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The Dividend Term Structure

Jac Kragt, Frank de Jong, and Joost Driessen*

Abstract
We estimate a model for the term structure of discounted risk-adjusted dividend growth
using prices of dividend futures for the Eurostoxx 50. A 2-factor model capturing short-
term mean reversion within a year and a medium-term component reverting at the business-
cycle horizon gives an excellent fit of these prices. Hence, investors update the valuation
of dividends beyond the business cycle only to a limited degree. The 2-factor model, esti-
mated on dividend futures data only, explains a large part of observed daily stock market
returns. We also show that the 2 latent factors are related to various economic and financial
variables.

I. Introduction
Since the level of the market index must be consistent with the prices
of the future dividend flows, the relation between these will serve to
reveal the implicit assumptions that the market is making in arriving at
its valuation. These assumptions will then be the focus of analysis and
debate. (Brennan (1998), p. 14)

Dividends are a key ingredient for valuing stocks. Investors attach a present
value to expected dividends and sum them to arrive at the value of a stock.
As Campbell and Shiller (1988) have shown, stock prices thus vary because of
changes in expected dividends, changes in interest rates, and changes in risk pre-
miums. However, these elements may be horizon dependent. For interest rates,
this is obvious because they can be readily observed. But also the expectations
of dividends paid in the short run may at least partly be driven by other consid-
erations than those of dividends paid in the distant future. Equally, risk premi-
ums are likely to differ for various maturities (see, e.g., van Binsbergen, Brandt,
and Koijen (2012)). Hence, investors will not only change the price of expected
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dividends from moment to moment, but they may also change them for various
maturities relative to each other, similar to a term structure of interest rates. In this
article, we focus on this term structure of the prices of expected dividends.

Given that the stock price is simply the sum of the present values of all div-
idends expected, in the late 1990s Michael Brennan called for the development
of a market for derivatives referring to future dividend payments. Trading of such
derivatives started at the beginning of this century. These products exchange un-
certain future dividends of an underlying stock or stock index in exchange for
cash at the time of expiry. As such, they are forward looking in nature because
they contain price information about expected dividends corrected for their risk.
More precisely, the price of a single dividend future or over-the-counter (OTC)
swap is the expected dividend for a given maturity discounted at the risk premium
for this maturity. Finding present values of expected dividends only requires dis-
counting these prices at the risk-free rate.

In this article, we use data on these new dividend derivatives to study the
dividend term structure for the Eurostoxx 50 index and several other markets.
A key starting point of our analysis is that we show that modeling the dynam-
ics of a single variable is sufficient to describe the entire term structure of dis-
counted dividend derivative prices and to obtain a total value for the stock index.
This single variable is equal to dividend growth minus the 1-period risk-free rate
and a variable capturing the risk premium.1 We call this variable the discounted
risk-adjusted dividend growth. Hence, we do not need to separately assume pro-
cesses for interest rates, risk premiums, and dividend growth rates, the simplicity
of which is a major advantage of our approach.

It is important to stress that this approach is nonstandard. Existing theoretical
work usually separately models dividend growth and the preferences that deter-
mine discount rates. Empirically, the present-value literature uses econometric
models for the expectations about dividend growth and/or returns given past re-
turns and dividend data. One of the earliest and best-known examples is given by
Campbell and Track changes is on Shiller (1988), who use vector autoregression
(VAR) methods to predict returns based on past dividends and use this to decom-
pose returns into discount rate news and cash-flow news. Many other attempts
at the decomposition of dividend growth and risk premiums have since followed
(see Cochrane (2011) for an overview). Clearly, the ultimate goal of asset pricing
is to understand both discount rate and cash-flow dynamics, but it has proven to be
difficult to reliably separate discount rates from cash flows. We show that we can
learn a great deal about how investors value dividends i) without making restric-
tive assumptions on preferences and dividend processes and ii) without separating
dividend growth from discounting.

Inspired by the affine models often used for modeling the term structure
of interest rates, we set up a standard affine model for discounted risk-adjusted
dividend growth. Specifically, our model resembles the interest rate model of
Jegadeesh and Pennacchi (1996), who use a 2-factor model, where the first factor
reverts to a second factor, which in turn reverts to a long-run constant. This model

1In Figure 1, the prices of dividend futures and their discounted equivalents are illustrated on an
arbitrary trading day.
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FIGURE 1
Eurostoxx 50 Dividend Futures

Figure 1 shows the price curve of dividend futures and discounted dividend futures on a random day (Jan. 29, 2014) for
the purpose of illustration. Discounted dividend futures equal the present value of future dividends. Expiries occur on the
third Friday in December of each expiry year.
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thus distinguishes a short-term component, a medium-term component, and con-
stant asymptotic growth. We cast this model in state-space form and apply the
Kalman filter maximum-likelihood approach to estimate it using dividend deriva-
tive prices with maturities of 1–10 years. The resulting term-structure model de-
scribes the maturity curve of dividend present values in full, including an estimate
for long-term growth beyond the medium term until infinity.

In our benchmark analysis, we use daily data for Eurostoxx 50 dividend fu-
tures contracts, which extend out to horizons of up to 10 years. In a robustness
check, we analyze Nikkei 225 dividend futures and OTC dividend swaps for the
Financial Times Stock Exchange (FTSE) 100 and the Standard & Poor’s (S&P)
500 indices.

Our key findings are as follows: First, we find evidence that our simple
2-factor affine model well describes both the term structure of dividends and the
term structure of dividend volatility. It captures the dynamics of measured growth
rates, and it delivers an estimate for asymptotic growth that is economically sensi-
ble. We do not need many factors, complex specifications for the factor volatilities,
or drift terms to generate a good fit.

Second, we find that the factors driving this term structure have a rather
strong mean reversion. The first factor has a half-life of 6 months (for rever-
sion to the second factor) and thus captures short-term movements in expected
risk-adjusted dividends. The second factor reverts to a constant at a horizon of
business-cycle duration.
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Third, we perform a relative pricing exercise, comparing the model-implied
prices of future dividends to the observed value of the total stock index. Dividend
derivatives have maturities up to 10 years, but using our term-structure model,
the extrapolated growth rates beyond that are summed to arrive at a model-based
estimate of the price–dividend ratio. Together with a market price for current div-
idends, a comparison is made to the actual stock market. This can be interpreted
as an out-of-sample test of our dividend discount model because the model is es-
timated using dividend derivatives only and not the stock index value. At an R2 of
over 50%, we find that most of the variation in the stock market is explained by
observed 1-year-ahead dividend prices and our model-implied price–dividend ra-
tio. This demonstrates that the stock market can be understood quite well in terms
of the market for dividend derivatives.

Combining the second and third findings, our results show that most of the
variation in stock prices is captured by short-term and business-cycle movements
in discounted risk-adjusted dividends, given the good fit to the aggregate stock
market. Because the infinite growth rate is fixed, our results suggest that investors
update their day-to-day valuation of dividends beyond the business-cycle horizon
only to a limited degree. Apparently, depicting long-term investor expectations to
be fixed is not a major impediment to capturing most of the observed stock market
volatility.

Fourth, we obtain more insight into the drivers of the 2 state variables in our
model. We do this by relating these 2 latent state variables, estimated using the
Kalman filter, to various financial variables (interest rates, inflation swap rates,
credit default swap (CDS) spreads, and implied volatilities) and economic vari-
ables (capturing economic growth and economic confidence). We find that the
first state variable, with a fitted half-life of approximately 6 months, is closely
related to economic confidence and the state of the economy as well as to proxies
for short-term risk premiums. The second state variable, with a half-life similar to
a business cycle, appears to be related to break-even inflation.

We also analyze whether liquidity issues affect our estimates. Overall, the
Eurostoxx dividend futures market exhibits substantial trading volume, but par-
ticularly longer-dated contracts exhibit no volume on some days. We therefore
reestimate our model on a reduced sample, only including days on which most
futures have a nonzero trading volume. We find similar estimation results. To
further analyze to what extent illiquidity affects this market, we analyze autocor-
relations of returns and the prevalence of stale quotes. We find autocorrelations
close to 0 and few days with stale quotes, which supports that illiquidity does not
substantially affect our results.

This article adds to the recent literature that uses dividend derivatives in as-
set pricing. Our work complements that of van Binsbergen, Hueskes, Koijen, and
Vrugt (2013). They introduce the concept of equity yields, which is related to our
discounted risk-adjusted growth measure. However, van Binsbergen et al. (2013)
do not estimate a pricing model for the term structure of discounted risk-adjusted
dividend growth and do not price the stock market using this model. Instead, they
focus on an empirical decomposition of dividend prices into dividend growth
rates and risk premiums. They conclude that the term structure for risk pre-
miums is pro-cyclical, whereas expected dividend growth is countercyclical.
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Our work complements their study because we show that without separating div-
idend growth and risk premiums, one can price the entire term structure of divi-
dends and learn about its dynamics in a formal pricing model.

In other related work, various authors (van Binsbergen et al. (2012), Cejnek
and Randl (2016), and Golez (2014)) focus on realized returns of short- and long-
term-horizon dividend derivatives or forward dividend prices derived from stock
index futures and options and find evidence for a downward-sloping term structure
of risk premiums. Wilkens and Wimschulte (2010) compare dividend derivative
prices with dividend prices implied by index options. Suzuki (2014) assumes that
risk premiums are proportional to dividend volatility and then models the dividend
growth curve implied by derivative prices using a Nelson–Siegel approach.

The remainder of the article is organized as follows: Section II deals with the
theory of dividend expectations and their fit in the present-value model. It lays out
the state-space model that parameterizes the dividend term structure. Dividend
futures data and the treatment to prepare them for empirical tests are discussed in
Section III. The empirical results are discussed in Section IV. These results are
used for a reconciliation to the stock market in Section V. Section VI relates the
state variables of the pricing model to observed economic and financial variables.
Several robustness checks and results for other markets follow in Section VII, and
the conclusions are summarized in the closing section.

II. Theory
This section starts by proposing the general framework for discounted risk-

adjusted dividend growth, represented in terms of a stochastic discount factor.
The section continues by laying out the state-space model for capturing time- and
horizon-varying dividend growth.

A. The General Framework
To apply the present-value framework, we define gt+1 as the realized dividend

growth rate for the period t to t+1 so that the dividend payable at maturity n
is Dt+n=Dt exp(

∑n
i=1 gt+i ). We then apply the standard asset pricing equation to

price this payoff for maturity n, where its current present value Pt ,n equals the
expected product of the pricing kernel and the payoff:

(1) Pt ,n = Et

[
Dt exp

(
n∑

i=1

m t+i

)
exp

(
n∑

i=1

gt+i

)]
,

and where m t+1 is the log pricing kernel for the period t to t+1. The pricing
kernel consists of the 1-period risk-free rate yt and an additional term θt+1:

(2) m t+1 = −(yt + θt+1),

where yt is observed at time t and reflects the risk-free return over the period t
to t+1.2 We aim to model a combined growth variable for the present value of

2To be precise, yt is defined as the continuously compounded, 1-period risk-free rate. Using the
relation exp(−yt )=Et [exp(m t+1)], it follows that the conditional expectation of θt+1 must equal half
the conditional variance of θt+1 if the pricing kernel follows a lognormal distribution.
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future dividends and rewrite the pricing formula in equation (1) accordingly:

(3) Pt ,n = Dt

[
Et exp

(
n∑

i=1

πt+i

)]
.

Equation (3) shows that the basic building block of the term-structure model is
what we denote as the discounted risk-adjusted dividend growth:

(4) πt+1 = gt+1− yt − θt+1.

In our data, we observe dividend future or swap prices. The relation of div-
idend present values to the prices of these dividend derivatives is achieved by
discounting the future prices at the n-period risk-free rate yt ,n:

(5) Pt ,n = Ft ,n exp(−nyt ,n),

which demonstrates that dividend present values are observable directly from mar-
ket data Ft ,n and yt ,n .

If the risk-adjusted growth rate πt follows a lognormal distribution, equa-
tion (3) can be rewritten as follows:

(6) ln Pt ,n − ln Dt = Et

(
n∑

i=1

πt+i

)
+

1
2

Vart

(
n∑

i=1

πt+i

)
.

The left-hand-side variable is related to the key modeling variable of van
Binsbergen et al. (2013). Specifically, they refer to −(ln Pt ,n− ln Dt )/n as the
equity yield.

One may ask why we choose to model πt+1 rather than to assume separate
models for its elements of dividend growth, risk premium, and risk-free discount
rates. The decomposition of stock prices into dividend growth and risk premi-
ums knows many attempts, seminal among which is the VAR-based approach by
Campbell and Shiller (1988). Information from dividend derivatives is also used
in the VAR model of van Binsbergen et al. (2013). We choose to do the exact
opposite of decomposition and instead amalgamate the 3 variables into 1; the
proposed model variable is the growth rate of the present values of expected div-
idends πt+1. This amalgamation facilitates a focus on the term structure of the
discounted growth trajectory alone. Connecting these growth rates to the stock
market via the present-value identity allows for a horizon decomposition without
being sidetracked by additional assumptions on the constituent variables. In fact,
because we aim to value the stock market as the sum of dividend present values,
a decomposition is not needed.

Furthermore, the components of πt+1 are likely to be correlated. For example,
Bekaert and Engstrom (2010) calculate the correlation between 10-year nominal
bond yields and dividend yields in the United States over a 40-year period at
no less than 0.77. Van Binsbergen et al. (2013) perform a principal-components
analysis of equity yields based on dividend derivatives prices. They show that
the first 2 principal components of nominal yields explain approximately 30% of
g−θ movements. Taken together as a single variable πt+1, it should be possible
to model the dividend price dynamics with a limited number of factors because of
the high correlation among its components.
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B. The State-Space Model
In order to build a full term structure of discounted risk-adjusted dividend

growth, we model it in state-space form. We discuss the state equations and the
measurement equations.

1. State Equations

The crucial question is how to model the evolution of risk-adjusted growth
rates πt+1. The approach that we advocate is a decomposition of πt+1 by horizon.
Our modeling approach follows Jegadeesh and Pennacchi (1996), who propose
a model for estimating the term structure of London Interbank Offered Rate
(LIBOR) futures. In their model, the short-term interest rate is a first latent state
variable, which evolves stochastically and mean reverts to a second state variable,
which in turn mean reverts to a constant. This approach falls into the set of affine
term-structure models. Dai and Singleton (2000) derive the most general versions
of affine term-structure models, allowing for time-varying volatilities and time-
varying risk premiums. We choose a rather restrictive 2-state model with constant
volatilities and show that such a simple approach already generates a very good
fit of the dividend term structure.

We specify most of the model in discrete time, following the approach of
Campbell, Lo, and MacKinlay (1997). Specifically, we model πt+1 as the sum of
a time-varying conditional mean pt and a stochastic shock:

(7) πt+1 = pt + ν t+1,

where νt+1 is normal and independent and identically distributed (IID) with 0
mean. Using the definition of πt+1 in equation (4), we can interpret pt as the
1-period-ahead expected dividend growth minus the expected log of the pricing
kernel

(8) pt = Et gt+1− yt − Etθt+1.

The stochastic shock νt+1 is then composed of the unexpected dividend growth
and the stochastic part of the pricing kernel:

(9) νt+1 = gt+1− Et gt+1− (θt+1− Etθt+1).

Then, following Jegadeesh and Pennacchi (1996), the short-term factor pt

follows a mean-reverting process to a medium-term factor p̃t , which itself is mean
reverting to a long-term constant p, where, for convenience, we first define their
processes in continuous time:

dpt = ϕ( p̃t − pt )dt + σpdWp,(10)
d p̃t = ψ(p− p̃t )dt + σ p̃ dW p̃,(11)

where dWp and dW p̃ are Wiener processes, with σp and σ p̃ scaling the instanta-
neous shocks to the factors. The horizon at which investors adjust their growth
expectation from one state to the next is captured by mean-reversion parameters
ϕ and ψ . This 2-state system results in the state equations for discrete intervals:3

3Refer to Appendix A for further details.
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(
pt+1

p̃t+1

)
=

1− e−ϕ −
ϕ

ϕ−ψ
(e−ψ − e−ϕ)

0 1− e−ψ

(p
p

)
(12)

+

e−ϕ
ϕ

ϕ−ψ
(e−ψ − e−ϕ)

0 e−ψ

(pt

p̃t

)
+ εt+1.

Finally, we model the correlation between the innovation in the growth rate
νt+1 and the errors εt+1 in these state equations as νt+1=β

′εt+1, where β= (βp,β p̃)′

is a 2-by-1 vector. One could incorporate an independent shock to the growth
rate, but this does not have an important effect on the term structure of divi-
dend prices or the dynamics of these prices. In terms of the mathematical struc-
ture, this setup resembles the approach of Campbell et al. (1997). They derive
affine term-structure models in discrete time by modeling the log pricing kernel,
m t+1=−(yt+θt+1), in a similar way as we model the discounted risk-adjusted
growth rate πt+1=gt+1− (yt+θt+1). The key difference is that our growth variable
depends on both the pricing kernel and the dividend growth rate. As discussed
previously, we only model the aggregate variable πt+1 and do not need to make
specific assumptions about its components. This is important for the interpreta-
tion of the results. For example, when modeling interest rates, Campbell et al.
(1997) show that the β vector captures the risk premiums on long-term bonds.
In our setup, the vector β could represent dividend risk premiums but can also
be the result of the correlation of current dividend growth and the factors driving
future dividend growth. Again, for pricing dividend derivatives, there is no need
to specify the source of the correlation between shocks to πt+1 and the factors.

2. Measurement Equations

Given the dynamics of πt+1, we can price dividend derivatives using equa-
tion (6). It follows that the average growth rate of dividend present values from
time t to the expiry date at time n corresponds to a function of pt and p̃t . Specifi-
cally, as shown in Appendix A, filling in the dynamics of πt+1 in the pricing equa-
tion (6) and adding IID measurement error ηt ,n for each derivative’s maturity n,
the measurement equations for the state-space model are as follows:

ln Pt ,n − ln Dt(13)

= n p+ϕn(pt − p)+
ϕ

ϕ−ψ
(ψn −ϕn)( p̃t − p)

+
1
2

n∑
i=1

(
σ 2

p (βp +ϕi )2
+ σ 2

p̃

(
β p̃ +

ϕ

ϕ−ψ
(ψi −ϕi )

)2
)
+ ηt ,n ,

in which βp and β p̃ are the covariance betas of the errors of the first and second
factor, and σ 2

p and σ 2
p̃ are their variances. We define ϕn and ψn as follows:

ϕn =
(1− e−nϕ)
(1− e−ϕ)

,

ψn =
(1− e−nψ )
(1− e−ψ )

,

with ϕ0=0 and ψ0=0.
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For comparison, we also estimate a single-state model in the empirical anal-
ysis. This model is a special case of the 2-state model, with p̃t= p and σ p̃=0.

III. Dividend Swaps and Futures

A. The Market for Dividend Derivatives
Dividend derivatives exchange the value of a dividend index for cash at set

expiry dates. The difference between the transaction price and the amount of div-
idends actually paid is the amount settled between the buyer and seller at expiry.
The transaction price reflects the growth path expected from the current level of
dividends and the premium required for the risk of the actual payment differing
from what is expected. It is a risk-adjusted price and equals the present value of a
dividend once the time value of money is accounted for (see equation (5)).

The dividend index measures the amount of dividends paid by the company’s
constituent to a stock index during a calendar year. At the end of the year, the index
equals the fixing at which the dividend derivative is settled. Manley and Mueller-
Glissmann (2008) provide an overview of the market for dividend derivatives and
its mechanisms.

We obtain data for exchange-traded and OTC dividend derivatives. For the
Eurostoxx 50 and Nikkei 225 index, we obtain data on exchange-traded dividend
futures prices starting in 2008 and 2010, respectively. We also obtain data on
dividend swap prices from several investment banks for the S&P 500 index and
FTSE 100 index starting in 2005. Table 1 shows descriptive statistics for these
markets. Maturities usually extend out to 10 years with annual intervals. For the
exchange-based contracts, all maturities normally trade on a daily basis. Mixon
and Onur (2017) show that OTC swaps trade infrequently; even for the S&P 500,
which is the largest OTC dividend market, they trade less than daily between
dealers and only once every few weeks between a dealer and a nondealer end-user.

Given these data properties, the benchmark estimation methodology uses the
prices of dividend derivatives referring to the Eurostoxx 50 market. We focus on
this market because it gives a relatively long sample period, its futures have ma-
turities up to 10 years, and the futures are exchange traded and relatively liquid.
Table 2 provides sample data on liquidity in Eurostoxx 50 dividend futures. It
contains information about i) volume (number of contracts traded), ii) volume in
euros (“notional”), iii) the number of days without trading, iv) the number of days
with 0 returns (“stale prices”), and v) the autocorrelation in price changes, all for
the Eurostoxx 50 index. Overall, futures with expiries up to 6 years trade nearly
daily with an average daily volume in the tens of euro millions. Longer-dated fu-
tures trade less frequently, with 9- and 10-year maturities trading on average every
other day.4 However, it needs to be considered that market participants do seem to
update price quotes on at least a daily basis: For most contracts, we observe few
0 daily returns. Only for the 1-year future do we observe more 0 daily returns,
but this is simply because the price of this future has low volatility as a result of

4As a robustness check, we reestimate the model excluding trading days with reduced liquidity
to investigate whether this changes the empirical results. See the Supplementary Material for further
details.
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TABLE 1
Summary Static Data of the Dividend Derivatives per Underlying Stock Indices

Table 1 reports the main characteristics of the dividend derivatives used in the estimation procedure.

Eurostoxx 50 S&P 500 FTSE 100 Nikkei 225

No. of companies 50 500 100 225
in the index

Currency Euro US$ GBP JPY

Market capitalization 3.3 17.2 3.1 2.7
($trillions) per May 7, 2014

Data period Dividend ‘‘NA’’ Dec. 19, 2005– Dec. 19, 2005– ‘‘NA’’
swaps June 13, 2014 June 13, 2014

Dividend Aug. 4, 2008– ‘‘NA’’ ‘‘NA’’ June 17, 2010–
futures Feb. 16, 2015 Feb. 16, 2015

Source of the data Dividend ‘‘NA’’ OTC OTC ‘‘NA’’
swaps

Dividend Eurex ‘‘NA’’ ‘‘NA’’ Singapore exchange
futures

Avg. no. of 256 252 253 245
trading days

Expiry horizon Dividend ‘‘NA’’ 10 years 10 years ‘‘NA’’
swaps

Dividend 10 years ‘‘NA’’ 4 years 10 years
futures

Expiry date 3rd Fri. of 3rd Fri. of 3rd Fri. of Last trading
Dec. Dec. Dec. day in March

Data frequency Daily Daily Daily Daily
Stock index ticker SX5E SPX UKX NKY
Dividend index ticker DKESDPE SPXDIV F1DIVD JPN225D

TABLE 2
Eurostoxx 50 Dividend Futures Liquidity

Table 2 reports various indicators of the liquidity of Eurostoxx 50 dividend futures. The numbers at the top of each column
indicate the number of years remaining before the dividend future expires, where, for example, ‘‘3’’ means a remaining life
between 2 years+ 1 day and 3 years. ‘‘Volume’’ refers to the average daily number of contracts traded per dividend future
in a given expiry year (third Friday in December to the next). ‘‘Notional’’ refers to the value of the average daily turnover
in millions of euros, which equals the number of contracts ×100× future price. ‘‘Nontrading’’ refers to the number of days
per year during which no trading occurred. ‘‘Stale prices’’ refers to the number of days per year when no price change
occurred relative to the previous trading day. ‘‘Autocorrelation’’ refers to the autocorrelation in daily price changes.

Daily Data (2009–2015): Years to Expiry

1 2 3 4 5 6 7 8 9 10

Volume 1,816 4,365 3,628 2,252 1,385 844 424 197 136 105
Notional 21 47 38 23 14 8 4 2 1 1
Nontrading 21 1 2 2 9 16 44 79 116 124
Stale prices 124 34 20 20 18 19 16 16 16 13
Autocorrelation 0.07 0.03 0.07 0.05 0.04 0.04 0.05 0.00 0.00 −0.01

its proximity to the settlement date.5 We also include the autocorrelation of daily
price changes. As suggested by Roll (1984), illiquidity would result in negative
autocorrelation. Table 2 shows that there is little negative autocorrelation in price
changes, including for the longest-dated expiries.

Daily dividend futures prices and zero-coupon interest rate swap data (for
discounting futures prices) are sourced from Datastream. In a robustness analysis

5See the Supplementary Material for further explanation.
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presented in the Supplementary Material, we consider Nikkei 225 dividend fu-
tures and OTC dividend swaps for the S&P 500 and FTSE 100 markets.

Dividend futures expire at a fixed date in each year, usually near the end of
the calendar year.6 Because our goal is to model growth rates for annual horizons,
we use the observed futures prices to construct prices for dividend futures with
constant maturities of 1 year, 2 years, and so forth, which we denote FCM

t ,n . In
Appendix B we describe how we use interpolation to construct these prices, where
we account for the seasonal pattern in dividend payments.

B. Dealing with Current Dividends
At the heart of the present-value model are the discounted values of risk-

adjusted dividends. These present values Pt ,n take current dividends Dt as the
starting point from which growth is projected forward at growth rate πt+i (equa-
tion (3)). It is sometimes assumed that current dividends can be reasonably ap-
proximated by past realized dividends (see, e.g., van Binsbergen et al. (2013) and
Cejnek and Randl (2016)). For daily data as applied in this article, however, this
assumption causes issues.

The asset underlying dividend derivatives is the amount of cash dividend
paid out by a stock index during the year in which the derivative expires. The
index companies pay dividends throughout the calendar year, which implies that
taking realized dividends as current dividends at a certain day of the year would
require looking back for 12 months.7 Clearly, a 12-month backward-looking div-
idend measure may not accurately reflect current dividends.8 This problem rules
out using a rolling 12-month estimate for current dividends. The first derivative to
expire also does not perfectly capture current dividends. The first derivative con-
tains investor expectations about dividends to be paid in the remaining period until
the first expiry date and is not a reflection of current dividends on the observation
date itself.

To avoid these data difficulties, we propose an alternative base. In lieu of an
estimate for current dividends, we use dividend derivatives with 1 year of remain-
ing life to expiry as the base from which to calculate growth rates:

(14) PCM
t ,1 = FCM

t ,1 exp(−yt ,1).

Subtracting the first-period present value gives the following measurement equa-
tion for growth rates and replaces equation (13):

6Eurostoxx 50 dividend futures expire on the third Friday of December.
7In fact, the dividend index year usually runs from the first working day following the third Fri-

day in December until and including the third Friday in December of the following year. Dividend
derivatives also apply the third Friday of December as the expiry date.

8To take a strong example, around the days of the Lehman bankruptcy on Sept. 15, 2008, the
12-monthdividend history of Eurostoxx 50 companies amounted to 154 euros. Due to the bankruptcy,
investors would have changed their opinion strongly downward about the dividend that companies
would pay if they would have had to pay on these days. After Lehman, taking a dividend history of
12 months would then overestimate current dividends as they stood in the fall of 2008. In the weeks fol-
lowing the default, the Eurostoxx 50 dividend future expiring in 2009 dropped from 140 to 100. There-
fore, if 12-month realized dividends are used as current dividends, the shortest horizon observation for
growth from 2008 to 2009 would attain a strongly negative value even though the actual growth ex-
pectation, starting from a level that would have been revised downward, could be flat or even positive.
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ln Pt ,n − ln Pt ,1(15)

= (n− 1)p+ϕn(pt − p)+
ϕ

ϕ−ψ
(ψn −ϕn)( p̃t − p)

+
1
2

n−1∑
i=1

(
σ 2

p (βp +ϕi )2
+ σ 2

p̃

(
β p̃ +

ϕ

ϕ−ψ
(ψi −ϕi )

)2
)
+ ηt ,n.

The state equations (equation (10)) and measurement equations (equation (15))
together form the system of which the variables are estimated by maximum like-
lihood. The procedure is recursive by means of a Kalman filter (Jegadeesh and
Pennacchi (1996)). The error variance terms are assumed to be the same for all
measurement equations (σ 2

η
), except for the first one (which we denote σ 2

ε
). This is

because the definition of the first derivative to expire (set to a constant maturity of
1 year following the observation date) differs slightly from subsequent derivative
prices because of an alternative weighting scheme for finding constant maturity
values, as explained in Appendix B.

IV. Empirical Results
Table 3 provides the results of the 2-state model for the Eurostoxx 50 divi-

dend market. Estimations are performed on daily data.9 The estimation technique
of the Kalman filter finds optimal solutions for various combinations of p and βp,
a fact that indicates multicollinearity. As a result, the estimates for long-term
growth p as well as of both covariance betas βp and β p̃ come out unstable, with
sizable standard errors. To solve this problem, we also report estimates of a model
with the restriction βp=0 imposed while leaving β p̃ as a free parameter.10

A. Model Fit
Before we discuss the parameters of the growth-rate model, we first establish

that the 2-state model fits the data well.11 To this end, we calculate mean absolute
errors for the measurement equations (equation (15)). Given that they are specified
for log prices of dividend futures, these mean absolute errors can be interpreted as
relative pricing errors.12 The first measurement equation produces a mean absolute
pricing error of approximately 0.015 (1.5%), and the pricing errors of subsequent
expiries are between 0.003 and 0.005 (Figure 2). The error levels are clearly small,
confirming a good fit of the model to the data. A test for serial correlation in the
residuals of the first measurement equation and potential impact on the parameters
is conducted in the robustness section of the Supplementary Material.

9For robustness, we perform the same tests with monthly data (not shown here). None of the
parameter estimates and test coefficients change meaningfully relative to the daily data set.

10The numerical values discussed in the following subsections are based on the estimates with
βp=0 imposed.

11We investigate the potential impact of illiquidity by excluding trading days from the data set
on which at least 2 or at least 3 (out of a total of 10) dividend futures show no trading volume. The
parameter estimates are not materially affected by the reduction. The estimation results are provided
in the Supplementary Material.

12These errors are thus not annualized. Transformed into annual growth rates, the errors are even
smaller.

https://doi.org/10.1017/S002210901900036X  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S002210901900036X


Kragt, de Jong, and Driessen 841

TABLE 3
Base Model of Discounted Risk-Adjusted Dividend Growth

Table 3 reports the maximum-likelihood estimates of a 2-state-space and a single-state-space model applied to the
growth rate of discounted Eurostoxx 50 dividend futures. Estimates are based on daily prices of dividend futures and
interest rates. Measurement equations capture discounted dividend growth starting 1 year following the observation date.
The estimates include 8 measurement equations, from 1 to 8 years, except for the period from the start of the dataset until
May 13, 2009, in which the number is 5 because of a lack of data. ση measures the standard deviations of the second
until the eighth measurement equations, σε of the first. This distinction is made to reflect that the base from which growth
rates are determined is calculated by applying an alternative weighting scheme between the first and second derivatives
to expire. See Appendix B. Standard errors are in parentheses. Parameter p is estimated in the Kalman filter; p∗ equals
p plus the convexity term (equation (21)).

Estimates Using Listed Dividend Futures of the Eurostoxx 50 Index
(Sample Period: Aug. 4, 2008–Feb. 16, 2015)

Two State Single State

dpt =ϕ(p̃ t −pt )dt +σpdWp ,
dp̃ t =ψ(p− p̃ t )dt +σp̃ dWp̃ dpt =ϕ(p−pt )dt +σp dWp

Variable 1 2 3 4

p −0.0586 −0.0404 −0.2067 −0.0435
(9.5339) (0.0197) (28.7770) (0.0144)

ϕ 1.5130 1.5132 1.7297 1.7292
(0.3160) (0.3158) (0.4894) (0.4894)

ψ 0.2433 0.2434
(0.1089) (0.1088)

βp 0.1553 Set to 0 0.6246 Set to 0
(67.007) (69.2935)

βp̃ −2.6695 −2.6693
(6.2539) (6.2523)

σp 0.5701 0.5704 0.7033 0.7033
(0.7876) (0.7870) (1.2245) (1.2245)

σp̃ 0.0437 0.0437
(0.0947) (0.0946)

σε 0.0219 0.0219 0.0177 0.0177
(0.0295) (0.0294) (0.0071) (0.0071)

ση 0.0063 0.0063 0.0441 0.0441
(0.0025) (0.0025) (0.0806) (0.0806)

p
∗

−0.0258 −0.0258 −0.0320 −0.0320

Log likelihood 24.57 24.57 18.35 18.35
per contribution

For comparison, Figure 2 also presents pricing errors for a single-state
model, in which the medium-term factor is set to a long-term constant. Although
still not substantial, the single-state estimation errors are larger by a factor of 2–3,
showing that it is economically important to allow for 2-state variables driving the
dividend term structure.

We then assess how well the model fits the volatility term structure of divi-
dend futures. Specifically, we calculate the annualized variance of changes in the
log dividend price for each maturity n, both as observed in the data and as implied
by the 2-state model:

σ 2
t (ln Pt+1,n − ln Pt ,n)(16)

= σ 2
t (1 ln Pt ,1)+ σ 2

p

(
n−1∑
i=1

exp(−ϕi)

)2

+σ 2
p̃

(
ϕ

ϕ−ψ

(
n−1∑
i=1

exp(−ϕi)−
n−1∑
i=1

exp(−ψi)

))2

.
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FIGURE 2
Mean Absolute Estimation Errors

Figure 2 shows the average of the absolute estimation error of the 2-state and the single-state basemodel for the Eurostoxx
50 index. The measurement variables are discounted dividend risk-adjusted growth rates of 1–8 years.
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We note that we do not construct a model for the volatility of current dividend
changes σ 2

t (1 ln Pt ,1); instead, we use the 1-year observed volatility. Figure 3
shows that the Eurostoxx 50 dividend market portrays an increasing but concave
volatility curve as maturities increase and that our model fits this pattern quite
accurately. The concavity of the volatility term structure is consistent with the fast
mean reversion of the 2-state variables in our model. The volatility of the long-
maturity dividend futures prices converges to a value of more than 20%, consistent
with typical values for the volatility of the stock market return. In the Supplemen-
tary Material, we provide further results on volatility term structure for the U.S.
market, where we discuss the relation with macro asset pricing models calibrated
to U.S. data.

B. Mean-Reversion Estimates
As shown in Table 3, the mean reversion toward medium-term growth ϕ

attains a level that translates to a half-life of approximately half a year. Mean
reversion toward the long-run constant ψ is broadly measured in a half-life of
approximately 3 years, a space of time that comes close to that of a business
cycle. All mean-reversion parameters are significant at the 1% level (Table 3).
The estimates for ϕ and ψ are positive, which implies that the growth rate is
stationary and thus tends to a long-term constant.

A benchmark for the speed of reversion cannot be provided because there
are no other attempts in the literature to fit the dividend term structure. Jegadeesh
and Pennacchi (1996) apply the 2-factor model to interest rates and find the op-
posite pattern; at a half-life of 4.5 years, short mean reversion is slower than
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FIGURE 3
Volatility of Dividend Returns

Figure 3 shows the volatilities of dividend returns σt (lnPt+1,n − lnPt ,n ). Volatilities are calculated both by the 2-state model
and as observed in the data.
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medium-term mean reversion at 2.3 years in interest rates. The first factor thus
mean reverts much faster in dividends than in bonds, whereas the second factors
are comparable.

C. Discounted Risk-Adjusted Dividend Growth Rates
Given the mean-reversion estimates, the first factor reflects short-term move-

ments in risk-adjusted growth, the medium-term factor reflects an assessment of
the business cycle, and p depicts a structural level that can be linked closely to
the average dividend yield. Graphs A and B in Figure 4 provide estimates of ex-
pected growth rates by recalculating the factors by means of the measurement
equations (equation (15)) into the 1-year growth and the 1-year-forward 4-year
growth of discounted risk-adjusted dividends. Forward growth rates describe the
level of growth expected after the 1-year growth rate has materialized.

The 1-year growth is mostly determined by the first factor. Graph A of Fig-
ure 4 shows that it is highly volatile for the Eurostoxx 50, with the global credit
crisis in 2008/2009 showing a decline by nearly half and during the Eurozone
sovereign debt crisis in 2011 by a quarter. Outside these periods, it moves be-
tween broadly −10% and +5%.

Given the values found for the mean-reversion parameters, the medium-term
factor largely determines the 1-year-forward 4-year growth depicted in Graph B
of Figure 4. Forward growth circles around the long-run constant between −2%
and −6%. The sovereign debt crisis in 2011 shows a somewhat more negative
rate than the global credit crisis. Investors apparently expected that the serious
short-term blow to dividends in 2008/2009 would not be corrected or reversed
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FIGURE 4
Calibrated Risk-Adjusted Dividend Growth Rates

Figure 4 shows the calibrated risk-adjusted growth rates of Eurostoxx 50 dividends. Graph A shows the 1-year growth
rate πt ,1, and Graph B shows the average annual growth rates of the 4 years following the first year of growth: πt ,t+1→t+5.
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(by positive growth) afterward. However, the less negative blow in 2011 would
be followed by a period more negative than the long-run constant (Graph B),
implying that investors expected that the European sovereign debt crisis would
bear consequences for the business cycle.

The model imposes the long-run growth rate to be constant, whereas the
speed at which medium-term growth adjusts to it is estimated from the data. Struc-
tural factors such as population growth and technological progress determine how
investors perceive the long run, extending from the business-cycle horizon into
the infinite future. Structural developments should be slow moving, if at all, and
are approximated by imposing asymptotic constancy. Thus, at horizons extend-
ing well beyond business cycles, investors may have time-varying opinions of
economic and financial variables, but they do not change them once taken to-
gether. This means that any rise in long-maturity interest rates is offset by a rise in
long-term dividend growth or a fall in long-term risk premiums. Mean reversion
toward such a constant therefore implies that a horizon exists at which investors
effectively do not change their opinion about present-value growth.

D. Long-Term Growth and Dividend Yields
Equipped with model estimates for the growth parameters, a dividend term

structure (DTS) can be calibrated. It depicts the present values that investors attach
to expected dividends per horizon n expressed as a proportion of the total present
value:

(17) DTSn =
P̂ t ,n
∞∑
1

P̂ t ,n

.

The value for P̂ t ,1 is the observed discounted price of the derivative expiring
1 year from t . The values for subsequent expiries n≥2 are implied by the esti-
mated 2-state model. Figure 5 shows that the DTS is strongly negatively sloping
at the outset but adjusts to the long-term growth path rather quickly. The first
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FIGURE 5
Calibrated Average Dividend Term Structure of the Eurostoxx 50 Index

Figure 5 shows the average of the calibrated present values of dividends per expiry year P t ,n divided by the sum of the
averages. This represents the average dividend yield per expiry year in present-value terms.
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dividend point on the Eurostoxx 50 DTS is therefore high, which translates into
an equally high current dividend yield. The surface below the calibrated DTS
equals 1 by definition. This dividend term structure indicates that the fundamental
value of the European stock market is front loaded to a substantial degree, relative
to other markets such as the S&P 500.

Next we focus on the long-term growth estimates in more detail. At long ma-
turities, the dividend term structure is mainly determined by the long-term mean
of discounted risk-adjusted dividend growth. To see this, recall the present-value
identity for stock prices St :

(18) St =

∞∑
n=1

Pt ,n = Dt

∞∑
n=1

exp(nπt ,n),

where πt ,n is the observed annualized discounted risk-adjusted growth rate of divi-
dends payable at maturity n, and πt ,n= (ln Pt ,n− ln Dt )/n, which is the negative of
what van Binsbergen et al. (2013) call the equity yield. The dividend–price ratio
is found by rearranging identity (18) to

(19)
Dt

St
=

1
∞∑

n=1

exp(nπt ,n)

,

where πt ,n is the discounted risk-adjusted growth rate of dividends payable at
maturity n. For the sake of interpretation, if both factors in the 2-state model
are equal to the mean, πt ,n is a horizon-invariant constant and identity (19)
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simplifies to

(20)
Dt

St
= −p∗.

The dividend yield equals the negative of long-term growth for which the state-
space approach thus provides an estimate. Combined with the constant convexity
term, the estimate for p constitutes a measure of long-term growth p∗. On an
annual basis, this value is given by

(21) p∗ = p+
1
2

(
σ 2

p (βp +ϕi→∞)2
+ σ 2

p̃

(
β p̃ +

ϕ

ϕ−ψ
(ψi→∞−ϕi→∞)

)2
)

,

in which the values for ϕi→∞ and ψi→∞ are set for i approaching infinity. Calcu-
lations (not reported) show that the interdependence between the estimates of βp

and p is such that different combinations render very little influence on the value
of p∗.

The estimated long-term growth constant p∗ equals −2.6%. This value ap-
pears reasonable relative to dividend yields (equation (20)). The average div-
idend yield in Europe was 4.3% during our short data period. The average
1-year-forward 4-year growth rate was −3.7%, which deviates less than 1% from
the average dividend yield. In contrast, the average short-term growth rate pt

was−9.8%, which deviates substantially more from the long-term growth. A ten-
tative conclusion is that the business cycle stood close to the long-term average
during the data period, but the sentiment was somewhat negative in Europe. Over-
all, the estimates for long-term growth seem a fair assessment of the long-term
cash-flow run rate of the stock market. It is noteworthy that the estimates are pro-
duced without input from the stock market itself. It is also important to observe
that the state-space model estimates discounted long-term growth to be negative
because present-value theory requires stock valuations to be finite. The flexibility
of the model would allow for positive values, but the estimates correctly imply
that dividend present values decline at a horizon that is sufficiently long.

There are very few studies that estimate such long-term growth rates. One ex-
ample is Giglio, Maggiori, and Stroebel (2015), who compare prices of houses of
different contractual ownership to arrive at a very long-term discount rate. Leased
housing reverts to the owner of the land after the lease expires, whereas free-
hold housing remains with the owner of the house indefinitely. The difference
in price between the two for comparable properties equals today’s present value
put to ownership once the lease has expired. At lease expiries of over 100 years,
this provides an interesting comparison to the estimates for the long-term dis-
counted risk-adjusted dividend growth. The discounts Giglio et al. (2015) find in
the data equate to a value for infinite growth of approximately−2% for periods of
100 years and more. This level makes sense economically and is also reasonably
close to the long-term discounted risk-adjusted dividend growth estimates.

V. Reconciliation to the Stock Market
The second part of our research agenda is to analyze the implications of the

model for the value of the stock market. Given that we estimate the model using
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dividend derivative data only, this constitutes an out-of-sample test of the model.
Alternatively, if one takes the model assumptions for granted, it can be seen as
a relative pricing exercise of the dividend derivative prices versus stock market
levels.

A. The Empirical Approach
The present-value model incorporates expected index dividends, which can

be extrapolated from the estimated dividend term structure. This provides the fol-
lowing estimate for the stock market:

(22) Ŝt = Dt

∞∑
n=1

exp(nπ̂t ,n) = Dt P̂Dt ,

with the summation of fitted growth rates π̂t ,n equal to the estimated dynamic
price–dividend ratio P̂ Dt and where the fitted growth rates satisfy

nπ̂ t ,n = n p+ϕn(pt − p)+
ϕ

ϕ−ψ
(ψn −ϕn)( p̃t − p)(23)

+
1
2

n∑
i=1

(
σ 2

p (βp +ϕi )2
+ σ 2

p̃

(
β p̃ +

ϕ

ϕ−ψ
(ψi −ϕi )

)2
)
.

Successful reconciliation of dividend derivative price information to the
stock market is uncommon in the literature. For example, Suzuki (2014) builds
a Nelson–Siegel model of the Eurostoxx 50 dividend growth term structure and
makes assumptions about the level for longer-dated values. These include a fixed
level imposed at 4% for discounted growth after 25 years. Under these conditions,
Eurostoxx 50 dividends reconcile well with the stock market dynamically.

In contrast to Suzuki (2014), we do not impose a fixed level because the state-
space model itself renders an estimate for the long-term growth path of the present
value of dividends independent from stock market information, and it captures the
shape and the dynamics of the term structure up to the medium term at the same
time. The entirety of the present value term structure is thus described by a handful
of variables from two markets (the interest rate swap market and the dividend
derivative market) in a single estimation procedure. The fit of the reconciliation to
the observed stock market acts as a joint check on the validity and the robustness
of the 2-state model and the present-value identity. To that end, equation (23) is
used to calculate the fitted dividend growth rates and present values as implied by
the estimated state-space model.

All variables are taken as estimated by the state-space model applied to div-
idend derivative data. The fact that current dividends are unobservable in equa-
tion (22) is resolved by starting with the value of the first constant-maturity deriva-
tive Ft ,1, discounted at the risk-free rate. We thus get the following for the model
implied stock market level:

Ŝt = Ft ,1exp(−yt ,1)

(
1+

∞∑
n=2

exp(nπ̂t ,n − π̂t ,1)

)
(24)

= Ft ,1exp(−yt ,1)(1+ P̂ D
1

t ),
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in which nπ̂t ,n− π̂t ,1 are the fitted values, estimated as a single variable, of the
measurement variables in equation (15), and P̂ D

1

t represents the estimate for the
price–dividend ratio as implied by the sum of exponential growth rates, where
growth starts from the present value of the dividend derivative that expires in
1 year.13

B. Stock-Market-Level Reconciliation
We first discuss the empirical results of the reconciliation with stock market

levels.14 The 2-state model estimates applied to equation (24) cause the stock in-
dex to be overestimated at a reasonably constant level distance to the actual stock
index for most of the data period (Figure 6). There is no clear trend among the fac-
tors driving the estimated valuation away or toward the stock index. The historical
dividend yield (4.3%) is somewhat higher than the negative of the long-term esti-
mate (−2.6%), and the index is overestimated at some 20% to 30%, except during
the outbreak of the global credit crisis. The level estimate of the stock index is

FIGURE 6
Present-Value Model Estimates for the Level of the Eurostoxx 50 Index

Figure 6 shows the model estimates of the level of the Eurostoxx 50 index. Calculations are described in Ŝ t =
Ft ,1exp(−yt ,1)(1+

∑
∞

n=2 exp(nπ̂t ,n − π̂t ,1)) (equation (24)), including their ranges, with an estimate for p of −2σp to +2σp
and stock market observations St .
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13The stock index estimate is approached by numeric summation, which is approximated by the
following:

(25) Ŝt ≈ FCM
t ,1 exp(−yt ,1)

[
1+

n∑
n=2

exp(nπ̂t ,n − π̂t ,1)+
exp(nπ̂t ,n)

− p̂∗

]
.

In the estimations, n is set at 50 years. The number of years that n is set to is not material to the stock
index estimates, unless reduced to less than 10 years.

14The state-space model estimations are produced by setting the short-term beta to 0.

https://doi.org/10.1017/S002210901900036X  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S002210901900036X


Kragt, de Jong, and Driessen 849

highly sensitive to the long-term growth parameter. For the mean squared errors
of this level comparison to be minimized, the estimate for long-term discounted
growth would have to be closer to the historical dividend yield, approximately
0.7% higher.

C. Dynamic Reconciliation
Following the present-value model, stock returns are a consequence of in-

vestors changing their valuation of future dividends. The dynamics of stock in-
dices can be retrieved from the present-value model estimate as provided in equa-
tion (24). The present value of the first dividend amount to be paid over the coming
year is the starting point of the growth term structure. The first dividend value is
observable, and the growth path of discounted risk-adjusted dividends starting af-
ter it is a model-implied estimate. The dynamic fit and the relative importance to
the stock returns of the first derivative on the one hand and the growth path on the
other require testing. For this reason, the estimated return of the stock market is
split into its drivers. Equation (22) is repeated with logs denoted in lowercase as
a regression equation:

(26) 1st = α+β f1 ft +β1y1yt +β p̂d1 p̂d t + εt .

Stock index log returns are regressed by ordinary least squares (OLS) on the log
return of the first constant-maturity derivative1 ft ; changes in the 1-year risk-free
rate 1yt ; and the log returns of the estimated price–dividend ratio p̂d

1

t , which is
the sum of the normalized dividend present values of the state-space model. The
betas of the returns of the first dividend and the price–dividend ratio are predicted
to be close to +1, whereas the beta of the risk-free rate is expected to equal −1.
Data are daily.

The stock index returns respond well to the prediction of the present-value
model, shown in Table 4. The model is quite capable of explaining variation in
stock returns, reaching an R2 of above 50%. Although we cannot benchmark this
explanatory power, it appears substantial given that the model does not incor-
porate any direct information on the stock market. Each of the regressors adds
considerably to the explanatory power, and the constant is close to 0. The stock
market return appears highly sensitive to changes in the first constant-maturity
derivative, with a daily beta of almost 0.90. The beta of the price–dividend ra-
tio equals 0.66. Hence, the explanatory power is quite evenly divided between
short-term dividends and the price–dividend ratio.

The 1-year zero-coupon interest rate brings the price of the first derivative to
its present value. Its relevance seems limited. Although the expected beta is −1,
the estimated beta is significant but economically small at 0.15.15

The interpretation of the assumption that the long-run discounted risk-
adjusted dividend growth is constant is not that investors do not change their opin-
ion about what value to attach to dividend present values far into the future. The
value ascribed to dividends expected 10 years and, for example, 20 years from

15The impact of short-term dividends and the price–dividend ratio is mitigated by negative coef-
ficients found once lags are added to the set of regressors (not shown here). This suggests that either
the stock market overreacts to shocks to dividends, which is corrected on the following day, or that
dividend prices may partly follow stock prices by at least a 1-day lag.
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TABLE 4
Reconciliation of the Base Present-Value Model (2 State)

Constituent Returns to Stock Market Returns

Table 4 reports the reconciliation of the returns of the value of the modeled Eurostoxx 50 to actual returns. The ordinary
least squares (OLS) regression estimates equation (26):

1st = α+βf1ft +β1y1yt +βp̂d1p̂d t + εt ,

where 1st is stock index log returns, 1ft is the log return of the first constant-maturity dividend derivative, 1yt is the
change in the 1-year zero-coupon swap rate, and 1p̂d t is the first differenced log of the sum of the normalized present
value of dividends as estimated in the 2-state-space model. β is fixed at 0. The modeled present values of dividends
are tested for their explanatory power of the dynamics of the stock market. Daily data are used. Standard errors are in
parentheses.

Sample Period: Aug. 4, 2008–Feb. 16, 2015

Variable 1 2 3 4

Constant 0.0005 0.0002 0.0006 −0.0001
(0.0003) (0.0003) (0.0004) (0.0003)

ft 0.8978 1.0009
(0.0337) (0.0426)

1y t 0.1446 0.2022
(0.0127) (0.0178)

p̂d t 0.6587 0.6893
(0.0216) (0.027)

Adj. R 2 0.540 0.248 0.071 0.280

today is influenced by the estimate of present values in the near term and medium
term. But the value of the 20-year dividend does not change relative to that of the
10-year dividend regardless of changes in near- and medium-term expectations;
the relationship between them is (approximately) fixed. Therefore, long-run con-
stancy excludes mean reversion to levels. The dividend levels attained in the past
are not a target for investors to project their long-term expectations onto. Only
long-term growth is.

VI. The Relation to Economic Variables
In this section, we aim to understand the drivers of the 2-state variables in the

dividend term structure. To that end, we relate the state variables to two classes
of variables. The first set of variables captures economic growth and economic
confidence. We include economic confidence variables because existing work has
shown that these are related to stock returns (Lemmon and Portniaguina (2006))
and might capture investor sentiment (Baker and Wurgler (2006)). The second
set of variables relates to the term structure of several financial products, such
as interest rates, inflation swap rates, CDS spreads, and implied volatility. In the
following discussion, we will see that the first state variable, with a fitted half-life
of approximately 6 months, is closely related to economic confidence and the state
of the economy as well as to proxies for short-term risk premiums. We will also
argue that the second state variable, with a half-life similar to a business cycle,
appears to be related to expected inflation.

A. Data and Methodology
The data for all variables refer to the Eurozone, and the sample period

runs from Aug. 2008 to June 2015. The economic variables are all sourced
from Eurostat: producer price index (PPI), retail sales, industrial production,
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and unemployment. We obtain data for consumer confidence and business con-
fidence from Ecofin.

Price data for all financial products are collected via Datastream and include
interest rate swaps (IRSs), Harmonised Index of Consumer Prices inflation-linked
swaps (ILSs), CDSs, and option implied volatilities (IVs), all denominated in eu-
ros. IRS, ILS, and CDS data are zero-coupon rates for 1- to 30-year maturities.
The CDS rates refer to the credit spreads of the basket of companies residing
in the Eurostoxx 50 index, weighted by their respective share in the index. The
composition of the Eurostoxx 50 index changes over time, and not all of these 50
firms have CDSs traded on their senior debt. On average, the CDS index we build
contains 97% of the total weight of the Eurostoxx 50 share price index. Data are
available for 1- to 30-year maturities. The implied volatility of the Eurostoxx 50
index is calculated from at-the-money index options, as calculated by Datastream,
and is used for expiries from 1 month to 5 years.

The methodology in this section is straightforward: We regress the first or
proportional differences of the variables mentioned on the first differences of
the fitted state variables and the returns of the first discount future and the stock
market.16 The univariate regression equations are as follows:

(27) 1yn,t = αi ,n +βi ,n1pi ,t + εt ,

where t is the month, and pi ,t for i=1,2 indicates the first and second state vari-
ables (p and p̃, respectively). 1yn,t represents both the economic variables and
the financial products.

B. Regression Results

1. The Relation to the Economy

Table 5 reports the results of the regressions of the economic and confidence
variables on the state variables. The results show that in particular, the first state
variable is strongly correlated with business and consumer confidence. At an R2 of
24% and with highly significant coefficients, confidence in the economy and near-
term risk-neutral growth in dividends appear to have the same driver. The intuition
is clear because both higher dividend expectations and a lower risk premium fit
in with confidence in a strengthening economy. Note that higher confidence could
relate to larger risk appetite among market participants.

Industrial production, PPI, and unemployment are indicators of economic
activity. Albeit weaker than for the confidence variables, their relationship to the
first state variable is also significant. These variables are a direct reflection of the
actual state of the economy and not a direct link to the risk premium, although
they might impact the risk premium indirectly. Changes in retail sales are not well
explained by any of the state variables.

The relation between the economic and confidence variables and the second
state variable p2 is less strong, although there is a negative correlation with the

16We use proportional differences for PPI, retail sales, and industrial production and first differ-
ences for all other variables. Data for the financial products and the state variables are available on
a daily basis. We nonetheless choose to perform regressions on monthly averages of the data. This
approach reduces the impact from measurement error in the state variables as well as the potential for
misaligned timing of daily closing prices of the variables that we compare.
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TABLE 5
Regressions of Economic and Sentiment Variables on Eurostoxx 50 Variables

Table 5 reports estimated parameters of regressions of economic and sentiment variables on Eurostoxx 50 modeled and index variables. The explained variables 1yn,t in equation (27) are relative changes in
the producer price index (PPI), retail sales, and industrial production and first-order changes in business confidence, consumer confidence, and unemployment. The regressors 1pi ,t are first-order changes in
the first and second state variables and relative changes in the discounted 1-year constant-maturity dividend future and the stock market, all of the Eurostoxx 50 index. t -statistics are in parentheses.

Monthly Data (Aug. 2008–June 2015)

1st State Variable 2nd State Variable Discounted 1st Future Stock Market

a b R 2 a b R 2 a b R 2 a b R 2

PPI 0.00 0.01 6.3% 0.00 −0.07 3.2% 0.00 0.03 5.3% 0.00 0.03 6.8%
(0.18) (2.34) (−0.12) (−1.62) (−0.26) (2.12) (0.29) (2.43)

RETAIL_SALES 0.00 0.00 0.0% 0.00 −0.01 0.0% 0.00 0.02 1.0% 0.00 0.02 4.0%
(0.24) (−0.05) (−0.16) (−0.1) (−0.25) (0.91) (0.24) (1.85)

INDUSTRIAL_ 0.00 0.02 14.2% 0.00 −0.13 3.2% 0.00 0.05 3.2% 0.00 0.07 9.9%
PRODUCTION (0.42) (3.65) (−0.25) (−1.62) (−0.13) (1.62) (0.5) (2.98)

BUSINESS_ 0.00 0.04 23.7% 0.00 −0.56 13.5% 0.00 0.21 14.8% 0.00 0.23 27.8%
CONFIDENCE (0.16) (5.00) (−0.1) (−3.55) (−0.3) (3.75) (0.28) (5.57)

CONSUMER_ 0.00 0.04 23.5% 0.00 −0.39 9.2% 0.00 0.16 11.8% 0.00 0.19 28.0%
CONFIDENCE (−0.2) (4.98) (0.09) (−2.86) (−0.52) (3.28) (−0.12) (5.60)

UNEMPLOYMENT 0.00 0.00 3.8% 0.00 0.01 1.7% 0.00 0.00 0.7% 0.00 −0.01 5.5%
(2.69) (−1.80) (2.63) (1.03) (2.59) (−0.77) (2.77) (−2.29)
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confidence variables. Note that the first and second state variable have a correla-
tion of −0.65, so this opposite sign is not surprising. The economic interpretation
of this negative correlation is discussed in Section VI.C.

We also relate the return on the 1-year dividend future to the same set of vari-
ables and find that the discounted first dividend and the economic and confidence
variables are positively related. The strongest regression results are found for the
confidence variables, as is also the case for the first state variable. In multivariate
regressions (not shown here) their significance remains strong and is of similar
magnitude across the explained variables, but the significance of the second state
variable vanishes. As shown in the previous section, the stock market index is well
explained by the combination of the state variables and the first discounted future.
The results in this section therefore show that the interpretation of the economic
drivers of the index components runs mostly through the first discounted future
and the first state variable and less so through the second state variable.

2. The Relation to Financial Markets

The second set of results concerns the financial products. The regression
slope coefficients of the IRSs and ILSs (reported in Tables 6 and 7) are typically
significantly different from 0 for both state variables (either positive or negative),
and the R2s are on the order of magnitude of 10%–20%. The responsiveness of
various points on the term structure of IRSs is consistent at coefficients between
0.20 and 0.26. Such level consistency highlights that the IRS slope is not influ-
enced by changes in the first state variable. The coefficients of the term structure
of ILSs are less consistent between 0.14 and 0.32 for the 1-year maturity. Longer-
dated maturities have smaller coefficients, but their significance is higher than
those of shorter maturities.

The second state variable shows a negative sign across the term structure of
both IRSs and ILSs. Regardless of the exact point on the term structure, the coeffi-
cients are significant, and for IRSs, often more so than the equivalent coefficients
of the first state variable. The picture for the slope of the coefficients is the same
as for the first state variable: consistent for the first state variable and decreasing
for the second because maturities are longer.

The CDS spreads and IVs of the Eurostoxx 50 firms, reported in Tables 8
and 9, are negatively related to the first state variable with a fairly high R2. The
intuition here is that both measures indicate a price of risk, which appears to drive
the risk premium of shares. There isn’t a strong relation to the second state vari-
able or the first dividend future, so the strong relation between the stock market
and CDS and IV is mainly driven by the first state variable. Note that the re-
gression coefficients of the CDS spreads gradually decrease as maturities extend,
while remaining significant. The IV coefficients are only significant for maturities
of up to 2 years. The latter again indicates that the first state variable is related to
the risk premium at a horizon shorter than a typical business cycle.

C. Interpreting the Second State Variable
Based on the regression results, we now provide a potential interpretation

of the second state variable. Table 10 summarizes some relevant results from Ta-
bles 6 and 7. It reports the regression coefficients (betas) of nominal yields (yNOM

n ),
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TABLE 6
Regressions of Interest Rate Swaps on Eurostoxx 50 Variables

Table 6 reports estimated parameters of regressions of interest rate swaps (IRSs) on Eurostoxx 50 modeled and index variables. The explained variables 1yn,t in equation (27) are first-order changes in the
zero-coupon euro IRS rates for various maturities. The regressors 1pi ,t are first-order changes in the first and second state variables and relative changes in the discounted 1-year constant-maturity dividend
future and the stock market. t -statistics are in parentheses.

Monthly Data: Aug. 2008–June 2015

1st State Variable 2nd State Variable Discounted 1st Future Stock Market

a b R 2 a b R 2 a b R 2 a b R 2

1 −0.06 0.25 13.6% −0.06 −3.49 9.0% −0.06 1.78 18.7% −0.06 1.16 12.5%
(−3.58) (3.57) (−3.44) (−2.82) (−3.50) (4.32) (−3.59) (3.40)

2 −0.06 0.26 16.4% −0.06 −3.77 11.0% −0.05 1.96 23.9% −0.06 1.46 20.8%
(−3.48) (3.98) (−3.33) (−3.17) (−3.43) (5.04) (−3.64) (4.60)

3 −0.06 0.27 18.1% −0.05 −4.15 14.4% −0.05 1.68 18.8% −0.06 1.39 20.1%
(−3.50) (4.23) (−3.38) (−3.68) (−3.30) (4.33) (−3.60) (4.51)

4 −0.05 0.26 18.7% −0.05 −4.49 17.9% −0.05 1.39 13.7% −0.05 1.25 17.3%
(−3.48) (4.31) (−3.42) (−4.19) (−3.18) (3.58) (−3.49) (4.12)

5 −0.05 0.26 18.6% −0.05 −4.72 20.6% −0.05 1.16 10.0% −0.05 1.13 14.8%
(−3.40) (4.30) (−3.42) (−4.58) (−3.06) (2.99) (−3.36) (3.75)

7 −0.05 0.25 17.6% −0.05 −4.78 22.1% −0.05 0.86 5.7% −0.05 1.00 12.2%
(−3.20) (4.15) (−3.27) (−4.78) (−2.84) (2.20) (−3.12) (3.34)

10 −0.04 0.23 14.7% −0.04 −4.61 19.8% −0.04 0.65 3.2% −0.04 0.92 9.9%
(−2.87) (3.74) (−2.94) (−4.47) (−2.56) (1.62) (−2.81) (2.97)

20 −0.04 0.20 8.9% −0.04 −3.99 11.7% −0.04 0.95 5.3% −0.04 1.07 10.7%
(−2.26) (2.81) (−2.28) (−3.28) (−2.09) (2.12) (−2.32) (3.11)

30 −0.04 0.26 12.2% −0.04 −4.34 11.7% −0.04 1.31 8.6% −0.04 1.49 17.4%
(−2.03) (3.36) (−2.00) (−3.27) (−1.84) (2.75) (−2.16) (4.13)
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TABLE 7
Regressions of Inflation-Linked Swaps on Eurostoxx 50 Variables

Table 7 reports estimated parameters of regressions of inflation-linked swaps (ILSs) on Eurostoxx 50 modeled and index variables. The explained variables 1yn,t in equation (27) are first-order changes in the
zero-coupon euro ILS rates for various maturities. The regressors 1pi ,t are first-order changes in the first and second state variables and relative changes in the discounted 1-year constant-maturity dividend
future and the stock market. t -statistics are in parentheses.

Monthly Data: Aug. 2008–June 2015

1st State Variable 2nd State Variable Discounted 1st Future Stock Market

a b R 2 a b R 2 a b R 2 a b R 2

1 −0.02 0.32 8.0% −0.02 −5.20 7.1% −0.01 2.02 8.6% −0.02 2.13 14.9%
(−0.55) (2.65) (−0.53) (−2.49) (−0.43) (2.75) (−0.65) (3.76)

2 −0.02 0.27 9.8% −0.02 −4.76 9.8% −0.01 1.89 12.4% −0.02 1.84 18.5%
(−0.78) (2.97) (−0.75) (−2.96) (−0.63) (3.38) (−0.90) (4.28)

3 −0.02 0.23 8.4% −0.02 −4.26 9.5% −0.01 1.65 11.4% −0.02 1.62 17.2%
(−0.83) (2.72) (−0.82) (−2.91) (−0.70) (3.23) (−0.96) (4.10)

4 −0.02 0.24 12.0% −0.02 −4.25 12.2% −0.02 1.27 8.7% −0.02 1.54 20.1%
(−0.99) (3.32) (−0.96) (−3.35) (−0.82) (2.78) (−1.12) (4.51)

5 −0.02 0.23 12.9% −0.02 −3.97 12.8% −0.01 1.16 8.7% −0.02 1.50 23.1%
(−1.03) (3.46) (−1.01) (−3.45) (−0.86) (2.78) (−1.19) (4.92)

7 −0.02 0.18 12.2% −0.02 −3.14 11.7% −0.01 0.93 8.1% −0.02 1.23 22.6%
(−1.17) (3.34) (−1.14) (−3.26) (−1.00) (2.67) (−1.34) (4.86)

10 −0.01 0.15 12.3% −0.01 −2.51 11.9% −0.01 0.77 8.9% −0.02 0.99 23.2%
(−1.33) (3.37) (−1.30) (−3.30) (−1.16) (2.81) (−1.52) (4.94)

20 −0.01 0.16 17.1% −0.01 −2.14 10.8% −0.01 0.48 4.3% −0.01 0.91 24.6%
(−1.31) (4.09) (−1.22) (−3.13) (−1.08) (1.90) (−1.46) (5.14)

30 −0.01 0.18 20.0% −0.01 −2.13 9.7% −0.01 0.44 3.3% −0.01 1.00 26.6%
(−1.22) (4.49) (−1.09) (−2.94) (−0.97) (1.66) (−1.36) (5.41)
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TABLE 8
Regressions of Credit Default Swaps on Eurostoxx 50 Variables

Table 8 reports estimated parameters of regressions of credit default swaps (CDSs) on Eurostoxx 50 modeled and index variables. The explained variables 1yn,t in equation (27) are first-order changes in a
basket of zero-coupon euro CDS rates for various maturities. The regressors 1pi ,t are first-order changes in the first and second state variables and relative changes in the discounted 1-year constant-maturity
dividend future and the stock market. t -statistics are in parentheses.

Monthly Data: Aug. 2008–June 2015

1st State Variable 2nd State Variable Discounted 1st Future Stock Market

a b R 2 a b R 2 a b R 2 a b R 2

1 0.00 −0.43 39.4% 0.00 2.91 5.9% 0.00 −1.28 9.1% 0.00 −2.40 50.4%
(−0.06) (−7.25) (−0.16) (2.24) (−0.27) (−2.84) (0.07) (−9.07)

2 0.00 −0.42 40.2% 0.00 2.76 5.7% −0.01 −1.21 8.7% 0.00 −2.41 54.5%
(−0.10) (−7.37) (−0.20) (2.20) (−0.30) (−2.78) (0.04) (−9.84)

3 0.00 −0.35 32.8% 0.00 1.66 2.4% −0.01 −1.05 7.6% 0.00 −2.16 50.6%
(−0.19) (−6.29) (−0.27) (1.41) (−0.36) (−2.58) (−0.07) (−9.11)

4 0.00 −0.34 33.7% 0.00 1.53 2.2% −0.01 −0.94 6.8% 0.00 −2.12 54.2%
(−0.20) (−6.40) (−0.28) (1.36) (−0.36) (−2.43) (−0.07) (−9.78)

5 0.00 −0.29 26.8% 0.00 0.78 0.6% −0.01 −0.84 5.9% 0.00 −1.94 50.4%
(−0.21) (−5.43) (−0.29) (0.72) (−0.37) (−2.26) (−0.08) (−9.06)

7 0.00 −0.26 23.9% 0.00 0.49 0.3% 0.00 −0.74 5.2% 0.00 −1.84 50.2%
(−0.12) (−5.04) (−0.21) (0.48) (−0.28) (−2.11) (0.03) (−9.02)

10 0.00 −0.23 20.6% 0.00 0.19 0.0% 0.00 −0.66 4.5% 0.00 −1.75 49.0%
(−0.06) (−4.58) (−0.16) (0.19) (−0.21) (−1.94) (0.11) (−8.81)

20 0.00 −0.24 23.0% 0.00 0.38 0.2% 0.00 −0.63 4.3% 0.00 −1.75 51.7%
(0.02) (−4.92) (−0.09) (0.40) (−0.14) (−1.91) (0.22) (−9.30)

30 0.00 −0.24 23.1% 0.00 0.37 0.2% 0.00 −0.62 4.2% 0.00 −1.75 51.6%
(0.04) (−4.92) (−0.08) (0.38) (−0.13) (−1.87) (0.24) (−9.29)
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TABLE 9
Regressions of Option Implied Volatility on Eurostoxx 50 Variables

Table 9 reports estimated parameters of regressions of option implied volatility on Eurostoxx 50 modeled and index variables. The explained variables 1yn,t in equation (27) are first-order changes in the
option implied volatility of the Eurostoxx 50 index for various option maturities. The regressors 1pi ,t are first-order changes in the first and second state variables and relative changes in the discounted 1-year
constant-maturity dividend future and the stock market. t -statistics are in parentheses.

Monthly Data: Aug. 2008–June 2015

1st State Variable 2nd State Variable Discounted 1st Future Stock Market

a b R 2 a b R 2 a b R 2 a b R 2

1M 0.00 −0.07 10.6% 0.00 0.16 0.2% 0.00 −0.56 20.8% 0.00 −0.73 55.6%
(0.16) (−3.10) (0.08) (0.40) (−0.02) (−4.60) (0.50) (−10.05)

2M 0.00 −0.15 38.1% 0.00 −0.59 4.3% 0.00 −0.54 24.1% 0.00 −0.57 68.5%
(0.46) (−6.63) (−0.49) (−1.80) (0.40) (−4.76) (1.16) (−12.45)

3M 0.00 −0.06 16.4% 0.00 0.30 1.4% 0.00 −0.47 27.4% 0.00 −0.54 58.2%
(0.10) (−3.98) (0.01) (1.06) (−0.13) (−5.52) (0.40) (−10.61)

6M 0.00 −0.04 15.9% 0.00 0.20 1.1% 0.00 −0.39 33.2% 0.00 −0.40 54.0%
(0.01) (−3.90) (−0.07) (0.94) (−0.24) (−6.34) (0.25) (−9.74)

9M 0.00 −0.09 44.7% 0.00 −0.24 2.4% 0.00 −0.33 30.1% 0.00 −0.29 58.0%
(−0.04) (−7.59) (−0.90) (−1.32) (−0.02) (−5.55) (0.20) (−9.92)

1Y 0.00 −0.08 43.7% 0.00 −0.16 1.3% 0.00 −0.27 25.0% 0.00 −0.23 47.0%
(−0.18) (−7.44) (−0.96) (−0.97) (−0.20) (−4.89) (−0.07) (−7.96)

2Y 0.00 −0.05 12.9% 0.00 0.08 0.2% 0.00 −0.17 6.6% 0.00 −0.09 4.6%
(−0.36) (−3.25) (−0.69) (0.40) (−0.39) (−2.24) (−0.48) (−1.85)

3Y 0.00 −0.04 3.3% 0.00 0.25 1.0% 0.00 −0.12 1.4% 0.00 −0.01 0.0%
(−0.37) (−1.55) (−0.49) (0.83) (−0.40) (−1.02) (−0.54) (−0.11)

4Y 0.00 −0.02 0.4% 0.00 0.42 1.0% 0.00 −0.03 0.0% 0.00 0.09 0.8%
(−0.30) (−0.54) (−0.30) (0.83) (−0.35) (−0.14) (−0.48) (0.77)

5Y 0.00 −0.02 0.1% 0.00 0.46 0.8% 0.00 −0.02 0.0% 0.00 0.11 0.7%
(−0.29) (−0.31) (−0.27) (0.75) (−0.32) (−0.07) (−0.43) (0.72)
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TABLE 10
Regression Slope Coefficients on (minus) the Second Factor

Table 10 reports the slope coefficients of the regression yn,t =αn +βn (−p̃t )+εn,t , where yn is either the nominal yield
y NOM
n , the break-even inflation în , or the real interest rate y REAL

n , and n denotes the time to maturity in years.

n y NOM
n in y REAL

n

1 3.49 5.20 −1.81
2 3.77 4.76 −1.01
5 4.72 3.97 0.75

10 4.61 2.52 2.09
30 4.34 2.13 2.21

break-even inflation (in), and the implied real yields (yREAL
n = yNOM

n − in) on the
second state variable p̃. For ease of interpretation, Table 10 reports the regres-
sion coefficients with the sign flipped, so these are the slope coefficients of the
regression on − p̃.

The betas (regression slope coefficients) of the break-even inflation are posi-
tive and decline with maturity. The betas of the short-term real yield are negative,
whereas the beta of the slope of the real term structure is positive and increasing
with maturity. We argue that these patterns can be explained if− p̃ is proportional
to the instantaneous risk-neutral expected (i.e., break-even) inflation i :

(28) − p̃ ∝ i.

This interpretation implies that the regression coefficients for the break-even in-
flation are as follows:

(29) β i
=

cov(in ,− p̃)
var( p̃)

∝ cov(in , i),

with 1/(σ (i)σ ( p̃)) as the constant of proportionality. In Table 10, the regression
coefficients of the break-even inflation are all positive and gradually decline with
maturity. This declining pattern is quite natural because shocks to the risk-neutral
expected inflation die out because of the mean reversion in the factor.

To understand the betas on real interest rates, we first decompose the break-
even inflation as the sum of expected inflation and an inflation risk premium,
i= i e
+θ i . The real yield can be decomposed into a real interest rate and real risk

premium yREAL
n =r+θREAL

n . The betas for the real yields then are

(30) β real
n ∝ cov(r , i)+ cov(θREAL

n , i).

For the 1-year maturity, where θREAL
1 is likely to be small, the real rate beta is

negative. This can be explained by a negative correlation between the short-term
real interest rate and the inflation risk premium, as argued by Chernov and Mueller
(2012). Betas of maturities longer than 2 years are positive, suggesting that the real
interest rate risk premium covaries stronger with risk-neutral expected inflation
for longer maturities than for short maturities.

Our findings are in line with the definition of our state variable as p=g−
y−θ . The interpretation of the second state variable as the expected inflation sug-
gests that either y−g or θ is positively correlated with expected inflation. A posi-
tive correlation between expected inflation and the discount rate y−g is predicted
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by the inflation illusion models of Modigliani and Cohn (1979) and Campbell and
Vuolteenaho (2004). A positive correlation between expected inflation and the
equity risk premium is documented by Bekaert and Engstrom (2010). Both these
explanations imply that real discount rates for stocks are positively correlated with
expected inflation.

D. Further Interpretation
In summary, we can interpret the first state variable as driven by short-term

risk premiums, economic confidence, and macro news and the second state vari-
able as (minus) expected inflation. These 2 variables are negatively correlated in
the sample (the correlation coefficient is−0.65). This is consistent with Hasseltoft
and Burkhardt (2012), who document that since the turn of the century, the cor-
relation between growth and inflation has become positive. The relation of stock
prices to the economy then works as follows: A good state of the economy, evi-
denced by strong economic data and rising confidence, improves the immediate
outlook for dividends and reduces the risk premium shown in the first state vari-
able. A strong economy also feeds through into higher nominal interest rates and
break-even inflation, which therefore correlate positively with the first state vari-
able, and into lower CDS spreads and IVs, which indeed correlate negatively.
A strong economy decreases the second state variable, which is particularly visi-
ble in the confidence betas. Higher interest rates and break-even inflation are the
likely causes of the reduction of the second state variable because it follows from
the relatively strong discounting effect of interest rates on the present value of
dividends that are further ahead in the future. The element of risk is less impor-
tant for such longer-dated dividends. This interpretation is consistent with Ang
and Ulrich ((2012), p. 23), who find that “The term structure of equity returns
is downward sloping due to the risk premium associated with expected inflation
decreasing with horizon.” In an improving economy, for near-term dividends, the
discounting effect is outweighed by an improving dividend outlook and lower risk
premium, as captured by the first state variable. Because this effect is stronger than
the negative consequences for the second state variable, overall, this leads to the
result that the stock market, interest rates, and inflation are positively related.

VII. Other Markets and Robustness Checks
In the Supplementary Material we provide a range of robustness checks on

our empirical results and also present results for 3 other markets. We now briefly
summarize these results; refer to the Supplementary Material for full details.

A. Other Markets
The Supplementary Material presents estimation results for 3 other markets:

the Nikkei 225 index, the S&P 500 index, and the FTSE 100 index. For the latter
2 indices, we use OTC dividend swap data. In general, the results for these 3 other
markets are similar to what we find for the Eurostoxx 50 index. We find a good
fit of dividend derivative prices, and in all markets, the first factor exhibits fast
mean reversion, whereas the second factor has slower mean reversion. We also
find that stock market returns are explained well by the 2-state model, using the
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reconciliation analysis of Section V. There are, of course, some differences. For
the OTC markets, we have to resort to a monthly frequency for the analysis be-
cause the daily data exhibit stale prices. Also, for the S&P 500 index and the
FTSE 100 index, the reconciliation analysis shows that the first dividend deriva-
tive explains more and the price–dividend ratio explains less compared with the
Eurostoxx 50 and Nikkei 225 results.

In the Supplementary Material, we also show the dividend volatility term
structure, as implied by our 2-state model estimated on U.S. OTC dividend swap
data. We compare this to the dividend volatility term structures implied by the
habit-formation model of Campbell and Cochrane (1999) and the long-run risk
model of Bansal and Yaron (2004), both calibrated to U.S. data. We find that our
empirical estimates of the volatility term structure are broadly in line with the
long-run risk model. In contrast, the habit-formation model generates a volatility
term structure that strongly differs from our estimates.

B. Robustness Checks
The first robustness check concerns the modeling of the measurement errors

ηt in the measurement equations of the state-space model in equation (13). We
allow for serial correlation in the measurement error of the first measurement
equation because we see some residual autocorrelation in the pricing errors of
the benchmark model. The results show that our benchmark results are robust to
allowing for such serial correlation.

In a second robustness check, we use an alternative modeling approach. In-
stead of modeling growth rates, interest rates, and risk premiums at once, we now
model gt+1−θt+1 and then use observed interest rates to calculate the present val-
ues of dividends, which is possible if one assumes that interest rates and gt+1−θt+1

are independent and uses the expectations hypothesis for bond markets. The re-
sults in the Supplementary Material show that this alternative approach does not
work well. This demonstrates the advantage and importance of modeling the 3
components at once, which does not require specific assumptions on the depen-
dence of these variables.

VIII. Conclusion
In this article, we analyze the term structure of stock index dividend prices.

We show that modeling a single variable is sufficient to describe the dynamics and
level of this term structure. This variable is equal to the dividend growth minus
the risk-free rate and a term capturing the risk premium. We propose a 2-factor
model for this discounted risk-adjusted growth variable, capturing the dynamics
of short- and medium-term dividend growth. The 2 factors shape a term structure
of dividend growth that fits the data well, and they determine the dynamics of the
price–dividend ratio. Applied to the Eurostoxx 50, most of the daily variation of
the stock market can be explained using this model.

The model estimates show that the short-term factor reflects a horizon of
less than 1 year, and the medium-term factor reflects a horizon of several years.
Deploying two states next to each other allows some distinction between sud-
den occurrences and those at business-cycle proportions. The state-space model
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imposes the return to a constant mean level of growth in the long run. Given the
fast mean reversion of the 2 factors, this suggests that investors do not change their
opinion about growth rates beyond business-cycle horizons much. Thus, long-run
growth does not seem to be a major source of stock market variation. Interest rates
are a part of the discounted risk-adjusted dividend growth, and they are observ-
able to investors. Our results then suggest that at these long horizons, interest rate
variation is offset by variation in the difference between the dividend growth rate
and a risk-premium correction.

Appendix A. Measurement Equations
Appendix A describes the details of the derivation of the measurement equations. We

rewrite the state equations (equations (10) and (11)) in vector form and then derive the
discrete-time implications of the model. Denote Q t=

(pt
p̃t

)
the 2×1 vector of the factors

and Q=
(

p
p

)
as the 2×1 vector of the constant infinite growth rate. In a 2-equation matrix

format, the system becomes

d Q t =

(
dpt

d p̃t

)
(A-1)

=

[(
−ϕ ϕ

0 −ψ

)(
pt

p̃t

)
+

(
0
ψ p

)]
dt +

[
σp 0
0 σ p̃

](
dWp

dW p̃

)
.

This system of differential equations in matrix notation is as follows:

(A-2) d Q t = C[Q t − Q]dt +6 dW ,

which has the following general solution:

(A-3) Q t+1 = Q+8(Q t − Q)+ εt+1,

and of which the eigenmatrix solves to

(A-4) 8 =

e−ϕ
ϕ

ϕ−ψ
(e−ϕ − e−ψ )

0 e−ψ

 .
Substituting the expression for the eigenmatrix into equation (B-3) delivers state equations:

(
pt+1

p̃t+1

)
=

1− e−ϕ −
ϕ

ϕ−ψ
(e−ψ − e−ϕ)

0 1− e−ψ

(p
p

)
(A-5)

+

e−ϕ
ϕ

ϕ−ψ
(e−ψ − e−ϕ)

0 e−ψ

(pt

p̃t

)
+ εt+1.

We model the correlation between the innovation in the growth rate νt+1 and the errors εt+1

in these state equations as νt+1=β
′εt+1, where β= (βp,β p̃)′ is a 2-by-1 vector. Next, we use

this process to write the n-period ahead growth rate as a function of the following factors:

(A-6) πt+n = α′(Q+8n−1(Q t − Q))+α′
n−1∑
i=1

8n−iεt+i +β
′εt+n ,
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in which α′= (1 0). This can be substituted into the pricing equation:

(A-7) ln Pt ,n − ln Dt = Et

(
n∑

i=1

πt+i

)
+

1
2

V ar t

(
n∑

i=1

πt+i

)
.

The right-hand side can be worked out as follows:

ln Pt ,n − ln Dt = α′(nQ+ Bn(Q t − p))(A-8)

+
1
2

Vart

(
n∑

i=1

(
α′

i−1∑
j=1

8n− jεt+ j +β
′εt+i

))
,

which in turn implies the following:

(A-9) ln Pt ,n − ln Dt = α′(nQ+ Bn(Q t − p))+
1
2

n∑
i=1

(β ′+α′Bi )6(β + Bi
′
α),

where matrix Bi is an expression constructed from the eigenmatrix:

(A-10) Bi = (I +8+ ·· ·+8i−1) = (I −8)−1(I −8i ).

The equations are written without vector notation. By the definition of8, Bn is worked out
as follows:

Bn =


(1− e−nϕ)
(1− e−ϕ)

ϕ

ϕ−ψ

(
(1− e−nψ )
(1− e−ψ )

−
(1− e−nφ)
(1− e−φ)

)
0

(1− e−nψ )
(1− e−ψ )

(A-11)

=

ϕn

ϕ

ϕ−ψ
(ψn −ϕn)

0 ψn

 ,

with shorthand notation:

φn =
(1− e−nφ)
(1− e−φ)

(A-12)

ψn =
(1− e−nψ )
(1− e−ψ )

.(A-13)

An expression that consists of scalars only is obtained by substituting all elements of the
previous equation in the measurement equation:

ln Pt ,n − ln Dt(A-14)

= (1 0)

n
(

p
p

)
+

ϕn

ϕ

ϕ−ψ
(ψn −ϕn)

0 ψn

(pt − p
p̃t − p

)
+

1
2

n∑
i=1

(βpβ p̃)+ (1 0)

ϕi

ϕ

ϕ−ψ
(ψi −ϕi )

0 ψi

(σ 2 0
0 σ̃ 2

)

×

((
βp

β p̃

)
+

(
ϕi 0

ϕ

ϕ−ψ
(ψi −ϕi ) ψi

)(
1
0

))
+ ηt ,n.
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From this, an expression that consists of scalars only is obtained:

ln Pt ,n − ln Dt(A-15)

= n p+ϕn(pt − p)+
ϕ

ϕ−ψ
(ψn −ϕn)( p̃t − p)

+
1
2

n∑
i=1

(
σ 2

p (βp +ϕi )
2
+ σ 2

p̃

(
β p̃ +

ϕ

ϕ−ψ
(ψi −ϕi )

)2
)
+ ηt ,n ,

which is the same as equation (13) in the main text. The right-hand term on the right-hand
side is referred to in the article as the “convexity term.” Dividend return variance follows
from equation (B-9). Conditional variance is reduced to the following:

(A-16) σ 2
t (ln Pt+1,n − ln Pt ,n) = σ 2

t (ln Dt+1)+ 1
2
α′Bn−16B ′n−1α.

Substituting for the variables in the 2-state model yields equation (16), from which the
volatilities in Figure 3 are shown by taking square roots.

Appendix B. Dividend Derivatives Data

1. Constant-Maturity Construction
Dividend derivatives usually expire at a fixed date near the end of the calendar year,17

and therefore their time to maturity shortens by 1 day for each day that passes. For applica-
tion in the state-space model, growth rates of a constant horizon are required. The horizons
of the measurement equations regard annual increments, and the state equations regard
1-day increments. To obtain growth rates from prices with constant maturities, we interpo-
late derivatives with adjacent expiry dates. The interpolation is weighted by a scheme that
reflects the uneven distribution of dividends through the year. For example, in the spring
season, 60% of the Eurostoxx 50 dividends of a full index year are paid in a matter of a
few weeks (Figure B1).

Derivatives prices that have a constant horizon from any observation date are con-
structed from observed derivatives prices. Such constant-maturity (CM) derivative prices
FCM

t ,n take the following shape, attaching the seasonal pattern of the dividend index as
weights to the observed derivatives prices wi , with i standing for the day in the dividend
index year, i=1 being the first day of the count of the dividend index (which is the first
trading day following the expiry date of a dividend derivatives contract):

(B-1) FCM
t ,n = (1−wi )Ft ,n +wi Ft ,n+1.

The weight wi of the dividend index reflects the cash dividend amount paid as a proportion
of the total amount during a dividend index year. The average of the years 2005–2013 is
taken. Ft ,n is the observed price of the derivative that expires nth in line into the future from
the observation date onward, with Ft ,n+1 expiring the following year. This weighting scheme
reduces the impact of the nth derivative to expire on the CM derivative as time passes by the
proportion wi of dividends that have actually been declared. Its complement (1−wi ) is the
proportion that remains to be declared until the expiry date and is therefore an expectation
of undeclared dividends for year n at the observation date. In order to produce a derivative
price with constant maturities, this undeclared amount is balanced by the proportion of the
price of the derivative expiring the year after. In so doing, the CM price reflects no seasonal
pattern while still accounting for the seasonal shift in impact from the nth derivative to the

17The Nikkei 225 dividend index runs until the last trading day in March.
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next. For example, during the dividend season in the spring, the weight is shifted more
quickly from the first to the second derivative18 than in other parts of the year.19

2. The First-to-Expire CM Derivative
The weighting scheme in equation (B-18) is applied to obtain all CM derivatives

prices, except for the first CM derivative, because the proposed approach carries measure-
ment problems. At time t the expected dividend to be delivered at the expiration of the first
derivative Et (D1) is the sum of the dividend index DIt as it accretes throughout the year
and its unknown complement Et (U D1):

(B-2) Et (D1) = DIt + Et (U D1).

For CM derivatives with horizons longer than the first, the weight wi in equation (B-
17) is the average seasonal pattern in the preceding decade, which may not necessarily re-
semble that of a particular dividend index year DIt/Et (D1). The difference between the two
is shown in Figure B2; for example, in Apr. 2013 the payments of Eurostoxx 50 dividends
had already reached 33% of the annual total, whereas on average in the years 2005–2013
it stood at 20%. This advance did not drop below 10% until a month later. In general, divi-
dend payments in 2012 and 2013 seem to have taken place earlier in the calendar year than
usual in the preceding years. Weighting the first derivative by the average of the preced-

FIGURE B1
Proportion of Dividend Payments throughout the Eurostoxx 50 Dividend Index Year

Figure A1 shows the proportion of dividend payments throughout the Eurostoxx 50 dividend index year. The first trading
day of a dividend index year is the Monday following the third Friday of December. The chart depicts the average of the
years 2005–2013.
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18First and second derivatives is shorthand for the derivatives that are first and second to expire.
19A linear weighting scheme would reflect the adjacent derivative prices unevenly. For example,

halfway through the dividend index year, 80% of annual dividends are already declared and paid.
Linear weighting would then overemphasize the information contained in the price of the derivative in
equation (B-17) that is the soonest to expire.
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FIGURE B2
Eurostoxx 50 Dividends Paid Out up to a Given Date Relative to Their Average

Figure A2 shows the degree to which dividends vary year by year as to the exact dates on which they are paid out.
Dividends paid from the start of a dividend index year up to a given day in that year deviate from the average paid up to
that particular calendar day (2009–2015).
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ing decade when dividends realize sooner in the year than the average, as was the case in
Apr. 2013, overemphasizes the importance of that first derivative to the 1-year CM deriva-
tive. This first CM derivative will then contain backward-looking information as well as
underemphasize the unrealized proportion of the contemporaneous dividend index, both
to the tune of the difference between the historical average and the realized dividend in-
dex. To avoid this issue, the first CM derivative is construed by defining the weight as the
proportion of the dividend index that has been realized of the total expected dividend for
that year only:

(B-3) FCM
t ,1 = Ft ,1−DIt +

DIt

Ft ,1

Ft ,2.

For building a first CM derivative with a constant 1-year horizon as a stochastic variable, we
include unknown Et (U D1) and exclude known DIt . The expectation of full-year dividends
is proxied by the equivalent observation. Later CM derivatives do not weight variables that
have already been partly realized; hence, the weighting issue of the first CM derivative does
not reoccur. For n≥2, the prices of CM derivatives remain constructed as in the weighting
equation (equation (B-18)).

3. Calculating Seasonal Weights for Different Dividend Index Years
Expiry years do not have the same number of trading days every year or across mar-

kets. Not only do trading holidays differ, but also the expiry date is set to the third Friday
in December in every expiry year. This day falls anywhere between Dec. 15 and Dec. 21,20

and the number of trading days fluctuates accordingly.

20With the exception of the Nikkei 225.
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To establish a seasonal pattern for wi that is correct for the actual number of trading
days in each expiry year, realized dividends are normalized and averaged. First, the amount
of dividends paid on a given day is expressed as a percentage of the total dividends paid
in the matching dividend index year. Next, for each expiry year, these percentages are
normalized to a set number of trading days. Finally, they are averaged. For calculating the
values in the weighting equation, they are rescaled to the actual number of trading days
in the dividend index year in question. This approach guarantees that in every expiry year,
weight wi starts at 0 and ends the year at 100%, regardless of the number of trading days.

Supplementary Material
Supplementary Material for this article is available at https://doi.org/10.1017/

S002210901900036X.
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