumer 2013). Moreover,
both phases are intensively stirred due to internal circulation, which has been
predicted theoretically (Kashid et al. 2005) and confirmed experimentally (Meyer,
Hoffmann & Schluter 2014). Slug flow also enhances mass transport in microreactors
or microseparators due to the large interfacial area (Kashid & Agar 2007; Ghaini,
Kashid & Agar 2010). There are many possibilities in terms of how to arrange a
chemical reaction in a slug flow. One phase can serve as the reaction phase and the
other phase as a simple separator, reservoir of reactants, catalyst or product container
(Jovanovic et al. 2010). The chemical or biological reaction can be confined to the
interface itself (Cech et al. 2012). Microchips for cellular and toxicology studies
(Cao & Köhler 2015) and particle generators (Testino et al. 2015) are among other
applications of slug flow microdevices.

It is necessary to reliably control droplet transport in slug flow devices. Systems
of precise dosing pumps sometimes coupled with different types of valves represent
classical solutions of flow control (Iverson & Garimella 2008). Flow in microfluidic
devices is typically coupled with the use of expensive pumps that are able to overcome
high pressure drops (Jovanovic et al. 2011). Electrokinetic phenomena represent
alternatives to pressure-driven pumping (Wang et al. 2009). Aqueous electrolytes
can be transported in a microfluidic structure by electroosmotic convection arising
from the interaction of an imposed electric field and free electric charge formed
at polarized microchannel walls; see e.g. Hrdlicka et al. (2010) and Hrdlicka et al.
(2013). Here we focus on a two-phase system with an aqueous droplet placed in
a dielectric medium. Link et al. (2006) showed that an aqueous droplet can be
efficiently addressed (transported to a specific place of a microfluidic chip) by a
direct current (DC) electric field of proper strength and orientation in a complex
microfluidic structure. An aqueous droplet is electrically charged at an electrode
by electrochemical reaction in the first step. A DC electric field is then applied
between two or more electrodes properly placed in a microfluidic chip. The Coulomb
force attracts the droplet to the oppositely charged electrode and thus provides the
addressing (i.e. controlled droplet motion to a particular place on a microfluidic chip).
The same type of droplet addressing was used, for example, in Ahn et al. (2009) and
Ahn et al. (2011). Recently, the Coulombic and dielectrophoretic contributions to the
total electric force in different microelectrode arrangements were evaluated, which
can aid in the efficient design of addressing microdevices (Ahn et al. 2015). Other
phenomena such as electrocoalescence and droplet breakup (Bartlett, Genero & Bird
2015) can also contribute to efficient droplet addressing.

Several research groups have reported oscillatory or rhythmic motion under a DC
electric field in the system formed by an aqueous droplet, dielectric fluid and a
pair of electrodes (Hase, Watanabe & Yoshikawa 2006; Jung, Oh & Kang 2008;
Im et al. 2011, 2012; Kurimura et al. 2013; Mhatre & Thaokar 2013; Beranek
et al. 2014). The oscillatory behaviour is caused by periodical injections of electric
charge at one and the other electrode. Initially a charged droplet is attracted to the
oppositely charged electrode. When the droplet touches the electrode, the electric
charge polarity in the droplet is reversed due to a fast electrochemical reaction and
the droplet is repelled back to the other electrode (Im et al. 2012). This process
is periodic and depends on the electric field strength, composition of both phases
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Repeatedly recharged oscillating droplets 33

and geometry of the system. Rhythmic motion has been observed in systems of
two horizontal rod electrodes (Hase et al. 2006), vertical parallel plate electrodes
(Jung et al. 2008; Jalaal, Khorshidi & Esmaeilzadeh 2010; Im et al. 2011, 2012)
and tip electrodes (Kurimura et al. 2013). The first investigation of droplet rhythmic
motion in microfludic chips was reported in Beranek et al. (2014). It was found that
the frequency of the droplet oscillations depends on the electric field strength, the
ionic strength inside aqueous droplets and the electrode arrangement. The effects
of the dielectrophoretic force on rhythmic motion in experimental systems with a
non-homogeneous electric field have also been shown (Kurimura et al. 2013; Mhatre
& Thaokar 2013; Beranek et al. 2014). Recently, it was shown that the presence
of white noise enhances the regularity of droplet oscillation due to the coherent
resonance phenomenon (Kurimura & Ichikawa 2016). Oscillatory behaviour in a
DC electric field is not limited to aqueous droplets; for example, silver-coated glass
particles were placed in a dielectric fluid and exhibited rhythmic motion, thereby
providing intensive fluid mixing (Cartier, Drews & Bishop 2014).

Mathematical models of droplet motion are usually based on simple force analysis
(Hase et al. 2006; Jung et al. 2008; Kurimura et al. 2013; Mhatre & Thaokar
2013; Beranek et al. 2014) or force analysis derived from a detailed knowledge of
the electric field around droplets (Ahn et al. 2015). They can be used to estimate
the amount of electric charge stored in a droplet or the effective electrophoretic
mobility. However, these models are not able to reveal the flow field in both
phases, the pressure distribution or the character of droplet deformation during
charge reversal. The growing power of computers and powerful numerical schemes
allow for simulation of complex electrokinetics and electrohydrodynamics problems
such as two-phase flow under an imposed electric field, electrowetting or Taylor
cone phenomena (Saville 1997; Zeng & Korsmeyer 2004; Bazant 2015; Schnitzer &
Yariv 2015). Lin, Skjetne & Carlson (2012) formulated a phase field mathematical
model based on the Cahn–Hilliard equation to study droplet deformation and
electrocoalescence. Their two-phase model considered constant dielectric constants
and conductivities in the bulk of each phase. Collins et al. (2013) developed a
two-phase model for simulation of the Taylor cone formation and jetting of charged
microdroplets from cone tips. They discovered scaling rules for the microdroplet
formation. The presence of free electric charge was considered only on the interface.
A spatially three-dimensional (3-D) mathematical model of slug flow under an
imposed electric field was reported in Wehking & Kumar (2015). The model predicted
induced deformations of flowing droplets previously observed in experiments. Wallau,
Schlawitschek & Arellano-Garcia (2016) developed a two-phase flow model to study
merging of aqueous droplets under an imposed electric field. The model equation
considers dielectrophoretic attraction of the droplets, but the effect of free electric
charge is neglected. Recently, Pillai et al. (2016) used Berry’s model (Berry, Davidson
& Harvie 2013) of two-phase flow to investigate deformation and jetting in the system
formed by a droplet with ion charge carriers and an outer dielectric fluid. This model
allows for the evaluation of free electric charge distribution in an electric double
layer (EDL) localized at the interface. This sophisticated approach is applicable to
systems with the ratio of the droplet diameter to the Debye layer thickness not much
exceeding a value of one.

Here, we formulate a mathematical model of an axisymmetric cylindrical cell
with an oscillating and deformable droplet. The momentum balances, together with
the continuity equation and the Poisson equation, are numerically solved. To track
the liquid–liquid interface, the level-set method is employed. The electrochemical
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FIGURE 1. Domain geometry. Arabic and roman numerals denote boundary and domain
indexes, respectively. The grey area represents the initial position of the droplet. The
symbols s1, s2, r1 and z1 denote the initial droplet radius, radius of the grounded electrode,
radius of the circular electrodes and spacing between the circular electrodes.

charge injection occurring at the droplet–electrode interface is also included in the
model. Although several simplifications are made, the model is able to qualitatively
and meaningfully predict droplet behaviour. The paper is organized as follows. A
detailed description of the model domain and governing equations and the validation
of the numerical method are provided in the next section. The results and discussion
section introduces the dynamics of droplet behaviour and displays snapshots of
selected flow patterns. Furthermore, results of several studies focused on the effects
of selected model parameters on the frequency of oscillations and other characteristics
are discussed.

2. Governing equations and numerical methods
2.1. Model domain

To avoid 3-D dynamical simulation of the model equations, an axisymmetric geometry
is considered, as shown in figure 1. The cylindrical domain I contains an aqueous
droplet immersed in a dielectric fluid. The domain is surrounded by circular electrodes
(boundaries 2 and 3), a solid wall (boundary 4) and the axis of symmetry (boundary
1). The droplet moves between the electrodes, where it undergoes charge reversal
due to electrochemical reactions. We assumed that the entire domain I is placed in
a dielectric medium (domain II) surrounded by a ground electrode.

2.2. Governing equation and the main assumptions
Because both liquids in domain I are incompressible and Newtonian, the velocity and
pressure fields are described by the Navier–Stokes and continuity equations

ρ

(
∂v

∂t
+ v · ∇v

)
=−∇p+µ∇2v + f e + f s + f g, (2.1)

∇ · v = 0, (2.2)

where the symbols ρ, µ, t, p and v denote the liquid density, liquid dynamical
viscosity, time, pressure and velocity vector, respectively. The symbols f e, f s and f g
represent volume forces in the system.
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The inertial term in the Navier–Stokes equations is considered because the values
of the Reynolds number (Re) in experiments reported in Beranek et al. (2014) were
typically higher than 10. In such cases, the inertial forces in the fluid bulk dominate
the viscous forces. As will be shown in § 3.1, our simulations predict Re > 100 in
some regimes.

The electric volume force f e can be expressed as either the divergence of the
Maxwell stress tensor (Saville 1997) or the Korteweg–Helmholtz force density
(Grodzinsky 2011), which reads

f e =∇

(
1
2

E · Eρ
∂ε

∂ρ

)
−

1
2

E · E∇ε +ωE, (2.3)

where ε and ω are the fluid permittivity and volume density of free electric charge.
The first term on the right-hand side of (2.3) is called the electrostriction force density
and is typically lumped with the pressure gradient in (2.1), which leads to a modified
definition of pressure (Saville 1997). Hence this term was not included in our study.
The second and third terms come from the interactions between electric field and
dipoles and between electric field and free charges, respectively. The dipole term is
important in many electrohydrodynamics problems such as dielectrophoresis or droplet
breakup. However, the mechanism of rhythmic droplet motion between two parallel
electrodes is mainly driven by the interaction of injected free charge and imposed
electric field (Jung et al. 2008; Jalaal et al. 2010; Im et al. 2011). If the droplet will
not be in the proximity of an electrode, the net dielectric force will be close to zero
and will not significantly contribute to the droplet forcing. For that reason, only the
term containing free electric charge is considered in our simulations.

The formulation of the surface tension force in the form of divergence of the
capillary pressure tensor f s was adopted from Lafaurie et al. (1994):

f s =∇ · [γ (I − nn)δ], (2.4)

where I , n, γ and δ are the unit tensor, normal vector to the liquid–liquid interface,
interfacial tension and Dirac delta function (further defined in § 2.4), respectively.

The gravity volume force f g is not involved in the Navier–Stokes equation due to
the typically horizontal orientation of the microfluidic devices. In physical experiments
with parallel plate electrodes, e.g. Im et al. (2011), a highly viscous organic phase is
used as well as large electrodes and an organic phase with density similar to that of
water. All these measures suppress the effect of the gravity force.

The liquid–liquid interface is tracked by means of the level-set method (Olsson &
Kreiss 2005). Local values of the level-set function ψ are calculated from

∂ψ

∂t
+ v · ∇ψ = Rls. (2.5)

The symbol Rls represents a stabilizing term of the level-set method that is further
discussed in § 2.4. The level-set function ψ→ 0 in the dielectric liquid and ψ→ 1 in
the aqueous droplet. Physical properties of the liquids in domain I are then calculated
using the level-set function

α = αo (1−ψ)+ αwψ, α = ρ, µ, ε. (2.6)

In electroquasistatic systems (Grodzinsky 2011), the electric field E can be
evaluated from

E=−∇φ, (2.7)
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where φ is the electric potential. The distribution of the electric potential is given by
the Gauss law in the form of Poisson’s equation,

∇ · (ε∇φ)=−ω. (2.8)

Due to the relatively high electrolytic conductivity of the aqueous phase, free electric
charge will be collected in a thin EDL at the interface. The characteristic thickness
of the EDL is called the Debye length and for a uni-univalent electrolyte (Hrdlicka
et al. 2013) it is given by

λ=

√
εRT
2cF2

, (2.9)

where R, T , c and F are the molar gas constant, temperature, electrolyte concentration
and Faradaic constant, respectively. Depending on the concentration, the Debye
length in aqueous system ranges from 1 × 10−10 to 1 × 10−7 m. It is difficult to
numerically solve dynamical problems where geometrical dimensions are several
orders of magnitude larger than the Debye thickness. Pillai et al. (2016) were able
to simulate two-phase systems with the ratio of the droplet diameter to the Debye
layer thickness equal to 25. The characteristic geometric dimensions of our system
are ∼1 × 10−3 m. Thus the ratio ranges from 1 × 104 to 1 × 107. Solution of such
problems is nearly impossible even if boundaries are non-moving (Hrdlicka et al.
2010). Instead we consider that an aqueous droplet is homogeneously charged. The
volume concentration of electric charge within the droplet is ωw. This assumption
makes it impossible to simulate jetting or Taylor cone formation. Moreover, the
estimation of the dielectric force at the interface (not used in our study because the
second right-hand term of (2.3) is neglected) would be imprecise due to a different
distribution of the electric field within the droplet. However, it is still efficient to
investigate the motion of electrically charged objects in an electric field and to study
electrochemical charge injection at the electrodes. The volume density of free electric
charge in domain I reads

ω=ψωw. (2.10)

Other approaches for the treatment of the electric charge distribution in the droplet
can be taken into account. For example, the problem can be divided into electric and
fluid parts. In the electric part, the electric potential inside the droplet can be set in
an iterative manner in order to conserve the surface electric charge of a droplet not
attached to an electrode. The obtained field of electric potential can be used in the
next integration step to obtain the velocity, pressure and level-set variable distribution.
This procedure is extremely time consuming. Moreover, artificial redistribution of
the electric charge on the droplet surface will locally violate the velocity field (2.1)
and thus also the position of the interface and shape of the droplet. Other problems
of this approach originate from the properties of the level-set method. The level-set
function is smooth in the spatial domain and the sharpness of the interface is given
by the density of finite elements which is, of course, limited. Physical fields (electric
potential, velocity, pressure) are represented by the same variables in both phases. The
level-set function smoothly switches physical properties such as electric permittivity.
So it is difficult and maybe impossible to define the electric potential at an exact
coordinate of the interface in each integration step.

As domains I and II are not hydrodynamically coupled, only the distribution of the
electric potential is necessary to determine in domain II by the Laplace equation

∇
2φ = 0. (2.11)
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In principle, it is not necessary to include domain II in the system geometry. However,
it significantly helps with stability of the numerical simulations. One can imagine
domain II as a cavity filled with air or other dielectric material and surrounded by
a grounded Faradaic cage.

We have to consider electric charge balances to describe the electron transfer
between the droplet and an electrode. Electrochemical reactions are typically limited
by the electrochemical process itself or by mass transport under low or high
overpotential (Bard & Faulkner 2001; Cervenka et al. 2012). Because the electric field
in experiments with oscillating droplets is typically ∼105 V m−1, a regime limited by
mass transport is more probable. We note that under low-intensity electric fields, one
has to use Butler–Volmer kinetics or its modification to describe the process (Bard
& Faulkner 2001). The following charge balance at the electrode–electrolyte interface
can then be written

Vd
dωw

dt
=−

∫
A

n · κE dA, (2.12)

where Vd is the droplet volume, κ is the electrolytic conductivity of the aqueous
droplet (alternatively it can be understood as a mass transfer coefficient) and A
is the droplet–electrode interfacial area. The electric field strength and electrolytic
conductivity are spatially distributed in real aqueous droplets due to possible ionic
depletion at the electrode surface under higher overpotential. Because EDL processes
are not considered in this study, it is not meaningful to evaluate the distribution
of electric conductivity within the droplet. Then a constant κ is assumed. Another
simplification used here is that we replace the local value of n · E by the average
electric field strength between the electrodes Ē in (2.12). The average strength is
calculated as the difference of electric potential between the electrodes divided by
the electrode–electrode distance. Equation (2.12) finally simplifies to the form

r=
dωw

dt
=K

∫ r1

0
2πrψ dr. (2.13)

The integral of the level-set function over the entire electrode surface represents
the electrode–electrolyte interfacial area A. Equation (2.13) uses classical chemical
engineering philosophy regarding how to describe a rate r of a complex mass transfer
process. Typically r = k1XA, where k is the mass transfer coefficient, 1X is the
driving force and A is the contact area. The driving force, i.e. the gradient of electric
potential, is approximated as Ē and can be coupled with the constant k to yield the
charging constant (effective mass transfer coefficient) K. The mass transfer coefficient
k depends on geometrical parameters (droplet volume) and the effective electrolyte
conductivity at the interface. The conductivity at the interface can significantly differ
from a bulk value, because the appearance of an ion-depleted zone is highly probable
under an intensive electric field (Slouka et al. 2007).

2.3. Boundary conditions and initial conditions
Axisymmetric boundary conditions were considered for all quantities at boundary 1;
see figure 1. Reference zero electric potential is set at the boundary 5. Wetted wall
boundary conditions (Comsol 2013b) with adjustable contact angle θ were applied to
the boundaries 2, 3 and 4. Reference zero pressure is defined at a single point in
domain I. Continuity of electric potential is considered at the boundaries 2, 3 and 4.
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The other condition at these boundaries results from the application of Gauss’s law
(Grodzinsky 2011) and reads

n · (εI EI − εII EII)= σs, (2.14)

where σs denotes the surface concentration of electric charge and the suffixes are the
domain indexes. The dielectric constant in domain II was set to one, i.e. εII = ε0,
where ε0 is the vacuum permittivity. Zero surface charge is chosen at boundary 4. The
boundaries 2 and 3 are considered to contain the same amount of electric charge σ
with opposite polarity,

σs =±σ . (2.15)

Zero reference pressure and zero velocity were set as the initial conditions in
domain I. The phase field function was set to 1 at the position of the aqueous droplet
and to 0 elsewhere. The droplet initially did not touch any electrode and the volume
charge density was set to an initial value ωw =ω0.

2.4. Numerical methods
Comsol Multiphysics 4.4 software (Comsol 2013a) and the Microfludics module
extension (Comsol 2013b) based on the finite element method were used to solve the
axisymmetric problem defined above. The solution was obtained in three steps. The
solver internally initialized the level-set function in the first step, equation (2.5). The
initial distribution of electric potential was then obtained by solving equations (2.8)
and (2.11). Dynamical simulation of the full problem (equations (2.1), (2.2), (2.5),
(2.8), (2.11), (2.13)) together with boundary conditions was carried out in the last
step.

The Dirac function in (2.4) is approximated by (Comsol 2013b)

δ = 6|∇ψ ||ψ(1−ψ)|. (2.16)

The stabilization term Rls in (2.5) reads (Comsol 2013b)

Rls = a1∇ ·

[
a2∇ψ −ψ(1−ψ)

∇ψ

|∇ψ |

]
, (2.17)

where a1= 1 m s−1 is the reinitialization parameter and a2 is the parameter controlling
the liquid–liquid interface thickness. The parameter a2 was set to one-half of the
maximum finite element size.

The multifrontal massively parallel sparse direct solver (Amestoy et al. 2001) was
used for the elimination of large sparse matrixes. The relative tolerance was set to 1×
10−3. A solver based on backward differential formulae of first and second order with
automatically adjusted time stepping was used for the time integration of the model
equations (Hindmarsh et al. 2005). The relative tolerance of integration steps was set
to 1× 10−2.

Spatial domains were discretized with triangular finite elements (figure 2). The mesh
consists of approximately 1.7× 104 elements. Most of them are localized in domain
I (more than 1.4× 104). The distribution of boundary elements is the following: the
axis of symmetry (boundary 1, 130 elements), electrodes (boundaries 2 and 3, 51 and
51 elements), solid wall (boundary 4, 102 elements), grounding electrode (boundary
5, 104 elements).

The basic set of values of the dimensional model parameters is summarized in
table 1. Values of selected parameters were systematically varied in parametric studies.
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FIGURE 2. Distribution of triangular elements in one-half of the geometrical domain.

Parameter Description Value Units

K Charging constant 2.39× 109 A m5

r1 Radius of circular electrodes 0.3 mm
s1 Initial droplet radius 0.1 mm
s2 Radius of grounded electrode 0.45 mm
z1 Electrode–electrode spacing 0.6 mm
γ Liquid–liquid interfacial tension 0.05 N m−1

ε0 Vacuum permittivity 8.854× 10−12 F m−1

εo Oil phase permittivity 3ε0 F m−1

εw Aqueous phase permittivity 80ε0 F m−1

µo Oil phase viscosity 0.001 Pa s−1

µw Aqueous phase viscosity 0.001 Pa s−1

ρo Oil phase density 800 kg m−3

ρw Aqueous phase density 1000 kg m−3

σ Surface charge concentration on electrodes 0.003 C m−2

θ Contact angle 130◦

ω0 Initial volume charge density in droplet 0.5625 C m−3

TABLE 1. The basic set of values of the model parameters.

2.5. Mesh validation

To characterize the rhythmic motion of the droplet over a longer time period, several
normalized characteristics of the system were defined. The normalized volume charge
density, droplet–electrode contact area and droplet position read

ω̃=ω/max |ω|, (2.18)

Ã= s−2
1

∫ r1

0
2rψ dr, (2.19)
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FIGURE 3. (a) Dependence of the normalized droplet position on time calculated with
meshes consisting of 14 106 (solid line) and 28 212 (dashed line) elements in domain I.
Effect of the number of mesh elements on the charge acquired by droplet (b) and on the
frequency of droplet oscillations (c).

z̃=
2
∫ z1/2

−z1/2

∫ r1

0
ψzr dr dz

z1

∫ z1/2

−z1/2

∫ r1

0
ψr dr dz

. (2.20)

The volume charge density ω̃∈ [−1, 1] is normalized by the maximal absolute value of
volume charge density in the regular periodic regime. The contact area is normalized
by the enclosed area of a circle with a radius of s1. The droplet position is calculated
as the mean integral value of the droplet position in domain I normalized by one-half
of the electrode distance.

Numerical simulations of the model equations were carried out with several meshes
of different quality. The corresponding normalized characteristics are plotted in
figure 3. The dependences of the mean droplet position on time for the meshes with
1.4× 104 and 2.8× 104 elements are shown in figure 3(a). The dynamics of droplet
transition from one electrode to the other is almost identical. The wavy parts of these
time courses are also identical and correspond to damped droplet deformations that
appear after touching the electrode. However, the durations of the droplet–electrode
contact, i.e. the durations of electrochemical charging, differ by approximately 10 %.
This results in slightly higher concentrations of free charge in the droplet (figure 3b)
and a decreased frequency (figure 3c) in simulations with finer meshes. The time of
droplet–electrode contact is affected by the sharpness of the liquid–liquid interface,
which is always greater for a finer mesh. The droplet–electrode contact area and
charge transfer are then also influenced. Because the mesh test revealed that the
qualitative behaviour of the system does not depend on the mesh density and the
quantitative characteristics do not differ by more than 15 % for the meshes with
1.4 × 104 and 5.6 × 104 elements, we decided to use the sparser mesh in our
parametric studies. One simulation of 0.25 s time period with the mesh consisting
of 1.4 × 104 elements typically took only 14 h on 4-core Intel i7-4790 3.6 GHz
processors. We further repeated the simulation plotted in figure 3 for 8.4 × 104

and 1.12 × 105 finite elements. The simulation with 1.12 × 105 elements takes
more than 10 days of computational time. The numerical solver uses second-order
elements to approximate the velocity field and electric potential and first-order
elements to approximate the pressure field (Comsol 2013b). The global error of
numerical approximation is then directly proportional to the element size (∼h1) and
convergence is rather gradual. However, the memory demands of the solver grow with
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(a)

(b)

(c)

FIGURE 4. (Colour online) Snapshots of a oscillating droplet. (a) Droplet positions
expressed as isosurface plots for ψ = 0.5. Droplet colour ranges from ω = −0.2 C m−3

(blue) to ω= 0.2 C m−3 (red). (b) Relative pressure distribution and velocity field. Colour
palette ranges from p = −10 Pa (blue) to p = 1.2 kPa (red). White arrows indicate the
vector field of velocity. (c) Electric field and electric potential distributions. Colour palette
ranges from φ =−12 kV (blue) to φ = 12 kV (red). Black lines indicate the streamlines
of the electric field.

∼h−2. The mesh consisting of 1.4× 104 elements thus represents a good compromise
between the precision of the numerical approximation and the time demands of the
simulations.

3. Results and discussion
3.1. Droplet dynamics and flow pattern

The dynamical behaviour of a charged droplet within a dielectric fluid for the basic set
of model parameters is shown in figures 4 and 5 and supplementary movie 1 available
at https://doi.org/10.1017/jfm.2017.230. The movie shows the detailed dynamics of
droplet deformation and interaction with solid electrodes. One can see that the charged
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FIGURE 5. Time dependences of normalized (a) volume charge density, (b) droplet–
electrode contact area and (c) droplet position.

droplet is attracted to the oppositely charged electrode. Once attached, the droplet–
electrode interface provides a reaction area for the electrochemical reaction.

The periodic motion of droplets between electrodes consists of a charging phase,
where the droplet stays at an electrode, and a non-charging phase, where the droplet
moves from one electrode to the other. The charging phase can be accompanied by
damped shape oscillations (movie 1) and oscillations of the droplet–electrode contact
area and droplet position (figure 5). This behaviour represents a kind of damped
harmonic oscillation. Damped oscillators are characterized by a linear or nonlinear
damping (friction) term, which is directly proportional to the droplet or object velocity.
The van der Pol oscillator represents an oscillator with a nonlinear damping term
(van der Pol 1926). If forced, it can exhibit complex periodic or chaotic behaviour
(Parlitz & Lauterborn 1987). The damped oscillations of droplet shape appear as a
result of energy dissipation due to viscous friction in both liquids at their interface.
The radial component of the velocity field is then described by spherical harmonics
with a damping function exp(−βt), where β is the decay factor that can be estimated
for different physical situations (Miller & Scriven 1968).

In relevant experiments (Hase et al. 2006; Jung et al. 2008; Im et al. 2011,
2012), only tiny droplet tips mediated the charge transfer across the electrode–droplet
interface, which is not in full agreement with the results of our numerical simulations.
However, Jalaal et al. (2010) observed remarkable droplet deformations in the form
of damped oscillations with large contact area at the droplet–electrode interface. The
droplet–electrode contact area can be reduced in our simulations, e.g. by setting
higher values of the charging constant K or contact angle θ . Despite higher K or
θ , the model predictions cannot be in full agreement with experimental observations,
because spatially uniform droplet charging is assumed and the dielectrophoretic force
neglected; see (2.12).
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When the oscillations are completely damped, the interfacial area shrinks because
the droplet becomes charged by electric charge of the same polarity as the electrode.
At a certain moment, the electric volume force exceeds the force of interfacial tension,
and the droplet is released into the dielectric fluid and moves to the other electrode.
The elongation of the droplet and tip formation before the release have been observed
experimentally (Jung et al. 2008; Im et al. 2011, 2012).

Damped oscillations of the droplet shape are observed after the release. Inertial
forces are mostly responsible for these oscillations because the Reynolds number in
this particular regime is approximately 120, which is quite far from the Stokes regime
(Re� 1). Here Re is evaluated as Re= 2v̄zs1ρw/ηw, where the average axial velocity,
v̄z ≈ 0.6 m s−1, is estimated as the electrode spacing z1 divided by the duration
of droplet shift between the electrodes. Similar shape deformations were observed
experimentally (Beranek et al. 2014).

We note that a Reynolds number significantly higher than 1 is not a very common
situation in microfluidics. Typical applications of droplet microfluidics such as slug
flow separators or microreactors are accompanied by Stokes flow (Re< 1). However,
in our own experiments (Beranek et al. 2014) Re ranged from 10 to 60, which is
a result of the high frequency of oscillations; Re = 4 was reported in Jalaal et al.
(2010) for a more viscous organic phase. When the inertial forces dominate over the
viscous forces, the linear Stokes equation cannot be used for the description of the
velocity field. However, turbulent instabilities and intermittency typically appear for
Re∼ 103. Thus the description based on the nonlinear Navier–Stokes equation should
be satisfactory and the solution should remain axisymmetric.

Several snapshots of domain I preceding and following the contact of a negatively
charged droplet with a positively charged electrode are shown in figure 4. A nearly
spherical droplet approaches the electrode. The internal pressure within the droplet
is higher than that in the dielectric fluid due to the interfacial tension. The velocity
field clearly indicates motion of the droplet and the surrounding dielectric liquid. The
electric field is significantly deformed and the streamlines preferentially enter the
droplet because of high droplet permittivity. Once the droplet touches the electrode,
pressure increases due to the force reaction of the fixed electrode. The middle
snapshots show the droplet in the phase of maximal deformation that is accompanied
by liquid suction behind the droplet and liquid pushing next to the droplet. When
the electric charge within the droplet is reversed, the droplet elongates, touching the
electrode with a tiny tip. After release, the nearly spherical droplet moves back to
the negatively charged electrode.

One can see that an almost regular periodic regime is attained after one charge
reversal of the droplet (figure 5). The charging process is symmetric (figure 5a)
due to the same charging constant at both electrodes. In general, the charging
dynamics can be asymmetric due to different kinetics of oxidation and reduction
reactions (Bard & Faulkner 2001) or asymmetric transport of ions with different
electrophoretic mobilities (Grodzinsky 2011). Im et al. (2011) found that charging
at the negative and positive electrodes differs at most by 5 %. The time dependence
of the normalized contact area (figure 5b) is characterized by damped oscillations
that emerge immediately after droplet–electrode contact as a consequence of the
shape deformation. As shown in figure 5(a), the oscillations do not significantly
affect the charging dynamics. Figure 5(b) further reveals that the contact area can be
temporarily larger than the largest cross-sectional area of an ideally spherical droplet
of the same volume. The normalized droplet position (figure 5c) indicates that the
droplet remains in contact with the electrodes for ∼10 ms, the duration of droplet
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FIGURE 6. Time dependences of normalized (a) volume charge density, (b) droplet–
electrode contact area and (c) droplet position. Solid line, σ = 2 mC m−2; dashed line,
σ = 6 mC m−2.
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FIGURE 7. Effects of the surface charge density on (a) frequency of oscillations, (b)
charge acquired by droplet and (c) relative time of charging.

shift between the electrodes is ∼1 ms, and the oscillation frequency is approximately
40 Hz. The frequency of oscillations in experiments typically does not exceed 10 Hz
(Hase et al. 2006; Im et al. 2012; Beranek et al. 2014). The difference is caused by
the very high electric field strength in this particular simulation (∼40 kV mm−1). In
experiments, the electric field strength is usually below 1 kV mm−1. We will show
in our parametric studies that the oscillation frequency decreases with decreasing
electric field strength and is sensitive to other model parameters.

3.2. Effect of surface charge density
The higher the surface charge density on the electrodes, the higher the electric field
strength forces the droplet. Monotonic increase of the oscillation frequency with
the charge density is observed (figures 6 and 7). This finding is in agreement with
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available experimental results (Jung et al. 2008; Im et al. 2011; Kurimura et al.
2013; Beranek et al. 2014). The dielectric effects, which are neglected in this study,
are important only at the electrode surface, where instead of tiny tip formation, the
droplet wets the electrode surface. This finally leads to the underestimation of the
oscillation frequency because more energy is required for the droplet separation. The
electric field strength affects not only the electric volume force acting on the free
charge (2.1) but also the kinetics of the electrochemical reactions (2.12). This means
that the droplet has to spend less time at a charging electrode to collect enough
charge for detachment under a higher electric field strength; see figure 6(c).

In addition to frequency, two other characteristics are plotted in the parametric
studies (figure 7). The charge acquired by the droplet, max |ω|, is the absolute value
of electric charge density acquired within one period of the stable periodic regime,
and the relative time of charging, t̃ch, is the duration of the charging process divided
by the period of the stable periodic regime.

The acquired charge decreases with growing surface charge density (figure 7b).
The electric force is the product of the electric field strength and the free charge
density. Hence, a lower concentration of free electric charge is necessary to detach the
droplet under a higher electric field strength. This finding is meaningful for droplets
with relatively large droplet–electrode contact area. In such a case, the electric force
required for droplet detachment is given by the droplet–electrode adhesion energy
(expressed in the form of the contact angle σ ), which is kept constant in this
parametric study. However, experiments with rhythmically moving droplets forming
only tiny tips during the charging showed that the acquired charge monotonically
increases with the electric field strength: ω∝ E1.33 (Jung et al. 2008) or ω∝ E1.0 (Im
et al. 2011, 2012). Because of negligible adhesion energy in the tip-like interaction,
the electric charge concentration in a droplet grows with increasing electric field
strength as the kinetics of electrochemical charging becomes faster.

The charging process is fast for high surface charge density on the electrode, which
leads to a short time of charging and high frequency of droplet oscillations (figure 7c).

3.3. Effect of charging parameter

The imposed electric field affects both the electrochemical kinetics (the charging
process) and the electric volume force within the charged fluid. To decouple these
two phenomena, it is useful to study the influence of the charging parameter K on
rhythmic motion of the droplet. The charging parameter can then be understood as
an effective mass transfer coefficient multiplied by the fixed driving force (Ē).

Figures 8 and 9 show that the larger the value of K, the higher the oscillation
frequency observed. High values of the charging parameter allow for fast droplet
charging, significantly reducing the time that the droplet spends at the electrode
surface (figure 9c). Smaller values of K provide an oscillation frequency comparable
to that observed in microfluidic experiments (Beranek et al. 2014).

In contrast with the results plotted in figure 7(b), the dependence of the acquired
charge on the charging parameter is an increasing function (figure 9b). In this
parametric study, the driving force Ē is fixed. A high value of K provides fast
charge/mass transfer between the electrodes and droplet. Intensification of charge
transfer is also responsible for the same trend observed in Jung et al. (2008) and Im
et al. (2011, 2012).
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FIGURE 8. Time dependences of normalized (a) volume charge density, (b) droplet–
electrode contact area and (c) droplet position. Solid line, K = 0.002 A m5; dashed line,
K = 0.02 A m5.
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FIGURE 9. Effects of the charging parameter on (a) frequency of oscillations, (b) charge
acquired by droplet and (c) relative time of charging.

3.4. Effect of contact angle
A lower value of the contact angle corresponds to a better wettability of an electrode
by the droplet. While the oscillation frequency does not significantly depend on the
contact angle, the electrode–droplet contact area remarkably decreases with growing
contact angle; see figures 10 and 11. With larger contact area, the adhesion energy
barrier increases. This has to be overcome by the electric volume force to detach the
droplet. Under constant electric field strength, the force can be provided only by a
larger electric charge injected into the droplet. That is the reason why the charging
time is slightly longer for θ = 90◦ than for θ = 150◦ (figures 10c and 11c). The fact
that the acquired electric charge monotonically decreases with the contact angle is
demonstrated in figure 11(b).
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FIGURE 10. Time dependences of normalized (a) volume charge density, (b) droplet–
electrode contact area and (c) droplet position. Solid line, θ = 90◦; dashed line, θ = 150◦.
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FIGURE 11. Effects of the contact angle on (a) frequency of oscillations, (b) charge
acquired by droplet and (c) relative time of charging.

The results plotted in figures 10 and 11 are physically meaningful, however,
experimental studies focused on the contact angle effects in similar experimental
system have not been reported.

3.5. Effect of droplet size
Dependences of the velocity of oscillating droplets on the droplet radius were reported
in several experimental papers (Jung et al. 2008; Im et al. 2011; Kurimura et al.
2013; Mhatre & Thaokar 2013). Experiments with a pair of coplanar electrodes (Jung
et al. 2008; Im et al. 2011), i.e. with geometry most relevant to our theoretical study,
reveal that droplet velocity and thus oscillation frequency increases with the droplet
radius. Despite the fact that bigger droplets exhibit higher hydrodynamic resistances,
they are able to acquire more electric charge, which increases the electric volume
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FIGURE 12. Time dependences of normalized (a) volume charge density, (b) droplet–
electrode contact area and (c) droplet position. Solid line, s1 = 0.03 mm; dashed line,
s1 = 0.14 mm.
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FIGURE 13. Effects of the droplet radius on (a) frequency of oscillations, (b) charge
acquired by droplet and (c) relative time of charging.

force. These observations are in agreement with the results of numerical studies
presented here; see figures 12 and 13.

Under a constant electric field, the total amount of acquired electric charge is
proportional to the droplet–electrode contact area, equation (2.12), i.e. approximately
∝s2

1. Droplet volume Vd ∝ s3
1, hence the electric charge density ω ∝ s−1

1 . This
consideration is in agreement with the hyperbolic-like dependence plotted in
figure 13(b).

As the droplet velocity is directly proportional to the total amount of acquired
electric charge, the dependence of oscillation frequency on the droplet size should be
approximately parabolic, Vdω∝ s2

1. Our simulation revealed the parabolic dependence
only for droplets of size less than 0.08 mm (figure 13a). If the droplet becomes
bigger, the frequency increase is slower, then attains a maximum and finally decreases.
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FIGURE 14. Time dependences of normalized (a) volume charge density, (b) droplet–
electrode contact area and (c) droplet position. Solid line, εw/εo= 2; dashed line, εw/εo=

210.
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FIGURE 15. Effects of the permittivity ratio on (a) frequency of oscillations, (b) charge
acquired by droplet and (c) relative time of charging.

This nonlinearity appears because friction forces between the droplet and the wall
enveloping the two-phase system become important as s1→ r1.

One feature of smaller droplets when touching an electrode is that there are only a
few oscillations of shape. In contrast, large droplets exhibit damped oscillations during
the entire period of droplet–electrode interaction (figure 12b), which is caused by the
relatively large inertial forces.

3.6. Effect of permittivity
Finally, the effects of the ratio of droplet to dielectric fluid permittivities εw/εo on
the character of oscillations is examined; see figures 14 and 15. The bigger the
ratio, the weaker the electric field present in the charged droplet and the stronger
the electric field present in the dielectric fluid. In typical experiments with water
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droplets dispersed in kerosene, εw/εo ≈ 27. This indicates that the electric field in
the droplet is much weaker than in the dielectric fluid. This is valid not only for a
homogeneously charged droplet. As a thin EDL is formed in the water phase, the
electric field in the droplet bulk will be even weaker.

Figure 14 shows that high εw/εo can lead to an oscillation frequency below 10 Hz,
which is typical for many reported experiments (Hase et al. 2006; Im et al. 2012;
Beranek et al. 2014). A weaker field in the droplet results in a significant decrease
of the oscillation frequency (figure 15a). A weaker electric field also requires more
electric charge to detach the droplet from an electrode (figure 15b). Hence, the relative
time of charging monotonically increases with εw/εo (figure 15c).

4. Summary and conclusion

According to our best knowledge we present a first attempt to numerically simulate
a multiphysical model of a charged droplet oscillating under a DC electric field by
means of computational fluid dynamics. Previously reported models relied mostly on
force analysis for a rigid droplet (Hase et al. 2006; Jung et al. 2008; Kurimura et al.
2013; Mhatre & Thaokar 2013; Beranek et al. 2014). Here we show that the level-set
method can be used to study the dynamics of a deformable droplet that undergoes
electric charge injection at a pair of electrodes.

Despite the model simplifications, most of the obtained results are in qualitative
agreement with available experimental data: (i) the charging process is symmetric
on the negative and positive electrodes as observed in Im et al. (2011); (ii) only
stable periodic regimes with period one were observed in parametric space, which
is in agreement with experimental observations (Hase et al. 2006; Jung et al. 2008;
Im et al. 2012; Kurimura et al. 2013; Beranek et al. 2014); (iii) the model predicts
a monotonic increase of the oscillation frequency for growing voltage/electric field
strength/surface charge density on the electrodes as reported in Jung et al. (2008),
Im et al. (2011), Kurimura et al. (2013) and Beranek et al. (2014); (iv) predicted
frequencies of oscillations are similar to those observed in experiments (Hase et al.
2006; Im et al. 2012; Beranek et al. 2014), especially for small values of the charging
parameter, small densities of the electric charge on the electrodes and high ratios of
permittivities of the dispersed and continuous phases; (v) the frequency of oscillations
and droplet velocity increase with the droplet radius in agreement with experimental
data available for coplanar electrodes (Jung et al. 2008; Im et al. 2011).

The main difference between experimental data and our theoretical predictions
is found in the character of droplet–electrode interaction. The formation of only
a tiny tip on the droplet surface was observed during charge injection in most of
the experiments (Jung et al. 2008; Im et al. 2011, 2012; Mhatre & Thaokar 2013;
Beranek et al. 2014). However, experiments reported in Jalaal et al. (2010) exhibit a
large droplet–electrode interface during the charging process. Our simulations show
significant wetting of electrodes by the droplet. This difference stems from two
simplifying assumptions we exploited: (i) homogeneous distribution of electric charge
within the droplet; (ii) the neglect of the dielectrophoretic term in (2.3). Unfortunately,
to treat EDL dynamics within an aqueous droplet represents quite a difficult task due
to extreme differences between the characteristic dimensions of the model domain or
droplet radius on the one hand and EDL thickness or thickness of the interface on
the other.

Stable periodic regimes with period one were observed in all the parametric
studies reported in this paper. However, there is a possibility of the emergence of
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more complex regimes in parametric space. The system is similar to dripping faucet
oscillators, which frequently exhibit chaotic and higher-period regimes due to the
interplay of surface tension and gravity, drag and inertial forces (Martien et al. 1985).
Instead of the gravity force and continuous mass injection into a droplet, electric
volume force and electrochemical charge injection are considered in our study.

It can be concluded that the mathematical model studied here confirms the idea
that rhythmic droplet motion under a DC electric field emerges as a result of the
electrochemical charging process and the interaction of free electric charge with
the imposed electric field. The model is able to predict the existence of periodic
oscillations in a wide region of parametric space.
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