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SUMMARY
In this paper, we revisit the 3-degrees of freedom (DOF) pure translational mechanism. The
mathematical model and the design considerations are discussed. A detailed sensitivity and error
analysis is carried out and the results are discussed in a new perspective. The feasibility of the
practical 3-DOF pure translational mechanism is established with novel design considerations to
take care of theoretical mobility and geometrical constraints. We describe and validate the theoretical
observations with stage-wise prototype models and experiments. The experimental results concur
that all is well with 3-UPU in contrast to what is presented in refs. [6, 9, 10].

KEYWORDS: 3-UPU; Singularity analysis; Sensitivity analysis; Error analysis; Prototype
development.

1. Introduction
Spatial 3-degree of freedom (DOF) pure translational mechanisms are mostly employed in the
industry. Most of them are serial-based mechanisms and widely applied in three-axis cranes,
machining centres, coordinate measuring machines, etc. Only recently, three-axis parallel mechanisms
are making its entry in the industry through Delta robots in high-speed pick and place applications. The
fully parallel mechanism exhibits high stiffness in most of the mechanism workspace.1 There were
interesting theoretical analyses,1–5 which made a strong case for feasibility of simple and practical
3-DOF, fully parallel mechanisms and have come to be known as 3-UPU parallel mechanisms. The 3-
UPU mechanism is the particular mechanism of the most generalized 3-RRPRR mechanism, wherein
in the first and last, two individual revolute joints are replaced with universal joints, respectively.
There are very few research reports based on experimental results. The observations and negative
results presented in ref. [6] and a reference to this in a survey7 raised the questions regarding the
feasibility of a 3-UPU parallel mechanism. Later, it was shown that the geometry of UPU in ref. [6]
is in singularity.8 The research in refs. [9, 10] acknowledging the results of ref. [6] largely shifted the
focus away from the UPU-based parallel mechanism. In an accuracy analysis with a joint clearance
model given in ref. [9], the absolute sum of maximum of clearance taking up all of the individual
joint pairs constituting the mechanism is a highly unlikely scenario. The model does not consider
the effect of the geometry of the mechanism to arrive at the error at the output link. Adding the
absolute values of the maximum errors in all the joints of the mechanism is an improper estimate and
results in an unrealistically exaggerated value in a closed-loop mechanism. Going by the conflicting
results between the theory and the observation based on the practical model, we chose to revisit
the mechanism and build a theoretical model and validate it with stage-wise prototype models and
experiments.

In this paper, we show that the 3-UPU mechanism proposed by Tsai and Joshi1 can have an
excellent practical feasibility. We show that there is no extreme kinematic sensitivity due to torsional
clearances as it was projected to be in refs. [6, 9, 10]. We show the best limiting positions for prismatic
joint actuation range, resolution of controllability in the reachable workspace and clearly demonstrate
a singularity-free workspace. We arrive at the mechanism design solutions; we explain design steps to
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take care of mechanism constraints. We show that with precise constraints and an accurate mechanism
design, the prototype behaves as per the theoretical observations. We demonstrate various experiments
to show the precision of the manipulator.

2. The 3-UPU Kinematic Structure
A simple kinematic analysis suggests that the mechanism based on the parallel architecture can possess
high accuracy and repeatability. This is because the end-effector motion is generated by actuated links
directly connected to the base. The simple kinematic analysis does not reveal the design challenges
because of the high number of passive joints present in the mechanism. Therefore, the influence of
passive joint selection or design has to be critically considered in a manipulator design. It is shown
in ref. [2] that the 3-RRPRR, 3-DOF spatial parallel kinematic mechanism (SPKM) under some
geometric conditions results in pure translational motion. Each of the three legs of the manipulator
connected to the base through two revolute joints and the platform through two revolute joints has to
meet the following conditions:

qi2 = qi4 and qi1 = qi5, (i = 1, 2, 3), (1)

where qi1 and qi2 are the unit vectors of passive revolute joint axes at the base and, similarly, qi4 and
qi5 are the unit vectors of passive revolute joint axes at the platform. When the assembly of the base
is made, the three legs and the platform should be under the following geometrical conditions.

Figures 1 and 2 show a kinematic sketch and describe the manipulator parameters. The three base
connection points are chosen to form an equilateral triangle and so are the connection points at the
platform. The coordinates of all the points are defined with respect to a global coordinate system fixed
at the geometrical centre of the base O(XYZ) as shown in Figs. 1 and 2. The above straightforward
choice is based on the symmetry. The plane formed by the connection points at the platform is parallel
to the base. The height of the manipulator is described as the normal distance from the base to the
platform plane. Let b be the side of the base equilateral triangle and a be the side of the platform
equilateral triangle. Note that l1, l2, l3 are the leg lengths connecting the base connector point Bi to
the corresponding platform point Ai ; i = 1, 2, 3. î, ĵ , k̂ are the unit vectors along the X, Y and Z
axes; (x, y, z)T are the coordinates of the centre of the platform from O(XYZ). The coordinates of the
leg connection points at the base and the platform with respect to O(XYZ) are given by
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The three leg vectors from the base connection points to the platform connection points are

�l1 = �A1 − �B1; �l2 = �A2 − �B2; �l3 = �A3 − �B3. (2)

The inverse kinematics solution can be written as(
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Fig. 1. (Colour online) Three-DOF SPKM.

Fig. 2. (Colour online) Top view of SPKM to describe kinematic parameters.

3. Singularity and Sensitivity Analysis
There can be a point and a region around it in the workspace where the performance can be classified
as the best and is the preferred region for the manipulator operations. The sensitivity analysis is to
identify such regions and in general to understand how the sensitivity varies from point to point
within a workspace of a manipulator. The sensitivity is defined as the ratio of the rate of change of
leg lengths to the rate of change of motion of the platform. The Eq. (6) gives the transmission ratio
of the velocities of the legs and the platform using combined Jacobian, J.11 It is modified to reveal
the transmission sensitivity

i = Jvp ⇒ dl = Jdr, (6)

where i = [i1, i2, i3]T and vp = [ẋ, ẏ, ż]T are the active leg velocities and the platform velocity,
respectively. dl = [dl1, dl2, dl3]T and dr = [dx, dy, dz]T are infinitesimal change in active leg
lengths and the corresponding change in the platform position. The elements of J can be obtained
by differentiating the inverse kinematic equations (3), (4) and (5). The relation in the matrix form is

https://doi.org/10.1017/S0263574713000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000696


344 Practical feasibility of a high-precision 3-UPU parallel mechanism

given as
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The sensitivity indices are given by the members of the 3 × 3 Jacobian matrix. The nine sensitivity
indices are dl1

dx
, dl1
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dz
. The absolute range of sensitivity of the leg is from

zero to one. Zero being no participation of the leg in the direction of the translation of the platform at
the point and one being the maximum participation of the leg in concerned motion of the platform.
Also, for non-singular motion, not all the three legs can have the sensitivity of either zero or one
at the same point for a particular direction of motion of the platform. Isotropy in sensitivity (or
equal participation of all the legs) is a most sought after quality but the sensitivity is not isotropic
at all points in the workspace. The sensitivity analysis is to determine how the sensitivity would
vary in the space to perform the input range synthesis. The sensitivity is a function of proportion of
the manipulator parameters. The size of the base, the size of the platform and the spatial location
of the platform constitute the parameter set. The sensitivity indices are obtained as a function of
manipulator parameters and the best sensitivity indices for a set of points (workspace) can be known.
In this section, the mathematical model is developed for the sensitivity analysis of a 3-DOF SPKM.
A numerical example considering the realistic values of the manipulator parameters of the prototype
is given. In the later section, we also give the details of the prototype development based on the
numerical values given in the example and discuss the experimental results.

3.1. Sensitivity with respect to an arbitrary displacement vector
The sensitivity index of a leg with respect to an arbitrary displacement vector d�r is computed. The
position vector of the platform with respect to O(XYZ) is given by

�r = xı̂ + yĵ + zk̂. (8)

Differentiating the above, the displacement vector of the platform is written as

d�r = dxı̂ + dyĵ + dzk̂. (9)

From the previous subsection, the arbitrary leg vector is of the form

�li = (x + ci1)ı̂ + (y + ci2)ĵ + (z + ci3)k̂, (10)

l2
i

= (x + ci1)2 + (y + ci2)2 + (z + ci3)2, (11)

where ci1, ci2, ci3, i = 1, 2, 3 are constants for a manipulator. Differentiating Eqn. (11), we have

lidli = (x + ci1)dx + (y + ci2)dy + (z + ci3)dz = �li · d�r. (12)

The sensitivity index with arbitrary displacement vector, d�r , is given by

dli

dr
=

�li · d�r
lidr

= l̂i · dr̂ = cos θ, (13)

where l̂i is a unit vector along �li , dr̂ is a unit vector along d�r , and θ is the angle between �li and d�r . The
sensitivity index is given by the dot product of the unit leg vector and the unit displacement vector and
therefore is equal to cosine of the angle between them. For illustration, dl1/dx is given by the cosine
of the angle between �l1and the X axis. For the motion of the platform along the Z axis, the absolute
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value of the cosine of the angle between �l1 and the X axis decreases and hence dl1/dx decreases. The
expression also implies that the change in the leg length is always less than or equal to the resultant
distance traversed by the platform of the SPKM. A synthesis of the manipulator workspace based on
dl/dr is a tradeoff between fine control resolution, and a high motion response.

3.2. Isotropic sensitivity for three legs
The isotropic sensitivity of the three legs for a given displacement vector at a point in the workspace
is important. In other words, it is important to find a translation vector from a point in the workspace,
wherein the sensitivities of all the three legs are equal. The isotropic sensitivity equation can be
written as l̂1 · dr̂ = l̂2 · dr̂ = l̂3 · dr̂ . From Eqs. (9), (10) and (13), the expressions for l̂i · dr̂ , i = 1,2,3
are obtained. Equating the three expressions, we get
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The above equation can be solved in two ways. In the first case, the position of the centre of the
platform with respect to O(XYZ) is taken to be known. That is, �r = xî + yĵ + zk̂ is known, and we

calculate the unit displacement vector d�r
r
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r
. The equations formed would be a set of
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workspace. The equations formed would be a set of non-linear equations giving multiple solutions
for this problem. The set of equations for the first case is[
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Considering the symmetry at x = 0, y = 0, and expressing the leg length in terms of manipulator
parameters, we get

l1 = l2 = l3 =
√(
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3

)2

+ z2.

Substituting the above values and solving the equations, we get dx
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= 0,
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dz
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The result states that if the translation is along the Z axis (at x = 0, y = 0), the sensitivity of the
three legs is equal and therefore any point on the Z axis is isotropic.

3.3. Variation of sensitivity indices in manipulator workspace
An SPKM having design parameters b = 329, a = 78, 159 ≤ li ≤ 245, based on which the prototype is
developed, is considered to characterize sensitivity at various points in the workspace. The sensitivity
parameters at various points inside the workspace are computed. Figure 3 shows the distribution of leg
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Fig. 3. Leg sensitivity distribution, dl1/dx, dl1/dy, dl1/dx, on workspace envelope due to positional change
along the X, Y and Z axes, respectively.

sensitivity dl1/ dx, dl1/ dy, dl1 / dz on workspace envelopes. It represents only the relative variation
of the sensitivity parameters. Because of the symmetry, the distribution of leg sensitivities of other
two legs is same as in Fig. 3. The shade of the sphere represents the value of the sensitivity parameter.
The darker shade on the envelopes represents the high sensitivity or high control resolution and the
lighter shade represents smaller sensitivity or higher motion response. The envelopes always exhibit
extremities of sensitivity range.

The extreme sensitivities would always be at the envelopes of the workspace. The magnitude of
leg sensitivity at a point and its distribution in the manipulator workspace not only give good insight
in planning the fine control resolution trajectories in task space but also give a good handle to design
a right balance between control resolution and motion response. The size of the spheres indicates the
sensitivity, while the sparseness of the spheres indicates the motion response.

3.4. Singularity-free workspace
The singularity-free workspace and kinematic synthesis are important to set the boundaries of the
workspace farthest from singularities. The mechanism will have an undesirable mobility at or near
singular positions due to poor stiffness along one or more directions. The singularity aspect of 3-UPU
is well presented in earlier work.5 The singularity analysis pertaining to the numerical values of the
design parameters, based on which the prototype is built, is presented. The numerical values of the
kinematic parameters are b = 329, a = 78, and prismatic stroke range of 159 ≤ li ≤ 245 (i = 1, 2, 3).

The singularity occurs under any of the following three conditions:

(1) Rotational singularity, when n̂1 · (n̂2 × n̂3) = 0, where n̂1 = (q̂i1 × q̂i2).
(2) Translation singularity, when the scalar triple product l̂1 · (l̂2 × l̂3) = 0.
(3) The other condition for translation singularity is when, (ni · l̂i) = 0.

Condition (1) results in a cylindrical singularity surface;5 the diameter of the cylinder is 578.412
for the chosen numerical kinematic parameters. Conditions (2) and (3) occur when the platform is
in coplanar with the base. Even with above three singularity constraints, the feasible design space
is quite large. The design space is considerably reduced by symmetric considerations, the kinematic
arrangement is designed tri-symmetric with respect to the global Z axis, the workspace boundary
surfaces lie at equal distances from singular surfaces. The synthesis of the proportion of design
parameters and practical ranges for active prismatic strokes is arrived so as to remain farthest from
singular surfaces. Figure 4 shows the secure separation of workspace from cylindrical singularity
surface and Fig. 5 shows the safe distance from the platform getting coplanar with the base, the
distance of separation is represented by the vertical line. The mechanism would be in singularity if
the reference point of the platform coincides with any point on the cylindrical singularity surface
shown in Fig. 6. Six positions of the platform out of infinite singular configurations are shown in
Fig. 6. It is shown that these positions lie outside and far away from the actual reachable workspace
of the platform (see Figs. 4 and 5).
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Fig. 4. (Colour online) Positioning of workspace relative to singular surface.

Fig. 5. (Colour online) Separation of workspace relative to base surface of singularity.

Fig. 6. (Colour online) Position of platform at home position and six singular configurations.

4. Error Analysis
In this section, we will analyse the torsional joint clearance errors and its influence on the posture
accuracy of the platform. The major source of error is torsional rotation in universal joints. The
design parameters of the manipulator are known. The geometrical arrangement of the leg as well as
the platform is set to satisfy the geometric conditions given in Eq. (1). The home posture is defined
when the platform (the plane formed by the three connection points at the platform) is parallel to the
base and the prismatic joint axis of the each connector is normal to both the axes of the universal
joints on the either side.
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Fig. 7. (Colour online) Description of joint frames of UPU at home position for the purpose of error analysis.

The home posture is set, when the legs are at the minimum length and the x and y coordinates
are zero. At the home posture, the passive rotations of the universal joints as well as the torsional
rotations are taken as zero. In other words, the home posture serves as the reference for all the passive
rotations as well as torsional rotation measurement. The posture of the platform coordinate frame,
F8, is assumed to be given with respect to base coordinate frame, F0. The inverse kinematic solution
is easily obtained and the leg lengths l1, l2, l3 can be found. A mathematical model is obtained to
formulate a matrix equation relating the posture of the platform to passive joint rotations of the 3-UPU
and an additional torsional rotation about each of the prismatic axis. We solve for all the 12 rotations
of all the joints of 3-UPU as well as three additional torsional rotations about the prismatic axis for
a given posture of the platform. It is important to know the torsional rotations of passive joints for
the given posture of the platform. Thereby, one can find out the extent of torsional mobility required
to satisfy the posture. To set up a model, a coordinate frame is defined in each of the body separated
by the joints. The frames are numbered from the base to the platform progressively and the frame n
is termed as Fn. F0 is the fixed frame attached to the geometrical centre of the base. F1 is attached
to leg connection point at the base. The position and orientation of the frame, n, with respect to the
preceding frame, m, are described by the DH parameters, the homogeneous transformation matrix is
given by m

n T . F7 is attached to leg connection point at platform and F8 is attached to the geometrical
centre of the platform as shown in the Fig. 7. Rest of the frames, F2 . . . . F6, are attached at the
intermediate bodies of the connector.

0
1T is the transformation of F1 with respect to fixed F0. 7

8T is the transformation of F8 with respect
to F7. The connecting points at the base and at the platform are known in F0 and F8, respectively.

The other intermediate frames and their successive transformations are as given below:

(1) 1
2T : Rotation θ1 of F2 with respect to F1 about Y1 (Passive rotation due to universal Joint).

(2) 2
3T : Rotation θ2 of F3 with respect to F2 about Z2 (Passive rotation).

(3) 3
4T : Rotation θ3 of F4 with respect to F3 about X3 axes (Torsional backlash error).

(4) 4
5T : Translation of F5 with respect to F4 along X4 axes (Prismatic joint).

(5) 5
6T : Rotation θ5 of F6 with respect to F5 about Z5 axes (Passive rotation).

(6) 6
7T , Rotation θ6 of F7 with respect to F6 about Y6 axes (Passive rotation).

We solve analytically for all the passive joint rotations and torsional rotations for the three
connectors for a given platform posture. The solution gives insight into the mobility of the passive
joints for a given posture. The results are presented in Tables I–V. The following tables give
platform posture followed by corresponding mobility of all the passive and torsional rotations for one
connector.
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Table I. Platform at home posture.

Rotation along Rotation along Rotation along Translation along Translation along Translation along
X Y Z X Y Z

0 0 0 0 0 100
Joint space vector

θ1 (Passive) θ2 (Passive) θ3 (Error) θ5 (Passive) θ6 (Passive)
Leg 1 0 0 0 0 0
Leg 2 0 0 0 0 0
Leg 3 0 0 0 0 0

Table II. Parallel to base posture and translation along the Z axis.

Rotation along Rotation along Rotation along Translation along Translation along Translation along
X Y Z X Y Z

0 0 0 0 0 150
Joint space vector

θ1 (Passive) θ2 (Passive) θ3 (Error) θ5 (Passive) θ6 (Passive)
Leg 1 8.95◦ 0 0 0 −8.95◦
Leg 2 8.95◦ 0 0 0 −8.95◦
Leg 3 8.95◦ 0 0 0 −8.95◦

Table III. Rotation about the X axis.

Rotation along Rotation along Rotation along Translation along Translation along Translation along
X Y Z X Y Z

5◦ 0 0 0 0 100
Joint space vector

θ1 (Passive) θ2 (Passive) θ3 (Error) θ5 (Passive) θ6 (Passive)
Leg 1 0 0 −2.5◦ 5◦ 0
Leg 2 −0.98◦ −0.045◦ 1◦ 2.2◦ 5.2◦
Leg 3 −1.19◦ −0.045◦ 1.4◦ 2.1◦ 5.5◦

Table IV. Rotation about the Y axis.

Rotation along Rotation along Rotation along Translation along Translation along Translation along
X Y Z X Y Z

0 5◦ 0 0 0 100
Joint space vector

θ1 (Passive) θ2 (Passive) θ3 (Error) θ5 (Passive) θ6 (Passive)
Leg 1 1.11◦ 0◦ 0◦ 0◦ −6.1◦
Leg 2 0.66◦ 0.04◦ 2.3◦ −3.7◦ −3.25◦
Leg 3 0.66◦ 0.04◦ −2.3◦ 3.7◦ 3.25◦

Tables I–V show the passive and torsional rotations required for the given postures of the platform.
It can be observed from the tables that the rotation of the platform always results in torsional rotation
(θ3) of the connector. For a pure translational designated 3-UPU manipulator, the combined torsional
stiffness of the connectors dictates the rotational stiffness of the manipulator. The results in Tables
I–V also give the required mobility range in U–U joints for the desired workspace. Figure 8 shows the
concurrent torsional rotations (θ3) in all the three connectors for the various rotation of the platform
about the Z axis. Further, for a constant torsional mobility of the platform, the required concurrent
torsional rotation (θ3) of connectors for various Z translations is studied. Figure 9 shows the required
amount of concurrent torsional play (θ3) of connectors for increasing Z translations for constant
torsional play of 2.5◦ of the platform. It can be observed that at smaller Z translations, the torsional
mobility of the platform has higher sensitivity to θ3 but flatten out at after certain Z translation, the
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Table V. Rotation about the Z axis.

Rotation along Rotation along Rotation along Translation along Translation along Translation along
X Y Z X Y Z

0 0◦ 5◦ 0 0 100
Joint space vector

θ1 (Passive) θ2 (Passive) θ3 (Error) θ5 (Passive) θ6 (Passive)
Leg 1 −0.094◦ 2.49◦ 4.34◦ −5◦ −0.25◦
Leg 2 0.094◦ −2.49◦ 4.34◦ 5◦ 0.25◦
Leg 3 −0.094◦ 2.49◦ 4.34◦ −5◦ −0.25◦
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torsional mobility of 2.5◦ of platform.
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result serves to design the Z translation range. The main conclusion from the above analysis is that
there is no extreme kinematic sensitivity to the torsional errors within the certain working range of
the manipulator. The above analysis serves to plan the working range of the manipulator. Clearly,
the presence of torsional clearances concurrently in more than one connector will result in unwanted
proportional rotational mobility on the platform.

5. Design Consideration, Prototype Development and Experiments
In this section, we present the engineering design considerations to achieve very closely what is
recommended in a theoretical kinematic design. Therefore, the design steps, which establish and
maintain the geometric conditions, are very important.12 Two universal joints, each built with common
cube block with a pair of orthogonal hinges located closely together, seem to be a straightforward
solution but for the torsional backlash. As shown in the previous section, the presence of torsional
backlash will influence the rotational mobility of the manipulator platform. The universal joints are
meant to transmit high torque with minimal direction reversals and not for establishing high-precision
geometric constraints. A small clearance along the radial direction and close hinge supports would
ill-define a hinge axis, whereas with the same clearance but with the longer bearing support would
considerably reduce the angular play. Figures 10 and 11 show this in an exaggerated fashion.

We further studied this aspect by building a 3-UU structure based on single block universal joints.
The prototype is shown in Fig. 12. The platform motions are measured and it is found to be much less

Fig. 10. (Colour online) Shorter bearing supports higher angular play.

Fig. 11. (Colour online) Longer bearing supports smaller angular play.

Fig. 12. (Colour online) 3-UU system using single block universal joints.
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Preload thrust bearing

Fig. 13. (Colour online) Long bearing support with end thrust bearing preload to eliminate torsional backlash.

Fig. 14. (Colour online) UPU kinematic chain.

than what the maximum predicted using theoretical model.9 The absolute sum of maximum individual
errors at each joint pairs of all the legs as reported by refs. [9] and [10] gives a highly exaggerated figure
and cannot be taken as a good estimate. Clearly, no disproportionate motion of the platform is observed
as indicated in ref. [6]. Disproportionate motion of 3-UPU in ref. [6] is because the geometry of 3-UPU
is in singularity, as also shown in ref. [8]. It was clear from the observations and the readings of the
prototype model that the imprecision is due to the torsional backlash at the joints. When, we externally
arrested the play partially on joints on one of the connectors, the stiffness of the platform significantly
improved. The observation made in 3-UU suggests that high-precision 3-UPU is practical provided
that the torsional backlash is eliminated. Instead of closely held pin hinges, distantly separated hinges
would considerably reduce the torsional backlash. Also, instead of a pin and a bush, a high-precision,
wide needle bearing will result in near-zero torsional backlash. For further reduction in backlash
due to clearance, an end pre-loaded, outside thrust bearing retainers are accommodated in place as
shown in the Fig. 13. After careful assessment of the theoretical model and the observations made
on 3-UU prototype, the mechanical design of each revolute axis of a universal joint shown in Fig. 13
is evolved. The design used two block gimbal-type universal joints. Such prototype provided close
to zero torsional backlash. The two support gimbal joints not only reduce the error in axis definition
but also improve the torsional rigidity of the connector. The leg assembly is a serial chain formed by
UPU joints. Prismatic joints are the other source for undesired torsional mobility. The prismatic joints
(ball screw arrangement in this case) act as a cylindrical joint unless proper design steps are taken.
The critical thing is to build the reference for pure prismatic motion. The seat of the universal joint
designed as per the design considerations discussed above would serve as the reference plane, free of
torsional mobility. Two parallel pre-loaded ball splines housed in the reference seat serve as the guides
for pure prismatic motion. The arrangement of two pre-loaded ball splines increases the torsional
rigidity and eliminates angular backlash. Figure 14 shows the near-zero backlash UPU chain.
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Fig. 15. (Colour online) 3D motion simulation.
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Fig. 16. (Colour online) Precision test of the prototype manipulator.

Prior to the prototype development, workspace analysis and 3D motion simulation of the 3-UPU
parallel manipulator are carried out to ensure its interference-free mobility and trajectory planning
throughout its motion. A software module is developed which takes the desired translations as input;
the OpenGL software model shows the sequence of all the translations. The software model is
used for checking feasibility of the various trajectories in the workspace. Based on the manipulator
parameters and selection of the prismatic joints, the translation workspace of the manipulator is
determined. Figure 15 shows the software simulation snapshot and workspace of the manipulator.
Based on the design solution, a 3-DOF SPKM is developed. Each kinematic chain (see Fig. 14)
consists of a DC motor integrated with an encoder of resolution 4000 counts per turn coupled to a ball
screw having a lead of 1 mm. This arrangement provides high control resolution along the prismatic
motion to the legs of the 3-UPU parallel manipulator. The translation range of the mechanism along
the Z axis is 0 ≤ z ≤ 130 mm. The translation range along the X and Y axes is −52 ≤ x ≤ 79 mm and
−69 ≤ y ≤ 69 mm at different values of z.

Experiments are conducted to measure the repeatability and trajectory following accuracy for
various payloads. The repeatability in achieving a position along the X, Y and Z axes is measured
individually using a high-precision millitron gauge arrangement. The manipulator is given an input
along each axis to reach a pre-defined position several times. The deviation of the readings among
itself is recorded by using millitron gauge arrangement. The precision distribution graph shown in
Fig. 16 for the number of tests of the prototype manipulator clearly demonstrates high precision.
Most of the test results are within ± 10 μm.
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Fig. 17. (Colour online) Spatial parallel manipulator performing a high-precision job.
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Fig. 18. (Colour online) Trajectory tracking behaviour of spatial parallel manipulator.

Figure 17 shows the prototype of the 3-DOF spatial parallel manipulator performing a high-
precision job of inserting a 0.8-mm-thick needle in a 1 mm hole. Experimental analysis shows
the accuracy of the manipulator to be within 30 μm. The trajectory tracking behaviour during the
experiment is shown in Fig. 18. It can be observed that the trajectory following accuracy of the
manipulator is very high.

The experiment to measure the accuracy of the manipulator is performed by comparing the actual
paths recorded on a plane paper. The paths include some standard geometrical shapes like circle,
square, rectangle, triangle and concentric circles. The actual shape of the path is compared with the
values of the input path using a profile projector to determine the accuracy. The input and output data
show that the trajectory following accuracy is within 30 μm.
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6. Conclusion
The paper presents result based on prototype development and validates the design. The results are in
contrast to the results presented in ref. [6] for the similar three-axis translational parallel manipulator.
We did not observe the prototype exhibiting any unexpected gross motion as reported in ref. [6].
We attribute the uncontrolled gross motion not to the extreme sensitivities of the mechanism to the
clearance instead to the improper kinematic design considerations. The analysis and experiments
confirm that the mechanism preserves the in-parallel property and it largely benefits the positional
error reduction at the platform. The absolute sum of maximum individual errors at each joint pairs of
all the legs as reported by refs. [9] and [10] gives a highly exaggerated figure and cannot be taken as
a good estimate. Also, the synthesis shows that the Tsai 3-UPU does not suffer from disproportionate
sensitivity in its workspace and the workspace boundary is farthest from the singularity surfaces.
The manipulator is shown to exhibit excellent, highly repeatable trajectory following capability. This
paper provides a design solution and has shown that all the merits of a parallel mechanism can be
kept intact.
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