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A rational polyhedron P ⊆ R
n is a finite union of simplexes in R

n with rational vertices.

P is said to be Z-homeomorphic to the rational polyhedron Q ⊆ R
m if there is a piecewise

linear homeomorphism η of P onto Q such that each linear piece of η and η−1 has integer

coefficients. When n = m, Z-homeomorphism amounts to continuous Gn-equidissectability,

where Gn = GL(n,Z) � Z
n is the affine group over the integers, i.e., the group of all

affinities on R
n that leave the lattice Z

n invariant. Gn yields a geometry on the set of

rational polyhedra. For each d = 0, 1, 2, . . . , we define a rational measure λd on the set of

rational polyhedra, and show that any two Z-homeomorphic rational polyhedra P ⊆ R
n and

Q ⊆ R
m satisfy λd(P ) = λd(Q). λn(P ) coincides with the n-dimensional Lebesgue measure

of P . If 0 � dimP = d < n then λd(P ) > 0. For rational d-simplexes T lying in the same

d-dimensional affine subspace of R
n , λd(T ) is proportional to the d-dimensional Hausdorff

measure of T . We characterize λd among all unimodular invariant valuations.

2010 Mathematics subject classification: Primary 20H25

Secondary 20H05, 51M25, 51N25, 52B20, 14E05, 52A38

1. Introduction: statement of the main results

1.1. Prologue: Markov unrecognizability theorem

Following [14] and [26], we use the term polyhedron P in Rn (n = 1, 2, . . .) to mean the

union of a finite set of (always closed) simplexes Ti in Rn. If the vertices of each Ti are in

Qn, P is said to be a rational polyhedron. By Markov’s unrecognizability theorem [25, and

references therein], no Turing machine can decide whether there is a PL-homeomorphism

θ of two polyhedra P and Q. For the decision problem to make sense, P and Q are

assumed to be rational, so that they can be effectively presented as finite strings of

symbols. Without loss of generality, one may insist that each linear piece of θ and θ−1 has

rational coefficients [11, p. 55], thus showing that the set of pairs of PL-homeomorphic

rational polyhedra is Gödel incomplete (i.e., recursively enumerable but not decidable).

If we further assume that all coefficients are integers, we obtain what in [17] is called
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a Z-homeomorphism. Any Z-homeomorphism preserves (least common) denominators of

rational points, thus taking due care of the amount of data needed to specify P and Q. Two

rational polyhedra R, S ⊆ Rn are Z-homeomorphic if and only if they are continuously

Gn-equidissectable [14], where Gn = GL(n,Z) � Zn is the group of all affinities on Rn that

leave the lattice Zn invariant. Gn induces a geometry on the family of rational polyhedra,

and equips them with many invariants. The present paper deals with one such invariant,

the d-dimensional rational measure λd, for d = 0, 1, 2, . . . .

1.2. Fans and regular triangulations of rational polyhedra

For any n = 1, 2, . . . and rational point x = (x1, . . . , xn) ∈ Rn we let den(x) denote the least

common denominator of the coordinates of x. The integer vector

x̃ = den(x)(x1, . . . , xn, 1) ∈ Zn+1

is called the homogeneous correspondent of x. For m = 0, 1, . . . , an m-simplex

T = conv(v0, . . . , vm) ⊆ Rn

is said to be rational if all its vertices are rational. We use the notation T ↑ = R�0 ṽ0 +

· · · + R�0 ṽm ⊆ Rn+1 for the positive span in Rn+1 of the homogeneous correspondents of

the vertices of T . We say that T ↑ is the (rational simplicial ) cone of T . The generators

ṽ0, . . . , ṽm of T ↑ are primitive, in the sense that each ṽi is minimal as a non-zero integer

vector along its ray R�0 ṽi. T
↑ uniquely determines the set of its primitive generators,

just as T uniquely determines the set ext(T ) of its vertices. Following [8] we say that

T ↑ is regular if its primitive generators are part of a basis of the free abelian group

Zn+1. By definition, a rational m-simplex T = conv(v0, . . . , vm) ⊆ Rn is (Farey) regular if

T ↑ is regular. (Warning. In the literature one also finds the term ‘regular’ simplex T when

all edge lengths of T are equal. Regular simplexes in this sense will have no role in

this paper.) The mth Farey sequence, m = 1, 2, . . . , yields the vertices of a (Farey) regular

triangulation of the unit interval. More generally, any (Farey) regular triangulation of the

unit interval consists of intervals that appear in some Farey sequence.

By a (polyhedral ) complex in Rn we mean a finite set Λ of convex polyhedra Pi in

Rn, closed under taking faces, and having the further property that any two elements of

Λ intersect in a common face. The complex Λ is said to be rational if the vertices of

all Pi ∈ Λ are rational. If all Pi are simplexes then Λ is said to be a simplicial complex.

For every complex Λ, its support |Λ| ⊆ Rn is the pointset union of all polyhedra of Λ.

Let Δ be a rational simplicial complex. Instead of saying that the support of Δ is the

rational polyhedron |Δ|, we say that Δ is a triangulation of |Δ|. The set Δ↑ = {T ↑ | T ∈ Δ}
is a simplicial fan, [8, 21]. We say that Δ is regular if the simplicial fan Δ↑ is regular (=

non-singular in [21]), meaning that every cone T ↑ ∈ Δ↑ is regular. Lemma 2.1 ensures that

every rational polyhedron P is the support of some regular complex.

1.3. The rational measure λd

For n > 0 a fixed integer, let Q ⊆ Rn be a (not necessarily rational) polyhedron. For any

triangulation T of Q and i = 0, 1, . . . we let T max(i) denote the set of maximal i-simplexes
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of T . The i-dimensional part Q(i) of Q is now defined by

Q(i) =
⋃

{T ∈ T max(i)}. (1.1)

Since any two triangulations of Q have a joint subdivision, the definition of Q(i) does not

depend on the chosen triangulation T of Q. If Q(i) is non-empty, then it is an i-dimensional

polyhedron whose j-dimensional part Q(j) is empty for each j �= i. Trivially, Q(k) = ∅ for

each integer k > dim(Q). For every (Farey) regular m-simplex S = conv(v0, . . . , vm) ⊆ Rn

we use the notation

den(S) =

m∏
j=0

den(vj),

and say that den(S) is the denominator of S . For any rational polyhedron P in Rn , regular

triangulation Δ of P , and i = 0, 1, . . . , the rational number λ(n, i, P ,Δ) is defined by

λ(n, i, P ,Δ) =
∑

T∈Δmax(i)

1

i! den(T )
, (1.2)

with the proviso that λ(n, i, P ,Δ) = 0 if Δmax(i) = ∅. In particular, this is the case for all

i > dim(P ).

Our first main result, Theorem 2.3, shows that the quantity λ(n, i, P ,Δ) does not depend

on Δ. Thus we can unambiguously write

λd(P ) = λ(n, d, P ,Δ), (1.3)

where Δ is an arbitrary regular triangulation of P ⊆ Rn . We say that λd is the d-dimensional

rational measure of P . Trivially, λd(P ) = 0 for each integer d > dim(P ).

As an alternative construction of λd for readers having some familiarity with fans

[8, 21], let us write (P , 1) as an abbreviation of {(x, 1) ∈ Rn+1 | x ∈ P }. Let Φ be a regular

fan over the set {θy ∈ Rn+1 | 0 � θ ∈ R, y ∈ (P , 1)}. Next, let ΔΦ be the triangulation of

(P , 1) obtained by intersecting every cone of Φ with the hyperplane xn+1 = 1. Then

λd(P ) =
∑{

1

d!
∏

v∈ext(T ) den(v)
| T a maximal d-simplex of ΔΦ

}
.

The proof of Theorem 2.3 relies upon the solution of the weak Oda conjecture by Morelli

and W�lodarczyk [15, 27].

Perusal of the proof of Lemma 2.1 shows that the map (P , d) �→ λd(P ) is Turing-

computable. Some explicit computations are given in Figures 1 and 2.

Recall that Gn = GL(n,Z) � Zn denotes the group of transformations of the form

x �→ Ax + t (x ∈ Rn), where t ∈ Zn and A is an n × n matrix with integer entries and

determinant ±1. Throughout, we will let

P(n)

denote the set of all rational polyhedra in Rn . Our second main result is as follows.

Theorem 1.1. For each n = 1, 2, . . . and d = 0, 1, . . . , the map λd : P(n) → R�0 has the fol-

lowing properties, for all P ,Q ∈ P(n).
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(0, 0, 1) (1, 0, 1)

(1,1,1)(0, 1, 1)

(1, 1, 2)

(1, 0, 2)

(0, 1, 2) (1, 1, 3)

the two-dimensional rational 
measure of this triangle is
1/(2! x 1 x 1 x 2) = 1/4 = its 
Lebesgue measure

the 1-dimensional rational 
measure of this segment is
1/(1! x 2 x 1) = 1/2  its 
Lebesgue 1-dimensional measure

the 0-dimensional rational 
measure of the point (1/2, 1/2) is 
1/(0! x 2) = 1/2  its Lebesgue  
0-dimensional measure

Figure 1. (Colour online) Hironaka’s regular triangulation ∇ of the unit square (see [6, pp. 270–271]). The

vertices of ∇ are specified by their homogeneous coordinates. Each simplex of ∇ is (Farey) regular. The sum

of the two-dimensional measures of the 2-simplexes of ∇ equals 1. Only the rational measure of segments and

vertices of ∇ may differ from their Lebesgue measure.

X = (1, 0, 0, 1)

Z = (0, 0, 2, 3)

M = (1, 1, 0, 2)

N = (1, 2, 0, 3)

the points X, M, N, Z, W, O  of  R3  
are specified by their homogeneous
coordinates in   Z4

1M = (1, 1

Z (0 0 2 3)Z = (0, 0, 2, 3)
the npoin

care spec
ncoordin

W = (0, 0, 1, 2)

O =
 (0

, 0
, 0

, 1
)

MMM

W = (0, 0, 1, 2)

O =
 (0

, 0
, 0

, 1
)

O

Figure 2. (Colour online) The two-dimensional rational measure 1/9 of the triangle XNZ in R
3 is the sum of

the two-dimensional rational measures 1/12 = 1/(2! × 1 × 2 × 3) and 1/36 = 1/(2! × 2 × 3 × 3) of the (Farey)

regular simplexes XMZ and MNZ. The segment XN is not regular. The segments XM and MN, as well as XZ

and ZN, are regular. The tetrahedra ZWXM, ZWMN, OWXM, OWMN are regular. Their three-dimensional

rational measures are 1/72, 1/216, 1/24, 1/72, respectively, coinciding with their Lebesgue volumes.

(i) Invariance. If P = γ(Q) for some γ ∈ Gn then λd(P ) = λd(Q).

(ii) Valuation. λd(∅) = 0, λd(P ) = λd(P
(d)), and the restriction of λd to the set of all rational

polyhedra P ,Q in Rn having dimension � d is a valuation, i.e.,

λd(P ) + λd(Q) = λd(P ∪ Q) + λd(P ∩ Q). (1.4)
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(iii) Conservativity. For any P ∈ P(n), let

(P , 0) = {(x, 0) ∈ Rn+1 | x ∈ P }.

Then λd(P ) = λd(P , 0).

(iv) Pyramid. For k = 1, . . . , n, if conv(v0, . . . , vk) is a (Farey) regular k-simplex in Rn with

v0 ∈ Zn, then

λk(conv(v0, . . . , vk)) = λk−1(conv(v1, . . . , vk))/k. (1.5)

(v) Normalization. Let j = 1, . . . , n. Suppose the set B = {w1, . . . , wj} ⊆ Zn is part of a basis

of the free abelian group Zn. Let the closed parallelepiped PB ⊆ Rn be defined by

PB =

{
x ∈ Rn | x =

j∑
i=1

γiwi, 0 � γi � 1

}
. (1.6)

Then λj(PB) = 1.

(vi) Proportionality. Let A be an m-dimensional rational affine subspace of Rn for some

m = 0, . . . , n. Then there is a constant κA > 0, depending only on A, such that λm(Q) =

κA · Hm(Q) for every rational m-simplex Q ⊆ A. Here, as usual, Hm denotes the m-

dimensional Hausdorff measure.

Conversely, in Theorem 6.2 we will prove that conditions (i)–(vi) uniquely characterize

the maps λd : P(n) → R�0. As proved in Section 4, the Lebesgue measure on Rn is

obtainable from λn via Carathéodory’s construction, or using the main result of [20], or

even [23]. In contrast to the Lebesgue measure, for each 0 � d < n and rational d-simplex

T ⊆ Rn , the rational measure λd(T ) does not vanish. Related measure-theoretic work on

convex polyhedra, and applications of the λi to ordered groups and AF C∗-algebras will

be briefly discussed in Section 8.

2. Farey blow-up and Z-homeomorphism

Given two simplicial complexes Λ′ and Λ with the same support, we say that Λ′ is a

subdivision of Λ if every simplex of Λ′ is contained in a simplex of Λ. For any c ∈ |Λ|,
the blow-up Λ(c) of Λ at c is the subdivision of Λ given by replacing every simplex C ∈ Λ

that contains c by the set of all simplexes of the form conv(F ∪ {c}), where F is any face

of C that does not contain c (see [27, p. 376], [8, III, 2.1]).

The inverse of a blow-up is called a blow-down.

For any (Farey) regular m-simplex T = conv(v0, . . . , vm) ⊆ Rn, the Farey mediant of T is

the rational point v of T whose homogeneous correspondent ṽ coincides with ṽ0 + · · · + ṽm.

If T belongs to a regular complex Δ and c is the Farey mediant of T , then the Farey

blow-up Δ(c) is regular.

By a rational (affine) hyperplane H ⊆ Rn, we mean a subset of Rn of the form {x ∈ Rn |
a · x = t}, where · denotes the scalar product, a is a non-zero vector in Qn (equivalently, in

Zn) and t ∈ Q. When t = 0, H is called homogeneous. By a rational affine subspace of Rn

we mean the intersection AF of a finite set F of rational hyperplanes in Rn. In particular,
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Figure 3. Two Z-homeomorphic rational polyhedra in the unit square [0, 1]2.

A∅ = Rn. The affine hull aff(T ) of a simplex T in Rn is the set of all affine combinations

of points of T .

Lemma 2.1. Every rational polyhedron P ⊆ Rn is the support of a regular complex.

Proof. By [26, p. 36], P is the support of some simplicial complex Λ. Since P is

rational, Λ can be assumed rational. The set Λ↑ = {T ↑ | T ∈ Λ} is a simplicial fan in

Rn+1. The desingularization procedure of [8, VI, 8.5] yields a regular subdivision Λ∗ of Λ↑.

Intersecting each cone of Λ∗ with the hyperplane xn+1 = 1, we obtain a simplicial complex

Δ whose support is the set (P , 1) = {(x, 1) ∈ Rn+1 | x ∈ P }. For each simplex U ∈ Δ, let

U ′ be the projection of U onto the hyperplane xn+1 = 0, identified with Rn. Then the

regularity of Λ∗ ensures that the set {U ′ | U ∈ Δ} is a regular complex with support P .

The following notion is of independent interest [17, Proof of Claim 2, pp. 544–545],

and will find repeated use in this paper.

Definition 1. Two rational polyhedra P ⊆ Rn and Q ⊆ Rm are Z-homeomorphic, P ∼=Z Q,

if there is a piecewise linear homeomorphism η = (η1, . . . , ηm) of P onto Q (each ηi with

a finite number of pieces li1, . . . , lik(i)) such that each linear piece of η and η−1 is a linear

(affine) map with integer coefficients.

The adjective ‘linear’ is understood in the affine sense. Figures 3 and 4 give examples

of Z-homeomorphic rational polyhedra in the unit square [0, 1]2.

In particular, if m = n and there exists γ ∈ Gn with Q = γ(P ), then P ∼=Z Q. The converse

does not hold: the two 0-simplexes {1/5} and {2/5} in R are Z-homeomorphic but there

is no γ ∈ G1 such that γ(1/5) = 2/5.

Lemma 2.2. Suppose P ⊆ Rn and P ′ ⊆ Rn′
are rational polyhedra and η is a Z-homeo-

morphism of P onto P ′.
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Figure 4. The triangle T = conv((0, 0), (1, 0), (1/2, 1/2)) ⊆ [0, 1]2 and a Z-homeomorphic copy of T .

(i) A point z ∈ P is rational if and only if the point η(z) ∈ P ′ is rational. Further, den(y) =

den(η(y)) for every rational point y ∈ P .

(ii) There is a regular complex Λ with support P such that η is linear (in the affine sense)

over every simplex of Λ.

(iii) For any regular complex Λ with support P such that η is linear over every simplex of

Λ, the set Λ′ = {η(S) | s ∈ Λ} is a regular complex with support P ′.

Proof. (i) This is an immediate consequence of Definition 1.

(ii) Lemma 2.1 yields a regular complex C0 with support P . Let η1, . . . , ηn′ be the

components of η. Fix i = 1, . . . , n′ and let li1, . . . , lik be the linear pieces of ηi. Letting

σ range over all permutations of the set {1, . . . , k}, the family of sets Pσ = {x ∈ P | liσ(1) �
· · · � liσ(k)} can be subdivided into a rational (polyhedral) complex Ci with support P ,

such that the maps lij are stratified over each polyhedron R of Ci, in the sense that for all

j ′ �= j ′′ we have either lij′ � lij′′ or lij′ � lij′′ on R. Since every complex can be subdivided

into a simplicial complex without adding new vertices [8, III, 2.6], we can assume without

loss of generality that all polyhedra in Ci are simplexes and that Ci is a subdivision of

C0. Thus ηi is linear over every simplex of Ci. We now routinely construct a common

subdivision C of the rational complexes C1, . . . , Cn′ , such that every simplex of C is rational.

It follows that η is linear over each simplex of C. The set C↑ = {T ↑ | T ∈ C} is a simplicial

fan. The desingularization procedure [8, VI, 8.5] yields a regular fan Φ such that every

cone of C↑ is a union of cones of Φ. Intersecting the cones in Φ with the hyperplane

xn+1 = 1, we have a complex Ξ whose support is the set

(P , 1) = {(x, 1) ∈ Rn+1 | x ∈ P }.

Dropping the last coordinate from the vertices of the simplexes of Ξ, we obtain a regular

complex Λ with support P such that η is linear over every simplex of Λ.

(iii) Λ′ is a rational simplicial complex with support P ′. Fix a rational j-simplex

S = conv(v0, . . . , vj) ⊆ P ,
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not necessarily belonging to Λ, such that η is linear over S . Let S ′ = η(S). The (affine)

linear map η : x ∈ S �→ y ∈ S ′ determines the homogeneous linear map

(x, 1) ∈ (S, 1) �→ (y, 1) ∈ (S ′, 1).

Let MS be the (n′ + 1) × (n + 1) integer matrix whose bottom row has the form

(0, 0, . . . , 0, 0, 1)

(with n zeros), and whose ith row (i = 1, . . . , n′) is given by the coefficients of the

(affine) linear polynomial ηi |̀S . Let ṽ0, . . . ṽj ∈ Zn+1 be the homogeneous correspondents

of the vertices v0, . . . , vj of S , and let S↑ = R�0 ṽ0 + · · · + R�0 ṽj ⊆ Rn+1 be the positive

span of ṽ0, . . . , ṽj . Similarly, let S ′↑ be the positive span in Rn′+1 of the integer vectors

MSṽ0, . . . ,MS ṽj . By construction, MS sends integer points of S↑ one-to-one into integer

points of S ′↑. Interchanging the roles of S and S ′, we see that MS sends integer points

of S↑ one-to-one onto integer points of S ′↑. Blichfeldt’s theorem [13], yields the following

characterization:

S is (Farey) regular

⇔ the half-open parallelepiped QS = {μ0ṽ0 + · · · + μjṽj | 0 � μ0, . . . , μj < 1}
contains no non-zero integer points

⇔ the half-open parallelepiped QS ′ contains no non-zero integer points

⇔ S ′ is (Farey) regular.

In particular, if S is a simplex of Λ then the assumed regularity of Λ entails the (Farey)

regularity of S , whence of S ′. We conclude that Λ′ is a regular complex with support P ′.

Recall from (1.2) the definition of λ(n, i, P ,Δ).

Theorem 2.3. For every n = 1, 2, . . . , i = 0, 1, . . . , polyhedron P ∈ P(n) and regular triangu-

lations Δ and Δ′ of P , we have λ(n, i, P ,Δ) = λ(n, i, P ,Δ′).

Proof. We first suppose that Δ′ is obtained from Δ by a blow-up at the Farey mediant c of

some j-simplex S = conv(v0, . . . , vj) ∈ Δ, j = 1, . . . , n. In symbols, Δ′ = Δ(c). S is the smallest

simplex of Δ containing c as an element. Thus c ∈ R ∈ Δ ⇒ dim(R) � j. Let d = 0, 1, . . . , n.

If, for no simplex T ∈ Δmax(d), it is the case that c ∈ T , then Δmax(d) = Δ′ max(d). Otherwise,

let T = conv(v0, . . . , vj , . . . , vd) be a simplex of Δmax(d) such that c ∈ T . We now define the

d-simplexes S0, . . . , Sj as follows:

S0 = conv(c, v1, . . . , vd),

Sj = conv(v0, v1, . . . , vj−1, c, . . . , vd),

St = conv(v0, . . . , vt−1, c, vt+1, . . . , vj , . . . , vd)

for each t = 1, . . . , j − 1. By the definition of the Farey mediant, den(c) = den(v0) + · · · +

den(vj). By the definition of the Farey blow-up, the subcomplex of Δ given by T and

its faces is replaced in Δ′ by the simplicial complex given by the d-simplexes S0, . . . , Sj
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and their faces. Since T is (Farey) regular, then so is Su for each u = 0, . . . , j, whence

den(Su) = den(T ) · den(c)/den(vu). As a consequence,

1/den(T ) =

j∑
u=0

1/den(Su).

Since ∑
T∈Δmax(d)

1

d! den(T )
=

∑
U∈Δ′ max(d)

1

d! den(U)
,

then λ(n, d, P ,Δ) = λ(n, d, P ,Δ′). Thus, in the case Δ′ = Δ(c), we obtain

λ(n, i, P ,Δ) = λ(n, i, P ,Δ′),

for all i = 0, 1, . . . .

In the general case when Δ′ is an arbitrary regular triangulation of P , the solution of

the weak Oda conjecture [15, 27] yields a sequence of regular triangulations

∇0 = Δ, ∇1, . . . ,∇s−1, ∇s = Δ′,

where each ∇k+1 is obtained from ∇k by a Farey blow-up, or, vice versa, ∇k is obtained

from ∇k+1 by a Farey blow-up. Then the desired conclusion follows by induction on s.

This theorem enables us to equip the totality of rational polyhedra with the rational

d-dimensional measure λd defined in (1.3).

3. Proof of Theorem 1.1(i)–(v)

3.1. Invariance

We will actually prove the stronger result that λd is invariant under Z-homeomorphisms . In

other words, whenever P ′ ⊆ Rn′
is a rational polyhedron and P ∼=Z P ′, then λd(P ) = λd(P

′)

for all d = 0, 1, . . . . Let ι be a Z-homeomorphism of P onto P ′. Let Δ be a regular complex

with support P such that ι is (affine) linear over every simplex of Δ. The existence of Δ is

ensured by Lemma 2.2(ii). Let Δ′ = {ι(T ) | T ∈ Δ}. By Lemma 2.2(i)–(iii), Δ′ is a regular

complex with support P ′, and den(ι(z)) = den(z) for every rational point z ∈ P . It follows

that λ(n, d, P ,Δ) = λ(n′, d, P ′,Δ′). The desired conclusion now follows from Theorem 2.3.

3.2. Valuation

The identities λd(∅) = 0, and λd(P ) = λd(P
(d)) immediately follow by the definition of

rational measure. To prove (1.4), we first observe that both P ∪ Q and P ∩ Q are rational

polyhedra in Rn whose dimension is at most d. As an application of Lemma 2.1, let the

regular complexes Δ,Φ,Ψ,Ω have the following properties:

|Δ| = P ∩ Q, |Φ| = P , |Ψ| = Q, |Ω| = P ∪ Q.

Using the extension argument in [8, VI. 9.3], we can assume Δ = Φ ∩ Ψ and Ω = Φ ∪ Ψ,

without loss of generality. For every X ⊆ Rn we let cl(X) denote the closure of X in Rn,
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as usual. By Theorem 2.3 we have

λd(P ) + λd(Q) = λ(n, d, P ,Φ) + λ(n, d, Q,Ψ)

= 1
d !

[∑
T∈Φmax(d) den(T )−1 +

∑
T∈Ψmax(d) den(T )−1

]
= 1

d !

[∑
cl(P\Q)⊇T∈Φmax(d) den(T )−1 +

∑
cl(Q\P )⊇T∈Ψmax(d) den(T )−1

]
+ 1

d !

[∑
P∩Q⊇T∈Φmax(d) den(T )−1 +

∑
P∩Q⊇T∈Ψmax(d) den(T )−1

]
= 1

d !

[∑
cl(P\Q)⊇T∈Φmax(d) den(T )−1 +

∑
cl(Q\P )⊇T∈Ψmax(d) den(T )−1

]
+ 2

d !

∑
T∈Δmax(d) den(T )−1

= 1
d !

[∑
cl(P\Q)⊇T∈Ωmax(d) den(T )−1 +

∑
cl(Q\P )⊇T∈Ωmax(d) den(T )−1

]
+ 2

d !

∑
T∈Δmax(d) den(T )−1

= 1
d !

[∑
cl(P\Q)⊇T∈Ωmax(d) den(T )−1 +

∑
cl(Q\P )⊇T∈Ωmax(d) den(T )−1

]
+ 1

d !

[∑
P∩Q⊇T∈Ωmax(d) den(T )−1 +

∑
T∈Δmax(d) den(T )−1

]
= λ(n, d, P ∪ Q,Ω) + λ(n, d, P ∩ Q,Δ) = λd(P ∪ Q) + λd(P ∩ Q).

3.3. Conservativity and pyramid

Properties (iii) and (iv) are immediate consequences of the definition of λd.

3.4. Normalization

To prove property (v), let Π be the set of permutations of the set {1, 2, . . . , j}. For every

permutation π ∈ Π we let Tπ be the convex hull of the set of points

0, wπ(1), wπ(1) + wπ(2), wπ(1) + wπ(2) + wπ(3), . . . , wπ(1) + wπ(2) + · · · + wπ(j).

Arguing as in [24, 3.4], it follows that the j-simplexes Tπ are the maximal elements of

a triangulation Σ of PB , called the standard triangulation Σ. Each simplex Tπ is regular

and has unit denominator. There are j! such simplexes. By definition, the rational j-

dimensional measure of Tπ is equal to 1/j!. A final application of Theorem 2.3 yields

λj(PB) = 1.

4. From λn to Lebesgue measure on Rn via Carathéodory’s method

In what follows, Ln will denote the Lebesgue measure on Rn.

Proposition 4.1. For any n = 1, 2, . . . and polyhedron Q ∈ P(n), we have λn(Q) = Ln(Q).

Proof. If dim(Q) < n then Ln(Q) = λn(Q) = 0. If dim(Q) = n, since λn(Q) = λn(Q
(n)) and

Ln(Q) = Ln(Q(n)), without loss of generality we may assume Q = Q(n). Let ∇ be a regular

triangulation of Q as given by Lemma 2.1. Since, as we have seen, λn is a valuation on

P(n) and Ln(Q) =
∑

S∈∇max(n) Ln(S), it is enough to prove

λn(S) = Ln(S) for every n-simplex S = conv(w0, . . . , wn) ∈ ∇. (4.1)
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To this end, let T ⊆ Rn+1 be the (n + 1)-simplex with vertices 0, (w0, 1), . . . , (wn, 1). Then

Ln+1(T ) = Ln(S)/(n + 1).

This is the classical formula for the volume of the (n + 1)-dimensional pyramid with base

S and height 1. Next we observe that T is contained in the closed (n + 1)-dimensional

parallelepiped

E = {α0(w0, 1) + · · · + αn(wn, 1) ∈ Rn+1 | α0, . . . , αn ∈ [0, 1]}.

Further,

E ⊆ U = {α0w̃0 + · · · + αnw̃n ∈ Rn+1 | α0, . . . , αn ∈ [0, 1]}.

Since S is (Farey) regular, a classical argument in the geometry of numbers ([13] or [8,

Proof of VI, 8.5]) yields Ln+1(U) = 1. For all i = 0, . . . , n, let di = den(wi). Since

w̃0 = d0(w0, 1), . . . , w̃n = dn(wn, 1),

then

Ln+1(E) = (d0 · · · dn)−1.

The construction of [24, 3.4] now yields a triangulation of E consisting of (n + 1)-simplexes

T1, . . . , T(n+1)! and their faces, in such a way that

Ln+1(Ti) =
Ln+1(E)

(n + 1)!
for each i = 1, . . . , (n + 1)!

Each Ti is a (Farey) regular simplex. One easily gets a linear (affine) isometry of Ti onto

T . Therefore,

Ln+1(T ) =
Ln+1(E)

(n + 1)!
.

Summing up, Ln(S) = Ln+1(E)/n! = (n! d0 · · · dn)−1 = λn(S), and (4.1) is proved.

Corollary 4.2. Fix n = 1, 2, . . . and let K(n) denote the family of compact subsets of Rn. For

any Borel set E ⊆ Rn let us define

λ̄n(E) = sup
E⊇K∈K(n)

inf
K⊆P∈P(n)

λn(P ).

Then λ̄n(E) = Ln(E).

Proof. We first claim that every K ∈ K(n) coincides with the intersection of all rational

polyhedra of P(n) containing it.

As a matter of fact, for any P ,Q ∈ P(n) both P ∪ Q and P ∩ Q are members of P(n).

Moreover, there exists a rational triangulation T of P ∪ Q such that the set {T ∈ T | T ⊆
P ∩ Q} is a triangulation of P ∩ Q. Thus the set {T ∈ T | T ⊆ cl(P \ Q)} is a triangulation

of the set cl(P \ Q) ⊆ Rn, which shows that cl(P \ Q) is a rational polyhedron. For every

x ∈ Rn \ K there is a rational n-simplex T containing x in its interior and such that

T ∩ K = ∅. Since K is contained in some rational polyhedron, our claim is settled.
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Now let P0 ⊇ P1 ⊇ · · · be a sequence of rational polyhedra such that
⋂

i Pi = K , and

for every R ∈ P(n) with K ⊆ R there exists j = 0, 1, . . . such that Pj ⊆ R. The existence of

this sequence follows from our claim, together with the observation that there are only

countably many rational polyhedra. By Proposition 4.1,

λn(P0) = Ln(P0) � Ln(P1) = λn(P1) � λn(P2) � · · · ,

whence by construction,

lim
i→∞

λn(Pi) = inf{λn(R) | R ⊇ K, R ∈ P(n)} = λ̄n(K).

Combining Proposition 4.1 with the countable monotonicity property of Ln, we get

Ln(K) = lim
i→∞

Ln(Pi) = lim
i→∞

λn(Pi) = λ̄n(K).

Having thus proved that λ̄n agrees with Ln on all compact subsets of Rn, the desired

conclusion follows from the regularity properties of the Lebesgue measure.

Remark. Following [10, 115C], we now routinely extend λ̄n to an outer measure

λ∗
n : powerset(Rn) → [0,∞],

which, by Corollary 4.2 and [10, 115D], coincides with the Lebesgue outer measure on

Rn. As proved in [10, 115E], by applying to λ∗
n Carathéodory’s construction [10, 113], we

finally obtain the Lebesgue measure on Rn.

Alternatively, one can obtain the Lebesgue measure from λ̄n using the main result of

[20], to the effect that if a Borel measure μ on Rn is invariant under the linear action

of SL(n,Z), annihilates the set of rational rays {tz | t � 0, z ∈ Zn}, and is locally finite at

some point x (in the sense that x has some open neighbourhood N with μ(N) < ∞), then

μ coincides with a scalar multiple of the Lebesgue n-dimensional measure. This extends

a result in [5] concerning locally finite measures which are ergodic under the action of

SL(n,Z). Further, see [23].

5. Proof of Theorem 1.1(vi)

5.1. Basic material on Hausdorff measure

In the following proposition we collect a number of well-known consequences of the

isodiametric inequality (see [9, 2.10.33]), and of the invariance of the Hausdorff d-

dimensional measure under isometries.

Proposition 5.1. For each 0 < n ∈ Z we have the following.

(i) If T = conv(x0, . . . , xn) is an n-simplex in Rn, letting M be the n × n matrix whose ith

row is given by the vector xi − x0 (i = 1, . . . , n), then Hn(T ) = | det(M)|/n! = Ln(T ).

(ii) If S is an m-simplex in Rn with 0 < m < n, and we map S onto a copy S ′ by means of

an isometry ι sending the affine hull of S onto the linear subspace Rm of Rn spanned

by the first m standard basis vectors of Rn, then Hm(S) = Lm(S ′). If dim(S) = 0, then

H0(S) = 1 = number of elements of the singleton S .
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(iii) Suppose Q is a non-empty polyhedron in Rn and Q = Q(d) for some d = 0, 1, . . . , n. Then,

letting T be an arbitrary triangulation of Q, with its d-simplexes T1, . . . , Tk , we have

Hd(Q) =

k∑
j=1

Hd(Tj).

If Q = ∅, then Hk(Q) = 0 for all k = 0, 1, . . . .

(iv) Given integers 0 � m < n, suppose T = conv(v0, . . . , vm) and T ′ = conv(v′
0, . . . , v

′
m) are

m-simplexes in Rn with aff(T ) = aff(T ′). For v an arbitrary point lying in Rn \ aff(T ),

let U = conv(T , v) and U ′ = conv(T ′, v). Then

Hm+1(U ′)/Hm+1(U) = Hm(T ′)/Hm(T ).

(v) More generally, suppose the points vm+1, . . . , vn ∈ Rn have the property that

W = conv(v0, . . . , vm, vm+1, . . . , vn)

is an n-simplex. Then W ′ = conv(v′
0, . . . , v

′
m, vm+1, . . . , vn) is also an n-simplex, and we

have the identity

Hn(W ′)/Hn(W ) = Hm(T ′)/Hm(T ).

5.2. Completion of the proof of Theorem 1.1(vi)

It remains to be proved that λd has the proportionality property (vi). By Lemma 2.1, Q

has a regular triangulation. Since λm is a valuation, recalling Proposition 5.1(iii) it suffices

to consider the case that Q is a (Farey) regular m-simplex. If m = n, the result follows

from Proposition 4.1 since, by Proposition 5.1(i), Hn(Q) = Ln(Q). In this case κA = 1.

Next suppose 0 � m < n. It suffices to prove that for any two (Farey) regular m-simplexes

T = conv(v0, . . . , vm) and T ′ = conv(v′
0, . . . , v

′
m) lying in A,

λm(T )/λm(T ′) = Hm(T )/Hm(T ′).

To this end, let U = conv(v0, . . . , vm, vm+1, . . . , vn) be a (Farey) regular n-simplex in Rn

having T as a face.

Claim. The simplex U ′ = conv(v′
0, . . . , v

′
m, vm+1, . . . , vn) is (Farey) regular.

As a matter of fact, the (Farey) regularity of T means that the set {ṽ0, . . . , ṽm} is a

basis of the free abelian group G = Zn+1 ∩ (Rṽ0 + · · · + Rṽm) of integer points in the

(m + 1)-dimensional linear space spanned by ṽ0, . . . , ṽm in Rn+1. Since aff(T ′) = A = aff(T )

and T ′ is (Farey) regular, ṽ′
0, . . . , ṽ

′
m also constitute a basis of G. Upon writing each ṽi

and ṽ′
j as a column vector, let M be the (n + 1) × (m + 1) matrix whose ith row coincides

with ṽi. Similarly, let M ′ be the (n + 1) × (m + 1) matrix whose jth row equals ṽ′
j . Let the

(m + 1) × (m + 1) integer matrix Z be defined by MZ = M ′. The (m + 1) × (m + 1) integer

matrix V defined by M ′V = M coincides with Z−1, whence | det(Z)| = | det(Z−1)| = 1.
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Let the matrix N be defined by

N =

(
Z 0

0 In−m

)
,

where In−m denotes the (n − m) × (n − m) identity matrix. N is a unimodular integer

(n + 1) × (n + 1) matrix. Let W (resp. W ′) be the (n + 1) × (n + 1) integer matrix whose

first m + 1 columns are those of M (resp. those of M ′), and whose last n − m columns

are given by the column vectors ṽm+1, . . . , ṽn. From WN = W ′, it follows that the vectors

ṽ′
0, . . . , ṽ

′
m, ṽm+1, . . . , ṽn constitute a basis of the free abelian group Zn+1. Therefore,

conv(v′
0, . . . , v

′
m, vm+1, . . . , vn)

is a (Farey) regular n-simplex in Rn, and our claim is settled.

Now let di = den(vi) (i = 0, . . . , n) and d′
j = den(v′

j) (j = 0, . . . , m). Since both simplexes

U and U ′ are (Farey) regular, we can write the identities

λm(T )

λm(T ′)
=

(m! d0 · · · dm)−1

(m! d′
0 · · · d′

m)−1
=

(n! d0 · · · dmdm+1 · · · dn)−1

(n! d′
0 · · · d′

mdm+1 · · · dn)−1
=

λn(U)

λn(U ′)
.

By Propositions 4.1 and 5.1(ii)–(v), we obtain

λn(U)

λn(U ′)
=

Ln(U)

Ln(U ′)
=

Hn(U)

Hn(U ′)
=

Hm(T )

Hm(T ′)
,

as required to prove (vi).

The proof of Theorem 1.1 is now complete.

6. Uniqueness

For every non-empty rational affine subspace F of Rn, let the integer dF � 1 be defined

by

dF = min{q ∈ Z | q = den(r) letting r range over all rational points of F}. (6.1)

Lemma 6.1. Fix n = 1, 2, . . . and e = 0, . . . , n. Let F be a rational e-dimensional affine

subspace of Rn and d = dF .

(i) There are rational points v0, . . . , ve ∈ F , all with denominator d, such that conv(v0, . . . , ve)

is a (Farey) regular e-simplex.

(ii) For any rational point y ∈ F there is an integer k = 1, 2, . . . such that den(y) = kd.

Proof. (i) For some (Farey) regular e-simplex

S0 = conv(u0, . . . , ue),

we can write

F = aff(u0, . . . , ue).
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The (Farey) regularity of S0 means that the set B0 = {ũ0, . . . , ũe} can be extended to a

basis of the free abelian group Zn+1, whence B0 is a basis of the lattice Zn+1 ∩ F∗, where

F∗ = Rũ0 + · · · + Rũe is the linear subspace of Rn+1 generated by ũ0, . . . , ũe.

It is impossible for the heights (= last coordinates) of ũ0, . . . , ũe all to be equal to the

same integer h > d, for otherwise, any primitive vector r̃ in F∗ of height d, for r as in (6.1),

could not arise as a linear combination of the ũi with integer coefficients, and B0 would

not be a basis of Zn+1 ∩ F∗.

If the heights of ũ0, . . . , ũe are all equal to d we have nothing to prove. Otherwise, we

will construct a finite sequence B0, B1, . . . of bases of Zn+1 ∩ F∗, and finally obtain a basis

{ṽ0, . . . , ṽe} having the property that the height of each ṽi is equal to d.

The first step is as follows. Choose a vector ũi ∈ B0 of greatest height, a vector ũj ∈ B0

of smaller height, and replace ũi by ũi − ũj . We get a new basis B1 of Zn+1 ∩ F∗, and a

new (Farey) regular e-simplex S1 in F . Specifically, letting the rational point w ∈ F be

defined by w̃ = ũi − ũj , the vertices of S1 are u0, . . . , ui−1, w, ui+1, . . . , ue. Observe that the

sum of the heights of the elements of B1 is strictly smaller than the sum of the heights of

the elements of B0.

Proceeding inductively, and replacing a top vector ũ of the basis Bt by a vector ũ − ṽ

with ṽ ∈ Bt of smaller height than ũ, we obtain a new basis Bt+1 such that the sum of

the heights of the elements of Bt+1 is strictly smaller than the sum of the heights of the

elements of Bt. We also get a new (Farey) regular e-simplex St+1 lying in F . The process

must terminate with a basis {ṽ0, . . . , ṽe} of Zn+1 ∩ F∗ where all ṽi have the same height,

which by our initial discussion must be equal to d. By definition, conv(v0, . . . , ve) is the

desired (Farey) regular e-simplex in F .

(ii) Condition (ii) now follows trivially from (i), since the (Farey) regularity of

conv(v0, . . . , ve) implies that the primitive vector ỹ ∈ Zn+1 is a linear combination of

the ṽi with integer coefficients.

Theorem 6.2. For each n = 1, 2, . . . , properties (i)–(vi) in Theorem 1.1 uniquely characterize

the rational measures λ0, . . . , λn among all maps from P(n) to R�0.

Proof. Suppose that for each n = 1, 2, . . . , the maps μ0, . . . , μn : P(n) → R�0, as well as the

maps μ′
0, . . . , μ

′
n+1 : P(n+1) → R�0, have all properties (i)–(vi). Since by Lemma 2.1 every

rational polyhedron has a regular triangulation, and each μj and λj is a valuation, it

suffices to show that μm(S) = λm(S) for all m = 0, . . . , n, and (Farey) regular m-simplex

S in Rn. Let F = aff(S) be the affine hull of S in Rn. Let d = dF be the smallest

denominator of a rational point of F as in (6.1) above. Let us identify Rn with the

hyperplane xn+1 = 0 of Rn+1. Let T = conv(v0, . . . , vm) ⊆ F be a (Farey) regular m-simplex

such that den(v0) = · · · = den(vm) = d. The existence of T is ensured by Lemma 6.1.

Let T ′ = {(x, 1) ∈ Rn+1 | x ∈ T }. There exists α ∈ Gn+1 such that α(T , 0) = T ′. From the

invariance and conservativity properties of all μi and μ′
j , we obtain

μ′
m(T ′) = μ′

m(T , 0) = μm(T ). (6.2)
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The (Farey) regularity of T means that the set B = {ṽ0, . . . , ṽm} is part of a basis of the

free abelian group Zn+1. As in (1.6) above, let the closed parallelepiped PB be defined by

PB =

{
x ∈ Rn+1 | x =

m∑
i=0

γiṽi, 0 � γi � 1

}
.

From the normalization property we get μ′
m+1(PB) = 1. Arguing as in Section 3.4, we

obtain a triangulation Δ of PB consisting of (m + 1)-simplexes T1, . . . , T(m+1)! and their

faces. Each Ti is (Farey) regular and has denominator 1. A direct verification shows that

for any two such simplexes Ti and Tj there exists γ ∈ Gn+1 such that Ti = γ(Tj). From

the valuation and invariance properties of μ′
m+1, it follows that

μ′
m+1(Tj) =

μ′
m+1(PB)

(m + 1)!
=

1

(m + 1)!
for all j = 1, . . . , (m + 1)!

Let D ⊆ Rn+1 be the (m + 1)-simplex with vertices 0, ṽ0, . . . , ṽm. It is easily seen that D

is (Farey) regular and den(D) = 1. Thus an easy exercise yields an η ∈ Gn+1 such that

η(T1) = D. One more application of the invariance property of μ′
m+1 yields

μ′
m+1(D) =

1

(m + 1)!
.

Since the (m + 1)-simplex D′ with vertices 0, (v0, 1), . . . , (vm, 1) has the same affine hull as

D, by the assumed proportionality property of μ′
m+1 we have

μ′
m+1(D′) =

1

(m + 1)! dm+1
.

On the other hand, the pyramid property is to the effect that

μ′
m+1(D′) =

μ′
m(T ′)

m + 1
,

whence

μ′
m(T ′) =

1

m! dm+1
.

Recalling (6.2), we obtain

μm(T ) =
1

m! dm+1
= λm(T ),

because T is (Farey) regular and the denominators of its vertices are all equal to d. Since

S and T have the same affine hull, a final application of the proportionality property of

μm and λm yields

μm(S)

μm(T )
=

Hm(S)

Hm(T )
=

λm(S)

λm(T )
.

In conclusion,

μm(S) = λm(S)
μm(T )

λm(T )
= λm(S).

The proof is complete.
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7. The value of the proportionality constant κA of Theorem 1.1(vi)

Following [13], for any k-dimensional sub-lattice Λ of Zn, the determinant det(Λ) of Λ is

the k-dimensional volume of a fundamental region (also known as a cell ) for Λ in the

k-dimensional rational linear subspace spanned by Λ.

Theorem 7.1. Let A = A0 + t be a rational e-dimensional affine subspace of Rn , for e =

0, 1, . . . , n, where the affine rational subspace A0 is homogeneous and t ∈ Qn. Let d = dA be

the smallest denominator of a rational point of A.

(i) The ratio kA between the e-dimensional rational measure and the e-dimensional Haus-

dorff measure of any e-simplex lying in A is equal to (dA × det(A0 ∩ Zn))−1.

(ii) If the lattice A0 ∩ Zn is equipped with a basis h1, . . . , he, where each hi is a vector in Zn,

then letting M be the matrix with the coordinates of hi in the ith row, we have the identity

det(A0 ∩ Zn) = (MM ′)1/2, where M ′ is the transpose of M. This holds independently of

the chosen basis.

Proof. (i) Lemma 6.1 yields rational points v0, . . . , ve ∈ A, all with the same denominator

d, which are the vertices of a (Farey) regular e-simplex S = conv(v0, . . . , ve) ⊆ A. Thus the

integer vectors ṽ0, . . . , ṽe ∈ Zn+1 are a basis of the lattice A∗ ∩ Zn+1 of integer points in the

linear span A∗ of the set {ṽ0, . . . , ṽe} in Rn+1.

By the definition of rational measure we immediately have λe(S) = (e! de+1)−1.

To compute the e-dimensional Hausdorff measure of S , let the e-simplex S ′ = (S, 1) ⊆
Rn+1 be obtained by vertically lifting S to the hyperplane xn+1 = 1. Multiplying each

vector of S ′ by the scalar d, we obtain the e-simplex

dS ′ = {dy ∈ Rn+1 | y ∈ S ′}.

All vertices of dS ′ lie at the same height d in Rn+1. From dS ′ = conv(ṽ0, . . . , ṽe) it follows

that

H(e)(S) =
H(e)(dS ′)

de
=

H(e)(conv(ṽ0, . . . , ṽe))

de
.

Translating the e-simplex conv(ṽ0, . . . , ṽe) ⊆ Rn+1 by a shift of −ṽ0, since the Hausdorff

measure is translation-invariant, we have

H(e)(S) =
H(e)(conv(0, ṽ1 − ṽ0, . . . , ṽe − ṽ0))

de
.

On the hyperplane xn+1 = 0 of Rn+1 we now have an e-simplex with integer vertices

0, ṽ1 − ṽ0, . . . , ṽe − ṽ0. Let us write wi for the vector in Rn obtained by forgetting the last

(zero) coordinate of ṽe − ṽ0. The points 0, w1, . . . , we ∈ Zn ∩ A0 ⊆ Rn satisfy

H(e)(S) =
H(e)(conv(0, w1, . . . , we))

de
.

Let P(w1, . . . , we) be the parallelopiped spanned by the vectors w1, . . . , we in Rn . As a

trivial corollary of the isodiametric inequality ([9, 2.10.33]), we have

H(e)(S) =
H(e)(P(w1, . . . , we))

de e!
.
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Note that A0 coincides with A translated by −v0. Further, {w1, . . . , we} is a basis of the

lattice A0 ∩ Zn. By the definition of the lattice determinant,

H(e)(S) =
det(A0 ∩ Zn)

de e!
,

whence

kA =
λe(S)

H(e)(S)
=

1

e! de+1
:

det(A0 ∩ Zn)

de e!
=

1

d × det(A0 ∩ Zn)
,

as required to complete the proof of (i).

(ii) See, for example, [3, Theorem 7, p. 308].

8. Related work and concluding remarks

In the literature, Gn-invariance is also known as unimodular invariance [14, p. 979 and

references therein]. Theorems 1.1 and 6.2 uniquely characterize the array of unimodular

invariant maps λi on the set P(n) of rational polyhedra in Rn , and relate λi to i-dimensional

Hausdorff measure. All valuations on classes of polyhedra pre-existing in the literature

miss at least one of the conditions in Theorem 1.1.

As a notable example, following [14, p. 979–980], let Pn
Z

be the set of convex lattice

polyhedra in Rn (the word ‘lattice’ meaning here that all vertices have integer coordinates).

The Betke–Kneser theorem ([2], [12, 19.6]) states that every additive unimodular invariant

function defined on the space Pn
Z

is a linear combination of the n + 1 functions Gi

introduced in [7] by Ehrhart. Here ‘additive’ means that the valuation property holds for

P ,Q ∈ Pn
Z

subject to the condition that both P ∪ Q and P ∩ Q belong to Pn
Z
. See [1, 8, 12]

for more information on Ehrhart theory.

The convexity of each element of Pn
Z
, together with the condition that all its vertices

are integers, is indispensable for the Betke–Kneser theorem to hold. In fact, an infinite-

dimensional space of unimodular invariant (unconditionally) additive maps on P(n) can be

immediately constructed as follows. For every prime p consider the function Cp : P(n) →
{0, 1, 2, . . .}, where for every P ∈ P(n), Cp(P ) counts the number of rational points x in P

having den(x) = p. A moment’s reflection shows that Cp is a valuation on P(n). Further,

Cp is Gn-invariant, because each γ ∈ Gn preserves denominators of rational points. For

primes p1 < p2 < · · · < pt the valuations Cp1
, Cp2

, . . . , Cpt form a linearly independent set,

which shows that the space of all Gn-invariant valuations on P(n) is infinite-dimensional.

As expected, conditions (iv)–(vi) in Theorem 1.1 do not hold in general for the valuations

Cp.

While Pn
Z

is not even closed under unions and intersections, for any P ,Q ∈ P(n), P ∩ Q,

P ∪ Q and the closure of P \ Q are still in P(n), and so is the orthogonal projection

of P onto any rational hyperplane of Rn . Cartesian products and Minkowski sums of

rational polyhedra are rational polyhedra. The value λd(Q) exists for all Q ∈ P(n) and all

d = 0, 1, . . . . Thus dim(Q) may be strictly smaller than the dimension of the ambient space

Rn . With the notation of (1.1), one may have non-empty Q(i) and Q(j) for distinct i and j.

Further, the vertices of Q need not belong to the lattice Zn.

https://doi.org/10.1017/S096354831300062X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831300062X


266 D. Mundici

The rational measure λd has the additivity property for all rational polyhedra in Rn

whose dimension is � d. This latter restriction cannot be dispensed with: for instance,

the 0-dimensional rational measure of the positive and of the negative unit segment in R

with vertex 0 is 0, but the 0-dimensional measure of their intersection is 1. Because the

additivity properties of the λd and of the Betke–Kneser functionals are so different, the

latter can hardly provide an alternative approach to the restriction to Pn
Z

of the rational

measures λ0, . . . , λn−1. (Recall that λn coincides with the Lebesgue n-dimensional measure,

and 0 = λn+1 = λn+2 = · · · ).

We conclude this paper with a brief discussion of the invariance property of rational

polyhedra under Z-homeomorphism versus unimodular invariance and invariance under

rational PL-homeomorphism.

(i) The arithmetic–algebraic–geometric structure of the set of rational polyhedra and their

piecewise linear maps with integer coefficients makes Pn into a category tightly connected

to certain other categories. In [18], rational polyhedra are classified in terms of weighted

abstract simplicial complexes, and a duality (contravariant categorical equivalence) is

constructed between rational polyhedra and finitely presented MV-algebras and lattice-

ordered abelian groups with a distinguished strong unit (for short, unital �-groups). Z-

homeomorphic rational polyhedra correspond to isomorphic unital �-groups. Every convex

combination of the λd with coefficients > 0 equips every finitely presented unital �-group

L with a faithful invariant state σL (= normalized order-preserving, unit-preserving

homomorphism σ with ker σ = 0 of L into the naturally ordered additive group R

equipped with the strong unit 1). See [17, 4.1] for a proof. Via Elliott classification and

the Grothendieck K0-group, this result has an application to AF C∗-algebras A whose

Murray–von Neumann order of projections is a lattice. Since the invariant tracial states

of A are in one-to-one correspondence with the invariant states of K0(A), from σK0(A) one

constructs an invariant (ergodic, by [22]) state on notable examples of AF C∗-algebras

existing in the literature, such as the ‘free one-generator’ AF C∗-algebra M1 introduced

in [16] and recently rediscovered in [4] (as shown in [19]).

(ii) Paraphrasing McMullen [14, p. 939], for any group A of affinities in Rd, the core

of Hilbert’s third problem is to characterize A-equidissectability in terms of suitable

families of simple A-invariant valuations, those A-invariant valuations vanishing on P

whenever dim(P ) < d. Now, the Z-homeomorphism of two rational polyhedra R, S ⊆ Rn

amounts to their continuous Gn-equidissectability (this easily follows from the fact that

every rational triangulation has a regular subdivision). Each rational measure λd is a

simple Turing-computable Gn-invariant valuation on all rational polyhedra in Rn , and the

conditions λd(P ) = λd(Q), d = 0, 1, . . . , are necessary for P to be Z-homeomorphic to Q.

By considering all sorts of Turing-computable Gn-invariant valuations on Pn, for instance

the Cp described above in this section and variants thereof, one might hope to get a

better understanding of continuous Gn-equidissectability of rational polyhedra, and of the

complexity of the following problem.

Instance. Two rational polyhedra R, S ⊆ Rn .
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Question. Does there exist a Z-homeomorphism of R onto S?

It turns out that the decidability of this (continuous Gn-equidissectability) problem is

open, notwithstanding Markov’s unrecognizability theorem for rational polyhedra under

rational PL-homeomorphism. The problem has an equivalent algebraic counterpart,

known as the isomorphism problem for finitely presented unital �-groups, or MV-

algebras. Indeed, as remarked above, rational polyhedra are dually equivalent to finitely

presented unital �-groups and MV-algebras. The difficulty of proving that this problem

is undecidable may be due in part to the wealth of Turing-computable invariants for Z-

homeomorphisms possessed by rational polyhedra, of which the rational measures λd are

an example, well beyond those of rational polyhedra under rational PL-homeomorphisms.

Indeed, Z-homeomorphism is a much finer equivalence relation than PL-homeomorphism.

Acknowledgements

The author is very grateful to the referee and to the editors for their valuable comments

and suggestions for improving clarity and comprehensibility, resulting in a substantial

reframing of large portions of this paper.

References

[1] Barvinok, A. (2002) A Course in Convexity, Vol. 54 of Graduate Studies in Mathematics, AMS.

[2] Betke, U. and Kneser, M. (1985) Zerlegungen und Bewertungen von Gitterpolytopen. J. Reine

Angew. Math. 358 202–208.

[3] Birkhoff, G. and Mac Lane, S. (1953) A Survey of Modern Algebra, revised edition, Macmillan.

[4] Boca, F. (2008) An AF algebra associated with the Farey tessellation. Canad. J. Math. 60

975–1000.

[5] Dani, S. G. (1979) On invariant measures, minimal sets and a lemma of Margulis. Inventio.

Math. 51 239–260.

[6] Danilov, V. I. (1983) Birational geometry of toric 3-folds. Math. USSR Izvestiya 21 269–280.
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