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Investigation of the influence of miniature vortex
generators on the large-scale motions of a
turbulent boundary layer
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Well resolved large-eddy simulation data are used to study the physical modulation
effects of miniature vortex generators (MVGs) in a moderate Reynolds number zero
pressure gradient turbulent boundary layer. Large-scale counter-rotating primary vortex
pairs (PVPs) imposed by the MVG contribute to the formation of streamwise streaks
by transporting high momentum fluids from the outer regions of the boundary layer
towards the wall, giving rise to high-speed regions centred at the PVP. Consequently,
low-speed regions are formed along the outer flank of the PVP, resulting in a pronounced
alternating high- and low-speed flow pattern. The PVP also relates to regions with skin
friction modification, where a local skin friction reduction of up to 15 % is obtained
at the low-speed region, but the opposite situation is observed over the high-speed
region. The MVG-induced flow feature is further investigated by spectral analysis of the
triple decomposition velocity fluctuation. Pre-multiplied energy spectra of the streamwise
MVG-induced velocity fluctuation reveal that the large-scale induced modes scale with
the spanwise wavelength and the length of the MVG, but the energy peak is eventually
repositioned to the size of the near-wall streaks in the streamwise direction. Analysis of the
triple decomposition of the kinetic energy transport equations revealed the significance of
the mean flow gradient in generating kinetic energy which sustains the secondary motion.
There is also an energy transfer between the turbulent and MVG-induced kinetic energy
independent of the mean flow.

Key words: boundary layer control, turbulence control

1. Introduction

Passive control of flat plate boundary layers by means of miniature vortex generators
(MVGs), which consist of pairs of winglets or rectangular blades arranged in spanwise
oriented arrays, is of great practical interest because of their ability to delay the flow from
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transition to turbulence by effectively stabilising the Tollmien—Schlichting (TS) waves
or attenuating the oblique disturbance waves so that skin friction drag reduction can be
achieved (Fransson et al. 2006; Fransson & Talamelli 2012; Shahinfar, Sattarzadeh &
Fransson 2014). The net drag reduction can be enhanced up to 65 % when the transition
delay is sustained by placing a consecutive array of MVGs further downstream (Shahinfar
et al. 2012; Sattarzadeh er al. 2014). Numerous experimental and direct numerical
simulation (DNS) studies of MVGs in flat plate laminar boundary layers yield a deeper
understanding of the transition delay mechanism and the stability of laminar boundary
layer controls (Siconolfi, Camarri & Fransson 2015a,b). The capability of MVGs to
generate streamwise vortices and, in turn, form long and stable streamwise evolving streaks
by the lift-up mechanism is well understood (Landahl 1980). Fransson & Talamelli (2012)
explored the possibility of generating stable streamwise streaks to stabilise TS waves
for transition delay. They reported that the maximum amplitude of stable streaks was
approximately 30 % of the free-stream velocity, approximately double the value of that
generated by circular roughness elements (Fransson et al. 2005), and the modulation
effect was sustained for 700h downstream of the MVGs (where 4 is the blade height).
Subsequently, Shahinfar et al. (2013) conducted an extensive parametric study on TS
wave stabilisation, utilising different MVG configurations and optimised the streak scaling
and improved the streak amplitude definition by taking into consideration the spanwise
periodicity of the streaks. Taking advantage of the high spatial resolution of DNS flow
fields, Siconolfi et al. (2015bh) analysed flow instabilities introduced by MVGs, which may
be one of the drawbacks of inadequate design of MVGs for transition delay, and may
amplify the TS waves and lead to faster transitions (Sattarzadeh & Fransson 2015).

In the context of flow separation control in adverse pressure gradient boundary layers,
it has been shown that a MVG is capable of reducing separation by redirecting reverse
flow (backflow) to the mean flow direction (see Logdberg 2006). Experimentally, the
flow dynamic of vortex generators in turbulent boundary layers (TBLs) has previously
been investigated at relatively high Reynolds numbers (Logdberg, Fransson & Alfredsson
2009). The authors were interested in the development of streamwise vortices introduced
into the boundary layer by vortex generators, including the actual vortex propagation and
vortex strength decay, and by using a potential flow model, they proposed a vortex-path
model predicting the streamwise evolution of longitudinal vortices downstream of the
vortex generators. However, that investigation does not provide further details about the
interactions between MVG-induced flow features and the large-scale structures related to
turbulent boundary layers.

The flat plate boundary layer studies by Fransson & Talamelli (2012) and Shahinfar et al.
(2013) strongly suggest that the MVGs are able to impose large-scale vortical motions
and generate long high- and low-speed streaks in the turbulent boundary layer by similar
mechanisms. It would be interesting to investigate whether these streaks also persist in a
turbulent boundary layer with moderate Reynolds numbers and how these streaks interact
with turbulent coherent structures in the near-wall and outer regions. There is a lack of
studies in the literature that have investigated the ability of MVGs to modify the small-
and large-scale motions in turbulent boundary layers. The near-wall turbulence is well
understood to be related to the formation of quasi-streamwise vortices and streamwise
streaks by self-sustained mechanisms (Hamilton, Kim & Waleffe 1995; Jiménez & Pinelli
1999; Panton 2001). Very large-scale motions or large-scale streamwise elongated modes
have been found to exist far away from the wall, and they increasingly interfere with
the near-wall turbulence with increasing Reynolds numbers (Hutchins & Marusic 20075b;
Mathis, Hutchins & Marusic 2009). Their distinctive inner and outer peaks are observed
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in both the streamwise and spanwise pre-multiplied streamwise velocity energy spectra at
sufficiently high Reynolds numbers (Lee & Moser 2015).

To the authors’ best knowledge, previous research has focused on laminar or
transitional boundary layer flows, and there are limited studies that have investigated
how MVGs influence the naturally occurring boundary layer turbulence, thus the complex
interactions between the MVG array and these turbulent structures remain unclear. Here,
a well-resolved large-eddy simulation of turbulent boundary layers mounted with a MVG
array at moderate Reynolds numbers has been performed. We aim to investigate the flow
dynamics underlying the MVG array and its relationship to the large- and small-scale
motions. The work of Sattarzadeh & Fransson (2015) has suggested that the angle of attack
of MVG blades 6 plays a significant role, reporting that the amplitude of the streaks is
shown to grow with increasing 6, but the streaks are subject to more severe instability
if 6 exceeds a certain threshold. Other decisive parameters are the blade height (%), the
distance between MVG blades (d) and also the distance between MVG pairs (A;). We here
keep the MVG parameters similar to the base configuration used by Shahinfar ez al. (2013)
(i.e. the geometrical aspect ratios of MVGs). The present study also serves as a numerical
investigation of these MVG parameters in a turbulent boundary layer. The remainder of
this paper is organised as follows. In § 2 we first introduce the numerical code and the
numerical MVG parameters. In § 3 we analyse and discuss the influences of MVGs on the
mean flow statistics and turbulence properties of turbulent boundary layers. Further, we
employ a triple decomposition of the velocity fluctuations, the pre-multiplied streamwise
velocity energy spectra are computed and the modifications of the coherent motions are
presented.

2. Numerical procedures and MVG configuration

A well-resolved large-eddy simulation is performed using a fully spectral numerical
code (Chevalier, Lundbladh & Henningson 2007) and two-dimensional parallelisation
(Li, Schlatter & Henningson 2008). A sub-grid-scale approximate deconvolution model
is employed to compute approximations to the unfiltered solutions of the incompressible
continuity and Navier—Stokes equations by a repeated filter operation (Schlatter, Stolz &
Kleiser 2004),

ou;
8)61'
om; . om  op 1 9%y
ot dx;j  0x; Re 0x;dx;

=0, 2.1

= —xHy ® u;, (2.2)

where superscripts A refer to a resolved scale, ® denotes the convolution and the relaxation
term —y Hy ® u; : x is the model coefficient; Hy & u; are the high-pass approximately
deconvolved quantities (Stolz, Adams & Kleiser 2001; Schlatter et al. 2004, 2010;
Eitel-Amor, Orlii & Schlatter 2014). The Reynolds number is defined as Re = Uoo8(")‘/ v,
where U is the free stream velocity, 5 is the inlet displacement thickness and v is the
kinematic viscosity. In the following, the coordinates x; and the corresponding velocity
components u; are denoted as x, y and z with corresponding velocities #, v and w in the
streamwise, wall-normal and spanwise directions, respectively. The spatial discretisation
is based on a Fourier series with 3/2 zero padding for de-aliasing in the streamwise (x)
and spanwise (z) directions, and a Chebyshev polynomial is employed in the wall-normal
direction (y). The time advancement is carried out by a second-order Crank—Nicolson
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scheme for the viscous terms and a third-order four-stage Runge—Kutta scheme for the
nonlinear terms (Chevalier et al. 2007).

The simulation of a turbulent boundary layer was carried out with a computational
domain in the streamwise, wall-normal and spanwise directions, respectively: x; x yr, X
71 = 6000875 x 20055 x 36087 using 6144 x 513 x 768 spectral modes, giving uniform
grid spacings of Ax™ ~ 16.9 and Az ~ 8.1 in the streamwise and spanwise directions
(the superscript + refers to scaling with the viscous velocity u; = /1y /p, wWhere 1, is
the wall shear stress and p is the fluid density). In the wall-normal direction, there is a
minimum of 15 Chebyshev collocation points within the region y* < 10. The first grid
point away from the wall is at y™ ~ 0.03, and the maximum spacing is Ay, . = 10.6.
Periodic boundary conditions are applied in the streamwise and spanwise directions,
while a no-slip condition is applied at the wall with a Neumann condition applied at the
free-stream boundary. A fringe region is employed at the end of the computational domain,
and the flow is damped via a volume force to retain periodic boundary conditions in the
streamwise direction. A low-amplitude volume force trip is applied to trigger the transition
to turbulent flow at the inlet region (Schlatter & Orlii 2012).

In this study, we consider a rectangular-bladed MVG similar to those used by Logdberg
et al. (2009), Sattarzadeh er al. (2014) and Sattarzadeh & Fransson (2015). The MVG
geometry and configuration are shown in figure 1(a). A total of seven pairs of MVG was
imposed via a volume forcing method (see Appendix A for details) (Brynjell-Rahkola
et al. 2015; Canton et al. 2016; Chin et al. 2017) and positioned at xj; /35 = 950 from the
inlet (corresponding to Re; = 81 =~ 430, where § is the boundary layer thickness). The
boundary layer conditions at x = x); are summarised in table 1. The MVG parameters are
scaled by the inlet displacement thickness &;. Here, i = 4 is the blade height, t = 1 is the
blade thickness, L, = 10 is the blade length, @ = 15° is the angle of attack of the MVG
with respect to the flow direction, d = 10 is the spanwise distance between the centroids
of blades in one pair and A, = 40 is the spanwise spacing between MVG pairs (see
figure 1a). The geometrical ratios of MVG: Ly/h =d/h = 2.5, A,/h = 10 and h/8* = 1
(where §* is the displacement thickness) are similar to the base configuration used by
Shahinfar et al. (2013). In addition, the ratio of the MVG height to the boundary layer
thickness is #/8 >~ 0.19, which is similar to those used by Lin (2002) and Logdberg et al.
(2009). The time-averaged velocity and its fluctuation are denoted by (*) and a prime ('),
respectively, and the symbol (-) denotes a spanwise-averaged quantity over one complete
spanwise wavelength A,. A capital letter denotes both the spanwise and temporally
averaged quantity, e.g. U(y) = (u). In the following, time-averaged quantities are further
averaged in the periodic spanwise direction. The periodic spanwise coordinate is denoted
as z* = modulo(z, A;) within each MVG pair. The time-averaged statistics of the two pairs
of MVG located at the two ends of the MVG array were not considered to avoid edge
effects. The simulation was run for at least 7Tit; /6 &~ 8 eddy turnover times at Re; =~ 1000
before collecting data, and the time statistics are sampled for at least Tu,/§ ~ 7. The
quality of the statistics was checked and validated by the Reynolds-averaged turbulent
kinetic energy (TKE) transport (i.e. TKE-budget Pope 2000) at Re; >~ 1350 with previous
direct numerical simulation (DNS) TBL by Schlatter & Orlii (2010), as shown in figure 2.
The terms collapse well with the previous DNS TBL. The generation of the vortex pair
by the present MVG configuration is illustrated in figure 1(b,c), where the time-averaged
streamwise vorticity contours at initial (x*/h = 5) and at further downstream positions
(x*/h = 25) are plotted (where x* = x — x)s is defined). The primary vortex pair (PVP)
with opposite vorticity is scaled with the MVG height and decays downstream along the
centre of the MVG pair. The secondary vortices induced by the PVP are observed below
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Figure 1. (a) Schematic diagram of the flow domain and the MVG configuration. (b,c) The time-averaged
streamwise vorticity downstream of the MVG. Black contour lines outline the vorticity levels. The centre
(point o in (a)) plane projection of MVG in the y—z plane is outlined by a rectangular black box. The origin of
x* = x — x)y is defined at the centre of the MVG.
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Figure 2. The ( ) TKE-budget (Pope 2000) at x*/h >~ 1000 (Re; ~ 1350). The arrow indicates budget
terms in the order: dissipation, viscous diffusion, convection, velocity—pressure gradient, turbulent diffusion
and production. Residuals are shown by coloured lines: x*/h = 25, 50, 500, 1000 (blue, green, yellow and red).
Black symbols indicate the data of DNS TBL at Re; =~ 1270 (Schlatter & Orlii 2010). The vertical dashed line
denotes y* = ht.

with opposite vorticity. Additionally, a volumetric view of time-averaged streamwise
vorticity at |wxh/Us| = 0.03 is presented in figure 3. The secondary vortices (opposite
vorticity) near the wall are highlighted by lighter colours. The PVP is originated from the
shear layer introduced by MVG and appears to be diffused and decayed downstream at
x*/h ~ 50, presumably due to the lift-up effect where low-speed fluids are lifted at both
sides of the PVP, and high-speed fluids are pushed towards the wall at the centre of the
vortex pair (Fransson & Talamelli 2012), which creates alternating high- and low-speed
streaks. Moving downstream, the low-speed streaks are reinforced by low-speed streaks
originating from the adjacent MVG pairs (Logdberg et al. 2009).
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125

Secondary vortices

z*h

Figure 3. Isosurfaces of mean streamwise vorticity at |w,h/Us| = 0.03. Red for primary clockwise rotating
vortices (@wyh/Us = +0.03) and blue for primary counter-clockwise rotating vortices (wxh/Us = —0.03).
Secondary (induced) vortices with opposite vorticity in close proximity to the wall are illustrated by the light
colour versions (light red for @,h/Us = +0.03 and light blue for wh/Us = —0.03).

XM § Reg Re, Reg* h/(s h/a*
95085 21.548; 1260 430 1820 0.19 1

Table 1. Smooth wall turbulent boundary layer conditions at the MVG location (x = xyy).

3. Results
3.1. Instantaneous streak patterns

The PVP induced by MVG (figure 3) leads to the formation of the high- and low-speed
streaks by transporting the high- and low-momentum fluids through the lift-up mechanism,
which has been reported in numerous studies performed in laminar boundary layers (e.g.
Fransson & Talamelli 2012; Shahinfar ez al. 2013). The instantaneous streak pattern around
the MVG in a turbulent boundary layer is illustrated in figure 4(a). Upstream of the MVG
(x*/h < Q) are typically the naturally occurring large-scale structures associated with
high- and low-momentum regions with self-similar spanwise length scales that vary with
distance from the wall (Tomkins & Adrian 2003). Downstream of the MVG (x*/h > 0) the
flow patterns become more organised with high- and low-speed region spacings that are
scaled with the spanwise distance (A;) between the MVG pairs. A closer view is presented
in figure 4(b). The isosurfaces of vortical structures are computed using the A;-criterion
(Jeong & Hussain 1995) and coloured by the mean streamwise velocity. High-speed streaks
are flanked by the low-speed streaks and vortical structures on both sides. The vortical
structures are commonly observed slightly above and outwards of the low-speed streaks,
reflecting ejection events associated with the lift-up mechanism. To quantitatively measure
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Figure 4. (a) Instantaneous visualisation of the high-speed (cyan) and low-speed (blue) streaks (u'* = 42.5).
(b) Closer views of the instantaneous flow patterns of high-speed and low-speed streaks (same colour code as
(a)). Vortical structures are detected by the Ay — criterion and coloured by the mean streamwise velocity.

the streamwise streaks, the growth amplitude of the streamwise streaks is defined as

1 A2 p8
Asr =5 [ [ty ) - vyl v (1)
Uso J-n.2J)0
which considers the spanwise periodicity of the streaks by integrating the MVG-induced
fluctuation over one complete spanwise wavelength (Shahinfar et al. 2013). The
MVG-induced-vortex strength is based on the integral of the squared streamwise vorticity
(enstrophy) over one complete spanwise wavelength as

WA s

y = U_Z/ / oL (x,y, 2) dydz*. (3.2)
-A;/2J0

Figure 5(a) shows the streak amplitude and induced-vortex strength based on (3.1) and

(3.2) at 0 < x*/h < 1000, normalised by initial values at x = xj;. Based on these trends,

the flow is split into three distinct regions. In the first region (I), where 5 < x*/h < 50, the

vortex decreasing strength is coupled to the streak formation. The vortex strength decay
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Figure 5. (a) Streak amplitude Agr (black o) and vorticity strength y (red ¢), normalised by the values at
x = x)y. Blue solid line in region (I) approximates a power-law relation y /yy; ~ (x*/h)~ 1! for 5 < x* /h < 50,
and solid green line within region (II) indicates y /yy ~ (x*/h)~%!. Streamwise evolution of vortex centre in
(b) side view and (c) top view. Red for clockwise and blue for counter-clockwise rotation vortices. In (b),
the solid line represents the Reynolds number based on the displacement thickness and the dash-dotted line
represents the Reynolds number based on the momentum thickness.

follows a power-law relation of y /vy ~ (x*/h)~!! for 5 < x*/h < 50 (blue line). The
decay rate maybe different due to the definition used. Logdberg et al. (2009) reported the
vortex circulation decays exponentially at a rate of —0.0164 with respect to the downstream
distance, but the calculation considered was the vortex area enclosed by five per cent of
the maximum value of the second invariant of the velocity gradient (0.05Q),,.), which did
not take into account the secondary (induced) effects. Figure 5(b,c) shows the streamwise
evolution of the PVP in the first region (I), which is defined as the position at the local
maximum of the absolute streamwise vorticity. The results qualitatively agree with those
obtained by Logdberg et al. (2009). Overall, region I reflects the fact that energy is
being redistributed from PVP to the streamwise velocity component (Shahinfar ef al.
2013). At region (II), where 50 < x*/h < 500, the streak amplitude settles to a somewhat
steady value of Asr/Asr.m = 7.5. The stabilisation effect presumably results from the
interactions of streaks generated between the MVG pairs, forming long and steady high-
and low-speed regions. On the other hand, the vortex strength decreases steadily at a rate
v/vm ~ (x*/h)~%1. Region (III) denotes the range x*/h > 500, which is the onset of
equilibrium. The streak amplitude decreases due to viscous dissipation (Shahinfar ez al.
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Figure 6. Mean streamwise velocity (colour contours) and secondary flow topology (streamlines) at the
downstream of the MVG (a—d): x*/h = 5, 25, 50 and 500.

2013), and the mean flow and turbulent statistics are less dependent on the effect of MVGs
and collapse to the smooth wall case, as shown in the following section.

3.2. Mean flow characteristics

The mean streamwise and secondary flow topology are illustrated in figure 6 where
the time-averaged streamwise velocity (contours) and cross-flow velocity (streamlines)
are plotted at x*/h = 5,25,50 and 500. In the near-wake region (x*/h = 5), opposite
secondary motion is observed close to the wall (indicated by the red arrow on figure 6a),
which is induced by rotation of the PVP, and the PVP lift away from the wall and
move apart along the downstream (figure 6b6—d) due to self-induction (Logdberg et al.
2009). The contour colours illustrate the mean streamwise velocity downstream in
the z—y cross-section views. The downwash motion induced by the PVP causes the
high-momentum region to form between the MVG, while the low-momentum region is
formed along the sides and interacts with the low-momentum region originating from the
adjacent MVG pairs (Fransson & Talamelli 2012). The black contour lines at u = 0.6U
illustrate the development of regions along the spanwise direction and show the respective
changes in the wall-normal direction. The mean flow exhibits an initial momentum deficit
and a fast momentum recovery after the streaks have settled. The mean velocity deficit
is estimated based on the mean velocity profile, as shown in figure 7. The flow exhibits
an apparent velocity defect at x*/h = 5. The velocity defect in the mean flow profile can
be estimated by comparing the downward shift of the log-law constants, as shown by the
dash-dotted lines in figure 7. This yields AUT = 2 at y/h =~ 0.5, corresponding to the
half-blade height.
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Figure 7. Mean streamwise velocity. Downstream locations are at x*/h >~ 5 (black o), 25 (red o), 50 (blue
o) and 1000 (purple o). Light blue dashed, dotted and solid lines represent smooth wall DNS TBL at
Re; >~ 500, 1000 and 2000 (Chan, Schlatter & Chin 2021), respectively. The thick grey line denotes y*© ~ h™.
Dash-dotted lines represent linear and log-law regions with « = 0.41 and C = 3.2 and 5.2.

The velocity defect is known to be associated with skin friction drag. Locally, the skin
friction is modulated over the high- and low-speed regions along the spanwise direction.
On the upwash side of the PVP, low-speed fluid is lifted from the wall, which reduces the
streamwise wall shear stress 7, and results in substantial skin friction drag reduction. On
the other hand, downwash motion induced by PVP transports the high-speed fluid towards
the wall and increases the skin friction drag at the centre of a MVG pair. To determine
the skin friction drag reduction over the low-speed regions and the increased skin friction
drag over the high-speed regions, we computed the local skin friction variation related to
the time-averaged wall shear stress

Dx, %) = 2200, (3.3)
Tw,0
where 7,, = v(du/dy)|y—o is the time-averaged wall shear stress. The subscript O refers
to the smooth case, D > 0 denotes the local increase and D < O denotes the local
drag reduction. The variation is illustrated in figure 8(a) for the spanwise variation
and figure 8(b) for the streamwise evolution. At x*/h =5, the high-speed region is
initially constrained by the spanwise separation between two MVG blades (i.e. d). Thus,
the downwash motion is relatively strong and induces a higher D, which peaks at
approximately D =~ 5, z*/h >~ +1. The high-speed peak value of D is relaxed further
downstream to a value similar to that of the low-speed peak value. The location of
the low-speed peak shifts to a higher z*/h moving downstream, which is consistent
with the streamwise evolution of PVPs as shown in figure 5(¢) and is due to mirrored
vortices induction (Logdberg et al. 2009). Furthermore, figure 8(c, d) shows the skin
friction coefficient ¢ = (7y)/ %pUgo and the global skin friction variation rate R =
(¢ — ¢f,0)/cr,0. The value of the skin friction coefficient is analogous to the value for a
smooth wall zero pressure gradient (ZPG) TBL for Reg > 1600, x*/h > 100. This suggests
that the skin friction drag along the plate (in the streamwise direction) in the MVG flow
is nearly identical to that in a smooth case. Further, the skin friction variation rate R is
similar to that in a laminar boundary layer (Fransson & Talamelli 2012; Shahinfar et al.
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Figure 8. (a) Spanwise variation of the local wall shear stress at downstream locations: x*/h >~ 5 (black ©),
25 (red <), 50 (blue ¢) and 1000 (purple ¢). (b) Streamwise evolution of the local wall shear stress at z*/h =
0 (0), 1 (o) and 2 (o). (¢) The skin friction coefficient c; for the cases: MVG (), smooth wall (H). Solid

line represents the empirical formula ¢; = 0.024Re,, 174 by Smits, Matheson & Joubert (1983) and dashed line
represents ¢y = 2[1/0.384 In(Rep) + 4.08]72 (Osterlund 1999). (d) The global skin friction variation rate R
(©).

2013; Camarri, Fransson & Talamelli 2014). However, the skin friction drag variation
is significantly different from that observed in relatively higher Reynolds number ZPG
TBL in which the MVG array may lead to a substantial increase in wall shear drag.
Logdberg et al. (2009) examined the MVG with /8§ >~ 0.22 in a ZPG TBL for Rey > 6000
and reported a 30 % increase of ¢y downstream of the vortex generators at x*/h 2~ 100
compared with the smooth wall ZPG TBL.

3.3. Turbulence characteristics

3.3.1. Triple decomposition of velocity fluctuations

The presence of the MVGs introduces a strong spanwise modulation effect on the velocity
fluctuations. To investigate the spatial variations of velocity fluctuations due to such
spanwise modulation, we adopted a similar approach to analyse roughness surface flow
by triple decomposition of the velocity components, which reads as

ui(x,y,z, 1) = Ui(x, y) + ui(x, y, 2, 1) + Wi(x, y, 2) = wi(x, y,2) + u;(x, y, 2,0, (3.4)

where the u;. and u; on the right-hand side of (3.4) are the turbulent fluctuation and
MVG-induced fluctuation, respectively. The MVG-induced fluctuation it; = u; — Uj is the
spatial variation of the time-averaged flow due to MVG. The total fluctuation, u} = u; + i;
is equal to the turbulent fluctuation (u;) for the smooth wall case since u; = 0. The
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Figure 9. Fluctuations of triple decomposition streamwise velocity. Total fluctuations («”«”) are displayed in
black, turbulent fluctuations («'") in red and MVG-induced fluctuations (iit) in blue. The green dashed lines
represent the smooth wall case at (a—c) Re; >~ 500 and (d) Re; >~ 1000 (Chan et al. 2021). The light blue
dashed lines represent smooth wall DNS TBL at (a—c) Re; ~ 492 and (d) Re, ~ 974 (Schlatter & Orlii 2010).
The vertical dashed lines denote y* = A, Purple (o) are features discussed in the text.

streamwise total stress (u”u”’), Reynolds stress («'u’) and the MVG-induced stress (itit)
are illustrated in figure 9 at four streamwise locations: x*/h = 5, 25, 50 and 500.

Two notable peaks are observed in the MVG-induced fluctuation in the near-wake region
(x*/h = 5, marked with purple (o) in figure 9a). The outer peak is centred at y/h ~ 0.67
and the inner peak is very close to the wall at y* >~ 7, representing the high- and low-speed
streaks generated by the PVP and the induced vortical motions, as previously shown
in figure 1(b). The near-wall peak of the streamwise turbulent fluctuation is weakened
compared with that of the smooth wall, indicating a disruption of the near-wall cycle
(Kline et al. 1967). In figure 9(a), these curves collapse to that for the smooth wall case
for y* > 165, approximately equal to y >~ 2h. Between the inner and outer regions (25 <
yT < 165), the turbulent fluctuation is enhanced, resulting from an increase in turbulence
production by mean shear and is associated with the generation of low-speed streaks. This
is illustrated in figure 10(a) for the turbulence production of the Reynolds-averaged TKE
transport, defined as the product of time-averaged Reynolds stress tensor and velocity
gradients (Pope 2000) (denoted as Py = —u;uj/.au,- /dxj) at x*/h = 5. The location of the
excess turbulence production (25 < y© < 165) coincides with the low-speed regions (as
outlined by white solid iso-lines), which are imposed by the PVP and reflect the outer
peak in the MVG-induced fluctuation. The inner peak corresponds to the high-speed
streaks induced very close to the wall at y* ~ 7, z*/h ~ 40.8 (outlined by solid black
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(a)

v/h

Figure 10. (a,b) TKE production Py (colour contour). The low-speed streaks intensity: u(x, y, z) — U(x,y) < 0
(velocity deficit, see also (3.1)) is shown by white iso-lines: (a) —0.1[0.025]-0.025 and (b) —0.095[0.01]-0.025.
The high-speed streaks intensity: u(x, y, z) — U(x,y) > 0is shown by black iso-lines: () 0.025[0.01]0.095 and
() 0.025[0.01]0.095. In (a,b), red and blue contour lines illustrate time-averaged streamwise vorticity at (a)
wxh/Us = £0.2 and (b) @w,h/Us = £0.04. Inset: the turbulence production (Py) (in red) compared with the
smooth wall case (in green). (¢) The colour contour of the high- and low-speed intensities: u(x, y, z) — U(x, y),
with white iso-lines: —0.045[0.005]-0.025 and black iso-lines: 0.025[0.01]0.095. Light blue dashed lines in
(b,c) denote y* ~ 22 and y* ~ 45, respectively.

iso-lines). Further, the low-speed region coincides with the excess turbulence production
at the outer region moving downstream at x*/h = 25 and 75 < y© < 300, which is more
than three times the blade height (y/h =~ 3.8), as shown in figure 10(b). Based on the
observation of the double peaks in figure 9(a), the MVG-induced fluctuations observed
in figure 9(b, c) thus represent the transition between vortical motions and the formation
of streaks. Further evidence supporting this is seen in the peaks centred at y* ~ 22 for
x*/h = 25 (figure 9b), and centred at y* ~ 45 for x*/h = 50 (figure 9(c) marked with
purple o). The peak locations are marked with blue dashed lines in figure 10(b, ¢) and are
at the same wall-normal heights as the centre of the streamwise streaks. At x*/h = 500,
the MVG-induced fluctuation & =~ 0 and therefore ' ~ u”, and these curves collapse well
to the smooth wall data, indicating the onset of equilibrium.

3.3.2. Spectral analysis
To characterise the energetic scales associated with the peaks of the MVG-induced
fluctuations and investigate the influences on the length scales of dominant turbulent
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Figure 11. The one-dimensional streamwise and spanwise pre-multiplied spectra at x* /2 = 5 and 25. Columns
from left to right represent triple decomposition of velocity fluctuations: total E,»,~, turbulent E,,, and
MVG-induced fluctuations Ej;. The symbol x marks the near-wall peak. The symbol (o) denotes the feature
discussed in the text.

structures in the flow, i.e. the naturally occurring autonomous near-wall turbulence and
the large-scale outer motions, which reflect the inner and outer peaks in the pre-multiplied
energy spectra (Hutchins & Marusic 2007a; Lee & Moser 2015), streamwise and
spanwise pre-multiplied energy spectra of the streamwise velocity fluctuations by triple
decomposition (u/, u”, it) at x*/h =5 and 25 are shown in figure 11. Taylor’s frozen
turbulence hypothesis is utilised to reconstruct the streamwise wavenumber from the
temporal frequency where k, = 27f/U, (del Alamo & Jiménez 2009) where the
convection velocity U.(y) = U(y) is assumed (i.e. mean streamwise velocity U(y) =
(u)).

In figure 11(a), we observe that the near-wall peak, which is commonly observed
and centred at A7 ~ 1000, y* = 15 (marked by x in k.E,,») (Hutchins & Marusic
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2007a,b) is diffuse due to influence by the MVG-induced fluctuation, which has two
peaks at yt ~ 6.5, 4} >~ 200 and y™ ~ 55, A} >~ 300, as shown in the contour kEz;.
This is consistent with the observations at the double peak locations in figure 9(a)
corresponding to the PVP-induced streaks. These structures have limited streamwise
extents with streamwise wavelengths of order A} /L =~ 1-1.5, i.e. scale approximately
with the blade length. The spanwise spectrum of MVG-induced fluctuation, k Ej;, is
relatively simpler, as shown in figure 11(b). The peaks occur at the wavelengths reflecting
the spanwise spacing between the MVG pairs and its higher harmonics, i.e. /l+ =Af/n
(n=1,2,3...), similar to those observed by Fransson & Talamelli (2012). These modes
have little effect on the near-wall peak that appears to be located at /lzr ~ 100, y* ~ 15
(marked with x in k;E,»,). This is presumably because the dominant spanwise modes
(AF /n ~ 800/n with n = 1-5) are much larger than the mean spacing of near-wall streaks
of 17 >~ 100 (Tomkins & Adrian 2003). In figure 11(c) at x*/h = 25, the energy peak in
the contour of k,Ej; is centred at y© ~ 22, A1 ~ 600, and corresponds to the streamwise
characteristic length scale of the regions of high- and low-speed fluids where A} ~ 3L}
(see figure 10b). The inner peak of the total fluctuations spectrum contour (k.E,»,”) is
located at y™ = 15, A} =~ 708 (marked with o). The dominant wavelength is at a lower
value compared with the classical inner peak, where y* = 15, 4} = 1000. This indicates
that the near-wall cycle is interrupted. For the spanwise spectra shown in figure 11(d), two
energy peaks at (i) the fundamental mode (17 = A7) and (ii) its first harmonic (A} /2)
are observed in the MVG-induced ﬂuctuatlon (k, EW) and the total fluctuation (k; Eu//uu)
Despite the fact that the Reynolds number is still low (Re; =~ 468), it is interesting that
an outer peak is observed in the turbulence fluctuation & E,/,, (marked with o), and is
associated with the first harmonic peak as shown in k,E,»,». The outer peak is centred at
y >~ 0.2568, A; >~ 0.95, which is similar to the well-known outer peak in canonical flow in
the spanwise spectrum where y >~ 0.28, A, ~ § (Hutchins & Marusic 2007b; Lee & Moser
2015).

The long-term influence of the MVG-induced effects on the turbulent structures
is evaluated by inspecting the pre-multiplied energy spectrum at x*/h = 50 and 500
compared with the smooth wall case in figure 12. In figure 12(a), the near-wall peak is
at y* ~ 15, but more energy resides within the region approximately centred at y* =~
100, 4} =~ 1000 compared with the smooth wall (marked by red o), suggesting that more
high- and low-speed streaks are propagating at higher wall-normal heights (y* =~ 100).
A comparison of the MVG-induced streamwise contours (kyEj;) at x*/h = 25 and 50
(figures 11c and 12b respectively) suggests that the MVG-induced streaks with shorter
streamwise lengths (i.e. y© = 22, A} ~ 3L}, as shown in figure 11¢), develop into much
longer streamwise streaks that are quite similar and of the order of the near-wall streaks
observed in the smooth wall case (i.e. /lj{ 2~ 1000). The MVG-induced streaks lift up
as they propagate downstream, resulting in the energy peak at yt ~ 45, 1} ~ 1000, as
shown in figure 12(b), so that two contours do not coincide at y* =~ 100, /l;r ~ 1000 in
figure 12(a). In the spanwise energy spectra, the peak energy at /lzr o~ A+ is observed
and centred at y* ~ 45 (marked by o in figure 12¢). The spanwise peak is different from
its streamwise component, which clearly scales with A} (figure 12d). Overall, a stronger
modulation in the spanwise direction is observed compared with the streamwise direction,
which links to the spanwise periodicity of the MVG array. In the streamwise direction,
these streaks tend to scale with the size of naturally present near-wall streaks of the order
A7 2~ 1000.

Finally, figure 12(e, f) shows the contours of kyE,,» and k.E,,» at x*/h = 500 (Re; =~
950), which collapse reasonably well to the smooth wall case. The inner peaks are
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Figure 12. The one-dimensional streamwise and spanwise pre-multiplied spectra at x*/h = 50 (Re; =~ 500)
and 500 (Re; >~ 950). In (a,c,e,f), black lines represent the smooth wall case at Re; >~ 500 and 1000 (Chan
et al. 2021) and light blue contour lines represent the MVG case. Spanwise contour levels are selected at
[0.6, 1.2, 1.8, 3]. Streamwise contour levels are at [0.25, 0.5, 1, 1.8]. The symbols x mark the near-wall peak
or the outer peak. Symbol (o) in (a,c) denotes the feature discussed in the text.

approximately at y* >~ 15, A7 > 100 and ;" =~ 1000. The outer peak is at y > 0.158, A, =~
0.156 in the spanwise component and at y >~ 0.06§, 1, >~ 6§ in the streamwise component.

3.4. Secondary flow and kinetic energy transport

In the previous section, we employed triple decomposition of velocity fluctuations and
spectral analysis to investigate the spanwise modulation of the MVG on the velocity
fluctuations. Here, we extend the analysis of kinetic energy transport by introducing
the triple velocity decomposition (3.4) to the incompressible Navier—Stokes equations.
Following a similar approach of Reynolds & Hussain (1972), the transport equation for
the turbulent kinetic energy is obtained by multiplying the turbulent velocity fluctuations
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uj/. and taking the time average; then interchanging i and j and summing up the resulting
equation, the transport equation for TKE is obtained

ok 8](_ Tan 19 1o e Yl i
a0t Uy = Ty g iy et
/ / /
c P’ D
77 a8,
+ ﬁ% _lap_/u; + lvAu/.u’.— va—u;a—u; 3.5)
! 8xj' P 8x,~ 2 b ax]' B)Cj’
——— ——
T n/ D(} 6/

and the MVG-induced kinetic energy (MKE) transport equation is obtained in a similar
manner

_oeU; . dw .U . Ouu
uin— + uin— = —Uilj— — Uj
0x; 0x; 0x; 0x;
—— ——
¢ P T
190 ... 1[oP ap .
— [u,u,uj] — | — Ui+ — -
2 0x; p | 0x; ox;
D i
N | ou; 0l
+ vAU; - u; + —vAujuj —v——. (3.6)
2 0x;j 0x;
M \*/
D, é
Equations (3.5) and (3.6) are rewritten as
C=P +D+T+MI+7D,—-¢€, (3.7)
C=P+D-T+MI+D, ¢ (3.8)

where, on the right-hand side of (3.7), are the production, spatial transport,
inter-component transport, pressure transport, viscous diffusion and dissipation. The terms
in the (3.8) are the MVG-induced component decomposed from the turbulent component
(3.7). The inter-component transport term 7 in (3.7) and (3.8) are of opposite signs,
representing a local exchange between turbulent (ugu;) and MVG-induced (z;11;) kinetic
energy, and on the left-hand side of (3.8) is the advection term due to secondary motion.
Adding up (3.7) and (3.8) yields the total TKE transport equation

C// — rP// + D// + H// + D‘/)/ _ 6//, (39)

where d(-)/dt = 0, and (3.9) collapses to the Reynolds-averaged TKE transport equation
(Pope 2000) when u; — O.

To simplify the analysis, we considered the dominant terms in the general form of
the equations. This is assessed by visual inspecting the spanwise-averaged TKE (3.7)
and MKE transports (3.8). Figure 13(a) shows that the (3.7) is dominated by the TKE
production and dissipation at regions away from the wall where the viscous effect is small,
while other terms are relatively small. The balance between production and dissipation
is more prominent at x*/h = 25, as shown in figure 13(b), and at very close to the
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Figure 13. Spanwise-averaged (-) of (3.7) and (3.8) the (a,b) turbulent and (c,d) MVG-induced kinetic energy
transport equations at (a,c) x*/h = 5 and (b,d) x*/h = 25. All terms are scaled in viscous units.

wall (y < 0.018), the viscous diffusion (D)) dominates and is mainly balanced by the
dissipation (¢). Figure 13(c,d) shows (3.8) in the spanwise-averaged form. Very close
to the wall, the trend is similar to (3.7). The equation forms a balance between viscous
diffusion and dissipation. Further away from the wall, we observe that MKE production,
MKE advection and inter-component transport are the dominant terms (i.e. P,C and 7).
Based on the visual inspection of the data, (3.7) and (3.8) are written in the approximated
form as

P/ ~ e/
C~P-T,
where in (3.10), P’/ = 73’ is the production of TKE by mean flow, and €’ = e/ denotes

the viscous dissipation of TKE. In (3.11), C = CU represents the advection of MKE for

the existence of secondary motion, P= P,J denotes the production of MKE by the mean
flow and 7 is the local transfer between the TKE and MKE. Figure 14 shows all the
TKE production terms P’ = P’;;, averaged in time and periodic spanwise direction (z*)
at x*/h = 5. The TKE production associated with Reynolds shear stress and wall-normal
gradient of mean flow (P, = —u/v'dU/dy) dominates over other terms, which may be
expected since it is often assumed that the TKE production is defined as the product of
Reynolds shear stress and mean flow gradient. The peak TKE production is consistent with
the Reynolds-averaged TKE production. The observed arc shape depends on the MVG
geometry (i.e. d and &), which is clearly related to the formation of low-speed regions
at the upwash side of the PVP and the outer peak of the MVG-induced fluctuations (see
figures 9a and 10a). Figure 15(a) shows all the MKE production terms P = P;;. Similar to

the TKE production, the streamwise and wall-normal components P.» dominate over the
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Figure 14. (x1073) Contours ofW TKE production: P’ = (P[jv)/u‘r‘ at x*/h = 5. The centre-plane
projection of MVG in the y—z plane is outlined by a rectangular black box.

other terms. It is apparently concluded that P~ —ibdU /dy. Positive P is found in two

distinct regions. One centred at z*/h >~ £1.8, y/h >~ 0.4 (marked with white x in Puv)
and another at z*/h >~ +1, y/h >~ 0.15 (marked with o). These two regions correspond
to the low-speed streaks and the near-wall high-speed streaks as seen in figure 10(a),
suggesting that this production term sustains the secondary motion. This is more evident

further downstream at x*/h = 25, as shown in figure 16(a). The production P is seen to be
highly correlated with the generation of the high- and low-speed streaks and is adjoined
to the PVP. Another feature we observed in the term P, (figure 15a) is that there is a
non-negligible amount of negative production Puv, located adjacent to the two distinct
positive regions. This indicates a reverse transport of MKE to the mean flow. Figure 15(b)
shows the nine components that constitute the transport term 7, representing the exchange
of kinetic energy between TKE and MKE components, where negative region implies
that energy is transported from the TKE to the MKE components and vice versa for the
positive region. It is observed that 7 is dominated by two features: (i) 7, associated
with the spanwise gradient of u'w’ where the negative and positive regions are roughly
aligned with the high- and low-speed regions, respectively, and (ii) 7, that is associated
with the wall-normal gradient of Reynolds shear stress /v'. The value of 7Tj, shows a
more complex pattern, with a positive peak approximately centred around the low-speed
streaks and surrounded by a slightly negative transport. This complex pattern presumably
arises from the collective effect of the short-lived (in the streamwise direction) motions

932 A29-19


https://doi.org/10.1017/jfm.2021.1013

https://doi.org/10.1017/jfm.2021.1013 Published online by Cambridge University Press

C.I. Chan and R.C. Chin

-4 2 0 i 2 4 -4 -2 0 2 4 -4 2 0 2 4
z*h z*h z*/h

®)

ylh

ylh

ylh

4

4 2 2 =)
z*/h z*/h
Figure 15. (x1073) (a) Contours of u;i; MKE production: Pt = ('ﬁ,-jv)/u‘; at x*/h = 5. The symbols X

and o highlight the local multiple peaks. (b) Contours of inter-component transport 7+ = (T;v)/ u‘r‘ between
turbulent and MVG-induced fluctuations at x*/h = 5.
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z*/h z*h

Figure 16. (x1073) (a) Contour of MKE production Pt at x* /h = 25. (b) Contour of 7+ at x*/h = 25.
Grey iso-lines are at 7+ < 0: =0.005[0.0005]-0.0005. In (a.b), the low-speed streaks intensity (it(x, y, z) —
U(x,y) < 0) is shown in white iso-lines: —0.095[0.01]-0.025. The high-speed streak intensity (u(x,y, z) —
U(x,y) > 0) is shown in black iso-lines: 0.025[0.01]0.095. The red and blue contour lines illustrate the
time-averaged streamwise vorticity at @yh/Us, = £0.04. Contours of dissipations: (c) —e’" and (d) —€é* at
x*/h = 5. Contours of MKE advection: C* = C} at (¢) x*/h = 5 and (f) x*/h = 25.

that results in the high- and low-speed streaks (figure 10a). The transport term 7 becomes
much clearer further downstream at x*/h = 25, as shown in figure 16(b). The positive
transport highly overlaps with the production P, at the position of the high- and low-speed
regions (figure 16a). The positive transport 7 also acts as a sink of MKE because € >~ 0.
The comparison of the dissipation terms between €’ and € at x*/h = 5 is illustrated in
figures 16(c, d). Thus, it is required that the gain in energy from the production P must be
balanced by transferring to the TKE component, and dissipate via viscosity (¢"). Another
interesting feature of the 7 is the regions of negative transport (marked with grey iso-lines
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in figure 16b), especiallyoccurring near the wall and observed only in the high-speed
region. This negative patch is attributed to spanwise anisotropy of the Reynolds stress
component (du'w’/dz) (not shown), is primarily from the TKE to the MKE components
and occurs close to the wall (y* < 20). Finally, figure 16(e) shows the MKE advection

C at x* /h = 5. The advection of MKE largely reflects the trajectory of the secondary
motion (i.e. PVP). The PVP encloses the area of negative advection pointing to the
negative production observed in figure 15(a). Further downstream (figure 16f), positive
and negative advections commonly occur at the regions where P > 7 and P < 7,
respectively (see figures 16a,b). The advection term represents a spatial redistribution of
MKE in order to maintain a balance of the MKE transport between 7 and P, consistent
with (3.11).

4. Conclusions

Numerical investigations of MVGs in a moderate Reynolds number zero pressure
gradient turbulent boundary layer up to Re; ~ 1350 have been performed using
well-resolved large-eddy simulation data. Distinct signatures of the MVG-imposed
large-scale counter-rotating PVP are observed in the mean flow statistics, including
an induced secondary vortical motion near the wall, and they quickly rearrange into
large-scale high- and low-speed streaks following a power-law decay of enstrophy
(figure 5). The PVP-induced streaks are qualitatively measured using integral-based
streak amplitude, proposed by Shahinfar er al. (2013), which takes into account the
PVP-induced spanwise periodicity of the streaks. Analysis of the turbulence statistics has
been performed using triple decomposition of the velocity fluctuations. This separates the
additional stresses induced by the MVG geometry from the turbulent stresses. The main
findings are as follows:

(i) The spanwise and streamwise modifications on the turbulent flow structures
are analysed through pre-multiplied energy spectra of the turbulent and the
MVG-induced velocity fluctuations. The results suggest that the PVP-induced
spanwise periodicity of the streaks is initially dependent on the spanwise spacing
between MVG pairs (A;) and its harmonics. Further downstream, the spanwise
modulation effect scales solely with the A;, which is consistent with the findings
of Fransson & Talamelli (2012). The energy contained in the near-wall streaks
A7 =~ 100 does not seem to be redistributed to different wavelengths, likely because
the spanwise spacing of the MVG (A;) is much larger than the mean streak spacing
(Tomkins & Adrian 2003). In the streamwise pre-multiplied energy spectra, the
PVP-induced streaks initially scale with the MVG blade length L, up to x*/h =~ 25
and seem to modify the near-wall cycle by redistributing the energy to lower
wavelengths. They tend to aggregate into a size of the order of the near-wall streaks
A 2~ 1000 shortly after, at x*/h =~ 50.

(i1) The role of MVG is further investigated using triple decomposition of the transport
equations for the kinetic energy. The equations revealed that the mean flow acts as
an additional production of MVG-induced stresses, and plays a key role in sustaining
the secondary motion. We have also shown that there is an energy transfer between
the turbulent and MVG-induced components, which is dominated by the spatial
gradients of the turbulent stress components «'w’ and u/'v’. The kinetic analysis has
made it possible to obtain new insights into the generation of MVG-induced stresses.
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(iii) Overall, the results of the spectral analysis (show scaling with parameters A;, L, and
h) suggest the hypothesis that the spanwise separation between pairs (A;), the blade
length (L,) and height () are the prominent parameters responsible for generating
desired spanwise and streamwise modifications to the turbulent flow structures. This
implies that well-chosen MVG geometrical parameters are competent in setting up
MVG-induced secondary flows that completely reorganise the coherent turbulent
structures.
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Appendix A. Volume force implementation of a MVG

We introduce a localised volume force disturbance to generate MVG geometry of the form
F=—-Au

, Al
A = Anag (VX (X, 2) } (Al

where A;4y 1s the maximum amplitude of the localised volume force disturbance, and g(Y)
and x (X, Z) are non-zero functions within the region defining the shape and location of
the MVG. The coordinate (X, Y, Z) are rotated with respect to the reference coordinate
(x, y, z) defined as

when, z<zi=z0+A(i—1) (A2)
[ X [cos® 0 —sind ] [ x—x ] [ xo |
Yl=| 0o 1 0 g +10 (A3)
Z sinf 0O cos@ 74+ 3 -1 21
when, z>z1=z0+A(i—1) (Ad)
[ X' [ cos® 0 sind ] [ x—x ] [ xo |
Yl=| o 1 0 g +10 (A5)
Z —sinf 0 cosf Z_E_Zl 21

where i denotes the ith pair of MVG. The forcing function g(Y) is defined as

1, Y<h
g¥)=1305[1+cosSpl, h<Y <h+s (A6)
0, Y>h+s.
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where s represents a smoothing boundary (Brynjell-Rahkola et al. 2015; Chin et al. 2017).
In the parameters considered, the smoothing region is much smaller than MVG parameters,
(s/L,s/t,s/h) < 1. The x (X, Z) is defined as

L/2 <X—x9g<L/2+s
and
Y 0, Z—z2 =—(/2+y) A7
XX, 2) = 0.52[1 — cos S2][1 + cos S4], —(t/245)<Z—z71 < —t/2 (A7)
0.5[1 4 cos S4], [Z—z1| <t/2
0.52[1 + cos S3][1 + cos S4], t)2 <Z—1z71 < (t/2+5s).
—L/2<X—xo<L/2
and
0, Z—z71 < —(t/2+5)
X, Z) = A
XX, 2) 0.5[1 —cosS2], —(/2+s)<Z—2z1<—t/2 (A8)
I, |Z—z11 <1t/2
0.5[1 +cosS3], t/2<Z—2z1 < (t/2+5s).
—(L/245) <X —x9 <—L/2
and
X 7 0, Z—7=—=(/2+5) A9
xX.2) = 0.5%[1 —cos Si1[1 —cosSr], —(t/2+s) <Z—z1 < —t/2 (A9)
0.5[1 — cos S1], 1Z—z1| <t/2
0.52[1 — cos S11[1 +cosS3], /2 <Z—z1 < (t/2+5).
X(X.2)=0, |X—x0| = (L/2+5), Z—z=(t/2+5), (Al0a—c)
where

So=7n(y—"h)/s, Si=nX—x9+L/2+5)/s,
S =nZ—-z1+1t/249)/s, S3=1(Z—z1—1/2)/s, (A11)
Se=7nX —x0—L/2)/s.
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