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Flows containing suspended colloidal particles and dissolved solutes are found in
a multitude of natural and man-made systems including hydraulic fractures, water
filtration systems and microfluidic devices, e.g. those designed for biological or
medical applications. In these types of systems, unexpected particle dynamics such as
rapid particle transport and focusing has been observed in the presence of local solute
gradients due to the cooperating or competing effects of fluid advection and particle
diffusiophoresis, the latter driven by local chemical gradients. We develop analytical
expressions for the fluid, solute and particle dynamics in long, narrow channels
due to the combined influence of pressure-driven channel flow with diffusiophoretic
and diffusioosmotic effects. The results confirm a rapid particle focusing effect
that can be controlled by manipulating the particle, solute and flow properties, as
well as the channel’s geometry and surface chemistry. Thus, we propose a new
approach for performing microfluidic zeta potentiometry, as well as techniques for
sorting, concentrating and/or capturing particles based on their sizes or zeta potentials.
Finally, we demonstrate that diffusioosmotic effects can be used to pump fluid against
a pressure gradient.

Key words: complex fluids, micro-/nano-fluid dynamics, multiphase and particle-laden flows

1. Introduction

There are many well-known theoretical and empirical results for the drag force on
particles as a function of particle shape and the Reynolds number, and numerical
simulations provide a means for handling complex particle shapes and boundary
effects. Nonetheless, modern research continues to uncover unique particle transport
phenomena such as the capture and accumulation of particles and/or bubbles in a
variety of flow configurations. For example, a competition between thermophoresis and
fluid advection was utilized in a microfluidic set-up to trap particles and concentrate
DNA molecules up to 16-fold (Duhr & Braun 2006). The effect of applied solute
gradients on particle-laden flows has also proven to be a source for several novel
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and unexpected particle dynamics through the action of diffusiophoresis (Prieve
et al. 1984). Derjaguin et al. (1947) first introduced the concept of diffusioosmosis
in which solute concentration gradients induce slip flows over solid surfaces and
extended these ideas to the diffusiophoretic migration of colloidal particles in
electrolyte concentration gradients (Derjaguin, Dukhin & Korotkova 1961). Since
these classic studies of Derjaguin et al., novel particle responses due to the action of
diffusiophoresis have been discovered including particle banding (Staffeld & Quinn
1989), particle focusing (Abécassis et al. 2008), particle patterning (Palacci et al.
2010), tuning colloidal interactions (Paustian et al. 2013; Banerjee et al. 2016) and
enhanced particle transport in confined geometries (Kar et al. 2015; Shin et al.
2016; Ault et al. 2017). Renewed interest in the diffusiophoretic transport of charged
colloidal particles has demonstrated a host of new theoretical methods, experiments
and numerical simulations of particle manipulation techniques and systems, some of
which are summarized in table 1.

Diffusiophoresis refers to the phoretic, spontaneous motion of colloidal particles due
to solute gradients. The physical interactions that drive the action of diffusiophoresis
can be broken down into two components: chemiphoresis and electrophoresis.
Chemiphoresis refers to particle motion due to the osmotic pressure gradient along a
particle surface in the presence of local (at the scale of the particle) solute gradients,
and electrophoresis refers to the particle motion due to locally developed electric fields
as a result of a difference in the diffusivities of the cations and anions. Note that
gradients of electrolyte solutions drive diffusiophoresis through the combined influence
of chemiphoresis and electrophoresis, whereas gradients of non-electrolyte solutions
drive diffusiophoresis solely through the action of chemiphoresis. Diffusioosmosis is
a related phenomenon that refers to the effects of chemiphoresis and electrophoresis
causing bulk flow adjacent to a stationary surface. In the presence of a local solute
gradient ∇c, the diffusiophoretic contribution to a particle’s velocity udp relative to
the local flow velocity can be written as udp = Γp∇ ln c, where Γp is the so-called
diffusiophoretic mobility, which is a function of the particle’s size and zeta potential
(Prieve et al. 1984; Anderson 1989). The nonlinear logarithmic dependence on
the solute concentration makes possible the particle banding documented by, for
example, Staffeld & Quinn (1989), Palacci et al. (2012) and Shin et al. (2016) and
the long-lived chemically driven effects document by Abécassis et al. (2008) and
Banerjee et al. (2016).

Here, we study the combined influences of diffusiophoresis, diffusioosmosis and
fluid advection on particle dynamics in the vicinity of a junction such as the one
described in figure 1, in which a fluid stream with one solute concentration merges
with a larger main channel that carries a different solute concentration. It is well
known that particles under the influence of multiple forces may accumulate when
those forces act in opposing directions. For example, such particle accumulation has
been observed for the competing effects of thermophoresis versus diffusiophoresis
(Maeda, Buguin & Libchaber 2011), thermophoresis versus convection (Duhr &
Braun 2006) and electrophoresis versus convection (Stein et al. 2010). More recently,
the opposing effects of diffusiophoresis and fluid flow were shown to lead to the
rapid accumulation of particles in the vicinity of a flow junction such as shown
in figure 1 for appropriately chosen particles and boundary conditions (Abécassis
et al. 2008; Shin et al. 2017b). For example, for particle/solute combinations with
Γp > 0, and a higher solute concentration at the inlet of the side pore such that the
solute concentration gradient points upstream in the direction shown in figure 1(b),
diffusiophoresis will act to pull particles upstream in the side channel, while fluid
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Paper Focus Contribution

Derjaguin et al. (1947) Theoretical Demonstration of diffusiophoresis in
non-electrolytes

Prieve et al. (1984) Theoretical Computed terminal velocities of non-conductive
spheres through weak gradients of binary
electrolytes and showed that motions can be up-
or down-gradient

Anderson (1989) Theor./review Reviewed dynamical processes that occur within
a thin interface region around particles that lead
to apparent slip velocities

Staffeld & Quinn
(1989)

Theor./exptl. Developed a stopped-flow diffusion cell
technique to observe particle motion due to
diffusiophoresis and demonstrated the formation
of particle bands

Abécassis et al. (2008) Experimental Demonstrated focusing and spreading of particle
beams in a junction using diffusiophoresis

Palacci et al. (2010) Experimental Demonstrated the segregation and spatial
patterning of particles, including λ-DNA, and
achieved various localization patterns

Brady (2011) Theoretical Derived a colloidal analysis of diffusiophoresis,
treating the solute as discrete Brownian particles

Palacci et al. (2012) Experimental Demonstrated particle trapping under
concentration gradient oscillations via a
rectification of the motion

Florea et al. (2014) Experimental Demonstrated that the long-range repulsion that
leads to the formation of exclusion zones are
due partly to diffusiophoresis

Kar et al. (2015) Experimental Showed that transient diffusioosmosis can
facilitate transport of charged particles in
dead-end pores

Shin et al. (2016) Exptl./numer. Demonstrated enhanced colloid transport into
pores and considered size effects of finite
Debye layers

Banerjee et al. (2016) Exptl./numer. Developed an approach to design
non-equilibrium particle interactions based on
surface chemistry that extend/persist over large
length/time scales

Shi et al. (2016) Theor./exptl. Showed that diffusiophoretic focusing can only
be achieved in steady-state gradients if the zeta
potential changes significantly with solute
concentration, or in the presence of chemical
reactions

Friedrich et al. (2017) Experimental Demonstrated a microfluidic mechanism for
concentrating DNA up to 10 000-fold using
diffusiophoresis.

Stout & Khair (2017) Theoretical Considered the influence of steric repulsion
between finite-sized ions on diffusiophoresis and
showed that mobilities increase with solute
concentration

TABLE 1. (continued)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

61
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.618


Diffusiophoresis in narrow channel flows 423

Ault et al. (2017) Theor./numer. Developed analytical solutions for propagating
particle wave fronts due to diffusiophoresis

Nery-Azevedo, Banerjee
& Squires (2017)

Experimental Demonstrated diffusiophoresis of latex particles
in surfactant systems

Shin et al. (2017a) Exptl./numer. Developed technique for measuring zeta
potentials of particles in suspension and channel
walls using diffusiophoresis and diffusioosmosis

Shin et al. (2017b) Exptl./numer. Demonstrated rapid particle accumulation near a
pore entrance to a junction under conditions
where merging streams have different solute
concentrations

Shin et al. (2017c) Experimental Demonstrated continuous flow, membraneless,
high-efficiency particle filtration using CO2

diffusiophoresis
Fan, Shin & Stone
(2018)

Theor./exptl. Derived diffusiophoretic mobility of
non-conductive, immiscible drops

Present work Theor./numer. Derivation of one- and two-dimensional
solutions for diffusiophoretic and diffusioosmotic
fluid/solute/particle dynamics in long, narrow
channel flows

TABLE 1. Summary of modern theoretical, experimental and numerical developments
regarding diffusiophoresis and applications to the field of fluid dynamics.

advection will act to drive particles downstream. These competing effects can, in some
cases, lead to rapid particle accumulation within the pore. However, this accumulation
is not the only outcome if the effects are in competition. If, for example, the fluid
velocity in the side channel is too low, diffusiophoresis will indeed drive particles
upstream in the channel, but they will never reach an equilibrium position. The
particles will simply be pumped continuously upstream.

In this paper, we use both theory and numerical simulations to quantify and describe
the diffusiophoretic particle dynamics in a channel adjacent to a junction, including
the recirculatory flows driven by diffusioosmotic effects at the channel walls. For the
case of a long, narrow channel, we develop theoretical solutions that can predict the
particle dynamics. In § 2, we introduce the coupled set of equations and boundary
conditions governing the fluid, solute and particle dynamics. In § 3, we solve for the
quasi-one-dimensional solute and particle dynamics in the channel for the case of
long, narrow channels. In this limit, it is found that solute/particle dynamics only
depends on the average fluid velocity in the channel, and not on the distribution
of velocity (i.e. diffusioosmotic effects are negligible). In § 4 we show how this
type of system can be used to effectively sort particles by size and/or zeta potential,
and we suggest a new approach for performing microfluidic zeta potentiometry of
particles. In § 5 we extend this analysis to finite-aspect-ratio channels, and we solve
for the two-dimensional fluid, solute and particle dynamics including the effects of
diffusioosmosis. In § 6 we introduce the concept of ‘diffusioosmotic pumping’, in
which diffusioosmotic effects at the channel walls can be used to drive fluid flow
against a net pressure gradient in the side channel for certain parameters. Finally, in
§ 7 we present conclusions and potential ideas for future work.
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(a) (b)

(c)

◊

FIGURE 1. (Colour online) Problem set-up. (a) We consider the fluid/particle/solute
dynamics in a narrow pore in the vicinity of a junction with a main channel in which
the flow in the pore carries a different solute concentration than that in the main channel.
(b) Inside the pore, particle motions are governed by a combination of the fluid velocity
uf and the diffusiophoretic velocity udp resulting from the solute concentration gradient
∇c. (c) With appropriately chosen parameters for the particles of interest, the fluid and
diffusiophoretic velocities can be designed to act in opposite directions, resulting in a
stable position in the pore xp where particles will accumulate. Dark arrows indicate the
direction of flow.

2. Governing equations
The transient diffusiophoretic motions of suspended particles are governed by

both the fluid and solute profiles in a channel or pore. We model the coupled
fluid/solute/particle dynamics with governing equations that include the incompressible
Navier–Stokes and continuity equations, an advection–diffusion equation for the solute
transport and a diffusiophoretic advection–diffusion equation for the transport of
suspended particles. For the following discussion, ρ, µ, p∗ and u∗ = (u∗, v∗, w∗)
are the fluid density, viscosity, pressure and velocity, respectively, c∗ and Ds are the
solute concentration and diffusivity, respectively, and n∗, Dp and Γp are the particle
concentration, diffusivity and diffusiophoretic mobility, respectively. Throughout this
analysis, we will assume that the solute is a single z–z electrolyte, where z is the
valence number. In three dimensions, and assuming that the influence of gravity is
negligible, the dimensional form of this system of equations is given by

ρ

(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
=−∇

∗p∗ +µ∇∗2u∗, (2.1a)

∇
∗
· u∗ = 0, (2.1b)

∂c∗

∂t∗
+∇

∗
· (u∗c∗)=Ds∇

∗2c∗, (2.1c)

∂n∗

∂t∗
+∇

∗
· ((u∗ + u∗dp)n

∗)=Dp∇
∗2n∗, (2.1d)

where ∗ denote dimensional quantities. Note that, in writing the particle concentration
equation as (2.1d), we have assumed that there are no other dynamical effects for
the particles, i.e. the Stokes number for the particles is small. Thus, the velocity
of individual particles can be approximated as the sum of the local fluid advection
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velocity and the diffusiophoretic velocity component u∗dp based on the local solute
concentration. Here, u∗dp = Γp∇

∗ ln c∗ represents the diffusiophoretic velocity of a
particle due to gradients in the logarithm of the solute concentration (Prieve et al.
1984; Anderson 1989). This logarithmic ‘sensing’ of the solute concentration by the
particles is responsible for the rapid focusing of particles that has been observed
extensively in solute concentration gradients, and also explains why diffusiophoretic
particle motions can persist for surprisingly long time scales compared to the time
scale for solute diffusion, i.e. although the solute concentration gradient may be small,
∇
∗ ln c∗ may be large (Palacci et al. 2012). Equations (2.1a)–(2.1d) form a coupled

system of equations that govern the diffusiophoretic motion of charged colloidal
particles in general three-dimensional flows. This set of equations is to be solved
for given boundary and initial conditions, for example, a given particle n and salt c
concentration at x = 0, where the channel begins (see figure 1). With (2.1a)–(2.1c),
and including boundary conditions that can include diffusioosmotic slip, in principle
u∗ and c∗ can be determined, after which (2.1d) gives the evolution of n.

2.1. Non-dimensional equations
Before proceeding to examine the fluid/solute/particle dynamics in long, narrow pores
of height 2h and length L� h, we first non-dimensionalize the system of governing
equations. The average fluid speed in the pores is denoted Ū. We restrict ourselves
to two dimensions and non-dimensionalize the system of governing equations for the
fluid velocity u∗ = (u∗, v∗) as follows:

t=
t∗Ds

L2
, x=

x∗

L
, y=

y∗

h
, u=

u∗

Ū
, v =

v∗L
Ūh

, n=
n∗

nc
,

c=
c∗

cc
, and p=

p∗h2

µŪL
,

 (2.2)

where nc = n∗(x = 0) and cc = c∗(x = 0). With these non-dimensionalizations and
considering the channel configuration shown in figure 1, the governing equations can
be rewritten as

ε2 Ds

ν

∂u
∂t
+ εRe

(
u
∂u
∂x
+ v

∂u
∂y

)
=−

∂p
∂x
+ ε2 ∂

2u
∂x2
+
∂2u
∂y2

, (2.3a)

ε4 Ds

ν

∂v

∂t
+ ε3Re

(
u
∂v

∂x
+ v

∂v

∂y

)
=−

∂p
∂y
+ ε4 ∂

2v

∂x2
+ ε2 ∂

2v

∂y2
, (2.3b)

∂u
∂x
+
∂v

∂y
= 0, (2.3c)

ε2 ∂c
∂t
+ Pesε

2

(
u
∂c
∂x
+ v

∂c
∂y

)
= ε2 ∂

2c
∂x2
+
∂2c
∂y2

, (2.3d)

ε2 Ds

Dp

[
∂n
∂t
+ Pes

(
∂(upn)
∂x
+
∂(vpn)
∂y

)]
= ε2 ∂

2n
∂x2
+
∂2n
∂y2

, (2.3e)

where Re = Ūh/ν is the flow Reynolds number, Pes = LŪ/Ds is the solute Péclet
number, ε = h/L and up = u+ udp is the particle velocity due to fluid advection and
diffusiophoresis, i.e.

up = u+
Γp

LŪ
∂ ln c
∂x

and vp = v +
1
ε2

Γp

LŪ
∂ ln c
∂y

. (2.4a,b)
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2.2. Boundary and initial conditions
The solution of (2.3) is subject to boundary conditions on the fluid, solute and particle
dynamics. These boundary conditions are summarized by:

No fluid penetration at the walls: v(x,±1, t)= 0, (2.5a)
Fixed outlet pressure: p(1, y, t)= 0, (2.5b)

Fixed inlet and outlet solute concentrations: c(0, y, t)= 1 and c(1, y, t)= β, (2.5c)
Fixed inlet and outlet particle concentrations: n(0, y, t)= n(1, y, t)= 1, (2.5d)

No-flux conditions at the channel walls:
∂c
∂y
=
∂n
∂y
= 0 at y=±1, (2.5e)

Symmetry conditions:
∂u
∂y
=
∂p
∂y
=
∂c
∂y
=
∂n
∂y
= v = 0 at y= 0, (2.5f )

Fixed average fluid velocity:
∫ y=1

y=0
u(x, y, t) dy= 1, (2.5g)

Diffusioosmotic wall slip condition: u(x,±1, t)= uw(x, t)=−
Γw

LŪ
∂ ln c
∂x

∣∣∣∣
y=±1

. (2.5h)

The slip boundary condition given by (2.5h) describes the deviation from the
no-slip condition on the channel walls due to diffusioosmosis. The origin of a
diffusioosmotic wall slip boundary condition is physically the same as the origin
of diffusiophoresis itself, namely electrophoretic and chemiphoretic effects, where
Γw is the diffusioosmotic mobility of the wall, and the minus sign is because we
are now interested in the motion of the fluid, whereas with diffusiophoresis the
focus is on the motion of the particle. As initial conditions, we assume an initially
uniform distribution of particles throughout the channel, i.e. n(x, y, 0) = 1. In later
sections, we will show that the transient solute dynamics occurs much faster than the
transient particle dynamics. Thus, for the purposes of modelling the diffusiophoretic
particle motions, we may assume either an initially uniform solute concentration
profile, i.e. c(x, y, 0) = 1, or we can simply directly impose the fully developed
solute concentration profile as the initial condition. With these boundary and initial
conditions and the non-dimensional governing equations given by (2.3), we next seek
solutions for the fluid/solute/particle dynamics in long, narrow pores through the
application of the lubrication approximation.

Note that, by assuming uniform pressure and solute concentration profiles at x =
1, we have assumed that any ‘end effects’ due to the presence of the junction are
negligible. Of course, such an assumption is generally invalid, and the main channel
flow must in turn affect the fluid/solute/particle dynamics within the pore. It is perhaps
more appropriate to describe this boundary condition as ‘effective’ in nature, such that
the outlet is not located exactly at x= 1. However, because we have assumed that the
channel has a large aspect ratio, i.e. h/L � 1, this deviation is negligible, and we
effectively have uniform boundary conditions at x= 1, which we have also confirmed
with three-dimensional numerical simulations.

2.3. Assumption of constant Γp and Γw

Throughout this analysis, we will make the assumption of constant diffusiophoretic
and diffusioosmotic mobilities, Γp and Γw. This assumption is found frequently
throughout the literature due to the convenient analytical results that it makes
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possible, and is generally valid for the case of dilute solute concentrations. Kirby &
Hasselbrink (2004) suggest that for a wide range of concentrations, the zeta potential
ζ is proportional to the log of the solute concentration for symmetric electrolytes
with a valence of z = 1, i.e. ζ ∝ ln c. Thus, for cases where the dilute solute
assumption is not valid, we must generally consider the variation of the zeta potential
as a function of solute concentration, and thus we must consider the variability
of Γp and Γw. However, for dilute solute concentrations we can safely neglect the
variation in zeta potential. For example, the zeta potential difference between 100
and 10 mM solute concentration solutions is approximately 50 %, whereas the zeta
potential difference between 100 and 10 µM solute concentration solutions is only
approximately 20 %. Considering this variability of zeta potential will greatly limit
the amount of theoretical progress that may be achieved towards analytical results,
and so we limit ourselves to the assumption of dilute solute concentrations and leave
the additional analysis that considers variable zeta potentials to future work.

3. Diffusiophoresis in quasi-one-dimensional pores

We consider the motion of colloidal particles under the combined influences of
fluid flow and solute gradients in long, narrow channel geometries such as illustrated
in figure 1. For sufficiently long, narrow geometries, the diffusiophoretic particle
dynamics is well approximated by a one-dimensional model. While in general the
fluid velocity and pressure, as well as the solute and particle concentrations, will all
be functions of x, y and t in a channel flow, i.e. u(x, y, t), p(x, y, t), c(x, y, t) and
n(x, y, t), the lubrication approximation may be used to show that both the solute
and particle concentrations are independent of y to leading order for high-aspect-ratio
channels, i.e. ε = h/L� 1.

We consider low-Reynolds-number flows (Re � 1) and seek the leading-order
dynamics through a formal expansion with the small parameter ε. As can be seen in
the non-dimensionalized governing equations (2.3), with Re� 1, only ε2 appears. So,
we seek solutions of the form

u(x, y, t)= u0 + ε
2u1 + ε

4u2 + ε
6u3 + · · · , (3.1a)

v(x, y, t)= v0 + ε
2v1 + ε

4v2 + ε
6v3 + · · · , (3.1b)

p(x, y, t)= p0 + ε
2p1 + ε

4p2 + ε
6p3 + · · · , (3.1c)

c(x, y, t)= c0 + ε
2c1 + ε

4c2 + ε
6c3 + · · · , (3.1d)

n(x, y, t)= n0 + ε
2n1 + ε

4n2 + ε
6n3 + · · · , (3.1e)

where all of the ui, vi, pi, ci and ni may be functions of x, y and t. To leading order,
the non-dimensional governing equations given by (2.3) become

∂2u0

∂y2
−
∂p0

∂x
=0,

∂p0

∂y
=0,

∂u0

∂x
+
∂v0

∂y
=0,

∂2c0

∂y2
=0, and

∂2n0

∂y2
=0. (3.2a−e)

Integrating the last two of these and applying the no-flux boundary condition given
by (2.5e), we find that c0 = c0(x, t) and n0 = n0(x, t), i.e. the solute and particle
concentrations are independent of y to leading order. We further see that p0= p0(x, t),
and the pressure is also independent of y to leading order, as expected by the
lubrication approximation. Thus, the effects of diffusioosmosis on the solute and
particle concentrations and on the pressure are negligible to leading order, and only
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the mean flow velocity Ū affects the leading-order solute and particle distributions.
Substituting these results into (2.3d) and (2.3e) we find to leading order

∂c0

∂t
+ Pesu0

∂c0

∂x
−
∂2c0

∂x2
−
∂2c1

∂y2
= 0, (3.3a)

∂n0

∂t
−
Γp

Ds
n0

(
∂ ln c0

∂x

)2

+ Pesu0
∂n0

∂x
+
Γp

Ds

∂n0

∂x
∂ ln c0

∂x
+
Γp

Ds

n0

c0

∂2c0

∂x2
−

Dp

Ds

∂2n0

∂x2

+Pesn0
∂v0

∂y
+
Γp

Ds

n0

c0

∂2c1

∂y2
−

Dp

Ds

∂2n1

∂y2
+ Pesn0

∂u0

∂x
= 0. (3.3b)

Integrating these equations across the channel width and applying the boundary
conditions (2.5) eliminates the appearance of terms involving c1 and n1 and we find

∂c0

∂t
+ Pes

∂c0

∂x
−
∂2c0

∂x2
= 0, (3.4a)

∂n0

∂t
+
∂

∂x

[(
Pes +

Γp

Ds

∂ ln c0

∂x

)
n0

]
−

Dp

Ds

∂2n0

∂x2
= 0, (3.4b)

which represent a coupled set of partial differential equations (PDEs) that can be
solved for the leading-order solute and particle concentration distributions.

Before we attempt to solve this system, we first comment on the relevant time
scales of the physical processes. First, note that we focus on solute Péclet numbers
that are Pes = O(1). We will show below that this magnitude of Péclet numbers
tends to locate the accumulating particle peak near the centre of the channel for
typical values of Γp/Ds and β, and also provides the best separation dynamics
for applications with multiple types of particles. Then, with Pes = O(1), equation
(3.4a) shows that the solute concentration profile c0 evolves on a time scale O(1).
Furthermore, with the imposed boundary conditions, c0 will approach a steady-state
distribution, and thus we expect ∂c0/∂t ≈ 0 for t � 1. However, the diffusive term
in (3.4b) is O(Dp/Ds). Since we expect the formation of a peak in the particle
concentration within the channel, where diffusion must play a significant role, we
thus expect that the accumulation dynamics of the particles occurs over a much
longer time scale, since Ds/Dp is typically O(103) for common combinations of
solutes and particles. With this reasoning, and with supporting results from numerical
simulations to be provided below, we assume that the solute concentration profile is
steady over the relevant time scale of particle accumulation. That is, we solve the
slightly modified system

Pes
dc0

dx
−

d2c0

dx2
= 0, (3.5a)

∂n0

∂t
+
∂

∂x

[(
Pes +

Γp

Ds

d ln c0

dx

)
n0

]
−

Dp

Ds

∂2n0

∂x2
= 0, (3.5b)

where we now have c0 = c0(x). As summarized in § 2.2, the solution of (3.5) is
subject to c0(0)= 1, c0(1)= β, and n0(0, t)= n0(1, t)= 1. In addition to β and Pes,
equation (3.5b) is governed by two additional non-dimensional parameters: Γp/Ds,
which determines the rate of particle diffusiophoresis relative to solute diffusion, and
Dp/Ds, which determines the rate of particle diffusion relative to solute diffusion.
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Equation (3.5a) has a straightforward solution given by

c0(x)=
β − 1

ePes − 1
(ePesx

− 1)+ 1. (3.6)

In the limit of Pes → 0, solute diffusion dominates, and c0(x) approaches a linear
profile. However, for Pes → ∞, the solute concentration approaches c0(x) = 1
throughout the pore, except for a shrinking region near the outlet where steeper
and steeper solute concentration gradients develop. With the solution for the solute
concentration given by (3.6), the diffusiophoretic contribution to (3.5b) is known
analytically, and (3.5b) can be solved to yield the transient leading-order particle
concentration n0. We seek intuition towards an analytical solution approach for (3.5b)
by performing one-dimensional (1-D) numerical simulations of the full governing
equations (2.1). We assume an initial particle concentration distribution of n(x, 0)= 1.
Furthermore, because of the time scale arguments previously mentioned, we assume
an initial solute concentration profile given by (3.6), i.e. we impose the leading-order
steady-state solute concentration profile as the initial condition in our 1-D simulations.
Assuming instead, for example, an initial uniform solute concentration of c = 1 has
a negligible influence on the particle dynamics because the solute quickly evolves
towards (3.6) within t=O(1).

Typical numerical simulations of the 1-D particle dynamics are shown in figure 2.
As can be seen, for typical, physically realistic non-dimensional parameters, the
particle concentration initially forms a peak near the outlet that then moves upstream
and approaches a steady location within t = O(1). After this initial transient period,
the dynamics approaches an asymptotic behaviour in which the particle concentration
can apparently be described by three separate solutions, each valid in a certain region.
The location of the particle concentration peak approaches a steady position, and
the peak grows larger in time (we will show that this growth is linear in t until
the maximum packing fraction is approached and short-range interactions dominate),
whereas upstream and downstream of the peak the particle concentrations are steady
and independent of time.

Furthermore, because Dp/Ds � 1 for typical combinations of solute and particles,
and because gradients of n are relatively small in the regions upstream and
downstream of the peak, we first seek steady-state solutions to (3.5b) with negligible
particle diffusivity, i.e. we seek solutions to

d
dx

[(
1+

Γp

LŪ
d ln c0

dx

)
nl,r

]
= 0, (3.7)

where n` and nr denote the steady-state particle concentrations to the left and right of
the peak, respectively.

Analytical solutions to (3.7) for the particle concentrations upstream and downstream
of the peak, i.e. n`(x) and nr(x), respectively, each satisfying one boundary condition
at the inlet or outlet, are given by

n`(x)= F(x)
ePes +

Γp

Ds
(β − 1)− 1

ePes − 1
, (3.8a)

nr(x)= F(x)
ePes

(
Γp

Ds
(β − 1)+ β

)
− β

(ePes − 1)β
, (3.8b)
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FIGURE 2. (Colour online) Typical suspended particle concentrations n for Pes = 0.75,
Dp/Ds= 6.25× 10−4, Γp/Ds= 0.475 and β = 0.01. Dimensionless parameters were chosen
to reflect typical physical conditions. At early times, the particle concentration increases
everywhere inside the pore as particles are brought in at both x= 0 and x= 1. The profile
quickly develops a peak at a pore position xp(t). To the left and right of the peak, particle
diffusion is negligible, and n quickly approaches the steady-state solutions n`(x) and nr(x)
in those regions of the pore, whereas the peak itself grows linearly in time as we will
show. The figure inset shows the growth of the peak particle concentration in the channel
nmax. As can be seen, this growth is linear in time except for a brief initial development
period that is t=O(1).

where

F(x)=
ePes + ePesx(β − 1)− β

ePes + ePesx

(
1+

Γp

Ds

)
(β − 1)− β

. (3.9)

Because the solutions n`(x) and nr(x) satisfy the particle-diffusion-free equation (3.7),
they only satisfy the upstream and downstream boundary conditions, respectively. Both
solutions diverge at the steady-state peak location, x∞p , which is given by F(x∞p )→∞
or

x∞p = Pe−1
s ln

 β − ePes(
1+

Γp

Ds

)
(β − 1)

 . (3.10)

This peak location can be understood as the location in the flow where the advective
velocity exactly balances the diffusiophoretic velocity, such that particles accumulate.
As can be seen from (3.10), for a given particle and solute, i.e. for fixed Γp/Ds, the
flow parameters Pes and β can be tuned to drive particle accumulation at any location
in the channel. This feature is shown graphically in figure 3, where the position of the
particle peak within the channel is shown as a function of Pes for a range of Γp/Ds.
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FIGURE 3. (Colour online) Steady-state peak particle concentration location x∞p in
the channel as a function of the solute Péclet number Pes for a variety of particle
diffusiophoretic mobilities Γp/Ds for β = 0.01. For a given Γp/Ds, both Pes and β can be
tuned to selectively determine the channel position at which particles accumulate. Note
that for x∞p < 0, particle diffusiophoresis is too strong relative to fluid advection, and
particles will be continuously pumped upstream without accumulating in the channel. Also
note that Γp/Ds < 1 for most realistic combinations of solute and particles.

Equation (3.10) demonstrates why we limit our focus to Pes=O(1). Assuming β� 1
and rearranging, we find that Pes = ln(1 + Γp/Ds)/(1 − x∞p ). Then with x∞p ≈ 0.5,
i.e. fixing the particle accumulation near the centre of the channel, for typical values
of Γp/Ds =O(1) we also have Pes =O(1). Much smaller or larger values of Pes will
shift the particle dynamics towards the channel inlet or outlet, respectively.

With analytical expressions for the steady-state particle concentrations at the inlet
and outlet of the channel, we can directly calculate the in/out-flow of particles at both
the inlet and at the outlet. Using the analytical solutions for n`(x) and nr(x) given by
(3.8), it is straightforward to show that these fluxes are not equal except for the trivial
case of Γp/Ds = 0. However, with Γp/Ds > 0 and 0 < β < 1 or with Γp/Ds < 0 and
β > 1, these fluxes represent a net influx of particles into the channel. Furthermore,
because n`(x) and nr(x) specify, respectively, the particle concentrations at the inlet
and outlet and because they are both steady in time, the accumulation of particles
occurs at a constant rate.

In order to solve for the time-dependent particle concentrations at the peak, we
must consider the full unsteady diffusiophoretic advection–diffusion equation including
particle diffusion given by (3.5b). Numerical simulations suggest that the particle
concentrations centred around and at the peak, which we denote as nc(x, t), grow
linearly with t, as shown in the inset of figure 2. Thus, we make an initial guess
that nc(x, t)∝ t, and we use a change of variables x′ = x− x∞p to centre the solution
around the peak. Because Dp/Ds � 1 is a small parameter that also multiplies the
highest spatial derivative in the problem, we stretch the x′-axis as X = x′/(Dp/Ds)

1/2.
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Then, considering the limit Dp/Ds� 1, equation (3.4b) can be solved to yield

nc(x, t)= kt exp

−
Ds(Ds + Γp)

2DpΓp

ln

 β − ePes(
1+

Γp

Ds

)
(β − 1)

− Pesx


2 . (3.11)

Because we know the net in/out-flux of particles at the inlet and outlet from n`(x)
and nr(x), a balance on the total number of particles allows us to uniquely determine
the constant of proportionality k. Specifically, the time rate of change of the integral
of nc(x, t) must equal the net influx of particles, which allows us to determine

k=
Pe2

s (e
Pes − β)(1− β)

β
√

2π(ePes − 1)

(
Γp

Dp

(
1+

Γp

Ds

))1/2

. (3.12)

This constant sets the rate at which particles accumulate in the channel and the rate at
which the peak concentration grows. For small β, k∝ β−1. Thus, reducing the outlet
solute concentration by half will double the rate of particle concentration growth at
the peak. The dependence on Pes is even stronger. For large Pes, k∝Pe2

s , so doubling
the flow velocity will quadruple the rate of particle accumulation in the pore.

With the theoretical predictions n`, nr, and nc for the piecewise colloidal particle
concentration, we can now compare with 1-D numerical simulations of the original
system of governing equations (2.1). Results comparing the theoretical predictions
of (3.8a), (3.8b), and (3.11) with numerical simulations for typical, realistic physical
parameters are shown in figure 4. As can be seen, with no fitting parameters, all three
analytical piecewise results closely approximate the numerical results (nnum) throughout
the entire domain. There is a modest divergence between the theoretical predictions
and the numerical results near where the solutions match together. Because there are
no free parameters, it is impossible to match derivatives at the matching locations, so
that the theoretical predictions for n are piecewise continuous, but not smooth at the
matching points. We choose the switching locations x1 and x2 simply based on when
n`(x1) = nc(x1, t) and nr(x2) = nc(x2, t). Note that because nc grows with time, the
matching locations continuously spread outwards from the peak. In this model, they
will eventually reach either the inlet, outlet or both, but as long as the peak location
is not too close to the inlet or outlet, that breakdown of the model would occur only
at very long times, and it is more likely that the predicted particle concentrations
would become unphysically large before that happens. In the next section, we will
show how the combined effects of fluid advection and diffusiophoresis can be used
to achieve various applications for manipulating particles.

4. Controlled particle sorting
In the previous section we presented theoretical and numerical results for the

one-dimensional diffusiophoretic particle dynamics in long, narrow pores. We now
consider the influence of the diffusiophoretic mobility Γp, which is a function of both
solute and particle parameters including the diffusivities of the cations and anions
in the solute, as well as the particle sizes and surface charges. For details regarding
the size effect on Γp see Prieve et al. (1984), Prieve & Roman (1987) and equation
(S5) from Shin et al. (2016). Theoretical and numerical results demonstrating the
influence of Γp/Ds on the suspended particle concentrations are shown in figure 5,
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FIGURE 4. The particle concentration profile approaches a long-time asymptotic behaviour
in which n is well approximated by distinct dynamics in three different regions. To
the left and right of the peak, particle dynamics is dominated by fluid advection and
diffusiophoresis (i.e. particle diffusion is negligible), and the particle distribution is well
represented by steady-state solutions denoted by n` and nr (see (3.8a) and (3.8b)). Due to
the fixed, steady influx of particles at both x= 0 and x= 1, the peak itself grows as n∝ t
and is described well by nc, whose magnitude grows in time (see (3.11)). Here, Pes= 0.75,
Dp/Ds = 6.25× 10−4, Γp/Ds = 0.475, β = 0.01 and t= 36.0.

where solutions for n(x, t) at the same time but different Γp/Ds are reported. As can
be seen, particles with larger Γp/Ds experience diffusiophoresis more strongly, and
are able to propagate further upstream towards the channel inlet. As time progresses,
particles continue to focus, and the particle concentrations will continue to grow
as described in the previous section. However, after the initial t = O(1) period, the
locations of the peaks remain effectively stationary.

Another way to interpret the results of figure 5 is to consider a channel
simultaneously filled with a uniform dilute concentration of five different types of
particles with the values of Γp/Ds specified in the figure. Due to the combined
influences of fluid advection and diffusiophoresis, as time passes, the particle
concentrations will begin to focus at different locations in the channel, forming
distinct concentration peaks, effectively sorting and focusing each of the particles
based on their Γp/Ds.

This configuration has potential applications ranging from particle sorting, separation
and focusing, to diagnostic and measurement applications. For example, since the peak
concentration locations are steady in time after an initial transient of time t = O(1),
and the locations for accumulation are uniquely determined by the system parameters
Pes, Γp/Ds, and β, it is straightforward to establish the Γp of the different particles.
For example, in a microfluidic experiment, with fixed β and Pes, the position of the
peak concentration x∞p for particles with unknown Γp can easily be measured. Then,
the unknown diffusiophoretic mobility can be directly calculated from (3.10) to yield

Γp =Ds

(
β − ePes

ePesx∞p (β − 1)
− 1
)
. (4.1)
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FIGURE 5. (Colour online) Suspended particle concentration profiles for particles with
different diffusiophoretic mobilities Γp/Ds for Pes = 0.75, Dp/Ds = 6.25× 10−4, β = 0.01
and t = 36.0. Symbols denote numerical solutions of the 1-D equation (2.1), and solid
black lines indicate the corresponding theoretical predictions given by (3.8a), (3.8b) and
(3.11). As can be seen, particles with different diffusiophoretic mobilities form distinct
peaks (the locations of which are steady in time), suggesting that this type of system may
have significant applications such as particle sorting, focusing and zeta potentiometry.

This approach is similar to that described by Shin et al. (2017a), who used a dead-end
pore geometry. However, the configuration of figure 1 has several advantages. First,
the particle concentration peak location is stationary in time, and results can be
achieved based only on a single snapshot in time, whereas Shin et al.’s method
requires tracking a propagating particle front. Furthermore, the precision of this
approach can likely be higher than that described by Shin et al., where, for typical
Γp, the quasi-steady locations that particle fronts approach only occupy a range
covering approximately 30 % of the total channel length, such that in the case of
multiple particles, they lie relatively close together in the measurement. Here, Pes and
β can be tuned to maximize separation between particles and improve measurement
resolution. Finally, our proposed approach has a straightforward analytical expression
given by (4.1) that can be used to calculate Γp.

Furthermore, we note that in the thin double layer limit the diffusiophoretic mobility
Γp is a known function of both a particle’s surface charge (i.e. zeta potential) and size.
Shin et al. also took advantage of this size effect, demonstrating particle separation by
size using applied transient solute gradients (Shin et al. 2016). For much the same
reasons as stated above, the system presented here again offers additional advantages
over Shin et al.’s system, specifically (i) particle peak locations are steady in time, (ii)
the system undergoes steady, continuous particle focusing and accumulation in contrast
to transient, limited focusing and (iii) convenient analytical expressions exist that relate
Γp/Ds, Pes, β and the steady-state particle peak location x∞p . As illustrated in figure 5,
the flow configuration of figure 1 provides a simple, practical means to predictably
manipulate particles by size and/or surface charge in long narrow channels. In the next
section, we will look at two-dimensional corrections to the fluid, solute and particle
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dynamics due to the finite aspect ratio of channels, and especially consider the effects
of diffusioosmosis at the channel walls.

5. Diffusiophoresis in 2-D narrow channel flows
In § 3, we used an asymptotic expansion with the small parameter ε = h/L � 1

to solve for the leading-order, quasi-1-D solute and particle concentration profiles in
a long, narrow channel flow. We showed that the solute and particle concentrations
only depend on the mean channel velocity Ū (through the solute Péclet number Pes)
and are independent of the distribution of velocity u(x, y, t) to leading order, i.e. the
influence of diffusioosmosis on the solute and particle concentrations is negligible to
leading order. Thus, the leading-order 1-D analysis fails to model the effects of both
finite-aspect-ratio channels and the recirculating flows due to diffusioosmotic wall slip
conditions. In this section, we extend the analysis of § 3 to higher order to include the
effects of diffusioosmosis and provide 2-D corrections to the solute/particle dynamics
for finite ε. Thus, in this section we quantify the influence of diffusioosmosis
expressed through the diffusioosmotic mobility coefficient Γw which is a function of,
among other things, the surface charge density of the channel walls. First, we solve
for the leading-order 2-D fluid velocity and pressure distributions, which are needed
to develop the higher-order corrections to the solute and particle concentration profiles.
Next, we calculate the higher-order 2-D correction to the solute concentration profile
and use this result to determine the particle velocity components up and vp due to
both fluid advection and diffusiophoresis up to O(ε2), which can be directly integrated
to yield individual particle trajectories. Finally, we calculate the 2-D correction to the
particle concentration around the peak for finite ε and show that the particles form a
curved band depending on the strength of the diffusioosmotic effects.

5.1. Leading-order base flow
In § 3 we showed that the leading-order fluid velocity and pressure profiles are
governed by (3.2), although only the mean velocity Ū influenced the leading-order
distribution of solute (c0) and particles (n0). In order to solve for the higher-order
2-D corrections to the solute/particle dynamics, we next seek solutions to the fluid
velocity, u0 = (u0, v0), and pressure profiles. Subject to the leading-order boundary
conditions ∫ 1

0
u0(x, y) dy= 1 and u0(x,±1)=−

Γw

LŪ
d ln c0

dx
, (5.1a,b)

the solution to (3.2) is given by

u0(x, y)=
1
2

[
3− 3y2

−
Γw

Ds

(
ePesx(3y2

− 1)(β − 1)
ePes + ePesx(β − 1)− β

)]
, (5.2a)

v0(x, y)= Pes
Γw

Ds

[
ePesx(y3

− y)(ePes − β)(β − 1)
2(ePes + ePesx(β − 1)− β)2

]
, (5.2b)

p0(x)= 3
[

1− x+
Γw

LŪ
(ln[(ePes − 1)β] − ln[ePes + ePesx(β − 1)− β])

]
. (5.2c)

These results are valid for times greater than t = O(1), which is the time scale for
the solute concentration to approach steady state. Note that diffusiophoresis typically

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

61
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.618


436 J. T. Ault, S. Shin and H. A. Stone

0
25
50
75
106

–25
–50

0
25
50
75
106

–25
–50

–1

0

1

0.9950.990 1.000

–1

0

1

0.9950.990 1.000

–1

0

1

0.9950.990 1.000

–1

0

1

0.9950.990 1.000

12.5
25.0
37.5
50.0

0
–12.5
–25.0
–37.5
–50.0

12.5
25.0
37.5
50.0

0
–12.5
–25.0
–37.5
–50.0

x
y

x
y

x
y

x
y

(a) (b)

(c) (d )

FIGURE 6. (Colour online) Steady-state fluid velocity components near the outlet (x= 1).
The four panels indicate the theoretical prediction for (a) the leading-order x-component
of velocity u0 and (b) the leading-order y-component of velocity v0, as well as the results
of numerical simulations for u and v in (c) and (d), respectively. Results correspond to
β = 0.01, ε = h/L= 0.0025, Pes = 10 and Γw/LŪ = 0.1. Theoretical predictions are given
by (5.2a) and (5.2b). In the vicinity of the channel outlet, diffusioosmosis at the channel
walls results in a slip boundary condition towards the outlet. If this diffusioosmosis is
strong enough, conservation of mass requires that some fluid is pulled into the domain
along the centreline of the outlet, resulting in a recirculating flow that can drive suspended
particles outwards toward the channel walls.

occurs in aqueous solutions for which ν�Ds and the flows have Re� 1, so that the
fluid velocity and pressure profiles adjust nearly instantaneously relative to the solute
dynamics.

As validation of these results, we choose Pes = 10, ε = 0.0025, β = 0.01 and
Γw/LŪ= 0.1 and compare the theoretical predictions for the fluid velocity components
given by (5.2a) and (5.2b) with the results of 2-D numerical simulations of (2.1) in
figure 6. Details of the numerical simulations are given in appendix A. We restrict
the figure to the region of the channel near the outlet (0.99 6 x 6 1.0) because that
corresponds to the region with the largest deviations from the parabolic Poiseuille
flow for the chosen parameters. As can be seen, for Γw > 0 diffusioosmosis drives
an outflow slip boundary condition at the channel walls at the outlet, which can lead
to a flow reversal along the channel centreline for sufficiently charged channel walls.
This flow reversal in turn drives a recirculating flow, as seen in figure 6(b,d), which
drives flow towards the channel walls.

This flow reversal is seen more clearly as a function of the wall surface charge
Γw/LŪ in figure 7. Increasing the value of Γw/LŪ above 0 leads to stronger outflow at
the channel walls at the outlet, in turn driving u negative along the channel centreline
in order to conserve mass. In contrast, decreasing the value of Γw/LŪ below 0 leads
to an inflow wall slip condition at the channel walls at the outlet, driving a larger
outflow velocity along the channel centreline. In each case, the net mass outflux at
the outlet is identical to that of parabolic Poiseuille flow (Γw/LŪ = 0), although the
pressure gradient at the outlet will deviate from that of Poiseuille flow as predicted
by (5.2c) for non-zero Γw/LŪ.
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FIGURE 7. (Colour online) Influence of diffusioosmosis on the leading-order velocity
profile u0 at the channel outlet (x = 1). With Γw/LŪ = 0, the flow satisfies the no-slip
condition u0 = 0 at the channel walls. However, with Γw/LŪ < 0, fluid inflow occurs at
the channel walls, and with Γw/LŪ > 0, fluid outflow occurs at the channel walls. All
curves integrate to the same net mass flux in order to conserve mass along the channel,
although the different profiles correspond to different total pressure drops along the pore.

Finally, the theoretical predictions for the leading-order solute concentration and
fluid pressure profiles c0 and p0 given by (3.6) and (5.2c) are compared with the
results of 2-D numerical simulations in figure 8. As can be seen, increasing the
solute Péclet number leads to steeper gradients in both the fluid pressure and solute
concentration. Increasing Pes = LŪ/Ds increases the relative influence of advection
to solute diffusion, extending a region of roughly uniform solute concentration from
the inlet, and confining the diffusive region towards the outlet. The steeper solute
concentration gradients near the outlet in turn drive stronger diffusioosmosis at the
channel walls. In figure 8, Γw/LŪ= 0.1, thus the wall slip velocity is directed towards
the outlet, which leads to a flow reversal on the centreline. This in turn requires a
steeper pressure gradient at the outlet in order to maintain the same flow rate. The
pressure and solute concentration gradients in the boundary layer near the outlet are
given by

dp0

dx
= 3

(
Γw

Ds

ePes(1− β)
(ePes − 1)β

− 1
)

and
dc0

dx
= Pes

ePes(β − 1)
ePes − 1

at x= 1. (5.3a,b)

Thus, the pressure gradient at the outlet scales linearly with Γw/Ds, and the solute
concentration gradient at the outlet is proportional to Pes.

5.2. Two-dimensional solute dynamics
With leading-order relationships for the 2-D base flow in long, narrow channels
including diffusioosmotic effects, we now seek the higher-order 2-D correction to
the solute concentration profile. Substituting u0, v0 and c0 into the series expansions
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FIGURE 8. (Colour online) Steady-state results for the leading-order (a) solute
concentration c0 and (b) pressure p0 for β = 0.01, ε = 0.0025 and Γw/LŪ = 0.1.
Solid lines represent the theoretical predictions given by (3.6) and (5.2c), and symbols
represent results from 2-D simulations of the original governing (2.1). Increasing the
value of Pes = LŪ/Ds increases the relative importance of fluid advection compared to
solute diffusion, leading to steeper solute concentration gradients near the outlet. This
steeper gradient drives a stronger diffusioosmotic wall slip condition near the outlet,
resulting in a stronger adverse pressure gradient at the outlet.

(3.1) and considering times t>O(1) such that u, v and c can all be assumed steady,
equation (2.3d) leads to

∂2c1

∂y2
=

ePesxPe2
s (3y2

− 1)
[
(ePes − β)+ ePesx(β − 1)

(
1+

Γw

Ds

)]
2(ePes − 1)(ePes + ePesx(β − 1)− β)(1− β)−1

, (5.4)

which has the solution

c1(x, y)= Pe2
s

ePesxy2(y2
− 2)

(
ePes + ePesx

(
1+

Γw

Ds

)
(β − 1)− β

)
8(ePes − 1)(ePes + ePesx(β − 1)− β)(1− β)−1

+ F2(x), (5.5)

where F2(x) is an unknown function of x that may be determined by extending the
analysis to higher order and applying the boundary conditions. Fortunately, the leading-
order 2-D particle trajectories can be calculated without an explicit relation for F2(x)
since ∂c1/∂y is known explicitly. In the next section, we calculate the leading-order
2-D particle velocity components due to both fluid advection and diffusiophoresis, and
we use these to calculate the 2-D particle concentration dynamics for finite ε.

5.3. Two-dimensional particle dynamics
In this section, we extend the results of the previous sections to calculate the
leading-order 2-D correction to the diffusiophoretic particle dynamics governed by
(2.3e) for finite ε. With the analytical form for c1 given by (5.5) in the previous
section, individual particle velocities can be directly computed to leading order using

up = u+
Γp

LŪ
∂ ln c
∂x
= u0 +

Γp

LŪ
d ln c0

dx
+O(ε2), (5.6a)
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vp = v +
1
ε2

Γp

LŪ
∂ ln c
∂y
= v0 +

Γp

LŪ
∂ ln c1

∂y
+O(ε2). (5.6b)

Substituting in u0, v0, c0 and c1, the particle velocity components are given by

up(x, y)=

3(1− y2)(ePes − β)+ ePesx

[
3+

2Γp + Γw

Ds
− 3

(
1+

Γw

Ds

)
y2

]
(β − 1)

2(ePes + ePesx(β − 1)− β)
+O(ε2),

(5.7a)
vp(x, y)=

PesePesx(y3
− y)

[
Γw − Γp

Ds
(ePes − β)− ePesxΓp

Ds

(
1+

Γw

Ds

)
(β − 1)

]
2(ePes + ePesx(β − 1)− β)2(β − 1)−1

+O(ε2).

(5.7b)

The particle velocities given by (5.7) can be directly integrated to yield the individual
particle trajectories in narrow channel flows due to fluid advection and diffusiophoresis.
Furthermore, we can predict where particles will accumulate in the channel by looking
at the locations where particle velocities are zero. Specifically, we see that the axial
component of the particle velocity is zero along the curve given by

y=±

3(ePes − β)+ ePesx(β − 1)
(

3+ 2
Γp

Ds
+
Γw

Ds

)
3(ePes − β)+ 3ePesx(β − 1)

(
1+

Γw

Ds

)


1/2

, (5.8)

which indicates a locus for particle accumulation.
Numerical simulations demonstrating the influence of diffusioosmosis on the

suspended particle concentration n are shown in figure 9. Here, we clearly see
the importance of 2-D effects on the particle dynamics, as n forms a curved band for
finite ε. Figure 9(a) corresponds to the case with the weakest diffusioosmosis at the
channel walls. The peak particle concentration forms along the channel centreline near
the front of the curved band. Since the fluid velocity is approximately parabolic (due
to weak diffusioosmosis in that case), the fluid velocity is fastest along the centreline,
leading to the fastest particle accumulation at that point. However, increasing the value
of Γw/LŪ reduces the fluid velocity along the centreline, increases the magnitude of
the wall slip velocity and drives a recirculating flow towards the channel walls. These
combined effects drive particles to accumulate closer to the walls for larger Γw/LŪ,
as shown in figure 9(b–d). The dashed white lines in the figure correspond to the
theoretical predictions of (5.8) and correspond to the locations where up = 0.

Before proceeding to calculate the two-dimensional O(ε2) correction to the
suspended particle concentration n, we first confirm that the results of 2-D numerical
simulations do in fact approach the quasi-1-D results of § 3 as ε → 0. First, note
that the numerical results in figure 9 clearly display 2-D behaviour, although ε has a
relatively small value of 0.01. Indeed, the corresponding solute concentration profiles
in those cases are approximately one-dimensional. Examining the governing equations
given by (2.3) clarifies this apparent contradiction. Equation (2.3d) shows that the
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FIGURE 9. (Colour online) Influence of diffusioosmosis on suspended particle
concentrations. Results based on numerical simulations of (2.1) are shown for Pes = 5.0,
β = 0.01, ε = 0.01, Γp/Ds = 0.5, Dp/Ds = 0.00025 and t = 1.0 for (a) Γw/LŪ = 0.02,
(b) Γw/LŪ = 0.04, (c) Γw/LŪ = 0.06 and (d) Γw/LŪ = 0.08. Increasing the value of
Γw/LŪ increases the outflow velocity boundary condition at the walls near the outlet.
Due to mass conservation, this reduces the centreline outflow velocity (even reversing
the centreline flow to inflow for strong enough diffusioosmosis), leading to a shift of
particle concentrations toward the inlet. The diffusioosmosis also sets up a recirculating
flow that drives particles toward the channel walls. Dashed white lines correspond to the
theoretical prediction of zero axial particle velocity given by (5.8).

solute concentration profile will be approximately one-dimensional for ε2
� 1 and

Pesε
2
� 1. We have thus far neglected this second condition because we have been

considering Pes =O(1). However, equation (2.3e) shows that in order for the particle
concentration to be approximately one-dimensional, we must also have ε2(Ds/Dp)� 1,
which is typically a stricter requirement than ε2

� 1, because (Ds/Dp)=O(103).
Numerical simulations showing the influence of ε on the suspended particle

dynamics are shown in figure 10. As can be seen, 2-D effects decrease as ε → 0,
and n approaches the quasi-1-D results presented in § 3. The corresponding values of
ε2(Ds/Dp) for the cases shown in figure 10 are (a) 0.004, (b) 0.025, (c) 0.1, (d) 0.225
and (e) 0.4. These results confirm that for small enough ε, the particle concentrations
do in fact approach the quasi-1D results of § 3, although for practical purposes this
also requires ε2(Ds/Dp)� 1.

Next, with the leading-order predictions for up and vp given by (5.7), we seek
the O(ε2) correction to the particle distribution about the peak. Expanding n as in
(3.1e) with n0 = nc(x, t) given by (3.11), equation (2.3e) simplifies to an unwieldy
ordinary differential equation (ODE) for n1(x, y, t), the solution of which can be
written somewhat tersely as

n1(x, y, t) =
f3(x, y)
f4(x)

[
f5(x, y, t)+ f7(x, y, t)+ Pe2

s tf1(x)

(
−4f 2

2

(
1+

Γp

Ds

)2

f1(x)

+
Γp

Ds
f6(x, y)+ f2

(
1+

Γp

Ds

)
f8(x, y)

)
+ f9(x, y, t)

]
+ F3(x, t), (5.9)
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FIGURE 10. (Colour online) Influence of channel aspect ratio ε on suspended particle
dynamics. Results based on numerical simulations of (2.1) show the particle concentrations
at t = 1 for Pes = 5.0, Γw/LŪ = 0.08, Dp/Ds = 0.00025, β = 0.01 and Γp/Ds = 0.5, for
(a) ε = 0.001, (b) ε = 0.0025, (c) ε = 0.005, (d) ε = 0.0075 and (e) ε = 0.01. For very
narrow channels, such as in (a), particle dynamics is quasi-one-dimensional and accurately
match the predictions from the 1-D theory. For wider channels, the time scale for particles
to diffuse across the channel increases, and the relative influence of the recirculating flow
due to 2-D effects increases, shifting peak particle concentrations toward the channel walls.
Aspect ratios are not to scale.

where the fi are given in appendix B, and F3(x, t) is an unknown function of x and t.
Thus, as with the calculation of the 2-D correction to the solute concentration profile,
we have not fully specified the ε2 correction due to the F2(x) and F3(x, t) terms.
Presumably, these may be calculated by extending this analysis to higher order and
judiciously applying the boundary conditions. Fortunately, the calculated terms include
all of the y-dependence, and so for a given x, equation (5.9) fully captures the y-
variation in the suspended particle concentrations to leading order.

To validate (5.9), we compare the theoretical prediction for n1 with the results of
numerical simulations in figure 11. As can be seen, both qualitative and quantitative
agreement between the 2-D numerical simulations and the predictions of (5.9) are
good, although the theory predicts slightly larger magnitudes for the 2-D correction.
Note that because we do not have an explicit relation for F3(x, t), for the 2-D
predictions shown in figure 11, we simply subtracted off the centreline value of
n from the numerical results in order to produce the figure. The close agreement
between theory and numerics supports the validity of our analysis and the use of the
formal expansion given by (3.1). However, we briefly note that, as mentioned, the
particle concentrations only approach the 1-D results in the limit ε2

�Dp/Ds, which
is typically a stricter requirement than ε2

� 1. In the next section, we introduce a
phenomenon that we call ‘diffusioosmotic pumping’, which is the diffusioosmotic
analogue of electroosmotic flow (EOF) and has applications for pumping fluid against
pressure gradients with the use of applied solute concentration gradients.
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FIGURE 11. (Colour online) Comparison between theory and simulations for the leading-
order correction to the particle concentration n due to 2-D effects. Results are shown at t=
1 for Pes= 5.0, Γw/LŪ= 0.08, Dp/Ds= 0.00025, β= 0.01 and Γp/Ds= 0.5 with a channel
of aspect ratio ε= 0.001. The predicted particle peak position according to the 1-D model
is denoted by x∞p . As can be seen, agreement between the theoretical predictions given
by (5.9) and the 2-D numerical simulations is qualitatively and quantitatively good, with
the theory predicting slightly larger magnitudes for the 2-D correction. While magnitudes
increase with t, the same qualitative and quantitative agreement holds for long times. For
the simulation data we have subtracted the centreline particle concentration from the 2-D
particle concentration profile to facilitate direct comparison with ε2

[n1(x, y, t)− F3(x, t)].

6. Diffusioosmotic pumping
In this section, we introduce the idea of diffusioosmotic pumping, which is the

consequence of the theory presented in § 5, that is, the use of applied solute gradients
to induce diffusioosmotic flows sufficient to pump fluid against an adverse pressure
gradient. In characterizing the fluid system presented in figure 1, an intuitive first
understanding would suggest that the flow in the pore is due to a pressure-driven
flow. However, the derived theoretical solution for the pressure in the pore given by
(5.2c) suggests that this is not always the case. The total pressure drop along the pore
1p= p(1)− p(0) is given by

1p=−3− 3
Γw

LŪ
ln β. (6.1)

Thus, we see that for weakly charged channel walls (|Γw/LŪ| � 1) we have
1p ≈ −3 which corresponds to typical pressure-driven Poiseuille flow. However,
the diffusioosmosis induced by charged channel walls modifies the velocity profiles
in the channel, which in turn modifies the pressure gradient along the channel. Thus,
by modifying the surface charge of the channel walls through Γw/LŪ, we can increase
or decrease the pressure gradient necessary to drive the flow. In fact, for channel
walls with diffusioosmotic mobilities given by

Γw

LŪ
=−

1
ln β

(6.2)

we will have 1p = 0, thus no pressure gradient is required to drive the flow, and
the diffusioosmosis alone can drive the net fluid motion in the pore. For even more
strongly charged channel walls, 1p<0, and diffusioosmosis can drive net fluid motion
through the pore against a pressure gradient.
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FIGURE 12. (Colour online) Dependence of pore pressure on the dimensionless
diffusioosmotic mobility Γw/LŪ of the channel walls for β = 0.01 and Pes = 0.1. With
Γw/LŪ = 0, the pressure forms the expected linear gradient. With Γw/LŪ < 0, fluid is
drawn into the channel along the channel walls at the outlet, which requires a greater inlet
pressure to maintain the same flow rate. For Γw/LŪ > 0, diffusioosmosis causes outflow
along the channel walls, reducing the needed inlet pressure to drive the same flow rate.
For large enough Γw/LŪ, diffusioosmosis can continue to drive the flow even for negative
inlet pressures. Thus, diffusioosmosis can be used to pump fluid against a net pressure
gradient.

This ‘diffusioosmotic pumping’ is shown graphically in figure 12, where we
present a variety of pressure profiles in the pore as a function of Γw/LŪ. As can
be seen, for Γw/LŪ & 0.2, the inlet pressure actually goes negative, relative to the
pressure at the outlet. Thus, we demonstrate theoretically that applied solute gradients
can be used to pump fluid against a pressure gradient through the induced fluid
motions due to diffusioosmosis. This ‘diffusioosmotic pumping’ is consistent with
and analogous to the idea of electrokinetic pumps as described by Kirby (2010)
which consider electroosmotic flows (Manz et al. 1994) with pressure gradients,
except that the driving force here is an applied solute concentration gradient instead
of an external electric field. Lee et al. (2014) achieved an impressive experimental
demonstration of flow through fully permeable nanochannels driven by solute gradients
and demonstrated unprecedented sensitivity in the measurement of flow rates through
the channel. However, they did not solve for the detailed fluid/solute dynamics within
the channel, and they appear to have only considered the case 1p = 0. The results
contained herein inform the detailed dynamics in such systems and consider the
added complication of diffusiophoretic particle dynamics subject to the background
diffusioosmotic flows.

7. Conclusions
In this paper, we have presented a theoretical and numerical analysis of the

diffusiophoretic dynamics of suspended charged colloidal particles in narrow channel
flows including the effects of diffusioosmotic wall slip conditions. The quasi-1-D
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model presented in (3.8) and (3.11) provides a theoretical understanding of the rapid
particle accumulation documented by Shin et al. (2017b). Furthermore, the 2-D
corrections given by (5.2), (5.5) and (5.9) demonstrate that the preferential particle
focusing near the channel walls experimentally seen by Shin et al. (2017b) is due to
diffusioosmotic effects that generate a recirculating flow that drives particles toward
the channel walls. The 1-D theory provides an analytical solution for the particle
accumulation which includes a peak concentration that grows linearly in time without
bound. Of course, particle concentrations can never increase without bound, so that
as the particle concentration approaches its maximum packing fraction, short-range
interactions and steric effects will dominate and prevent further concentration.
Nonetheless, as long as particle–particle and particle–wall interactions are small
compared to diffusiophoretic effects, our model describes an approach that can be
used to rapidly concentrate particles to high concentrations.

The rate of particle accumulation is described by the proportionality constant
k (3.12) which is influenced by flow, particle and channel properties. The results
demonstrate that the rate of particle accumulation is inversely proportional to the
solute concentration ratio β for small β, and directly proportional to Pe2

s for large
Pes. The rate of particle accumulation is also directly proportional to (Γp/Dp)

1/2,
so increasing the diffusiophoretic mobility of particles relative to the particle
diffusivity will also lead to faster particle accumulation. With this understanding,
system parameters can be designed to yield specific rates of particle accumulation.
Furthermore, with the theoretical description of the particle concentration as a function
of time, experimental systems such as that presented in figure 1 can serve as
valuable platforms for preconcentrating biological materials, for example, where
precise concentrations may be required.

One of the main contributions of this work is the theoretical prediction for the
location of the peak particle concentration, which is denoted by x∞p and given
by (3.10). The explicit dependence of x∞p on Pes, β and Γp/Ds makes it possible
to design systems in which particles of known Γp can be focused to a desired
location along a channel, or, in systems with multiple particles, those particles can
be selectively focused at distinguished pre-determined positions. This technique has
wide applications for sorting, separating and/or focusing particles by Γp. Furthermore,
because the particle peak position is a steady, known function of Γp, the surface
charge of the particles can be directly measured by simply observing the location at
which the particles accumulate and calculating Γp according to (4.1), which represents
a new strategy for zeta potentiometry (see also Shin et al. 2017a).

The 2-D analysis presented in § 5 provides analytical solutions for the fluid velocity
and pressure, as well as the solute concentration in narrow channel flows with
the addition of diffusioosmotic effects. These results were presented in (5.2) and
(5.5). Furthermore, solutions for the particle velocity components due to both fluid
advection and diffusiophoresis were given in (5.7), and can directly be integrated to
yield particle trajectories in a narrow channel flow under the combined influence of
advection and diffusiophoresis. A series expansion approach about the small parameter
ε2 was used to solve for the leading-order 2-D corrections to the solute and particle
concentration profiles for finite ε, and numerical simulations were used to validate
the theory.

Finally, we presented a 2-D theoretical and numerical analysis of the concept
of ‘diffusioosmotic pumping’ that was demonstrated experimentally by Lee et al.
(2014). We demonstrated that in these systems, the diffusioosmosis at the channel
walls due to applied solute concentration gradients can be sufficient to pump fluid
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in the absence of any applied pressure gradient, or even in the presence of an
applied adverse pressure gradient. One implication of this result is that this type
of flow system could potentially be used to directly measure the surface charge of
different channel materials or surface treatments simply by measuring the pressure
difference across the inlet and outlet. We leave this application for future work.
Throughout this work we have relied on the assumption of constant Γp and Γw

as described in § 2.3. One important direction for future work will be to examine
the range of system parameters under which such an assumption is valid. Finally,
another valuable direction for potential future work is the extension of these ideas
to three-dimensional systems such as narrow cylindrical and rectangular pores. It is
likely that a two-dimensional, axisymmetric solution is possible for the case of a
cylindrical geometry, but for the case of a rectangular pore we expect that fully 3-D
effects are inevitable. Performing simulations for the related flow system in Shin
et al. (2017b), we observed the strongest particle accumulation in the corners, likely
due to the extra confinement that the flow feels there. We leave the extension of this
analysis to such three-dimensional problems as a topic for future work.
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Appendix A. Numerical simulations

Here, we describe the numerical methods used to perform the one-dimensional
and two-dimensional simulations. The incompressible Navier–Stokes equations
were solved using a finite-volume solver adapted from both the simpleFoam and
scalarTransportFoam solvers of the OpenFOAM library (Weller et al. 1998). These
were developed into two solvers: simpleScalarTransportFoam, which iteratively uses
the SIMPLE algorithm (see, e.g. Ferziger & Peric 2012) and scalarTransportFoam
to simultaneously solve for the steady-state fluid velocity, pressure and solute
concentration profiles, and diffusiophoresisFoam, which solves a modified advection–
diffusion equation to determine the transient particle concentration profiles. Spatial
derivatives are second-order accurate, and the temporal scheme is fully implicit and
also second-order accurate. For the 1-D simulations, 4000 grid cells were used, and
for the 2-D simulations, 5 × 104 grid cells were used. High-resolution convergence
tests were performed for each case to verify convergence. For example, for the 2-D
cases, convergence tests were performed with 2 × 105 grid cells and 8 × 105 grid
cells, and example particle concentrations around the peak for these tests are shown
at t= 1 in figure 13. Peak particle concentrations for the case with 5× 104 grid cells
deviated from those with 8× 105 grid cells by less than 0.1 % relative error.
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FIGURE 13. (Colour online) Convergence test results showing the particle concentrations
around the peak for simulations with 5× 104, 2× 105 and 8× 105 grid cells with t= 1,
Pes = 5.0, Γw/LŪ = 0.08, Dp/Ds = 0.00025, β = 0.01, Γp/Ds = 0.5 and ε = 0.001.

Appendix B. Coefficient functions for 2-D particle corrections
The coefficient functions needed by (5.9) to specify the 2-D correction to the

suspended particle concentration are given by

f1(x)= ePes + ePesx(β − 1)− β, (B 1a)

f2 = ln

 β − ePes

(β − 1)
(

1+
Γp

Ds

)
 , (B 1b)

f3(x, y) = Pe2
s y2(ePes − β)(1− β)

[
Γp

Dp

(
1+

Γp

Ds

)]1/2

× exp

−( f2 − Pesx)2
(

1+
Γp

Ds

)
2

Dp

Ds

Γp

Ds

 , (B 1c)

f4(x)= 8β
√

2π(ePes − 1)f 2
1 (x)

(
Dp

Ds

Γp

Ds

)2

, (B 1d)

f5(x, y, t)= ePesxPe2
s t(1− β)

Dp

Ds

(
Γp

Ds

)3

[(y2
− 6)(ePes − β)+ ePesx(y2

− 2)(β − 1)],

(B 1e)

f6(x, y) = (ePes − β)

[
4

Dp

Ds
+ Pesx(y2

− 4Pesx− 6)
Γp

Ds

]
+ ePesx(β − 1)

[
4

Dp

Ds
+ Pesx

(
(y2
− 4Pesx− 10)

Γp

Ds
+ (y2

− 2)
Γw

Ds

)]
,

(B 1f )
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f7(x, y, t) = f1(x)
(
Γp

Ds

)2 [
ePesxPe3

s tx(1− β)
(

4
Γp

Ds
+ (2− y2)

Γw

Ds

)
+ 4

(
Dp

Ds
+

Dp

Ds
Pe2

s t
)

f1(x)
]
, (B 1g)

f8(x, y) = ePesx(β − 1)
Γp

Ds

(
4
Γp

Ds
+ (2− y2)

Γw

Ds

)
+ f1(x)

[
(6− y2)

Γp

Ds

+ 8Pesx
(

1+
Γp

Ds

)]
, (B 1h)

f9(x, y, t) = Pe2
s t

[
e2Pesx(2− y2)(β − 1)2

(
Γp

Ds

)3
Γw

Ds

Dp

Ds
+ Pesx

(
(y2
− 6)

Γp

Ds

− 4Pes

(
x+ 2x

Γp

Ds

))
f 2
1 (x)

]
. (B 1i)
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