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It is well-known that in a dense, gravity-driven flow, large particles typically rise to
the top relative to smaller equal-density particles. In dense flows, this has historically
been attributed to gravity alone. However, recently kinetic stress gradients have been
shown to segregate large particles to regions with higher granular temperature, in
contrast to sparse energetic granular mixtures where the large particles segregate to
regions with lower granular temperature. We present a segregation theory for dense
gravity-driven granular flows that explicitly accounts for the effects of both gravity
and kinetic stress gradients involving a separate partitioning of contact and kinetic
stresses among the mixture constituents. We use discrete-element-method (DEM)
simulations of different-sized particles in a rotated drum to validate the model and
determine diffusion, drag, and stress partition coefficients. The model and simulations
together indicate, surprisingly, that gravity-driven kinetic sieving is not active in these
flows. Rather, a gradient in kinetic stress is the key segregation driving mechanism,
while gravity plays primarily an implicit role through the kinetic stress gradients.
Finally, we demonstrate that this framework captures the experimentally observed
segregation reversal of larger particles downward in particle mixtures where the
larger particles are sufficiently denser than their smaller counterparts.

Key words: granular media, mixing, multiphase and particle-laden flows

1. Introduction

Sheared mixtures of different-sized particles segregate into a wide range of
segregation patterns, the complexity of which often defies the apparent simplicity
of the conditions under which they occur: from relatively simple experimental flows
in a shear cell (May et al. 2010a; May, Shearer & Daniels 2010b), in an inclined
plane flow (Savage & Lun 1988; Gray & Thornton 2005; Gray & Chugunov 2006),
and in a rotated drum (Hill, Caprihan & Kakalios 1997; Khakhar, McCarthy & Ottino
1997; Hill et al. 1999; Shinbrot & Muzzio 2000; Taberlet, Losert & Richard 2004),
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to relatively complex geophysical flows in a riverbed (Dietrich et al. 1989; Paola &
Seal 1995) and in a debris flow (Stock & Dietrich 2006; Hsu, Dietrich & Sklar 2008;
Yohannes et al. 2010). The details of the segregation dynamics depend on several
factors. Gravity has long been known to drive sorting of different types of particles
(depending on relative size, density, etc.) (Donald & Roseman 1962; Bridgwater 1976;
Williams 1976). Other mixture kinematics are important as well, such as gradients
in granular temperature (i.e. the random kinetic energy of the particles) (Jenkins &
Mancini 1987; Xu, Louge & Reeves 2003; Galvin, Dahl & Hrenya 2005), similar to
gradients in kinetic stress (Fan & Hill 2011b), and solid fraction gradients (Hill &
Fan 2008). Even the average solid volume fraction of the mixture can be significant:
in a sparse sheared mixture of different-sized particles, the smaller particles move
along a granular temperature gradient to regions of higher granular temperature;
while in a dense sheared flow, the smaller particles segregate to regions of lower
granular temperature (Fan & Hill 2011a,b). When segregation dynamics combine
with other system details such as advection and diffusion (e.g. Hill et al. 1999), the
segregation patterns that emerge can be even more complex. We focus here on the
dynamics associated with the unmixing of particles in dense sheared gravity-driven
flows, applicable to a wide range of systems of variable boundary conditions and
advective flow patterns.

Much work has been done using kinetic theory (e.g. Jenkins & Mancini 1987;
Xu et al. 2003; Galvin et al. 2005) to explain/predict segregation in sparse flows as
the behaviour varies with particle size and density and kinematics such as granular
temperature gradients. Unfortunately, in dense sheared flows enduring contacts and
longer-range forces limit the applicability of kinetic theory. There is not yet an
analogous physics-based framework for predicting segregation in dense sheared
flows, although significant efforts have been made in extending kinetic theory to
denser granular flows (Arnarson & Jenkins 2000, 2004; Galvin et al. 2005; Larcher
& Jenkins 2009a,b, 2010, 2013). In this paper we focus on segregation in dense
gravity-driven flows of different-sized particles with equal material density where,
upon shearing, the large particles are often found at the top of the mixture.

The focus of modelling efforts of segregation in denser gravity-driven flows has
been largely associated with gravity as the driving force. In most cases, large particles
in the granular mixtures will rise in the opposite direction to gravity, toward a free
surface in gravity-driven flows, while small particles sink. This phenomenon is often
referred to as ‘reverse grading’ in certain geophysical problems (e.g. Middleton &
Hampton 1976; Naylor 1980; Hill, DellAngelo & Meerschaert 2010a; Yohannes et al.
2010). Several mechanisms have been proposed for gravity-driven segregation of
high solid fractions of different-sized particles (e.g. Savage & Lun 1988; Alonso,
Satoh & Miyanami 1991; Dolgunin & Ukolov 1995; Gray & Thornton 2005; Gray
& Chugunov 2006).

Historically, this size-dependent segregation is often associated with two
simultaneous processes dubbed by Savage & Lun (1988) as ‘kinetic sieving’ and
‘squeeze expulsion’. Essentially, gravity pushes all particles in one direction, but
the structure associated with the high packing fraction prevents most particles from
responding. Statistically, in a mixture of different-sized particles it is more likely that
small particles will find holes sufficiently large for them to enter. As the mixture
is excited and the particles shift, holes of different sizes open and close, giving the
small particles opportunities to drop downward via what is referred to as a ‘kinetic
sieving’ mechanism. A higher shear rate results in a more frequent availability
of holes and thus a higher segregation rate. Mass balance is achieved when the
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downward-migrating smaller particles squeeze the larger particles upward via Savage
& Lun (1988)’s ‘squeeze expulsion’ mechanism. Savage & Lun (1988) developed a
detailed statistical model to predict segregation trends based on this process.

More recently, Gray & Thornton (2005) and Gray & Chugunov (2006) have
developed a continuum framework for this process based in part on mixture theory
(which they later expanded into a theory incorporating multiple particle sizes (Gray
& Ancey 2011)). In this model, the focus of the segregation mechanism is on the
gradient in ‘lithostatic pressure’ induced by gravity. Thus, the model has the advantage
of explicitly including gravity in the framework, although reference to an explicit
dependence of segregation on shear rate is eliminated. The segregation mechanism is
represented by the partitioning of pressure among the different species. The constituent
which bears more of the stress relative to its local concentration moves to lower
lithostatic pressures and the other constituent moves to higher pressures. With some
assumptions about the pressure partitioning for a flowing bidisperse mixture, uniform
in all directions but y, the segregation flux and segregation evolution equations take
the form:

φi
(
vi − v)= φi

(
1− φi

)
q+

[
−D

∂φi

∂y

]
, (1.1a)

∂φi

∂t
+ ∂

∂y

(
φi
(
vi + (1− φi

)
q
))+

[
− ∂
∂y

D
∂φi

∂y

]
= 0, (1.1b)

q= A
dp
dy
. (1.1c)

In these equations φi and vi are the concentration and normal velocity of constituent
i; v is the normal velocity of the mixture; D is a diffusion coefficient; q represents
a maximum segregation velocity where dp/dy is a pressure gradient associated with
gravity and A contains some information about the stress partitioning and a linear
drag coefficient. The bracketed terms involving diffusion were added to the original
Gray & Thornton (2005) work by Gray & Chugunov (2006). For the purpose of the
mathematical development in those papers, A and D were assumed constant. This
framework has been shown to be effective in reproducing segregation trends in simple
and complex granular flows by, for example, Wiederseiner et al. (2011), Thornton
et al. (2012) and Weinhart, Luding & Thornton (2013). However those studies have
also provided evidence that some details are not fully captured by the model.

Subsequent work has suggested specific modifications to this general framework
to better capture the discrepancies between model and data. May et al. (2010a,b)
considered the effects of a non-constant shear rate on the Gray–Thornton–Chugunov
model in the form of a shear-rate-dependent maximal segregation rate A(dp/dy)∝ γ̇
and found that the model captured features of mixing and segregation in an
experimental shear cell. Marks & Einav (2011) showed that such a shear-rate-
dependent form of the Gray–Thornton–Chugunov segregation model captured
segregation well in a gravity-driven system modelled with a cellular automaton model.
Weinhart et al. (2013) demonstrated that the linear drag law contained within A of
the original Gray–Thornton–Chugunov framework may not be sufficient for capturing
the drag in the system, which appeared to vary with time. Marks, Rognon & Einav
(2012) derived an alternative form for the segregation term, φi(1 − φi)A(dp/dy)
in (1.1a) and (1.1b). They partitioned the stresses explicitly according to particle size
ratio; they derived a shear-rate-dependent segregation velocity, and they extended the
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model to continuously varying particle size distributions. They demonstrated that their
new model captured segregation dynamics in a simulated polydisperse mixture.

As effective as the framework captured by (1.1a) and (1.1b) is at representing
segregation of large particles upward, it is limited to representing cases where the
segregation magnitude and the relative segregation direction is known a priori. Recent
variations (e.g. those of May et al. 2010a,b; Marks & Einav 2011; Marks et al. 2012)
allow for variation of magnitude of segregation, but without consideration of how
shear rate gradients might affect the direction of segregation. The magnitude of
shear rate appears in some models for segregation in dense sheared granular flows
(e.g. Savage & Lun 1988; May et al. 2010a,b; Marks & Einav 2011; Marks et al.
2012). However, it only mediates the rate at which segregation occurs. The effects of
shear rate gradients on the segregation direction have generally not been considered
in segregation models for dense systems. There are cases in which large particles
(of density greater than or equal to the smaller particles) sink in dense sheared
flows (e.g. Williams 1963; Félix & Thomas 2004; Jain, Ottino & Lueptow 2005;
Hill et al. 2010b). In some of these cases, the large particles segregate to some
intermediate height in a mixture, i.e. they sink partway in a mixture, depending
on their initial location (e.g. Félix & Thomas 2004; Jain et al. 2005; Hill et al.
2010b). We hypothesize that this ‘tunable’ segregation is associated with certain flow
dynamics acting simultaneously with gravity, specifically those associated with shear
rate gradients.

Recently, we demonstrated that dynamics associated with shear rate gradients can
also drive segregation in dense sheared systems (Fan & Hill 2011a,b). Specifically,
in a vertical chute with roughened walls, large particles tend to segregate along shear
rate gradients toward regions of highest shear rate and highest granular temperature
(velocity fluctuations). This is consistent with early results of Stephens & Bridgwater
(1978) and Foo & Bridgwater (1983). However, the segregation trends contrast with
results from many authors (e.g. Leighton & Acrivos 1987a,b; Abbott et al. 1991,
Krishnan, Beimfohr & Leighton 1996; Conway, Liu & Glasser 2006) on segregation
in sparser dry granular systems and suspensions, in which large particles segregate
to regions of lowest shear rate and lowest granular temperature. In this vertical chute
configuration, gravity is acting in the direction normal to the segregation so it plays
no direct role in the segregation process.

We recently developed a hydrodynamic model for shear-induced segregation of
mixtures of different-sized particles in dense sheared flow (Fan & Hill 2011b).
Specifically, we showed how gradients in kinetic stresses that arise from a shear
rate gradient in combination with a kinetic sieving mechanism will segregate large
particles to regions of high granular temperatures and small particles away from them.
This model for shear-induced segregation is complementary to that of gravity-driven
segregation developed by Gray & Thornton (2005), Gray & Chugunov (2006). The
models represent different phenomena that coexist in many systems, particularly those
of free-surface gravity-driven flow commonly used to investigate segregation effects
in granular mixtures. The model in Fan & Hill (2011b) shows that the kinetic stress
mechanism can affect the direction of segregation. The results motivate the question
as to how the two sets of mechanisms – those associated with gravity and those
associated with a shear rate gradient – work together in a system where both gravity
and shear rates may simultaneously drive segregation in a dense granular system.

In this paper we address this question and provide a more complete model
of segregation in dense gravity-driven granular flows. Specifically, we consider
segregation of particles in flows where both pressure gradients induced by gravity and
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kinetic stress gradients induced by a non-uniform shear rate coexist in the direction of
segregation. In § 2, we present our theory and show how the addition of gravity to the
model in Fan & Hill (2011b) changes the form of predicted segregation fluxes. In § 3,
we present the basic details of the discrete-element-method (DEM) that simulations
we use to investigate the theory applied to particles segregating in a rotated drum. In
§ 4, we present kinematics and dynamics in five different simulated granular mixtures
in a rotated drum and in doing so, summarize the details the model should capture.
Then, in §§ 5 and 6, we investigate the results from the different mixtures to validate
the model and to understand what dynamics drives segregation differences from one
mixture to the next. In particular, in § 5 we derive the stress partition coefficients as
they vary with mixture concentration. In § 6, we first use the simulations to obtain
drag and diffusion coefficients for our mixtures and compare them with analogous
coefficients in related work, and we then compare model predictions with simulation
results for all five mixtures throughout the segregation process. In § 7 we consider
the generalization of this theory to other systems and other mixtures, and some next
steps that are needed for further improving the model. In the last section, we present
our conclusions with some directions for future work.

2. Theory
In this section we briefly outline our theoretical model for the segregating effects

of gravity and shear rate gradients in dense gravity-driven sheared flows. Our model
concerns binary mixtures of different-sized spherical particles with the same material
density ρm. We denote bulk Eulerian properties of each species with superscripts
and those of the mixture of both species together as variables without superscript.
For example, we represent the local volume fraction filled with particles of species
i by f i; therefore, the local bulk mass density of species i, ρ i = ρmf i. We denote the
concentration of species i by φi ≡ f i/f which satisfies

∑
φi = 1. The average local

density of the mixture ρ =∑ ρ i and the average local velocity u=∑ uiφi.

2.1. Conservation equations for gravity-driven mixtures
We first consider conservation of mass and momentum for the mixture when subjected
to gravity:

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

∂

∂t
(ρu)+∇ · (ρu⊗ u) = ∇ · σ + F. (2.2)

Here, σ represents the stress tensor, and F represents body forces. Since our mixture
is subjected to gravity, F= ρg, where g is the gravitational acceleration vector.

We consider systems in which the mixture kinematics reach steady state long
before segregation and set ∂ρ/∂t, ∂(ρu)/∂t= 0. We perform ‘Reynolds decomposition’
(Schlichting 1979) and set each variable q at position r equal to a sum of the local
temporal average ξ(r) and the difference between its instantaneous and average values
ξ ′(r, t) = ξ(r, t) − ξ . Considering this, we rewrite the momentum equation (2.2) for
the j-direction as

∑

k

∂

∂xk

[
(ρ + ρ ′)(uj + u′j)(uk + u′k)

]=
∑

k

∂

∂xk
(σ jk + σ ′jk)+ Fj + F′j. (2.3)
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Here, Fj + F′j = ρgj + ρ ′gj. We average the results in the context of relatively simple
pseudo-two-dimensional systems such as in an inclined chute flow or in the centre of
the thin flowing layer of granular materials rotated in a narrow drum. The average
flow is primarily in one direction, the x-direction; the flow is nearly uniform in the x-
and z-directions; and segregation occurs primarily in the third direction, the y-direction.
The average flow direction is inclined at an angle θ to the horizontal, so that gy =
g cos θ , where g= |g|. We take the average of both sides of (2.3), and assume that
temporal correlations between velocity fluctuations and densities are negligible, i.e.
(∂/∂xk)(ujρ ′u′k), (∂/∂xk)(ukρ ′u′j), (∂/∂xk)(ρ ′u′ku

′
j)≈ 0. Then conservation of momentum,

(2.3), in the y-direction may be simply expressed by:

∂ρv′v′

∂y
= ∂σ yy

∂y
+ ρg cos θ. (2.4)

In this equation, −ρv′v′ is often referred to as a Reynolds stress component
(Schlichting 1979; Campbell 2002), though we follow Chikkadi & Alam (2009)
in their use of the term in the context of granular flows and denote σ k

yy = ρv′v′ as a
kinetic stress, superscript k denoting ‘kinetic’. We also note that for dry macroscopic
particles, the normal contact stress will be solely compressive, whereas in the standard
sign convention for σ (e.g. Batchelor 1967) positive normal stresses such as σ yy are
positive only for tensile, and negative for compressive stresses. We therefore define a
contact stress tensor σ c =−σ , superscript c denoting ‘contact’, so that terms such as
σ c

yy are positive for our problem. Then we rewrite (2.4) as:

∂σ c
yy

∂y
+ ∂σ

k
yy

∂y
= ρg cos θ (2.5)

which indicates that the sum of the gradients in contact and kinetic stresses supports
the normalized weight of the particles.

2.2. Conservation of mass and momentum for species in a mixture
Next, we derive the conservation laws for each of the two species in the mixture using
much of the notation from mixture theory (e.g. by Morland 1972, 1978, 1992):

∂ρ i

∂t
+∇ · (ρ iui) = 0, (2.6)

∂(ρ iui)

∂t
+∇ · (ρ iui ⊗ ui) = ∇·(σ i)+ Fi + β i. (2.7)

Here, all of the terms used for species i are identical in form to those used for
the mixture in (2.2), with the exception of the new term β i, which represents the
interaction force exerted on species i by the other species; σ i is the local stress borne
by species i, and the total stress σ =∑ σ i. By performing Reynolds decomposition
and then averaging both sides of (2.7) we may rewrite (2.7) in the y-direction as

∂σ c,i
yy

∂y
+ ∂σ

k,i
yy

∂y
= β i

y + ρ ig cos θ. (2.8)

Since all terms in (2.5) and (2.8) are averaged, from this point on we drop the overbar,
so that unless noted otherwise, for each variable, ξ refers to the average ξ .
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We follow the suggestion of Gray & Thornton (2005), Gray & Chugunov (2006)
and allow for the partitioning of both kinetic and contact stresses between the large
and small particles to deviate from their concentrations, i.e. σ c,i

yy 6= φiσ c
yy and σ k,i

yy 6=
φiσ k

yy. Instead:
σ c,i

yy =ψ c,iσ c
yy and σ k,i

yy =ψ k,iσ k
yy, (2.9a,b)

where we explicitly define the normal contact and kinetic stress partition coefficients
as ψ c,i and ψ k,i respectively. Here, ψ c,i and ψ k,i are not necessarily equal to φi, nor
equal to one another. To ensure that

∑
i σ

c,i
yy = σ c

yy and
∑

i σ
k,i
yy = σ k

yy two constraints
must be satisfied: (i) that ψL+ψS= 1 (here, and from this point forward, superscripts
S and L refer to quantities associated with the small and large particles, respectively),
and (ii) if only one species is present then it must support the entire local stress, so
that when φi= 1, ψ c,j=ψ k,j= δij, where δij is the Kronecker delta function. Otherwise,
we do not specify a functional form for either and investigate their calculated values
in our DEM simulations in § 3.2.

For the interaction term β i
y, we propose a similar form to that proposed by Gray &

Chugunov (2006) for granular mixtures and for flow through porous media provided
by Morland (1992):

β i
y = σ c

yy
∂

∂y
ψ c,i + σ k

yy
∂

∂y
ψ k,i − ρ icD(v

i − v)− ρd
∂φi

∂y
. (2.10)

The first two terms on the right-hand side of the equation ensure that the kinetic
sieving processes are driven by intrinsic rather than partial stress gradients. The third
term is effectively a linear drag law, where cD is the linear drag coefficient. The fourth
term acts as a ‘remixing force’ along gradients in the concentration of each species,
where d is analogous to a linear diffusion coefficient.

Combining (2.8)–(2.10) with (2.5), we can express a normalized form of the
segregation flux of species i, Φ i

T ≡ φi(vi − v), as:

Φ i
T ≡ [φi(vi − v)]T =Φ i

σk +Φ i
g +Φ i

d, (2.11)

where

Φ i
σk =

(ψ c,i −ψ k,i)

cD

1
ρ

∂σ k
yy

∂y
, (2.12a)

Φ i
g =

(φi −ψ c,i)

cD
g cos θ, (2.12b)

Φ i
d = −

d
cD

∂φi

∂y
. (2.12c)

This expression for the flux suggests that there are three ‘forces’ dictating the
segregation behaviour. The first is controlled by the gradient in the kinetic stress of
the mixture and the difference between the two stress partition coefficients. For a
qualitative picture of the segregation process dictated by this term, we consider that
the kinetic stress scales similarly to the granular temperature (e.g. Fan & Hill 2011b).
A constituent that bears more kinetic stress might be considered more mobile and
more likely to find spaces or vacancies to move away from the high-temperature
region, somewhat like ‘kinetic sieving’ of the particles to the cooler region. On
the other hand, a constituent that bears more contact stress is physically pushed
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by interparticle contacts to a region of lower contact stress and higher temperature,
somewhat like ‘squeeze expulsion’ in the qualitative balance of movement induced
by kinetic sieving suggested by Savage & Lun (1988).

The second term in (2.11) is the mechanism associated with gravity, specifically
the pressure gradient induced by gravity. If a species supports a higher fraction of
the contact stress than its local concentration, the species moves in the direction
opposite to gravity, toward the free surface. A physical picture of the segregation
effect associated with this term might most easily be envisioned for systems where
the kinetic stress is minimal. In this case, normal contact stress in the mixture
should be approximately equal to the lithostatic pressure that increases with distance
from the free surface, so each particle experiences a normal stress (or pressure) that
increases with distance from the free surface. If this stress is equally partitioned
among constituents, the pressure gradient exactly balances the weight of the particles
and there is no segregation associated with this term. However, if one constituent
supports a higher percentage of the normal stress than its concentration in the mixture,
the stress gradient in the direction normal to the free surface across each particle in
that species will push it upward. Similarly, if one species supports a lower percentage
of the normal stress, the weight will not be balanced by the gradient in normal stress
and it will sink. This term is closest to the segregation term in the model developed
by Gray & Thornton (2005) and Gray & Chugunov (2006).

The third term in (2.11) is akin to a diffusion force. It is significant only when
there is a concentration gradient of that species. Like normal Fickian diffusion with
diffusion coefficient d/cD, this term results in a segregation flux in the direction
opposite to that of the concentration gradient of a particular species, and thus serves
to limit the degree of local segregation.

Equation (2.11) is similar to that which Gray and colleagues derived for binary
mixtures with a couple key differences. Specifically, in Gray & Chugunov (2006) the
equivalent form would read:

φi(vi − v)= φ
i −ψp,i

cD
g cos θ − d

cD

∂φi

∂y
, (2.13)

where ψp,i is the coefficient of partial pressure, or total normal stress, borne by species
i. They propose that in its simplest form this coefficient could take the form

ψp,L = φL + bφLφS, (2.14a)
ψp,S = φS − bφLφS, (2.14b)

where i=L or S for large or small particles, respectively, and b is a positive unknown
model parameter. Then, their model predicts

φL(vL − v) = −bφLφS

cD
g cos θ − d

cD

∂φi

∂y
, (2.15a)

φS(vS − v) = bφLφS

cD
g cos θ − d

cD

∂φi

∂y
(2.15b)

for the segregation flux of large and small particles, respectively. This form has a clear
advantage in its elegantly simple predictive form for segregation fluxes. However, the
expressions for the partition coefficients are untested. As discussed in the introduction,
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other groups have suggested other forms for the partition coefficients, the drag law,
and other details, though the essence is arguably similar to (2.13).

Since there is no distinction between contact and kinetic stresses in the Gray–
Thornton–Chugunov model framework, compared to our (2.11), equation (2.13)
is missing a term that scales with the kinetic stress gradient. Given that kinetic
stresses are typically minimal in dense sheared systems, it is not at first clear that
their gradients should be significant, particularly compared to the gravity term. We
investigate this issue and related questions in the following sections.

Here, we make no initial assumptions or approximations for the forms of the stress
partition coefficients and, rather, use simulations to investigate their dependence on
mixture concentrations and the associated relative importance of the terms in (2.11).
In the following sections, we test the plausibility of the theory presented in (2.11) and
(2.12), in particular, the relative importance of the driving force associated with the
kinetic stress gradient Φ i

σk (2.12a) using DEM simulations of granular mixtures. We
also investigate the variability of the associated linear diffusion and drag coefficients,
d and cD, and the stress partition coefficients ψ c,i and ψ k,i.

3. Discrete-element-method (DEM) simulations
We test our theory using DEM simulations, first introduced by Cundall & Strack

(1979), of mixtures of different-sized spherical particles in a thin rotated drum.
The boundary conditions and mixtures are similar to those described by Hill &
Zhang (2008), where we demonstrated a good agreement between simulations and
experimental measurements. We use a nonlinear soft sphere contact force model. As
is common, the particle deformations resulting from particle–particle contacts are
represented by small overlaps between particles and related to interparticle forces.
The model we use follows Hertz–Mindlin contact theory with damping components
related to the coefficient of restitution as developed by Tsuji, Tanaka & Ishida (1992)
and Coulomb sliding friction:

Fn =−knδ
3/2
n − ηnδ

1/4
n δ̇n, (3.1)

Ft =min
{−ktδ

1/2
n δt − ηtδ

1/4
n δ̇t, µFn

}
, (3.2)

where Fn and Ft are the contact forces in the directions normal and tangential to
the contact plane between two contacting particles, δn and δt are the corresponding
deformations, and µ is the coefficient of friction. The coefficients in the force model
are related to material properties of the two contacting particles as presented in table 1.
Since the two species differ only in mean size, and the behaviour of the flowing
particles is relatively independent of particle property (e.g. Larcher & Jenkins 2009a)
the choice of material properties is arbitrary. Here, we chose values similar to granite
for the particles (e.g. Ide 1935; Simmons & Brace 1965). We specify these in table 2.

We perform the simulations using the boundary conditions of a circular drum with
curved steel walls (properties specified in table 2). We use periodic boundaries in the
axial direction (no front and back walls in figure 1(a) inset) to eliminate sidewall
segregation effects (e.g. Hill & Zhang 2008). To calculate contact forces between the
particles and the curved drum boundary, we follow the equations in table 1, using
the approximation that the size and mass of the drum walls are infinite (compared to
those of the particles). The drum diameter D= 72 mm; the thickness (periodic length
in the axial direction) is t= 30 mm.

We partially ‘fill’ the drum with binary mixtures of particles of diameter
d = 2 and 3 mm, with a 10 % variability in particle size of each constituent to
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Variable Formulae

kn (4/3)
√

Reff Eeff

kt 8
√

Reff Geff

ηn α
√

meff kn

ηt α
√

meff kt

Reff (1/R1 + 1/R2)
−1

Eeff [(1− ν2
1)/E1 + (1− ν2

2)/E2]−1

Geff [2(1+ ν1)(2− ν1)/E1 + 2(1+ ν2)(2− ν2)/E2]−1

meff (1/m1 + 1/m2)
−1

TABLE 1. Formulae for calculating stiffness and damping coefficients in (3.1) and (3.2).
Subscripts 1 and 2 refer to each of the two particles in contact; α= 0.07, corresponding to
a typical restitution coefficient of 0.9; Ei, νi,mi and Ri are the Young’s modulus, Poisson’s
ratio, mass and radius respectively of particle i.

Material Elastic modulus E (GPa) Density ρ (kg m−3) Poisson’s ratio ν

Granite (particles) 29 2650 0.15
Steel (drum walls) 210 7850 0.3

TABLE 2. Material properties of particles and drum walls in DEM simulations. Coefficient
of friction µ= 0.4 for particle–particle interactions and 0.3 for particle–drum interactions.

minimize potential crystallization. To prepare each system, we release a random
array of the binary mixture into the drum and rotate the drum at a speed of
ω≈ 16 rotations per minute (r.p.m.). The flow dynamics reach steady state relatively
quickly (see figure 1a). At this speed the flowing layer is inclined at an angle of
θ ≈ 30◦ (figure 1a) relative to the horizontal.

We study the segregation dynamics for five different concentrations of large
particles (by volume) in the mixture: 10 %, 25 %, 50 %, 75 % and 90 %. We run
three simulations for each mixture with different initial random configurations of
particles. We calculate kinematics and stresses throughout each simulation as briefly
described in §§ 3.1 and 3.2. We average over the results from the three simulations
for each condition, over relatively short times in the segregation process (typically
0.5 s intervals), and over relatively small spatial bins (typically ≈10 mm wide ×
0.2 mm high), as detailed below.

3.1. Calculations of the kinematics
To calculate the relevant kinematics for this study, we focus on the central 1/7 of the
drum (as indicated in the inset to figure 1a) where the flow is relatively uniform in
the x-direction. We divide this region into equal sized bins in the y-direction of width
1y= 0.2 mm. We calculate kinematic quantities by considering the contribution from
the part of each particle j within a bin of width 1y centred at y (as described, for
example, in Hill, Gioia & Tota 2003). For instance, f n(y) =∑τ [

∑
j Vn

τ j/NVbin] and
vn(y)=∑τ [(

∑
j v

n
τ jV

n
τ j)/(

∑
j NVn

τ j)], where τ refers to the τ th time step of which there
are N, and j refers to the jth particle (of species n) that is partly or fully in this bin

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

27
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.271


64 K. M. Hill and D. S. Tan

40

30

20

10

100

D

x

y

Time (s)

In
cl

in
at

io
n 

(d
eg

.)

20 30

0 4 8

2 mm
3 mm
Mixture

0

10

20

30

40

y 
(m

m
)

0 0.1 0.2 0.3

0

10

20

30

40

y 
(m

m
)

0 0.5 1.0 0 300 600

0

10

20

30

40

y 
(m

m
)

0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4
0 2.5 5.0

0

10

20

30

40

y 
(m

m
)

0 250 500 750

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

d d

FIGURE 1. (Colour online) Some dynamics of a mixture with 50 % 3 mm (large) and
2 mm (small) particles rotated in a thin drum (details in § 3). (a) Evolution of the surface
inclination, determined by locating the top particle in each of 15 vertical bins equally
dividing the drum and applying a least-squares linear fit to their centroids. The inset
indicates the region of the drum (the central 1/7) from which the data presented in (b–g)
are calculated. (b) Solid fraction of each species and the mixture. (c) Velocity of each
species and the mixture parallel and normal to the flow. (d) The velocity variance of
each species and of the mixture. (e) The component of the kinetic stress in the direction
normal to average flow for each species (ρ iv′iv′i) and also for the mixture (

∑
i(ρ

iv′iv′i)).
(f ) Gradient of the kinetic stress of the mixture. (g) Contact and kinetic stresses of the
mixture normal to flow, and lithostatic pressure (weight of overlying particles per unit
area). (h) Close-up of (g) near the top of the flowing layer where the contact and kinetic
stresses are of the same order of magnitude.
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(at time step τ ); Vn
τ j and vn

τ j are the volume and velocity of that particle, respectively,
and Vbin is the total volume of the bin (Vbin = (D/7) t1y, except at the very bottom
where the bins meet the curved drum wall).

3.2. Calculations of the stresses
To calculate the kinematic stress, we follow similar steps to those described for
the kinematic variables described above. We calculate σ k,n

yy (y) = ρnv′nv′n(y) (the
y-component of the normal kinetic stress of species n) by considering the contribution
from the part of each particle j within a bin of width 1y centred at y both to ρn=ρmf n

and to v′nv′n = (vn
τ j − v(y))2 (see Fan & Hill 2011b for details). As specified in § 2.2,

σ k
yy(y)≡

∑
n σ

k,n
yy (y).

To calculate the local contact stress at each position y, we consider each interparticle
contact K in a bin of width 1y centred at y (as in Fan & Hill 2011b). Then, we sum
the stresses associated with each interparticle contact in each region, as in Kuhl et al.
(2000) and Campbell (2002). The contribution from each contact K to the total contact
stress tensor is:

FijK ⊗ l ijK (3.3)

where l ijK is the vector from the centre of particle i to the centre of particle j. So for
the mixture we have:

σ c(y)=

N∑

τ=1

Nc(y,τ )∑

K=1

FijK ⊗ l ijK

NVbin
. (3.4)

Here, FijK is the force of particle i on particle j associated with the Kth contact, of
which there are Nc(y, τ ) in this bin (centred at time step τ . There are N such time
steps.

For each constituent, the contribution of a particular contact between two particles
of the same species to the partial stress of that constituent takes the same form as
specified in (3.3). However the contribution of a contact between disparate particles to
the partial stress tensor of each constituent scales with their relative size. Specifically,
for a contact K between particle i of species n and particle j of species m, the
contribution to the partial stress tensor of species n is:

FijK ⊗ r ijK, (3.5)

where
r ijK = ri

ri + rj
l ijK. (3.6)

We note that this definition is slightly different from that outlined in Fan & Hill
(2011b), where the contact stress contribution was split equally between the two
species regardless of relative size. Equations (3.5) and (3.6) are equivalent to those
shown by Weinhart et al. (2012) to be the only mathematically consistent form for a
different but highly related problem involving stresses shared by boundary particles
and flowing particles. For each collision between disparate particles, this change in
definition results in a higher portion of the collisional stress being attributed to the
larger of the two particles in contact (and a smaller portion to the smaller particle),
which has implications for the form of the partition coefficient as we discuss in § 5.

The total contact stress for constituent n in each bin is the sum of contributions
from contacts between particles of the same species n and from contacts between
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particles of the same species n and particles of disparate species m. In this bin centred
at y:

σ c,n(y)= 1
NVbin

N∑

τ=1

[
Ncn(y,τ )∑

Kn=1

FijKn ⊗ l ijKn +
Ncm(y,τ )∑

Km=1

FijKm ⊗ r ijKm

]
. (3.7)

Here, at time step τ (of which there are N): FijKn is the force of particle i on particle j
associated with the Knth contact (of which there are Ncn(y, τ )) of two particles of the
same species n; FijKm is the force of particle i on particle j associated with the Kmth
contact (of which there are Ncm(y, τ )) of two particles of different species (n and m);
l ijKn is the vector from the centre of particle i to the centre of particle j, and r ijKm is
the vector from the centre of particle i to the centre of particle j, scaled according
to (3.6).

The calculation of contact stress in (3.7) is a relatively common method for
representing the local contact stresses in a granular mixture (e.g. Alam & Luding
2003), though we note that it is not uncommon to apply an additional smoothing of
each contact stress around the corresponding point of contact. Since the choice is
somewhat arbitrary and here we are concerned with segregation trends, we do not
apply any smoothing algorithm to our calculations of bulk contact stresses, which
renders our fields somewhat noisy. We explore the effects of different smoothing
algorithms on our data in a paper that is currently in preparation.

4. Drum simulation results
4.1. Basic dynamics of dense sheared flow in a drum

Figure 1 presents some basic features of the mixture dynamics of a segregating 50/50
mixture of particles in a drum when the particles are still well mixed (e.g. figure 1b).
These results were obtained by averaging over a 500 ms period. (The analogous
kinematics for all mixtures resembles, qualitatively, those shown in figure 1 for the
50/50 mixture.) Here and in the rest of the paper we present the kinematic properties
calculated for the central 1/7 of the drum (as illustrated in the inset to figure 1a)
where the flow is uniform in the streamwise direction. We chose (somewhat arbitrarily)
y = 0 to represent the point at which the total solid fraction of the mixture reaches
0.1 %, coinciding, approximately, with the centre of the drum. As has been previously
described (Bonamy, Daviaud & Laurent 2002; Jain, Ottino & Lueptow 2002; Hill
et al. 2003; Gioia, Ott-Monsivais & Hill 2006), the very top of the flowing layer is
quite sparse but within y ≈ 2–3 particle diameters, the solid fraction of the mixture
nearly reaches its maximum value. In the mixtures we investigate, (e.g. figure 1b), f
reaches its maximum value of ≈0.6 at y ≈ 5 mm. The streamwise average velocity
(figure 1c) is maximum within the sparse region (in figure 1c, at y≈ 2 mm) and drops
nearly to zero within ≈10 particle diameters (y ≈ 20 mm for the data in figure 1c).
Functional forms have been studied in more detail in previous publications (Bonamy
et al. 2002; Jain et al. 2002; Hill et al. 2003; Gioia et al. 2006). The streamwise
velocities are essentially the same for both components as in previous reports (Hill
& Zhang 2008), but the normal velocities are not, more easily seen in the plots of
the normal fluxes, which we present shortly. We identify the dense flowing layer as
the region between where the density has essentially reached a plateau and where the
velocity decreases to zero, 5 mm 6 y 6 20 mm. The sum of the velocity variances, a
measure of the ‘kinematic granular temperature’ (e.g. Hill & Zhang 2008), peaks near
the free surface (figure 1d); while the normal kinetic stress, σ k

yy (figure 1e) peaks a bit
lower, at the top of the dense region, coinciding with the near-plateau in the density
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of the mixture (ρ = ρmf ). It follows that dσ k
yy/dy (figure 1f ) is negative throughout

the dense region of the flowing layer; its peak is only slightly (∼0.1 mm) lower in
the dense flowing layer.

We plot the stresses associated with (2.5), i.e. σ c
yy, σ

k
yy and a lithostatic pressure

p(y)= ρgy cos θ , in figure 1(g,h). Throughout most of the depth, the weight is borne
by σ c

yy, and both σ c
yy and p increase roughly linearly with depth. Only very near the

top surface does σ k
yy comprise a significant fraction of the total local stress. Based

on these observations, it is tempting to discount the influence of the kinetic stress
σ k

yy on the segregating behaviour of the mixture. However, we note that the form
of (2.11) suggests that the segregation term involving the kinetic stress scales with
its gradient, dσ k

yy/dy, and with the difference between the two partition coefficients,
(ψ c,i − ψ k,i). While σ k

yy may appear negligibly small, its gradient and the difference
between ψ c,i and ψ k,i are not necessarily insignificant, and hence the contribution from
kinetic stress effects should not be neglected automatically.

4.2. Segregation behaviours
Figure 2 shows the segregation kinematics of the 50/50 mixture near the beginning
and end of segregation. For the first row (figure 2a–c), the data are averaged over the
second 0.5 s of rotation, after the initial transients have dissipated. At this stage, the
constituents are well-mixed (figure 2a,b), and the vertical flux f i1vi= f i(vi− v) is the
greatest (figure 2c). In the dense region, the large particles have a negative flux and
segregate upward toward the free surface. This relative segregation flux is greatest near
the centre of the dense flowing layer. Snapshots of the particles in the centre of the
dense flowing layer are shown in figure 2(d–f ) as the segregation progresses. Vertical
segregation in the flowing layer is frozen into a radial segregation pattern as illustrated
in figure 2(g,h). Somewhat later in the simulation, a snapshot of the mixture (figure 2i)
and the plot of the solid fractions of the components (figure 2j) show the constituents
to be well-segregated. At this time, the flux (figure 2k) has dropped nearly to zero
everywhere.

We plot the most striking details of these segregation dynamics for all mixtures
in figure 3. Specifically, for each, we include a snapshot of the near steady-state
segregation patterns in row (a), the corresponding plot of the solid fractions f i in
row (b), and the early-time segregation fluxes f i1vi in row (c). In all cases, the large
particles segregate upward in the flowing layer and toward the outside of the drum.
However, the details vary slightly from one to the next in terms of the flux magnitudes
and relative concentrations of the two constituents as they vary with time.

To monitor the time dependence of the segregation, in figure 3(d) we plot a measure
of the segregation, namely the standard deviation of mean concentration S of the large
particles, as a function of time (t):

S(t)=
√√√√

Nbin∑

j=1

(φL
j (t)− 〈φL〉)2(t)/(Nbin − 1), (4.1)

where Nbin ≈ 185 is the number of bins in the y-direction, φL
j is the concentration

of large particles in bin j, and 〈φL〉 is the global concentration of large particles in
the system (e.g. 0.5 in the 50/50 mixture). In all cases, S vs. t is fitted well by the
function:

S∗(t)= Sf − So exp
(
− t− td

τc

)
, t> td, (4.2)
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FIGURE 2. (Colour online) (a–c) Details of a 50/50 mixture in a drum near the beginning
of the simulation (t = 0.5–1 s) when the constituents are well-mixed: (a) a snapshot;
(b) solid fraction f i profile of each constituent i and the mixture; (c) vertical flux profile
f i1vi= f i(vi− v) of each constituent. (d–f ) Snapshots from the central part of the flowing
layer in the simulations, denoted by the dashed box in (a): (d) initial state; (e) 5 s into the
simulation; (f ) the steady segregated state of the system. (g,h) Sketches illustrating how
the segregation in the top flowing layer is recorded into a radial segregation pattern in the
solid-like granular materials in the majority of the drum (from Hill, Gioia & Amaravadi
2004). (i–k) Details from the same simulation, after ≈30 s of rotation (t = 29.5–30 s),
when segregation has essentially reached steady state. Corresponding to (a–c), (i) shows a
snapshot, (j) solid fraction profile of each constituent and the mixture, and (k) vertical flux
profile of each constituent. As in figure 1, the plotted data are calculated from the middle
1/7 of the drum (as illustrated in the inset of figure 1a), and obtained by averaging over
a 500 ms period.

where Sf represents the value of S at steady state; Sf − So is the average initial
segregation value (calculated by averaging the data from t=0.5 to 1.0 s); td represents
a ‘delay time’, that is, an initial (transient) time before the segregation is apparent
in the concentration variations in the centre of the drum (∼1–2 s), and τc represents
the time constant associated with the rate of segregation. The fitting coefficients
(Sf , So, td and τc) associated with each concentration are shown in table 3. In all cases,
segregation is well-underway by τc≈ 5–6 s, and nearly finished by 3τc≈ 15–18 s, so
we terminate our simulations at t= 30 s.
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〈φL〉
0.10 0.25 0.50 0.75 0.90

Sf 0.12 0.26 0.40 0.38 0.29
So 0.06 0.18 0.32 0.31 0.25
td (s) 1.05 1.05 1.05 1.63 1.89
τc (s) 5.00 4.55 5.00 6.25 5.56

TABLE 3. Values of fitting coefficients for S∗(t)= Sf − So exp(−(t− td/τc)) for the data
associated with each mixture (plotted in figure 3d).

5. Evolution of stress partition during segregation

To evaluate the magnitude of the shear-driven and gravity-driven segregation
‘driving forces’ in (2.11) (i.e. Φ i

σk and Φ i
g, in (2.12a,b)), we investigate the evolution

of the stresses and the stress partition coefficients in the 50/50 mixtures as segregation
evolves. We focus our discussion primarily on the mixture with 50 % by volume each
of small and large particles, as the qualitative details are similar for all mixtures.
In figure 4 we plot profiles of the concentrations of the constituents φi(y), profiles
of the contact stresses σ c,i(y) associated with each constituent and the mixture,
and profiles of the kinetic stresses σ k,i(y) associated with each constituent and the
mixture near the beginning of the simulation and at t = τc, 2τc and 3τc. At early
times, t = 0.5–1 s, when the system is well-mixed (figure 4 top row), σ c,i(y) for
both constituents increases essentially linearly with depth, and in fact, σ c(y) is shared
equally at every depth y (σ c,L(y) ≈ σ c,S(y)). In contrast, at these early times, σ k,i(y)
is not the same for the two constituents, and visual inspection indicates that at every
depth, σ k,S(y) > σ k,L(y). As the segregation evolves, the results for t = τc, 2τc and
3τc indicate that the degree to which each constituent bears the kinetic and contact
stresses evolves with the concentration, as it should: the higher the concentration of
one constituent, the larger the percentage of the total stress it bears. For example, at
depths where there are very few large particles (e.g. at t= 3τc from y≈ 10 to 20 mm
where φL(y) ≈ 0 and φS(y) ≈ 1), σ k,S(y) ≈ σ k(y) and σ c,S(y) ≈ σ c(y), as one might
trivially expect. For intermediate values of φS(y) and φL(y) (that is, not close to 0,
0.5, or 1), the relative partitioning of the stresses is not so obvious from these stress
plots alone.

To better visualize the spatially resolved partitioning of the contact and kinetic
stresses between the constituents relative to their concentrations φi, we introduce
two new variables, Rc,i = ψ c,i/φi and Rk,i = ψ k,i/φi, as relative stress partition
coefficients. In figure 5(a), we have plotted profiles of Rc,i at each of the four time
steps investigated in figure 4. At early times (t= 0.5–1 s and t= τc), Rc,L ≈ Rc,S ≈ 1.
At later times (t= 2τc, 3τc) there is much more scatter particularly for Rc,L =ψ c,L/φL

where, for most of the depth, ψ c,L ≈ φL ≈ 0 so that a very small fluctuation in φL

leads to a relatively large fluctuation in Rc,L.
To better reveal the trend throughout the segregation process, in figure 5(b), we

include parametric plots of ψ c,i as a function of φi for the entire flowing layer except
the very topmost sparse part (2 mm 6 y 6 20 mm). These plots are somewhat noisier
for the earlier times for all but φi ≈ 0.5, probably because the sample size of points
within the dense flowing layer where φi 6= 0.5 is small. Otherwise, these plots indicate
that for all times

ψ c,i ≈ φi. (5.1)
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FIGURE 4. (Colour online) Concentration, contact and kinetic stresses corresponding to
the 2 mm (small) and 3 mm (large) particles, and the mixture (50 % large particles), at
different stages of segregation (top row: beginning segregation, t = 0.5–1 s; successive
rows at increasing multiples of the time constant: τc, 2τc, 3τc). (a) Concentration of each
species. (b,c) Contact and kinetic stresses normal to flow, of each species and the mixture.
Apart from the first row, the plots were obtained by averaging over a 1 s period.

We note that this is somewhat different from what we reported in Fan & Hill (2011b)
for vertical chute flow, where we found that ψ c,L <φL, and ψ c,S >φS. The difference
appears primarily associated with the different form of (3.5), though when we used the
improved form for the chute flow, we still found ψ c,L−φL to be slightly negative and
ψ c,S−φS to be slightly positive. We are currently investigating whether this difference
is associated with the uncertainty of the system, or if the stress partitioning is indeed
different in the disparate systems.

Figure 5(c,d) shows that the dependence of ψ k,i on φi is somewhat more
complicated. At all depths within the flowing layer except the very sparse top
(2 mm 6 y 6 20 mm) Rk,L 6 1 and Rk,S > 1. In other words, the kinetic stress is
not partitioned exactly according to constituent concentration in the mixture. Rather,
except where φL = 1 or 0, the small particles carry a disproportionate share of the
kinetic stress; ψ k,L <φL and ψ k,S >φS.
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FIGURE 5. (Colour online) Ratios of ψ c,i to φi, and ψ k,i to φi at different stages of
segregation for the mixture with 50 % large particles (top row: beginning segregation,
t = 0.5–1 s; successive rows at increasing multiples of the time constant: τc, 2τc, 3τc).
(a,c) Depth profile of the relative contact and kinetic stress partition coefficients of each
species. Dashed line in the top graph of (a) demarcates the entire flowing layer except
the very top sparsest part (2 mm 6 y 6 20 mm). (b,d) Contact and kinetic stresses
(in the flowing layer only) of each species as functions of corresponding local species
concentration. Apart from the first row, the plots were obtained by averaging over a 1 s
period.

When we plot all data from figure 5(d) of ψ k,i as a function of φi, along with the
set from the final half-second of the simulation for the 50/50 mixture (figure 6a), we
find that the trend is similar throughout the simulation. We fitted a quadratic function
to ψ k,i vs. φi for the data from t= 29.5 to 30 s and obtained the following empirical
relationship:

ψ k,L(φL)≈ 0.39
(
φL
)2 + 0.61φL (5.2a)

and subsequently,

ψ k,S(φS)= 1−ψ k,L(1− (φS))≈−0.39
(
φS
)2 + 1.39φS. (5.2b)

Plotted with the data in figure 6(a), this appears to represent the data fairly well at
all times for the 50/50 mixture. Further, when we plot this with the analogous data for
the other mixtures at late times (t=29.5–30 s) in figure 6(b), we see that the empirical
fit represented by (5.2) represents the data well for all mixtures we simulated.
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FIGURE 6. (Colour online) Kinetic stress ratio ψ k,i as a function of local concentration φi,
in the flowing layer (see dashed line in figure 5a): (a) mixture with 50 % large particles,
at different times during segregation; (b) mixtures of different global concentration, at the
end of each simulation (t≈ 29.5–30 s). The fitted line in both (a) and (b) was obtained
from the mixture with 50 % large particles, at the end of the simulation.

We note that this is similar to the form of the pressure coefficient suggested by
Gray and colleagues (2.14). Here, we could write

ψ c,L ≈ φL + bcφLφS, (5.3a)
ψ k,L ≈ φL + bkφLφS, (5.3b)

with analogous equations (with minus signs) for the small particles. We find for our
mixture that bc= 0 and bk=−0.39. Both our values for b are less than or equal to 0,
unlike the positive value for the analogous total pressure partition coefficient suggested
by Gray and colleagues.

Interestingly, these results with our associated segregation model indicate that the
small particles, not the large particles, carry more of the stress in general, in particular,
the kinetic stress. The result that bc= 0 implies that gravity does not play a direct role
in segregation, only implicitly through setting up the shear flow and associated kinetic
stress gradient.

There is no quantitative explanation for these particular relationships; however the
form of the kinetic stress partition coefficients is consistent with earlier results by Hill
& Zhang (2008) indicating that smaller particles have higher velocity variances than
larger particles in a mixture. Our preliminary calculations indicate that the predictions
from the model for fluctuations from Hill & Zhang (2008) do not deviate significantly
from the empirical fit of (5.2). The details do not affect the model and simulations
described here, so we leave a detailed discussion to a future paper and focus the rest
of this paper on comparing our segregation model to our simulation results.

We now incorporate our findings for the partial stress partition coefficients into
the model summarized by (2.11). Specifically, since we found empirical forms of
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ψ c,i(φi) (≈φi) and ψ k,i(φi) (given by (5.2a,b)), (2.11) predicts that

Φ i
T ≈Φ i

T,σkd ≡Φ i
σk +Φ i

d =
(
φi −ψ k,i(φi)

ρcD

∂σ k
yy

∂y

)
−
(

d
cD

∂φi

∂y

)
. (5.4)

In this equation, we introduce the term Φ i
T,σkd to emphasize that after incorporating

the empirical stress partition coefficients, the total theoretical flux is now made up of
two components: (i) segregation along a kinetic stress gradient ∂σ k

yy/∂y and (ii) the
diffusion term. To obtain an estimate for cD, we return to results from our simulation
data at early times, and, for d, we use late-time results.

6. Model predictions compared with simulation results
In this section, we use the predictions from the model (5.4) in conjunction with

simulation results with two goals in mind: (i) to determine functional forms for the
model parameters cD and d (coefficients of drag and diffusion), and (ii) to evaluate the
effectiveness of the model in capturing the segregation fluxes at all times. Since we
do not have physics-based predictive forms for the model parameters at this time, we
evaluate the parameters cD and d each at one specific time in the segregation process.
We use results from early times to estimate the drag coefficient cD and the results from
later times to estimate the diffusion coefficient d. We then use these to determine the
effectiveness of the model at all times in the simulation.

6.1. Early time simulation results and drag coefficient estimate
Near the beginning of each simulation when t ≈ 0.5–1.0 s, the constituents are still
relatively well-mixed and the mixture is uniform: ∂φi/∂y≈ 0. Based on this, at early
times the segregation flux may be estimated by:

Φ i
T ≈Φ i

T,σk =
φi −ψ k,i(φi)

ρcD

∂σ k
yy

∂y
. (6.1)

We use this to empirically determine cD separately for each of our mixtures.
To do this, for each mixture, we calculate the average simulated segregation flux
profile Φ i

M(y) = φi(y)(vi(y) − v(y)) for t ≈ 0.5–1.0 s (figure 7b). Then, we use
the simulated concentration (figure 7a) and kinetic stress gradient profiles (e.g.
figure 1f ) with (5.2) and (6.1) to calculate Φ i

T,σk(y) cD = (φi − ψ k,i(φi)) ∂σ k
yy(y)/∂y.

We then use these calculations with the method of least-squares fitting to find the
value of cD(φ

L) that minimizes the sum of the squares of the differences between
Φ i

T,σk(y) cD = (φi − ψ k,i(φi)) ∂σ k
yy(y)/∂y and Φ i

M(y) cD for each mixture of global
concentration 〈φL〉. We note that at these early stages, throughout the depth of the
flowing layer, φL(y)≈ 〈φL〉. Thus we make the approximation that for each mixture,
a single value of cD (corresponding to φL = 〈φL〉) is sufficient.

Though only a single value of cD is used for each mixture, the spatial dependence
of Φ i

T(y)= [(φi − ψ k,i(φi))/ρcD]∂σ k
yy/∂y on cD obtained in this way is similar to the

spatial dependence of Φ i
M(y). Here, Φ i

M(y) and Φ i
T(y) obtained in this way may be

compared for each concentration in figure 7(b). The best fit values for cD(φ
L) are

given in table 4 and plotted as a function of 〈φL〉 in figure 8. There is no systematic
variation of cD with concentration, and the variability is relatively small. Thus, for the
purposes of the calculations we present in the rest of this paper, we approximate cD
for all mixtures with a single value, the average of the results from these empirical
fits: 6.3 s−1.
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FIGURE 7. (Colour online) Concentrations and segregation fluxes from the simulations
Φ i

M = φi1vi and segregation fluxes predicted from the model Φ i
T,σk = ((ψ c,i −

ψ k,i)/ρcD)∂σ
k
yy/∂y. All data shown are from the initial stages of the simulations (t =

0.5–1 s) for mixtures with different concentrations. Global concentration of large particles
increases from top to bottom: 〈φL〉 = 0.1, 0.25, 0.5, 0.75, 0.9. (a) Local concentration of
each species. (b) Measured and theoretical fluxes of each species. The drag coefficient
cD is determined with these data, based on least-squares fitting of cDφ

i1vi to ((ψ c,i −
ψ k,i)/ρ)∂σ k

yy/∂y in the dense portion of the flowing layer (typically, y = 5–20 mm, as
denoted with dashed lines in the top graphs). The drag coefficients that best fit the data
are given in table 4 and figure 8.
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〈φL〉
0.10 0.25 0.50 0.75 0.90 —

cD (s−1) 6.6 5.3 6.8 7.4 5.3 6.3
d (m2 s−2) 1.32× 10−5 8.93× 10−6 1.11× 10−5 9.66× 10−6 2.01× 10−5 1.26× 10−5

TABLE 4. Values of the drag coefficient cD and diffusion parameter d, empirically
determined for mixtures with different global concentrations of large particles as detailed in
the text. The last column, the average values of cD and d, are used for later comparisons.

10
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FIGURE 8. (Colour online) Drag coefficient cD found from least-squares fitting of the
model flux data to the simulated flux data is plotted as a function of global concentration
of large particles 〈φL〉. The error bars are derived from the sum of the least squares of
the difference between each value of cDφ

i1vi and ((ψ c,i − ψ k,i)/ρ)∂σ k
yy/∂y in the dense

part of the flow indicated in figure 7, assuming these differences exhibit homoscedascity.
They represent an uncertainty in cD associated with a point-by-point difference between
the theoretical and simulated values of the segregation fluxes.

6.2. Late time simulation results and d estimate
Near the end of the simulation, when t≈29.5–30.0 s (for each mixture), the simulated
segregation flux Φ i

M(y)= φi(y)(vi(y)− v(y))≈ 0. In other words, (5.4) predicts that at
these later times,

Φ i
σk =−Φ i

d. (6.2)

That is,
φi −ψ k,i(φi)

ρ

∂σ k
yy

∂y
= d

∂φi

∂y
. (6.3)

To estimate d, we use the simulated data from each mixture averaged from t≈ 29.5
to 30.0 s, to calculate φi(y) for each mixture (figure 9, row 1) and σ k

yy(y) (e.g. similar
to figure 4(c), row 3). From this, we calculate Φ i

σk(y) and Φ i
d(y)/d for each mixture.

We use these calculations with the method of least-squares fitting to find the value
of d that minimizes the sum of the squares of the differences between the left- and
right-hand sides of (6.3) (see figure 9) for each mixture in the dense portion of the
flowing layer (5 mm 6 y 6 20 mm).
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FIGURE 9. (Colour online) (a) Near-steady-state concentrations φi and (b) a comparison
between the computational and theoretical segregation flux (multiplied by cD). The data
plotted in (b) were calculated according to cDΦ

i
σk = ((ψ c,i −ψ k,i)/ρ)∂σ k

yy/∂y, and cDΦ
i
d =

d∂φi/∂y). Global concentration of large particles increases from top to bottom: 〈φL〉 =
0.1, 0.25, 0.5, 0.75, 0.9. The data were obtained by averaging over a 500 ms period
near the end of the segregation process. The diffusion parameter d was determined by a
least-squares fitting to minimize the difference between the computational and theoretical
segregation flux in the dense portion of the flowing layer (5–20 mm, demarcated with
dashed lines) in the first row. The values found for d in each case are given in table 4
and figure 10.
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FIGURE 10. Diffusion parameter d, found from least-squares fitting of the left- and
right-hand side terms of (6.3), is plotted as a function of global concentration of large
particles 〈φL〉. The error bars are derived from the sum of the least-squares of the
difference between each value of cDΦ

i
σk = ((ψ c,i − ψ k,i)/ρ)∂σ k

yy/∂y, and cDΦ
i
d = d∂φi/∂y

in the dense part of the flow indicated in figure 9, assuming these differences exhibit
homoscedascity. They represent an uncertainty in d associated with a point-by-point
difference between the theoretical and simulated values of the segregation fluxes.

The results from this least-squares fitting may be seen in figure 9(b). While not
as satisfying as those from fitting cD shown in figure 7, the results within the dense
flowing layer are not unreasonable, and the worst breakdowns occur where one would
expect the behaviour to be different at the very top, where the flow is quite sparse
(y< 2 mm) and in the creeping region (y> 20 mm).

The values of d from each mixture are included in table 4, and plotted in figure 10.
Similar to our empirical results for cD, there appears to be no systematic variation of d
with concentration, and, in fact, the variation with 〈φL〉 is rather small. Therefore, for
purposes of the comparisons between simulation and theory in the rest of this paper,
we use the average value of d, 1.26× 10−5 m2 s−2.

6.3. Theoretical predictions and simulation results for the flowing layer: evaluation
during progression of segregation

We now use the average values of cD and d with (5.2) in (5.4) to predict the
segregation flux profiles Φ i

T,σkd(y) at different times for all of our mixtures. We plot
these with the simulated flux profiles Φ i

M(y)= φi(y)(vi(y)− v(y)) in figure 11.
In nearly all cases, the agreement between theoretical flux (with empirically

determined coefficients) and measured fluxes from the simulations are remarkable.
Notable deviations occur for high concentrations of large particles and later times,
particularly near the top of the flowing layer. We hypothesize that this may be due
to our approximation that the coefficients of drag and diffusion are independent of
concentration and other dynamic variables. The diffusion coefficient d in particular
appeared to vary significantly for the mixture with the highest concentration of large
particles 〈φL〉 = 0.90. Indeed, for most of the mixtures, the evaluation of d took place
in a region of the flowing layer where the concentration of small particles was quite
high and the concentration of large particles quite low, so there may be significant
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variability of the diffusion coefficient with concentration that we were not able to
capture with our evaluation. We are currently investigating a more rigorous evaluation
of these coefficients that accounts for dependence on local mixture concentration.

6.4. Comparison with related results
It is informative to compare our model coefficients to those obtained in similar work.
Marks et al. (2012) reported stress partition coefficients ψ c,i/φi that scale with particle
size ratio in the mixture, while for our system the ratio is the same (≈1) for both
constituents. Though it appears that their calculation for collisions involving disparate
particles is a bit different from ours, the different results may also be associated with
the difference between their mixture (polydisperse) and ours (bidisperse). Our contact
and kinetic stress partition coefficients are remarkably similar to those measured in
DEM simulations of an inclined chute flow by Weinhart et al. (2013). In the form
suggested by (5.3a) and (5.3b), we find for our mixture bc= 0 and bk=−0.39, while
Weinhart et al. (2013) obtained values of bc = 0.02 and bk =−0.38.

Both Wiederseiner et al. (2011) (for experimental inclined chute flows) and
Weinhart et al. (2013) (for simulated inclined chute flows) reported values for
a maximum segregation velocity, q = (bc/cD)g cos θ and bc. Wiederseiner et al.
(2011) reported values for q that ranged from ≈1.23× 10−3 to ≈1.99× 10−3 m s−1

that varied non-monotonically with shear rate. Weinhart et al. (2013) found for
their simulations that q started with a maximum value of ≈6.8 × 10−4 m s−1 and
decreased to zero. Our maximum segregation velocity measured for our 50/50 mixture
during the first half-second of rotation was ≈8.1 × 10−4 m s−1, similar to that of
Weinhart et al. (2013), whose mixture was of the same size ratio of ours. The
segregation velocity of Wiederseiner et al. (2011) was a bit higher, a result we might
expect for their higher size ratio.

Our fitted results for cD and d are also similar to published results for slightly
different systems. Wiederseiner et al. (2011) measured values of D = cD/d for
different conditions. Specifically, for an inclination of 29◦, they reported finding
that D ≡ d/cD ranges from 2.08 to 2.79 × 10−6 m2 s−1, a value which increased
slightly with increasing shear rate. Using our fitted values for cD and d, we obtain
D≈ 2× 10−6 m2 s−1, similar to those reported by Wiederseiner et al. (2011). We did
not investigate shear rate dependence of our results, as we did not have sufficient
data for clean predictions for this variation. On the other hand, our model contains an
implicit dependence on shear rate via the dependence on kinetic stress gradient, e.g. in
Φ i
σk in (2.11). Weinhart et al. (2013) presented temporal plots of both their segregation

velocity, q= (bc/cD)g cos θ , and bc, allowing us to calculate an approximate value of
cD to compare with our results. They showed that q started with a maximum value of
≈6.8× 10−4 m s−1 and decreased to zero, while bc started with a maximum value of
bc≈ 0.38 and decreased to a relatively steady value of bc= 0.02. Based on this, early
time value of cD was ≈8.58 s−1, similar to but slightly larger than our approximate
value of cD ≈ 6.30 s−1.

Thornton et al. (2012) also performed chute flow experiments for binary mixtures
with a range of size ratios. They investigated the dependence of segregation and
diffusion on particle size ratio in a binary mixture. They reported their results
in terms of a Péclet number Pe for segregation, which quantifies how large the
segregation effects are compared to the diffusive effects: Pe = qh/D, where q is
the maximum segregation velocity and D = d/cD as defined above, and h is a
characteristic length. They found that the Péclet number increased linearly with
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size ratio, and then plateaued at approximately 7.7. For a size ratio of 1.5, they
estimated a range of 6 < Pe < 7.5. Using the depth of dense flow of 15 mm as a
characteristic length, the maximum depth-averaged normal velocity of 0.81 mm s−1,
and our value of d/cD ≈ 2 × 10−6 m2 s−1, the Péclet number for our simulation
would be approximately 6.1 which is within the estimated range based on the work
by Thornton et al. (2012).

7. Discussion: applicability to mixtures differing in size and density

The calculations in § 6 indicate that our model for segregation in gravity-driven
dense flows is reasonable. However, there are still significant steps that need to
be taken before the physics of the process is fully captured. In particular, model
parameters such as stress partition coefficients, and the drag and diffusion coefficients
are likely to vary with particle size and other particle properties such as density. So,
while we believe that the model provides insight into the physics of the segregation
process, particularly in identifying the importance of the kinetic stress gradient in
segregating mixtures in a gravitational field, its applicability is limited until we find
predictive forms for flow parameters.

Nevertheless, we consider the implications of this theoretical framework for
predicting segregation in mixtures of particles differing in both size and density.
As we discussed in the introduction, previous research has shown that in dense flows,
when large particles are sufficiently denser than their smaller counterparts, the large
particles will sink, rather than rise in the mixture. Here, we briefly look for signals of
this reversal in key parameters in our theory. In particular, we consider a mixture with
90 % (by volume) small (2 mm) particles and 10 % large (3 mm) particles, where the
large particles have a higher material density than the small particles (ρL

M = 3.1ρS
M).

For this mixture, the segregation we report for our equal-density mixture is reversed
(figure 12a).

Figure 12(a) shows a snapshot of the mixture after ≈30 s of rotation, by which
time the segregation S(t) has reached a constant value (as shown in figure 12b).
The segregation evolution is very similar to those of the equal-density mixtures
(e.g. figure 3, 〈φL〉 = 0.1). However in this case, the large denser particles do not
move towards the top of the flowing layer; instead they sink to the bottom of
the flowing layer and accumulate near the centre of rotation. This is reflected in
figure 12(c) where there is a peak in solid fraction for the large, denser particles
(and a corresponding trough for the small, less dense, particles) in the middle of the
occupied portion of the drum. The mass fluxes in figure 12(d) (early times, ≈1 s
into the simulation) show that for the majority of the flowing layer, the large, denser
particles move downward, and the smaller denser particles move upward, a reversal
of the ‘Brazil-nut segregation’ we report for our equal-density mixtures in this paper.

We include parametric plots of the stress partition coefficients in figure 12(e,f )
equivalent to those in figures 5(b) and 5(d) (calculated at ≈30 s into the simulation).
Similar to the results from the equal-density mixtures, the contact stress is partitioned
between the constituents approximately as their local concentrations, and the kinetic
stresses are not. However, in contrast to the results from the equal-density mixtures,
the larger particles bear a higher portion of the kinetic stresses than their local
concentration and the small particles bear a lower portion of the kinetic stresses than
their local concentration. This reversal implies that the segregation contribution due to
the kinetic stress gradient is now in the opposite direction to that in the equal-density
cases.
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FIGURE 12. (Colour online) Segregation of a mixture with 90 % (by volume) small, less
dense particles and 10 % large, denser (ρL

M= 3.1ρS
M) particles. (a) Snapshot of the mixture:

segregation is reversed compared with figure 3. The segregation pattern is unfocused,
possibly due to the relatively high diffusion compared with segregation ‘driving forces’.
(b) Segregation evolution: measured segregation S(t) is calculated using (4.1) and fitted
segregation S∗(t) has the form of (4.2) with Sf = 0.18, So= 0.11, td = 1.44, and τc= 5.56.
(c) Solid fraction profile of both species and the mixture. (d) Initial segregation mass
fluxes of the species as a function of depth. (e,f ) Parametric plots of stress partition
coefficients ψ c,i and ψ k,i as functions of local concentration φi. Plots (c–f ) were obtained
by averaging over 500 ms periods. (g) A photograph of intermediate segregation observed
in a mixture of 2 mm glass (light) and 3 mm steel (dark) beads from our lab. Similar to
the simulation in (a), the segregation of large particles is reversed; however the dense
steel beads do not sink fully. (h) A photograph of intermediate segregation observed in
a mixture of 3 mm (dark) and 0.5 mm (light) glass beads in a large drum (290 mm
diameter) from our lab, where the larger beads do not rise fully to the top of the flowing
layer.
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A full analysis of these results requires more detailed consideration of the density
variations in the mixture as segregation evolves (e.g. Fan & Hill 2014). Nevertheless,
it is apparent that the difference between kinetic stress partitioning reverses, consistent
with the reversal in the segregation behaviour observed in simulations (figure 12a) and
experiments (figure 12g). In figure 12(h) we present an example of an experiment
where denser larger particles segregate to an intermediate location in the drum. We are
currently investigating whether or not a newer version of our theory allowing density
variation captures this effect with a more systematic evaluation of model parameters.
This could also enable a direct comparison with theories suitable for particles differing
only in density such as that of Tripathi & Khakhar (2011, 2013).

Tripathi & Khakhar (2011, 2013) proposed a model for segregation of particles
differing only in density for which they derived physics-based forms of the coefficients
such as diffusion and drag, though the segregation mechanism is somewhat different.
The segregation mechanism is one associated with effective buoyancy differences for
particles in a mixture rather than kinetic sieving, though, interestingly, the segregation
concentration evolution model is similar in form to the Gray–Thornton–Chugunov
formulation apparent in (1.1). Essentially, for both model frameworks, the explicit
dependence of the segregation term on constituent concentration is the same, and in
both systems, segregation is driven by a pressure gradient associated with gravity.
In the model by Tripathi & Khakhar (2011, 2013), drag and diffusion coefficients
scale with a granular temperature, similar to a shear rate dependence that others have
suggested for these variables for mixtures differing only in size. However, they do
not include consideration of a more direct shear rate dependence – via temperature,
kinetic stress, or otherwise – of segregation which we have shown to be important
in this paper for particles differing only in size. We suspect, given the importance
of buoyancy forces in mixtures of particles differing only in density, that pressure
gradients associated with both gravity and kinetic stress gradients play explicit roles
in segregating mixtures differing in both size and density. We are working on testing
this conjecture with a newer version of our theory that allows for density variation
(Fan & Hill 2014).

8. Conclusions

To summarize, we have developed a model for segregation that includes
consideration of both kinetic stress gradient and gravity. We then used DEM
simulations of gravity-driven flow in a drum to obtain stress partition coefficients
for the mixture constituents. From these, we found that an explicit reference to
gravity drops out. This suggests that gravity-driven kinetic sieving may not be active
in these dense flows, but, instead, the kinetic stress gradient drives the segregation.
Considering (5.2a,b) in (5.4), an equivalent form of (1.1a) for our model can be
expressed by

φi
(
vi − v)= φi

(
1− φi

)
Ak

dσ k
yy

dy
+
[
−D

∂φi

∂y

]
. (8.1)

Here, Ak dσ k
yy/dy replaces A dp/dy in (1.1a) in the scaling of maximum segregation

velocity. In other words, in contrast with recent models for segregation in dense
flows, a gradient in kinetic stress (akin to granular temperature) is an important
driving mechanism in our proposed model, while gravity plays primarily an implicit
role by setting up the kinetic stress gradients associated with the shear rate gradient
in the flow. In other words, even though kinetic stress (granular temperature) is
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small, its gradient can be sufficiently large to drive segregation in dense flows. While
the stress partition coefficients are based on empirical fits for one set of mixtures,
we expect the form to be similar for other particle size ratios so that (8.1) holds
for a wide range of mixtures, a conjecture we are currently testing with additional
simulations.

In our dense flow simulations, we find that large particles of equal density to their
smaller neighbours migrate to the top of the flowing layer primarily because this
region corresponds to a region of higher kinetic stress and higher granular temperature.
This segregation is driven in part by the manner in which contact stress and kinetic
stress are partitioned among the species. The large particles bear a larger percentage
of the contact stress than they do the kinetic stress, apparently pushing them away
from the cooler regions. The smaller particles bear a larger percentage of the kinetic
stress than they do the contact stress, allowing them to mobilize away from the high-
temperature regions. While gravity does not appear explicitly in our final predictive
form for the segregation dynamics, this does not imply that gravity does not play a
role. Gravity, along with geometric considerations (Hill & Zhang 2008), drives the
kinetic stress gradient. It may also play a role in the partitioning of the stresses, an
issue we are currently investigating.

Additionally, we explored the effectiveness of a linear drag coefficient and diffusion
parameter. We found that the linear form of these parameters is relatively effective and
for this size ratio, the drag coefficient and diffusion parameter both vary minimally
with concentration. Theoretical predictions using average values of both matched
the measured segregation flux fairly well. Nonetheless it is valuable knowledge that
variability with concentration exists, and this deserves further investigations.

This work is far from the first evidence of kinetic stress or granular temperature
acting as a driving force in segregation. This dynamic features prominently in kinetic
theory, which makes it informative to compare the prediction from our theory with
segregation predicted by kinetic theory. Qualitatively, in systems correctly described by
kinetic theory, the large particles are driven to the cooler region, in contrast with what
we have found in dense systems (e.g. Xu et al. 2003; Galvin et al. 2005, Conway
et al. 2006; Fan & Hill 2011a). Indeed, even recent attempts to expand kinetic theory
to include structure appearing in denser systems predict that the larger particles move
to cooler regions (e.g. Larcher & Jenkins 2013). We are currently developing a more
quantitative comparison to understand the significance of these differences and the
manner in which they appear in the modelling frameworks.

An appropriate model for the evolution of particle size distribution is critical for
understanding a wide variety of flow behaviours in dense granular mixtures that
depend on local particle size distribution. A relatively simple expression obtained
recently for the rheology of dense granular flows (Pierre, Forterre & Pouliquen 2006;
Forterre & Pouliquen 2008) applied to mixtures (Yohannes & Hill 2010; Tripathi &
Khakhar 2011) demonstrates that the rheology depends on particle size distribution.
The stresses generated by dense sheared granular flow itself also depend on particle
size distribution (Hill & Yohannes 2011; Yohannes & Hill 2010). This, with the
results in this paper indicating that internal stresses can drive segregation, suggests
feedback mechanisms between particle size distribution and stresses that may drive
some of the pattern formation and subsequent flow behaviours in simple and complex
segregating systems that we are currently considering for modelling these flows.
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