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Laminar–turbulent transition in the boundary layer at supersonic speeds can be
initiated by small solid particles present in the free stream. Particulates interacting with
the boundary-layer flow generate unstable wavepackets related to Tollmien–Schlichting
(TS) waves. The latter grow downstream and ultimately break down to turbulent
spots. This scenario of TS-dominated transition is modelled using the Mack amplitude
method. A theoretical model describing the receptivity mechanism is developed to
predict the initial spectrum of TS waves. With these initial conditions the downstream
growth of TS instability is calculated using the linear stability theory. The transition
onset is associated with the point where the disturbance amplitude reaches a threshold
value. As an example, calculations are carried out for a 14◦ half-angle sharp wedge
flying in the standard atmosphere at altitude 20 km, Mach number 4 and zero
angle of attack. It is shown that spherical particles of radius from 10 to 20 µm
and density >1 g cm−3 can cause transition onset corresponding to the amplification
factor N = 9–10, which is in the empirical range of flight data. This indicates
that atmospheric particulates may be a major source of TS-dominated transition on
aerodynamically smooth surfaces at supersonic speeds. The receptivity model provides
a foundation for further treatments of different cases associated with transition in
dusty environments. It can also be used for predictions of particle-induced transition at
subsonic and hypersonic speeds.
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1. Introduction
Laminar–turbulent transition is a multiphase process which is initiated by the

ambient disturbance environment (Reshotko 1976; Morkovin, Reshotko & Herbert
1994). External disturbances, which can be stream-generated and/or body-generated,
interact with the mean-flow field and constitute the initial values for the boundary-
layer instabilities. This receptivity mechanism provides the initial conditions for the
subsequent linear and nonlinear phases which ultimately lead to final breakdown
to turbulence. Under ‘quiet’ free-stream conditions, the transition onset is usually
predicted using the eN method (for example, Jaffe, Okamura & Smith 1970; Hefner &
Bushnell 1979; Malik 1990, 1997) which deals with the amplification ratio given by
the linear stability theory. This semi-empirical method can only estimate the transition
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onset for a certain class of bodies and external disturbances. To improve prediction
accuracy and treat non-canonical configurations and disturbance fields, one should
solve an initial boundary-value problem which requires detailed specification of the
ambient disturbance environment.

This motivated Bushnell (1990) to summarize information concerning the qualitative
nature of the initial disturbances for atmospheric flights. He pointed out that, along
with roughness, stream turbulence, acoustic radiation from the vehicle itself and
electrostatic discharges, solid particulates can be a major source of disturbance
energy. Particulates can affect transition via different mechanisms (Bushnell 1990):
(i) impacting/striking on the surface leading to surface ‘cratering’; (ii) vortex/vorticity
shedding while the particle is immersed in the boundary layer; (iii) particle rotation
and consequent fluid motions; (iv) production of ‘reverse shocklets’ after passage
through the vehicle-induced shock; (v) rebound after impact on the vehicle surface and
subsequent dynamic interaction with the bow shock causing formation of embedded
shear layers and jets.

Although particles are present in all test environments (unless special filtering
techniques are employed), the particulate matter is better documented for the
atmosphere than for the experimental ground facilities. The occurrence of atmospheric
particles is associated with ice clouds, volcanic and other terrestrial dust as well as
cosmic dust (for example, Turco 1992; Deepak et al. 1999). Of particular interest is a
finding that a substantial portion of particles of size 10 µm or greater consists of the
products of rocket exhausts from previous flights (Bushnell 1990).

Particle-induced transition has received considerable attention for incompressible
boundary layers. Chen, Goland & Reshotko (1980) suspected that particulates in
the environment of underwater vehicles may be responsible for the generation of
turbulent patches in the laminar boundary layer of the vehicle. This speculation was
examined through an attempt at calculating the turbulent patch generation rate with
the assumption that patches are induced by sufficiently large particles. Lauchle, Pertie
& Stinebring (1995) examined experimentally the effects of small uniformly sized
spherical particles seeded into the free stream of a water tunnel on transition in
the boundary layer on a heated laminar-flow-control body. It was shown that the
transition Reynolds number (based on the body arclength and the approach flow
velocity) decreases monotonically with increase in the ratio of the particle diameter
to the displacement thickness. Ladd & Hendricks (1985) also observed transition on
an axisymmetric heated body under the influence of freely suspended particles. They
estimated a critical particle Reynolds number, Redc = (u∗d∗/ν∗)c, where d∗ is particle
diameter, ν∗ is kinematic viscosity, and u∗ is the local velocity in the boundary layer
at a distance d∗ from the wall at the locations where turbulent spots were formed. The
values of this Reynolds number fall within a range of 400–700 which is similar to that
observed for spherical particles fixed to the wall (Smith & Clutter 1959; Hall 1967).

The effects of an isolated, stationary spherical particle on the transition process
in the boundary layer on a flat plate were examined by Saiki & Bringen (1996)
using a spatial direct numerical simulation (DNS). It was found that a particle of
subcritical diameter induces hairpin vortices, which decay as they are convected
downstream. In the supercritical case, an isolated disturbance rapidly breaks down
and forms a structure resembling a turbulent spot. The DNS results correlate with the
experimental observations of Blackwelder et al. (1992). They examined the influence
of a moving sphere with a diameter of roughly 1/3 the boundary-layer thickness.
Taniguchi, Browand & Blackwelder (2000) studied experimentally (in a water channel)
and numerically transition induced by a single heavy spherical particle free-falling
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Receptivity of a supersonic boundary layer to solid particulates 107

through a laminar boundary layer on a flat plate. The experiment showed that the
wake left by the falling particle was capable of triggering a turbulent spot. The DNS
revealed that the particle-induced wake behaves as a Hill’s spherical vortex causing
transition under certain conditions.

To our knowledge, particle effects on transition in high-speed flows have not been
studied in any great detail. Holden (1975) performed experiments on a flat-ended
cylinder in a hypersonic free stream at Mach number 6 and 13. These experiments
are related to the particle rebound after impact on the blunt-body nose at hypersonic
speeds. Holden studied the generation of disturbances in the stagnation region as a
particle, which is launched upstream from the model surface, interacts with the bow
shock. It was found that there was a small heating enhancement near the stagnation
point as the particle (between 100 and 800 µm in size) passed through the shock
layer. However heating levels between 3 and 10 times the stagnation-point value were
generated as the particle penetrates the bow shock. When a particle penetrates more
than the body diameter beyond the bow shock, massive flow instabilities similar to
those encountered over spiked bodies were observed. Presumably, these instabilities
can trigger premature transition on the body surface.

The foregoing studies were predominantly focused on relatively large particles
enabling the bypass mechanism to be triggered. However in many practical cases
the particle size is quite small. For example, the diameter of stratospheric particulates
is, typically, of the order of 10 µm or less. Such minute particles cannot trigger
turbulent patches, while they can generate the boundary-layer instabilities of small
initial amplitudes via a receptivity mechanism, which has not been studied yet. This
motivated us to conduct a theoretical analysis of a unit problem describing excitation
of the boundary-layer modes by spherical solid particles interacting with the boundary-
layer flow on a body moving with a supersonic speed. The analysis is focused on
the dynamic interaction of particles with the boundary-layer flow. Effects associated
with particle-induced vortical disturbances, acoustic waves and roughness are not
considered. Solutions of this problem are incorporated into the amplitude method
of Mack (1977) to estimate the particle-induced transition onset.

The paper is organized as follows. In § 2 we consider the dynamics of spherical
solid particles penetrating into the boundary layer. In § 3 we formulate and solve the
receptivity problem describing excitation of an unstable wavepacket by a small particle
crossing the boundary layer. The downstream evolution of this wavepacket is analysed
using the steepest descent method in the framework of local-parallel linear stability
theory. The threshold amplitude related to the transition onset is estimated using
available experimental and numerical data. In § 4 we consider the particle-induced
transition on a sharp wedge at free-stream Mach number 4. In this case, transition is
associated with instability of the first mode (Mack 1969). Because this mode is an
extension to high speeds of the Tollmien–Schlichting (TS) waves, hereafter we call it
a TS mode. The TS-dominated transition onset is estimated for particulates of various
size and density. The results are summarized in § 5.

2. Particle dynamics
Consider a laminar flow past a body in a supersonic free stream of speed

U∗1 , density ρ∗1 and temperature T∗1 (figure 1). Herein asterisks denote dimensional
quantities. The inviscid shock layer between the bow shock and the body surface is
assumed to be much thicker than the viscous boundary layer, i.e. the Reynolds number
(based on the free-stream parameters and the body length) is large. In the shock layer,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

56
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.564


108 A. V. Fedorov

Bow shock

Shock layer 

Boundary layer 

Particle trajectory 

Body

Receptivity region 

y

U

x

x1

U1

x2

FIGURE 1. Schematic of a supersonic flow past the body surface and the coordinate systems.

the flow has velocity u∗(x∗), density ρ∗(x∗), temperature T∗(x∗) and pressure P∗(x∗),
where x∗ = (x∗1, x∗2, x∗3)

T. At the initial time instant t∗ = t∗0 , a solid spherical particle of
density ρ∗p and radius r∗p crosses the shock at a point x∗ = x∗0. Since the particle cannot
immediately slow down, its initial velocity just behind the shock is u∗p(t

∗
0)= (U∗1 , 0, 0)T.

In the shock layer, the particle dynamics is governed by the equations

m∗
du∗p
dt∗
= F∗p, (2.1)

u∗p(t
∗
0)= (U∗1 , 0, 0)T, (2.2)

where m∗ = 4πr∗3p ρ
∗
p/3 is the particle mass and F∗p is the drag force. The gravitational

force on the particle is assumed to be negligible in comparison with the aerodynamic
drag. It is assumed that the hydrodynamic time scale r∗p/u

∗
0, where u∗0 = |u∗p− u∗|t∗=t∗0 is

the initial relative velocity of the particle, is much shorter than the particle deceleration
time scale m∗u∗0/F

∗
p . Then the flow past the particle is treated as quasi-steady, and the

drag is calculated as

F∗p =−CD
ρ∗

2
|u∗p − u∗|(u∗p − u∗)πr∗2p . (2.3)

This approximation is valid for ρ∗p � CDρ
∗ that is typical for dust particles in air

flows. Hence the particle trajectory x∗p(t
∗) and velocity u∗p(t

∗) are solutions of the
problem

dx∗p
dt∗
= u∗p, (2.4)

du∗p
dt∗
= 3

8
CD
ρ∗

ρ∗p

|u∗p − u∗|(u∗ − u∗p)

r∗p
, (2.5)

x∗p(t
∗
0)= x∗0, (2.6)
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Receptivity of a supersonic boundary layer to solid particulates 109

u∗p(t
∗
0)= (U∗1 , 0, 0)T. (2.7)

If the particle radius is much smaller than the boundary-layer thickness in the
vicinity of the particle impact on the body surface, r∗p � δ∗, then the problem
(2.4)–(2.7) describes the particle passage through the viscous boundary layer also.

For spherical particles the drag coefficient can be calculated using the empirical
correlations of Crowe (1967) and Henderson (1976)

CD = fn(Rep,Mp,T∗p/T
∗), (2.8)

where Rep = 2r∗pρ
∗|u∗p − u∗|/µ∗ is relative Reynolds number, Mp = |u∗p − u∗|/a∗ is

relative Mach number, and T∗p is temperature of the particle surface. The correlation of
Crowe (1967) has been developed for the ranges 0.2 < Rep < 104 and 0.1 < Mp < 2.
For higher Mach numbers, it is recommended to use the correlation of Henderson
(1976) valid up to Mp = 6. Hereafter we use the correlation of Crowe (1967).

Analysing (2.5) we introduce a relaxation time τ ∗ = (8/3)(ρ∗p/ρ∗)(r∗p/CD0u∗0) and
a generalized Stokes number St = l∗u∗0/τ

∗, where l∗ is a characteristic thickness of
the shock layer. Depending on the Stokes number the following typical cases can be
identified.

In case 1 for St � 1, the drag force is so small that the particle moves to
the wall with approximately constant speed u∗p = (U∗1 , 0, 0)T. In the leading-order
approximation, the particle trajectory is a straight line x∗p(t

∗)= x∗0 + (U∗1 , 0, 0)Tt∗.
In case 2 for St ∼ 1 and l∗� δ∗, the particle momentum loss is appreciable in the

inviscid shock layer while it is negligible in the relatively thin viscous boundary layer.
By solving the problem (2.4)–(2.7) in the shock layer, we can determine the particle
velocity u∗pw at the impact and assume that the particle passes through the boundary
layer with constant speed u∗pw. Note that case 2 contains case 1.

In case 3 for St � 1, the particle is quickly slowed down in the bow-shock
vicinity and it does not reach the boundary layer. During this deceleration the particle
generates acoustic disturbances (shocklets), which propagate to the wall and interact
with the boundary layer. Such relatively light and/or small particles form a ‘noisy’
layer just behind the shock.

Hereafter we focus on cases 1 and 2 where particles cross the boundary layer
and reach the body surface. Note that in the case of l∗ ∼ δ∗ related to a viscous
shock layer, the receptivity problem should be formulated without distinction between
viscous and inviscid mean flows. However this case corresponds to very high free-
stream Mach numbers and/or relatively small Reynolds numbers at which the laminar
flow is, as a rule, stable and transition does not occur.

3. Receptivity problem and prediction of the transition onset
Consider case 2 (see § 2) where the particle passes through a relatively thin

boundary layer with approximately constant speed u∗pw. The latter is a solution of the
dynamic equations (2.4)–(2.7) in the inviscid shock layer. For simplicity, the particle
is not reflected from the wall. The effects related to the particle-induced roughness or
particle rebound are not considered.

If the bow-shock angle is not small, the angle between the velocity vector u∗pw
and the body surface is O(1). Then the particle trajectory within the boundary layer
lies in a region ∆x∗ which is of the order of the local boundary-layer thickness δ∗.
The particle radius is assumed to be much smaller than δ∗. The particle generates
flow disturbances (including unstable modes) in a local region where the unperturbed
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110 A. V. Fedorov

laminar boundary-layer flow can be treated as parallel. Further analysis is focused on
this receptivity region schematically shown in figure 1.

3.1. Governing equations
A small particle induces a concentrated force and a heat source (if the particle
surface is not adiabatic). The flow field in the receptivity region is governed by
the Navier–Stokes equations written in dimensionless form

∂ρ

∂t
+ ∂

∂xj
(ρuj)= 0, (3.1)

∂

∂t
(ρui)+ ∂

∂xj
(ρuiuj + pδij)= 1

R

∂τij

∂xj
+ r2

pF̄piδ(x− xp), (3.2)

ρ

[
∂T

∂t
+ uj

∂T

∂xj

]
= 1

PrR

∂

∂xj

(
µ
∂T

∂xj

)
+ (γ − 1)M2

e

(
∂p

∂t
+ uj

∂p

∂xj

)
+ (γ − 1)M2

e

R
Φ

+ rp

PrR
Q̄pδ(x− xp)+ r2

p(γ − 1)M2
e (upj − uj)F̄pjδ(x− xp), (3.3)

γM2
e p= ρT, (3.4)

where the velocity components, density, temperature and pressure are scaled using
their quantities U∗e , ρ∗e , T∗e and ρ∗e U∗2e at the upper boundary-layer edge τij is the shear
stress, δij is the Kronecker symbol, γ is specific heat ratio, Pr is Prandtl number and
µ is dynamic viscosity. The length scale ∆∗ is of the order of the boundary-layer
thickness, the time scale is ∆∗/U∗e , the Reynolds number is R = ρ∗e U∗e∆

∗/µ∗e , and the
local Mach number is Me. The momentum equation (3.2) contains the particle-induced
force components r2

pF̄piδ(x− xp), where δ(x− xp)= δ(x1 − xp1)δ(x2 − xp2)δ(x3 − xp3) is
delta function,

F̄pi = CD
ρ

2
|u− up|(uip − ui)π, (3.5)

rp = r∗p/∆
∗ is a small parameter characterizing the particle size relative to

the boundary-layer thickness near the location of particle impact. The energy
equation (3.3) contains the dissipation function Φ, the particle-induced energy source
proportional to Q̄p = 2πNu(Tp − T), where Nu is the Nusselt number, as well as the
power source term proportional to (upj − uj)F̄pj.

3.2. Receptivity analysis
Introduce a local coordinate system (x, y, z), in which the particle impact point is
(0, 0, 0) and the impact occurs at the time instant t = 0. Because rp� 1, the flow field
quantities can be expressed as

q(x, y, z, t)= Q(x, y, z)+ r2
pq̃(x, y, z, t), (3.6)

where q denotes an arbitrary flow variable. In the first-order approximation with
respect to r2

p, the particle-induced disturbance (ρ̃, ũ, ṽ, w̃, p̃, T̃) is governed by the
linearized Navier–Stokes equations. In the receptivity region schematically shown in
figure 1, the basic flow parameters are approximated as

U = Us(X, y)+ O(ε), V = ε V0(X, y)+ O(ε2),

W =Ws(X, y)+ O(ε), P= Ps(X)+ O(ε2), T = Ts(X, y)+ O(ε),

}
(3.7)
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Receptivity of a supersonic boundary layer to solid particulates 111

where ε = R−1 � 1, and X = εx is a slow variable. Hereafter the particle velocity
components are (Up,Vp,Wp). The disturbance field is expressed in the vector form

Ψ(x, y, z, t)=
(

ũ,
∂ ũ

∂y
, ṽ, p̃, T̃,

∂T̃

∂y
, w̃,

∂w̃

∂y

)T

. (3.8)

Because the basic flow does not depend on x and z in the leading-order
approximation with respect to ε, we can perform Fourier transforms for these variables

ψ(y, t;α, β)=
∫ +∞
−∞

∫ +∞
−∞

Ψ(x, y, z, t) exp(−iαx− iβz) dx dz. (3.9)

The amplitude function ψ(y, t;α, β) is governed by a system of linear equations,
which can be written in the matrix-operator form

H1
∂ψ

∂t
+ H2(y, ∂y, α, β)ψ = G. (3.10)

Here the vector G(t, y) contains Fourier components of the particle-induced source
terms

G(t, y)= g(xp, y, zp)δ(y− yp) exp(−iαxp − iβzp), (3.11)

the vector g is given in the Appendix, and xp(t), yp(t) and zp(t) are coordinates of the
particle trajectory. The boundary conditions are formulated as

y= 0 : (ψ1, ψ3, ψ5, ψ7)= 0, (3.12)
y→∞ : |ψ |<∞, (3.13)

t→−∞ : ψ(y, t)→ 0. (3.14)

The condition (3.12) implies that the disturbance field has zero velocity and
temperature on the body surface. The condition (3.14) implies that there are no
disturbances when the particle is far from the boundary layer.

The problem (3.10)–(3.14) can be solved using the biorthogonal eigenfunction
decomposition method (Zhigulev & Tumin 1987). A biorthogonal eigenfunction
system was formulated by Salwen & Grosch (1981) with respect to a temporal stability
problem for incompressible boundary-layer flow. Tumin & Fedorov (1983) extended
this analysis to the case of a compressible boundary layer. This method was further
developed by Fedorov & Tumin (2003) and Tumin (2007).

Following Fedorov & Tumin (2003) we introduce the eigenfunction system
{A(y;α, β, ω),B(y;α, β, ω)}, where A is a solution of the direct homogeneous
problem

−iωH1A+ H2(y, ∂y, α, β)A= 0, (3.15)
y= 0 : (A1,A3,A5,A7)= 0, (3.16)

y→∞ : |A|<∞, (3.17)

and B is a solution of the adjoint problem

iω̄H∗1B+ H∗2 (y, ∂y, α, β)B= 0, (3.18)
y= 0 : (B2,B4,B6,B8)= 0, (3.19)

y→∞ : |B|<∞. (3.20)

Here the asterisk denotes a Hermitian adjoint matrix, the overbar denotes a complex
conjugate value, and the frequency ω is a complex eigenvalue. The eigenfunctions
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satisfy to the orthogonality condition

〈H1A(y;α, β, ω),B(y;α, β, ω′)〉 ≡
∫ ∞

0
(H1A(y;α, β, ω) ·B(y;α, β, ω′)) dy=∆ωω′,

(3.21)

where ∆ωω′ = δnm is the Kronecker symbol if ω and ω′ belong to modes n and m
of the discrete spectrum, and ∆ωω′ = δ(ω − ω′) is a delta function if both ω and ω′

belong to the continuous spectrum. Equation (3.15) can be written in the form (see, for
example, Mack 1969 and Nayfeh 1980)(

∂

∂y
− H0

)
A= 0, (3.22)

where H0 is a standard matrix of the linear stability problem. Its non-zero elements are
given in the Appendix. The matrix H1 is expressed in terms of H0

H1 = i
∂H0

∂ω
. (3.23)

A solution of the problem (3.10)–(3.14) is decomposed as

ψ(t, y)=
∑

n

Cn(t)An(y;α, β) exp(−iωn(α, β)t)

+
∑

j

∫ ∞
0

Cj(t, k)Aj(y;α, β, k) exp(−iωj(α, β, k)t) dk. (3.24)

Here the first sum contains normal modes of the discrete spectrum ωn(α, β)
including unstable modes. The second sum contains integrals over branches of the
continuous spectrum including fast and slow acoustic waves as well as vorticity and
entropy waves. These integrals form shocklets and entropy/vorticity wakes induced by
the particle. Further analysis is focused on the excitation of one unstable mode of the
discrete spectrum (say mode m with the eigenvalue ωm(α, β) and the eigenfunction
Am). Substituting (3.24) into (3.10) and multiplying by Bm(y, α, β), we obtain the
ordinary differential equation for the weight coefficient Cm(t)

i
〈
∂H0

∂ω
Am,Bm

〉
dCm

dt
= 〈G,Bm〉eiωmt (3.25)

with the boundary condition

Cm(−∞)= 0. (3.26)

Substituting (3.11) into (3.25) and integrating over time, we get

Cm =−i
〈
∂H0

∂ω
Am,Bm

〉−1 ∫ t

−∞
(g,Bm)y=yp exp(iωmt − iαxp − iβzp) dt. (3.27)

If the particle-induced roughness is neglected, then g(t) = 0 for t > 0 (after the
impact), and the weight coefficient attains a constant value which is calculated using
(3.27) with the upper limit of integration t = 0. The inverse Fourier transforms give the
particle-induced wavepacket related to mode m

t > 0 :Ψm(x, y, z, t)

= 1

(2π)2

∫ +∞
−∞

∫ +∞
−∞

Cm(α, β)Am(y;α, β) exp(iαx+ iβz− iωmt) dα dβ. (3.28)
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The foregoing analysis has been conducted using the eigenfunctions of the temporal
problem, where α and β are real and ωm(α, β) is a complex eigenvalue. Because the
instabilities considered herein are convective, they grow in space rather than amplify in
time. For the cases where the basic flow does not depend on z, the temporally evolving
wavepacket (3.28) can be converted into a spatially evolving one. Consider the integral

I =
∫ +∞
−∞

Cm(α, β)Am(y;α, β) exp(iαx+ iβz− iωmt) dα, (3.29)

which includes the waves of fixed β. With the substitution dα = (∂ωm/∂α)
−1 dω, this

integral is written as

I =
∫
γm

(
∂ωm

∂α

)−1

Cm(ω, β)Am(y;ω, β) exp(iαmx+ iβz− iωt) dω, (3.30)

where αm(ω) maps a certain interval of the contour γm into an interval of real α. If this
mapping is not singular and ∂ωmr/∂α > 0 everywhere (waves propagate downstream),
we can displace the contour γm to the real axis of the complex-ω-plane and obtain

I =
∫ +∞
−∞

(
∂αm

∂ω

)
Cm(ω, β)Am(y;ω, β) exp(iαmx+ iβz− iωt) dω. (3.31)

Hereafter the subscript ‘r’ (‘i’) denotes the real (imaginary) part of a complex
quantity. Substituting (3.31) into (3.28) and using the relationship

∂αm

∂ω
=−

〈
∂H0

∂ω
Am,Bm

〉/〈
∂H0

∂α
Am,Bm

〉
, (3.32)

we get the spatially evolving wavepacket

x> 0 :Ψm(x, y, z, t) = 1

(2π)2

∫ +∞
−∞

∫ +∞
−∞

Dm(ω, β)Am(y;ω, β)
× exp(iαmx+ iβz− iωt) dω dβ, (3.33)

Dm = i
〈
∂H0

∂α
Am,Bm

〉−1 ∫ 0

−∞
(g,Bm)y=yp exp(iωt − iαmxp − iβzp) dt. (3.34)

Note that the solution (3.33)–(3.34) can be obtained from the analysis of the spatial
problem using the technique developed by Fedorov & Khokhlov (2002).

If the particles cross the boundary layer with a constant speed (Up,Vp, 0), the
weight coefficient (3.34) can be expressed as

Dm = i
〈
∂H0

∂α
Am,Bm

〉−1 ∫ 0

+∞
ϕm(y) dy, (3.35)

ϕm(y)= (g,Bm)

Vp
exp

(
−iαmy

Up − cm

Vp

)
, (3.36)

where cm = ω/αm is the complex phase speed. The complex function ϕm(y)
characterizes a local contribution of the particle-induced source to the instability
amplitude. The relations (3.35) and (3.36) correspond to the case of two-dimensional
mean flow where the lateral coordinate of a spherical particle does not change,
zp(t)= 0. They are used for the numerical examples of § 4.
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3.3. Unstable wavepackets and transition onset
Accounting for slow variations of the wavepacket characteristics due to the
downstream growth of the boundary-layer thickness, we can write (3.33) in the WKB
form

x� x0 :Ψm = 1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

Dm(ω, β)Am(x, y, β, ω)

× exp(iS+ iβz− iωt) dω dβ, (3.37)

S=
∫ x

x0

αm(x, β, ω) dx, (3.38)

where the longitudinal coordinate x is measured along the body surface from the body
leading edge, and the particle impact occurs at the point (x, y, z)= (x0, 0, 0).

If the particle strike is far upstream from the final point where the instability is
evaluated (x� x0), then the integrals over ω and β can be estimated using the steepest
descent method

Ψm ≈ 2
π

Re[iK(ωs, βs)Dm(ωs, βs)Am(x, y, βs, ωs) exp(iS(ωs, βs)+ iβszs − iωsts)], (3.39)

K =
[
∂2S

∂ω2

∂2S

∂β2
−
(
∂2S

∂ω∂β

)2
]−1/2

, (3.40)

where ωs, βs are determined from the relations

∂Si

∂ω
= 0,

∂Si

∂β
= 0. (3.41)

The coordinate zs and time ts, are related to the disturbance maximum. They are
determined from the equations

∂Sr

∂ω
− t = 0,

∂Sr

∂β
− z= 0. (3.42)

At the point (x, zs, ts), the disturbance is dominated by a wave having frequency ωs

and wavenumbers βs, αm(ωs, βs). The envelope of its amplitude has an approximate
Gaussian shape with respect to the local coordinates and time t − ts. The amplitude
maximum is expressed as

q(ωs, βs, x)= CreceptCdispeN(x0,x), (3.43)

Crecept = r2
p|Dm(ωs, βs)qm(x, βs, ωs)|, (3.44)

Cdisp = 2
π
|K(ωs, βs)|, (3.45)

N(x0, x)=−
∫ x

x0

αmi(x, βs, ωs) dx, (3.46)

where the coefficient Cdisp characterizes dispersion of the wavepacket associated with
mode m.

If the particle hits the body surface at a point lying in the vicinity of the lower
neutral branch, the wavepacket starts to grow just downstream from the excitation
region. Hereafter we focus on this most effective case in which x0 corresponds to the
upstream neutral point of mode m at β = βs and ω = ωs.
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Because the coefficient (3.45) and the N factor (3.46) do not depend on receptivity,
they are calculated first using the following procedure: (i) by solving the local
eigenvalue problem and seeking ωmax, βmax at which the growth rate σm = −αmi is
maximal, obtain the distributions ωmax(x), βmax(x) and αm(x, ωmax, βmax); (ii) from
these distributions identify an appropriate set of frequencies ω1, . . . , ωM for further
analysis; (iii) for a fixed frequency ωk, determine βk from the conditions βk = βmax(x)
and ωk = ωmax(x); (iv) with βk fixed, compute the distributions αm(x, ωk, βk),
αm(x, ωk ±1ω, βk) and calculate N(xk, βk, ωk)=

∫ xk
x0k
σm(x, βk, ωk) dx and the derivative

Nω =
∫ xk

x0k
(∂σm/∂ω)(x, βk, ωk) dx, where x0k is the upstream neutral point and ∂σm/∂ω

is calculated using central differences; (v) using the Newton method determine the
point xk at which Nω = 0, which gives the maximal versus ωN factor at x = xk;
(vi) perform steps iv and v at βk ± 1β and compute the derivative Nβ using central
differences; (vii) using the Newton method seek βks at which the derivative Nβ = 0
and calculate N(xks, βks, ωk) which is maximal versus ω and β at x= xks and frequency
ω = ωk, and because N(x, ω, β) = −Si(x, ω, β), this maximum corresponds to the
conditions (3.41) where ωs = ωk and βs = βks; (viii) using central differences calculate
the second derivatives Sωω, Sββ and Sωβ ; (ix) compute the coefficient (3.40) and the
dispersion factor (3.45).

Computations of the receptivity coefficient Crecept for different parameters of
particles (radius, density etc.) are performed at the neutral point x = x0k for each
frequency ωk and corresponding wavenumber βks. In (3.44) the coefficient Dm is
calculated using (3.35) and qm is calculated using the eigenfunction Am. The inner
product 〈·, ·〉 and the integral in (3.35) are computed numerically in the boundary layer,
0 < y < ye, and analytically in the outer flow region, ye 6 y <∞, using asymptotic
expressions for the integrands.

Note that the foregoing analysis is valid if the average distance between particles
passing through the boundary layer is much larger than the boundary-layer thickness,
while it is much smaller than the body length. The first restriction indicates that
particles generate wavepackets which interfere only weakly with each other, i.e. the
downstream evolution of the wavepackets generated by different particles can be
treated independently. The second restriction indicates that there are enough particles
to form a transition onset line, which is more or less smooth in the body length scale.

If the concentration of particles is so high that the distance between their trajectories
is of the order of the disturbance wavelength and/or the time interval between their
strikes is of the order of the instability period, then a resonant excitation of instability
may cause a significant increase of the disturbance amplitude. This case needs special
consideration.

In the framework of the amplitude method (Mack 1977), the transition onset
is associated with the point xtr, where the instability amplitude (3.43) reaches a
threshold value q(xtr) = qtr. For the TS-dominated transition, the transition onset point
is estimated by assuming that at x = xtr the maximal versus y mass-flux amplitude is
qtr ≈ 5 %. This assumption is based on the experimental observations (Kosinov et al.
1994; Ermolaev, Kosinov & Semionov 1996; Kosinov, Maslov & Semionov 1997) as
well as the DNS (Laible, Mayer & Fasel 2008; Mayer, Von Terzi & Fasel 2011)
of unstable wavepackets in supersonic boundary layers. Note that in accord with the
amplitude method the transition onset point weakly (as log) depends on qtr, and the
foregoing rough-order estimate of qtr is acceptable for transition predictions. More
accurate evaluation of the threshold amplitude can be performed using the asymptotic
theory of nonlinear breakdown (for example, Cowley & Wu 1993; Leib & Lee 1995;
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FIGURE 2. N-factors versus R (a) and versus x∗ (b). Each curve corresponds to amplification
of a TS wave of frequency ω∗ and wavenumber β∗, at which N is maximal at a point shown
by a corresponding circle. The thick line shows the envelope of lines N(ω∗, β∗).

Wu 2004). The asymptotic theory provides lumped dimensionless parameters, which
can be used for capturing the dependence of the critical amplitude on the basic flow
parameters such as Mach number, Reynolds number and the wall temperature ratio.

4. Numerical examples
As an example, we consider a sharp wedge of half-angle θw = 14◦ flying at altitude

H∗ = 20 km, Mach number M1 = 4 and zero angle of attack. Based upon 1976
US Standard Atmosphere, at this altitude the ambient temperature T∗1 = 216.65 K,
pressure P∗1 = 5529 N m−2, density ρ∗1 = 0.0889 kg m−3, kinematic viscosity ν∗1 =
1.599×10−4 m2 s−1 and speed of sound a∗1 = 295.07 m s−1. The unit Reynolds number
based on the speed of sound is Re1a = a∗1/ν

∗
1 = 1.8455 × 106 m−1. Air is treated as

a perfect gas with the specific heat ratio γ = 1.4 and Prandtl number Pr = 0.72.
Under these conditions the inviscid theory predicts the following flow parameters at
the upper boundary-layer edge (behind the wedge-induced oblique shock): M2 = 3.0,
T∗2 = 324.86 K, Re1 = U∗2/ν

∗
2 = 11.255 × 106 m−1, and the stagnation temperature

is T∗0 = 909.6 K. All stability and receptivity computations were performed for the
adiabatic wall temperature

T∗w = T∗ad ≈
(

1+√Pr γ − 1
2

M2
2

)
T∗2 = 821 K. (4.1)

The viscosity coefficient was calculated using the Sutherland formula with constant
110.4 K. The second viscosity is zero. In the case considered, transition is associated
with three-dimensional TS waves – the first mode in accordance with the terminology
of Mack (1969).

4.1. TS wavepackets

We start with the analysis of TS wavepacket characteristics. Figure 2(a,b) shows the
amplification factor distributions N(R) and N(x∗) as well as their envelopes (thick
lines with circles), where R=√U∗2 x∗/ν∗2 is the local Reynolds number. These stability
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FIGURE 3. Frequencies (a) and the wave-front angles (b) of TS waves for the amplification
lines shown in figure 2.

computations are performed in the local parallel approximation, with the mean flow
calculated using the compressible Blasius solution. The envelope of N(R) (figure 2a)
is almost a straight line which is typical for the boundary-layer flow of zero pressure
gradient. The neutral points of unstable waves are close to the wedge leading edge
(figure 2b). For example, the line corresponding to N ≈ 9 at x∗ ≈ 143 cm starts from
the neutral point x∗0 ≈ 8 cm (x∗0/x

∗ ≈ 5.6 %). In this most receptive region, very small
particles can reach the wedge surface and cross the boundary layer with approximately
constant relative velocity (see § 4.2).

The dimensional frequencies for each amplification line are shown in figure 3(a).
These frequencies are calculated using the relation f ∗ = FU∗2 Re1/2π, where F is the
frequency parameter (in the case considered U∗2 = 1.084 × 103 m s−1). Because the
longitudinal wavenumber αTS,r depends on the streamwise coordinate, the front angle
ψ = arctan(β/αTS,r) changes with R at fixed f ∗ and β∗. The distributions of ψ(R)
related to each amplification line are shown in figure 3(b). The appreciable increase
of this angle with R indicates that the assumption of ψ = const, which is commonly
used in computations of the amplification factor (Malik 1990) may lead to significant
errors. Figure 4(a) shows that the TS phase speeds cTS = ω/αTS,r increase with R.
However, their values at the final stations are nearly the same for all the amplification
lines (cTS ≈ 0.65). The dimensional growth rates σ ∗TS =−α∗TS,i are shown in figure 4(b).
Their dependence on R is typical for TS waves in the compressible Blasius boundary
layer at supersonic speeds.

As shown in figure 5, the dispersion factor Cdisp decreases with x∗. It varies from
3×10−5 related to the first amplification line (see figure 2b) to 3.5×10−6 related to the
last line. Small values of Cdisp indicate that dispersion and selective amplification of
TS waves are quite large. This leads to significant reduction of the final amplitude of
the TS wavepacket. Note that the dispersion versus frequency is an order of magnitude
larger than that versus the lateral wavenumber, |Sωω/Sββ | ≈ 20.

Hereafter the TS wavepacket is characterized by the mass-flux disturbance q= (ρu)′.
The corresponding eigenfunctions

qTS = |ATS,1 + (γM2
e ATS,4 − ATS,5/T)U|/T, (4.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

56
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.564


118 A. V. Fedorov

0.45

0.50

0.55

0.60

0.65

0.70

1000 2000 3000 4000 5000 6000

R
0 7000 1000 2000 3000 4000 5000 6000

R
70000

5

10

15

20(a) (b)

FIGURE 4. Phase speeds cTS (a) and dimensional growth rates σ ∗TS (b) of TS waves for the
amplification lines shown in figure 2.
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FIGURE 5. Dispersion factor versus x∗; symbols correspond to the circles in figure 2.

which are referenced to their maximum values, are shown in figure 6 at the seven
final x-stations. The maximum locus y∗m increases with x∗ owing to the boundary-layer
growth. It is close to the critical point where the TS phase speed equals the mean-flow
speed.

4.2. Particle dynamics

Consider particles of density ρ∗p = 1 g cm−3 close to the water density. Equations
(2.4)–(2.7) are integrated numerically using the fourth-order Runge–Kutta scheme.
In these computations the particle temperature equals the local gas temperature
Tp = T , i.e. the particle is in thermal equilibrium with the ambient gas and it
does not induce a local heat source or sink. Computing the particle trajectories
from different initial points located just behind the wedge-induced shock, we obtain
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FIGURE 6. The mass-flux eigenfunctions qTS(y∗) at the seven final x-stations corresponding
to the circles in figure 2b.
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FIGURE 7. Relative Mach number (a) and relative Reynolds number (b) at the upper
boundary-layer edge for particles of density ρ∗p = 1 g cm−3 and different radii r∗p .

streamwise distributions of the particle dynamic parameters at the upper boundary-
layer edge. For example, figure 7(a,b) shows distributions of the relative Mach number
Mp = |u∗p−u∗2|/a∗2 and the relative Reynolds number Rep = 2r∗p|u∗p−u∗2|/ν∗2 for particles
of radii r∗p = 5, 10, 25 and 50 µm. These particles pass through the boundary layer
with appreciable subsonic speed in the region x∗ < 0.25 m (figure 7a) containing the
neutral points of TS waves (figure 2b). The relative Reynolds number Rep is less than
300 (figure 7b) which is adequate for the correlation of Crowe (1967) for the drag
coefficient. The relative velocity of a small particle (for example, line 4 for r∗p = 5 µm)
quickly decreases with the downstream distance. Ultimately a particle of radius less
than 2 µm does not reach the wedge surface for x∗ > 0.25 m (not shown here). Further
analysis is performed for particulates of radii from 5 to 50 µm.
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FIGURE 8. The mean velocity profile (line 1), the modulus of the TS eigenfunction for the
x-velocity component (line 2), the modulus of normalized receptivity function φ(y) (line 3)
and the critical-layer level yc : U(yc)= cr (dashed line).

4.3. Receptivity and transition onset

Consider particles of 50 µm radius and density ρ∗p = 1 g cm−3. To get insight into
the receptivity mechanism we focus on the disturbance of frequency 12.9 kHz, which
has the neutral point x∗0 ≈ 7.9 cm (R0 ≈ 940.5) and the amplification factor N ≈ 9.25
(see figure 2). Figure 8 shows the mean velocity profile U(y) (line 1) and the
modulus of the TS eigenfunction for the x-velocity component |ATS,1| (line 2) which
is normalized by its maximal value. The modulus of the normalized local receptivity
function φ(y) = |ϕ(y)|/|ϕ|max , where ϕ is given by (3.36), is shown by the line 3.
The critical-layer level yc : U(yc) = cTS is shown by the dashed line. As expected, the
maximum of |ATS,1| is observed near the critical point yc. Because the particle relative
velocity is maximal on the wall, the most receptive region is shifted from the critical
level toward the wall. Outside the boundary layer, where the TS eigenfunction decays
exponentially, the receptivity function is negligibly small. Therefore particulates, which
do not reach the boundary layer, are not involved in the direct excitation mechanism
considered herein. However such particles generate acoustic waves in the inviscid
shock layer. These waves radiate the boundary layer and can excite TS waves. Such
an indirect receptivity process, which may be important for very small and/or light
particles, needs special consideration.

As shown in figure 9, the receptivity coefficient Crecept decreases with the neutral
point x∗0. Its value varies from 4.2 relevant to the first amplification line to 1.8 relevant
to the last line. Although receptivity to the particle strike is quite high, dispersion of
the initially strong TS wavepacket leads to its significant attenuation associated with
the small multiplier Cdisp (see figure 5).

Figure 10 shows the distributions of the final amplitude q(R) and the envelope
N(R) of amplification factors N(R, ω, β). This envelope corresponds to the thick
line with circles in figure 2(a). Using the transition onset criterion qtr = 5 %,
we obtain Rtr = 3315 that corresponds to the transition onset Reynolds number
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FIGURE 9. Receptivity coefficient versus the neutral point x∗0. The circles correspond to the
initial points of the amplification lines shown in figure 2(b).
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FIGURE 10. Distributions of the final amplitude q(R) (line with open circles) and the N-
factor envelope N(R) (line with black circles). The dashed lines show the threshold amplitude
qtr = 5 % and corresponding values of Rtr and Ntr.

Retr = R2
tr ≈ 11 × 106 and the amplification factor Ntr ≈ 7.1. These quantities are

marked by the dashed lines.

4.4. Effects of the particle radius, density and temperature
The functions q(R) computed for different particle radii are shown in figure 11. The
particle density is ρ∗p = 1 g cm−3. Using the transition onset criterion qtr = 5 % (the
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FIGURE 11. Distributions q(R) at different radii r∗p (given in µm near each line), and the
N-factor envelope.
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FIGURE 12. The transition onset N-factor versus the particle radius.

horizontal dashed line) we obtain the distributions of Ntr and the transition onset
Reynolds number Retr versus the particle radius r∗p (figures 12 and 13, respectively).
As expected, both Retr and Ntr decrease with r∗p . For the commonly used empirical
value Ntr = 10, the particle radius is estimated as r∗p ≈ 15 µm.

Computations for particulates of radius r∗p = 20 µm and density ρ∗p from 1 to
8 g cm−3 show that the particle density has a negligible effect on the receptivity
coefficient (figure 14). For smaller particles, this effect is more pronounced but
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FIGURE 13. The transition onset Reynolds number versus the particle radius.
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FIGURE 14. Receptivity coefficient for ρ∗p = 1 and 8 g cm−3 at r∗p = 20 µm.

still weak. For example, figure 15 shows the receptivity coefficients in the case of
r∗p = 5 µm and ρ∗p = 1 and 8 g cm−3. The heavier particle has a smaller effect than
the lighter one. However, this difference weakly affects the distribution of q(R) shown
in figure 16. Because the particles travel a short distance from the shock to the wall
near the wedge nose, where receptivity is significant, they do not have enough time for
deceleration. Therefore their relative velocity, which is involved in computations of the
receptivity coefficient, does not change much. Such a low sensitivity of the receptivity
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FIGURE 15. Receptivity coefficient for ρ∗p = 1 and 8 g cm−3 at r∗p = 5 µm.
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FIGURE 16. Distributions of q(R) for particles of radius r∗p = 5 µm and density ρ∗p = 1 and
8 g cm−3.

mechanism to the particle density allows us to treat practical cases where uncertainty
in ρ∗p is, as a rule, quite large.

The foregoing results were obtained with the assumption that the particle
temperature Tp equals the local gas temperature T , i.e. the particle is in thermal
equilibrium with the ambient gas flow. In this case the particle-induced heat sink or
source is zero and the particle drag force is calculated at Tp/T = 1. To evaluate the
thermal effect, we consider the opposite case where the particle temperature is frozen
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FIGURE 17. Receptivity coefficients for cold (line with black circles) and heated (line with
open circles) particles of radius r∗p = 10 µm.
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FIGURE 18. Distributions q(x∗) and transition onset points x∗tr predicted for cold (line with
black circles) and heated (line with open circles) particles of radius r∗p = 10 µm.

and equals the free-stream temperature. Results of these computations are presented in
figures 17 and 18 for the particle of radius r∗p = 10 µm and density ρ∗p = 1 g cm−3. As
shown in figure 17, the cold particle with the temperature Tp = T1 has a smaller effect
than the thermal-equilibrium (heated) particle with the temperature Tp = T . However,
the distribution of q(x∗), which is used for prediction of the transition onset, is weakly
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FIGURE 19. Distributions of roughness Reynolds number Rek(x∗) for particles of radius
r∗p = 10 µm (line 1)and 20 µm (line 2).

affected (see figure 18). Namely, the transition onset point is x∗tr = 201 cm for the
heated particle and x∗tr = 208 cm for the cold particle, so that the relative difference
1x∗tr/x

∗
tr ≈ 3.5 % is small.

The low sensitivity of the receptivity mechanism to the particle temperature can be
explained as follows. In the energy equation (3.3), the ratio of the heat source to the
drag-power source is of the order of [rpPrR(γ − 1)M2

e ]−1 = [r∗pPrRe1e(γ − 1)M2
e ]−1.

For the case considered, this ratio is small: it varies from 1.5 × 10−2 to 1.5 × 10−3

on increasing of the particle radius from 5 to 50 µm. This allows us to neglect the
heat-source term Q̄p in (3.3).

Another receptivity source is associated with roughness produced by the particle
impact. The roughness size and shape are determined by the physics of collision
and essentially depend on the surface structure and the particle matter. Although the
collision problem is beyond the scope of this paper, we can perform the following
rough-order estimates. If the particle attaches itself to the surface after impact or it
rebounds producing a crater, the resulting roughness size and height are assumed to
be of the order of the particle diameter k∗ ≈ 2r∗p . In the absence of a theory for
determining the conditions under which this roughness can affect transition, we use
empirical correlations (see, for example, Schneider 2008). Probably the best known is
the Rek approach (Reda 2002), which correlates the transition locus with the roughness
Reynolds number Rek = U∗(k∗)ρ∗(k∗)k∗/µ∗(k∗). Figure 19 shows that distributions of
Rek(x∗) for particles of r∗p = 10 and 20 µm are below the value Rek = 25 which
is commonly used as a conservative criterion for aerodynamically smooth surfaces
(Schneider 2008). Roughness with Rek < 25 is unlikely to affect the transition process
unless there is a mechanism for amplifying the roughness-induced vorticity such as
cross-flow (Saric, Reed & White 2003) or Görtler (Saric 1994) instability. Because this
mechanism is not present in the wedge configuration considered herein, we conclude
that the roughness effect is small compared with receptivity due to the particle passage
through the boundary layer in the case of r∗p < 20 µm.
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5. Summary
A theoretical model describing excitation of unstable modes by spherical solid

particles interacting with a supersonic boundary layer has been developed. The
amplitudes of excited unstable waves have been expressed in a compact analytical
form. This receptivity solution can be easily incorporated into a stability code in order
to predict the downstream propagation of unstable wavepackets. The latter can be
related to the Mack first mode typical of supersonic speeds or the Mack second mode
typical of hypersonic speeds or the cross-flow instability typical of three-dimensional
boundary layers. Receptivity of subsonic boundary layers can be treated as well, if the
particle velocity is known at the upper boundary-layer edge.

It should be noted that the analysis is focused on the case where the average
distance between particles passing through the boundary layer is much larger than
the boundary-layer thickness, while it is much smaller than the distance from the
wedge leading edge to the transition onset point. The particles generate wavepackets
which interfere only weakly with each other. This case is associated with a relatively
small concentration n of particulates. If n is so high that the average distance
between particulates is of the order of the boundary-layer thickness, the forcing
length scale and frequency become of the order of the wavelength and frequency
of instability. Then, a resonant excitation may lead to significant increase of the
receptivity coefficient. This case will be analysed in the near future.

Particles also generate acoustic fields (shocklets) and entropy/vorticity wakes, which
are expanded into the eigenfunctions of the continuous spectrum (the sum of integrals
in (3.24)). Because the latter are orthogonal to the eigenfunctions of the discrete
spectrum, they do not directly excite unstable modes except for the special case where
an instability of discrete spectrum is synchronized with waves of continuous spectrum
(Fedorov & Tumin 2003, 2011). An additional scale-conversion mechanism is required
to tune the time and/or length scales of the interacting disturbances. This, as a rule,
leads to significant reduction of the receptivity coefficient. Therefore the receptivity
mechanism associated with shocklets or entropy/vorticity wakes seems to be essentially
weaker than the direct mechanism considered herein. Note that these arguments are
not applicable to relatively large particles, which can generate strong vortices and/or
shocklets triggering a bypass mechanism.

The foregoing receptivity model needs to be validated. This could be done with the
help of DNS and/or experiments. The latter, however, are difficult to set up because
it is not clear how to control the particle trajectories and measure the particle-induced
disturbances in supersonic wind tunnels. The particles could be launched across the
boundary layer from the wall. This technique was developed by Holden (1975)
and successfully applied to the problem of the particle–bow-shock interaction on a
blunt-body nose at hypersonic speeds. It is also feasible to perform experiments in
low-speed wind tunnels, where the problem is much less severe.

The receptivity solutions were plugged in the linear stability code in order to
estimate the particle-induced transition onset using the amplitude method of Mack
(1977). These estimates were performed for TS-dominated transition on a sharp wedge
flying at altitude 20 km, Mach number 4 and zero angle of attack. The dominant
excitation of unstable wavepackets occurs near the low branch of the neutral curve.
Because the neutral points are close to the wedge leading edge, very small particles
(of radius ∼5 µm) can reach the wedge surface and cross the boundary layer with
appreciable speed. It was found that particulates of radius from 10 to 20 µm and
density ∼1 g cm−3 can cause the transition onset corresponding to the amplification
factors N = 9–10 which lie in the empirical range 9 6 N 6 12. This is consistent

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

56
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.564


128 A. V. Fedorov

with the assumption of Bushnell (1990) that atmospheric particulates may be a major
source of transition on aerodynamically smooth surfaces at supersonic speeds.

Rough-order estimates based on the Rek method showed that roughness produced
by particles of r∗p < 20 µm corresponds to Rek < 25. In this case the roughness effect
is small compared with the effect of particle passage through the boundary layer. For
larger particles or in the presence of cross-flow or Görtler instability, the particle-
induced roughness can be a dominant receptivity source, which needs to be studied in
detail.

It was found that receptivity weakly depends on the particle density at least for
ρ∗p > 1 g cm−3. The effects associated with heating of particles are also weak and can
be neglected in many practical cases. These findings allow us to reduce the number of
parameters to be specified. In particular, we can ignore the heat transfer problem for
particulates, assuming that particles are in thermal equilibrium with the ambient gas
flow. We can also use approximate data for the particle density.

Receptivity and the transition onset essentially depend on the particle radius.
Namely, our numerical examples show that the increase of r∗p from 10 to 20 µm leads
to a 20 % reduction of transition onset Reynolds number. Therefore the distribution
of free-stream particles versus their radius should be known with sufficiently high
accuracy.

It should be noted that the dispersion and selective amplification of TS waves
lead to significant reduction of the wavepacket amplitude. In the amplitude method
of transition prediction, this factor plays an important role and should be modelled
properly.
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Appendix
Introduce the notation:

D= d/dy, µ′s = dµs/dTs, m= 2(e− 1)/3, r = 2(e+ 2)/3= m+ 2
the ratio of the second viscosity to the first viscosity is µ2/µ= 2e/3= 0.8,(A 1)

ω̂ = ω − αUs − βWs, χ =
[

R

µs
− irγM2

e ω̂

]−1

. (A 2)

Hereafter the subscript ‘s’ denotes mean-flow quantities. Non-zero elements of the
matrix H0 are:

H12 = H56 = H78 = 1, H21 = α2 + β2 − iω̂
R

µsTs
, H22 =−Dµs

µs
, (A 3a)

H23 =−iα
[
(m+ 1)

DTs

Ts
+ Dµs

µs

]
+ R DUs

µsTs
, H24 = i

αR

µs
+ (m+ 1)γM2

eαω̂, (A 3b)

H25 =−(m+ 1)
αω̂

Ts
− D(µ′sDUs)

µs
, H26 =−µ

′
sDUs

µs
, (A 3c)

H31 =−iα, H33 = DTs

Ts
, H34 = iγM2

e ω̂, H35 =− iω̂
Ts
, H37 =−iβ, (A 3d)
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H41 =−iαχ
(

r
DTs

Ts
+ 2

Dµs

µs

)
, H42 =−iαχ, (A 3e)

H43 = χ
[
−α2 − β2 + r

DµsDTs

µsTs
+ r

D2Ts

Ts
+ i

Rω̂

µsTs

]
, (A 3f )

H44 =−iχrγM2
e

[
αDUs + βDWs − ω̂

(
DTs

Ts
+ Dµs

µs

)]
, (A 3g)

H45 = iχ
[

r
(αDUs + βDWs)

Ts
+ µ′s

αDUs + βDWs

µs
− rω̂

Dµs

µsTs

]
, (A 3h)

H46 =−iχω̂
r

Ts
, H47 =−iβχ

(
r

DTs

Ts
+ 2

Dµs

µs

)
, H48 =−iβχ, (A 3i)

H62 =−2Pr(γ − 1)M2
e DUs,

H63 = RPr
DTs

µsTs
− 2i(γ − 1)M2

ePr(αDUs + βDWs),

 (A 3j)

H64 = iRPr
(γ − 1)M2

e

µs
ω̂,

H65= α2 + β2 − iRPr
ω̂

µsTs
− (γ − 1)M2

ePr

× µ
′
s[(DUs)

2 + (DWs)
2]

µs
− D2µs

µs
,


(A 3k)

H66 =−2
Dµs

µs
, H68 =−2Pr(γ − 1)M2

e DWs,

H83 = RDWs

µsTs
− iβ

[
(m+ 1)

DTs

Ts
+ Dµs

µs

]
,

 (A 3l)

H84 = i
βR

µs
+ (m+ 1)γM2

eβω̂, H85 =−(m+ 1)
β

Ts
ω̂ − D(µ′sDWs)

µs
,

H86 =−µ
′
sDWs

µs
, H87 = α2 + β2 − iω̂

R

µsTs
, H88 =−Dµs

µs
.

 (A 3m)

Components of the vector g(xp, y, zp) are:

g1 = g3 = g5 = g7 = 0, g2 =−F̄px(xp, y, zp)
R

µs
,

g4 = F̄py(xp, y, zp)+ O(R−1),

 (A 4a)

g6 = −RPr

µs
{σ Q̄p(xp, y, zp)+ (γ − 1)M2

e [(Up(xp, y, zp)− Us)F̄px(xp, y, zp)

+Vp(xp, y, zp)F̄py(xp, y, zp)+ (Wp(xp, y, zp)−Ws)F̄pz(xp, y, zp)]} (A 4b)

g8 =−F̄pz(xp, y, zp)
R

µs
, (A 4c)

where

F̄px = CD
ρs

2
Vrel(Up − Us)π, F̄py = CD

ρs

2
VrelVpπ, F̄pz = CD

ρs

2
Vrel(Wp −Ws)π, (A 5)

Vrel =
√
(Up − Us)

2 + V2
p + (Wp −Ws)

2, (A 6)
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σ = 1
rpPrR

, (A 7)

Q̄p = Nu2π(Tp − Ts). (A 8)
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