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MEASURABLE PERFECT MATCHINGS FOR ACYCLIC LOCALLY
COUNTABLE BOREL GRAPHS

CLINTON T. CONLEY AND BENJAMIN D. MILLER

Abstract. We characterize the structural impediments to the existence of Borel perfect matchings
for acyclic locally countable Borel graphs admitting a Borel selection of finitely many ends from their
connected components. In particular, this yields the existence of Borel matchings for such graphs of degree
at least three. As a corollary, it follows that acyclic locally countable Borel graphs of degree at least three
generating �-hyperfinite equivalence relations admit �-measurable matchings. We establish the analogous
result for Baire measurable matchings in the locally finite case, and provide a counterexample in the locally
countable case.

Introduction. A graph on a set X is an irreflexive symmetric subset G of X × X .
An involution is a permutation which is its own inverse, and a matching of G is
an involution of a subset of X whose graph is contained in G . Such a matching is
perfect if its domain is X itself.
A G-path is a sequence (xi)i≤n such that xi G xi+1, for all i < n. We say that
G is connected if there is a G-path between any two points of X . More generally,
the equivalence relation generated by a graph G on X is the smallest equivalence
relation onX containingG , and the connected components ofG are the equivalence
classes [x]G of this relation. A graph G is acyclic if there is at most one injective
G-path between any two points. When G is acyclic, the G-distance between two
points of the same connected component ofG is one less than the number of points
along the unique injective G-path between them. A tree is an acyclic connected
graph.
A straightforward recursive analysis yields a characterization of the existence
of perfect matchings for acyclic graphs. Here we consider the substantially more
subtle question of the existence ofmeasurable perfect matchings for acyclic definable
graphs.
A Polish space is a separable topological space admitting a compatible complete
metric. A subset of such a space is Borel if it is in the �-algebra generated by
the underlying topology. A standard Borel space is a set X equipped with the
family of Borel sets associated with a Polish topology on X . Every subset of a
standard Borel space inherits the �-algebra consisting of its intersection with each
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MEASURABLE PERFECTMATCHINGS 259

Borel subset of the original space; this restriction is again standard Borel exactly
when the subset in question is Borel (see, for example, [7, Corollary 13.4 and
Theorem 15.1]). A function between standard Borel spaces is Borel if preimages of
Borel sets are Borel. We will take being Borel as our notion of definability.
The G-degree of a point y is given by degG(y) = |{x ∈ X | x G y}|. A graph
is locally countable if every point has countable G-degree, and locally finite if every
point has finite G-degree. A graph is n-regular if every point has G-degree n.
We say that a graph has degree at least n if every point has G-degree at least n.
The existence of perfect matchings can be reduced to the case of graphs of degree
at least two (modulo a minor caveat in the Borel setting).
AG-ray is a sequence (xn)n∈N with the property that xn G xn+1, for all n ∈ N. We
say that a sequence (xn)n∈N has G-degree two on even indices if degG(x2n) = 2, for
all n ∈ N. Note that if G has degree at least three, then there are no such sequences.
When G is acyclic, we say that injective G-rays (xn)n∈N and (yn)n∈N are end
equivalent if there exist i, j ∈ N with xi+n = yj+n , for all n ∈ N. We say that a set
X ⊆ XN selects a finite nonempty set of ends from every connected component of
G if X ∩ [x]NG is a finite nonempty union of end-equivalence classes, for all x ∈ X .
Theorem A. Suppose that X is a Polish space, G is an acyclic locally countable
Borel graph on X of degree at least two, and there is a Borel set selecting a finite
nonempty set of ends from every connected component of G . Then there is a Borel set
B ⊆ X such that:
(1) The restriction of G to B is two-regular.
(2) Every connected component of G contains at most one connected component
of the restriction of G to B.

(3) No two points of B of G-degree at least three have odd G-distance from one
another.

(4) There is a Borel perfect matching of G off of B.

In particular, if there are no injective G-rays of G-degree two on even indices, then the
set B is empty, thus G has a Borel perfect matching.

There are well-known examples of acyclic two-regular Borel graphs which do not
have Borel perfect matchings, and a result of Marks yields acyclic n-regular Borel
graphs which do not have Borel perfect matchings, for all natural numbers n ≥ 3
(see [12, Theorem 1.5]).
A Borel probability measure on a Polish space X is a function �, assigning to
each Borel set B ⊆ X an element of [0, 1], with the property that �(X ) = 1 and
�(

⋃
n∈N
Bn) =

∑
n∈N
�(Bn), for every sequence (Bn)n∈N of pairwise disjoint Borel

subsets ofX . ABorel setB ⊆ X is�-null if�(B) = 0, and�-conull if its complement
is �-null.
Following the usual abuse of language, we say that an equivalence relation is
countable if its classes are countable, and finite if its classes are finite. We say that a
countable Borel equivalence relation on a standard Borel space is hyperfinite if it is
the union of an increasing sequence (Fn)n∈N of finite Borel subequivalence relations,
and �-hyperfinite if there is a �-conull invariant Borel set on which it is hyperfinite.
A well-known result of Adams and Jackson–Kechris–Louveau (see
[6, Lemma 3.21]) ensures that if G is an acyclic locally countable Borel graph
on X , then the equivalence relation generated by G is �-hyperfinite if and only if
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there is a �-conull G-invariant Borel set on which there is a Borel set selecting a
finite nonempty set of ends from every connected component ofG that has injective
G-rays. Theorem A therefore yields the following corollary.
Theorem B. Suppose that X is a Polish space, G is an acyclic locally countable
Borel graph on X of degree at least two and with no injective G-rays of G-degree two
on even indices, and � is a Borel probability measure on X for which the equivalence
relation generated by G is �-hyperfinite. Then there is a �-conull G-invariant Borel
set on which G has a Borel perfect matching.
By a result of Lyons–Nazarov, a wide class of regular bipartite Borel graphs
(notably including any bipartite Cayley graphing of the Bernoulli shift action
of a nonamenable group) admit �-measurable matchings (see [11]). The general
case of �-measurable matchings for (not necessarily bipartite) Cayley graphings of
Bernoulli shifts of nonamenable groups is discussed in [1].
A subset of a Polish space is meager if it is a countable union of nowhere dense
sets, and comeager if its complement is meager. In contrast with the measure-
theoretic setting, awell-known result ofHjorth–Kechris implies that every countable
Borel equivalence relation is hyperfinite on a comeager invariant Borel set (see, for
example, [9, Theorem 12.1]). However, there are acyclic locally finite Borel graphs
of degree at least two which do not admit Borel sets selecting a finite nonempty set
of ends on any comeager invariant Borel set (see, for example, the graph T0 of [5]).
Nevertheless, an entirely different approach yields an analog of Theorem B in this
context.
Theorem C. Suppose that X is a Polish space and G is an acyclic locally finite
Borel graph on X of degree at least two and with no injective G-rays of G-degree
two on even indices. Then there is a comeager G-invariant Borel set on which G has a
Borel perfect matching.
However,weprovide an example of anℵ0-regularBorel graphwhich does not have
a Borel perfect matching on a comeager invariant Borel set. Some rather general
sufficient conditions for the existence of Baire measurable matchings of graphs are
presented in [8] and [14].
The paper is organized as follows. In Section 1, we mention a pair of elementary
facts concerning matchings outside of the definable context. In Section 2, we estab-
lish Theorem A. And in Section 3, we establish Theorems B and C, and describe the
example mentioned above.

§1. Matchings using choice. Here we establish a pair of elementary facts, whose
proofs will later prove useful in the definable setting.
Clearly the existence of a perfect matching for a graph on a nonempty set neces-
sitates that the graph in question has degree at least one. The following observation
allows one to focus upon graphs of degree at least two.
Proposition 1.1. Suppose that X is a set and G is a graph on X . Then there is a
set Y ⊆ X , on which G has degree at least two, with the property that if there is a
matching � of G whose domain contains X \ Y , then X \ Y is an �-invariant set on
which every other such matching agrees with �.
Proof. The G-boundary of a set Y ⊆ X , denoted by ∂G(Y ), is the set of points
in Y which are G-related to at least one point outside of Y . Let α denote the
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supremum of the ordinals � for which there exists x ∈ X such that |� | ≤ |[x]G |,
and recursively define a decreasing sequence (X�)�≤α of subsets of X by setting
X 0 = X , X� =

⋂
�<� X

� , X�+2n+1 = {x ∈ X�+2n | degG�X�+2n (x) ≥ 2}, and
X�+2n+2 = X�+2n+1 \ ∂G�X�+2n (X�+2n \X�+2n+1), for all limit ordinals � and natural
numbers n such that the corresponding indices are at most α.
Set Y = Xα . As Xα = Xα+1, it follows that G � Y has degree at least two. And
a straightforward transfinite induction shows that if � is a matching of G whose
domain contains X \ Y , then �(x) is the unique G-neighbor of x in X�+2n for all
limit ordinals �, natural numbers n, and x ∈ X�+2n \ X�+2n+1, whereas �(x) is the
uniqueG-neighbor of x inX�+2n \X�+2n+1 for all limit ordinals �, natural numbers
n, and x ∈ X�+2n+1 \ X�+2n+2. �
In the absence of definability requirements, the following completes the analysis
of the existence of perfect matchings for acyclic graphs.
Proposition 1.2. Suppose thatX is a set andG is an acyclic graph onX of degree
at least one whose connected components have at most one point of G-degree exactly
one. Then G has a perfect matching.
Proof. A transversal of an equivalence relation is a set intersecting every equiv-
alence class in exactly one point. We will recursively define a sequence (Xn)n∈N

of pairwise disjoint subsets of X , as well as a sequence φn : X2n → X2n+1 of
functions whose graphs are contained in G , with the property that the graph
Gn = G � (X \ ⋃

m<2n Xm) has degree at least one and X2n is a transversal of
the equivalence relation generated by Gn, containing every point of Gn-degree
exactly one.
We begin by fixing a transversalX0 ⊆ X of the equivalence relation generated by
G , containing every point ofG-degree exactly one. Suppose now that n ∈ N and we
have already found (Xm)m≤2n . Fix a functionφn : X2n → X \⋃m≤2n Xm whose graph
is contained in G , and set X2n+1 = φn(X2n) and X2n+2 = ∂G(X \⋃m≤2n+1 Xm).
Set φ =

⋃
n∈N
φn, and observe that the involution � = φ ∪ φ−1 is a perfect

matching of G . �

§2. Borel matchings. We will frequently employ the following well-known fact.
Theorem 2.1 (Lusin–Novikov). Suppose thatX andY are Polish spaces andR ⊆
X ×Y is a Borel set whose vertical sections are all countable. Then projX (R) is Borel
and there are Borel functions φn : projX (R)→ Y such that R =

⋃
n∈N
graph(φn).

Proof. See, for example, [7, Theorem 18.10]. �
There is a natural analog of Proposition 1.1 in the Borel setting.
Proposition 2.2. Suppose that X is a Polish space and G is a locally finite Borel
graph on X . Then there is a Borel set B ⊆ X , on which G has degree at least two,
with the property that if there is a matching � of G whose domain contains X \ B,
then the latter is an �-invariant set on which every other such matching agrees with �.
In particular, it follows that the restriction of every such matching to X \ B is Borel.
Proof. Following the proof of Proposition 1.1, our assumption thatG is locally
finite ensures that Xα = X
 , and Theorem 2.1 implies that the set B = X
 is Borel.
Again by Theorem 2.1, there are Borel functions φn : X → X such that the
equivalence relation generated by G is

⋃
n∈N
graph(φn). We say that a function
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i : N → N codes a function on the connected component of x off of B if φi(m)(x) =
φi(n)(x) and neither is in B, for all m, n ∈ N such that φm(x) = φn(x) and neither
is in B. The corresponding function � : [x]G \ B → [x]G \ B is then given by

�(y) = z ⇐⇒ ∃m, n ∈ N (y = φm(x), z = φn(x), and i(m) = n).

Note that if � is a matching of G on X \ B, then �(y) = z if and only if there
is a function i : N → N, coding a matching of G on the connected component of
x off of B, which sends y to z. As the set of (x, i) ∈ X × I for which i codes a
matching of G on the connected component of x off of B is Borel, as is the set of
(i, m, n, x, y, z) ∈ N

N × N × N × X × X × X for which y = φm(x), z = φn(x),
and i(m) = n, it follows that the graph of � is analytic, in the sense that it is
the image of a Borel subset of a standard Borel space under a Borel function. As
functions between Polish spaces with analytic graphs are Borel (see, for example,
[7, Theorem 14.12]), it follows that � is Borel. �
Remark 2.3. Proposition 1.1 also has an analog in the more general setting of
locally countable Borel graphs, granting that we slightly relax the requirement that
thematching is Borel. To be specific, in this case one can check that the setA = Xα is
analytic, and that the graph of the unique matching ofG � (X \A) is both relatively
analytic and co-analytic. Here it is worth noting that our other results generalize to
Borel graphs on analytic sets. It is also worth noting that, off of a meager or �-null
G-invariant Borel set, this yields the full conclusion of Proposition 2.2.

Proposition 1.2 also has a natural analog in the Borel setting, albeit only when
the equivalence relation generated by the graph in question is particularly simple.
A reduction of an equivalence relation E on X to an equivalence relation F on Y
is a function � : X → Y such that x1 E x2 ⇐⇒ �(x1) F �(x2), for all x1, x2 ∈ X .
A Borel equivalence relation on a Polish space is smooth if it is Borel reducible to
equality on a Polish space.

Proposition 2.4. Suppose that X is a Polish space and G is an acyclic locally
countable Borel graph onX of degree at least one, each of whose connected components
have at most one point of G-degree exactly one, whose induced equivalence relation is
smooth. Then G has a Borel perfect matching.
Proof. Following the proof of Proposition 1.2, Theorem 2.1 ensures that we can
choose the functions φn and the setsXn to be Borel, in which case the corresponding
matching is also Borel. �
Beyond the smooth case, the purely combinatorial and definable settings are
quite different. The graph generated by a function f : X → X is the graph Gf on
X with respect to which two distinct points are related if f sends one to the other.
A function f : X → X is aperiodic if fn is fixed-point free, for all n > 0.
Proposition 2.5 (Laczkovich). There is a Polish space X and an aperiodic Borel
automorphism T : X → X with the property that GT does not have a Borel perfect
matching.
Proof. We say that a Borel probability measure � on X is T -quasi-invariant if
�(B) = 0 ⇐⇒ �(T (B)) = 0, for all Borel sets B ⊆ X . And we say that a Borel
probability measure � on X is T -ergodic if �(B) ∈ {0, 1}, for all T -invariant Borel
sets B ⊆ X .
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An I -coloring of a graph G on X is a function c : X → I with the property that
∀(x, y) ∈ G c(x) �= c(y). It is easy to see that GT has a Borel perfect matching if
and only ifGT has a Borel two-coloring, or equivalently, if there is a Borel setB ⊆ X
such that B and T (B) partition X . And the latter is ruled out by the existence of a
Borel probability measure on X which is T -quasi-invariant and T 2-ergodic.
As Lebesgue measure is well known to be ergodic and quasiinvariant with respect
to irrational rotations of the circle, it follows that the latter do not have Borel (or
even Lebesgue measurable) matchings. �
Remark 2.6. The above argument goes through just as well using Baire category
in lieu of Lebesgue measure.

Remark 2.7. The existence of such measures (or topologies with corresponding
notions of Baire category) for graphs generated by aperiodic Borel automorphisms
is, in fact, equivalent to the inexistence of Borel perfect matchings. This follows
from a dichotomy theorem of Louveau’s (see, for example, [13, Theorem 15]).

Let E0 denote the equivalence relation on 2N given by

x E0 y ⇐⇒ ∃n ∈ N∀m ≥ n x(m) = y(m).
The Harrington–Kechris–Louveau E0 dichotomy ensures that, under Borel
reducibility, this is the minimal nonsmooth Borel equivalence relation (see
[4, Theorem 1.1]). Arguments of Dougherty-Jackson-Kechris can be used to show
that a countable Borel equivalence relation on a Polish space is hyperfinite if and
only if it is Borel reducible toE0 (see, for example, [3, Theorem 1]), andSlaman-Steel
and Weiss have noted that every Borel automorphism of a Polish space generates a
hyperfinite Borel equivalence relation (see, for example, [3, Theorem 5.1]). In par-
ticular, it follows that the smoothness of the equivalence relation in Proposition 2.4
cannot be weakened.
Among graphs generated by aperiodicBorel functions, there are essentially no fur-
ther examples without Borel matchings. The tail equivalence relation on X induced
by a function f : X → X is given by

x Et(f) y ⇐⇒ ∃m, n ∈ N fm(x) = fn(y).

Note that if G is the graph generated by f, then Et(f) is the equivalence relation
generated by G .
The injective part of f is the set {x ∈ X | f � [x]Et(f) is injective}. When f is
countable-to-one, Theorem 2.1 ensures that the injective part of f is a Borel set on
which f is a Borel automorphism.
Proposition 2.8. Suppose thatX is a Polish space andf : X → X is a countable-
to-one Borel surjection. ThenGf has a Borel perfect matching, off of the injective part
of f.
Proof. By Theorem 2.1, there is a Borel function g : X → X such that
(f◦g)(x) = x, for allx ∈ X .Offof theEt(f)-saturation of

⋂
n∈N
gn(X ), the involu-

tion agreeing with g on
⋃
n∈N
g2n(X \ g(X )) and with f on⋃n∈N

g2n+1(X \ g(X ))
is a Borel perfect matching of Gf . So it only remains to produce a Borel perfect
matching of Gf on the Et(f)-saturation of the set

B = {x ∈ ⋂
n∈N
gn(X ) | x is not in the injective part of f}.
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Towards this end, define A = {x ∈ B | |f−1(x)| ≥ 2}. As Proposition 2.4 allows
us to throw out an Et(f)-invariant Borel set on which Et(f) is smooth, we can
assume that for all x ∈ B, there existm, n ∈ N such that (f � B)−m(x), fn(x) ∈ A.
For each x ∈ A, let n(x) denote the least positive natural number n for which
fn(x) ∈ A, and define A′ = {x ∈ A | n(x) is odd}. We then obtain a Borel perfect
matching of Gf on B \ A′ by associating f2i+1(x) with f2i+2(x) for all i ∈ N

and x ∈ A′ with 2i + 2 < n(x), as well as f2i(x) with f2i+1(x) for all i ∈ N

and x ∈ A \ A′ with 2i + 1 < n(x). As the equivalence relation generated by the
restriction ofGf toA′∪([B]Et (f)\B) is smooth, Proposition 2.4 yields an extension
to a Borel perfect matching of Gf on [B]Et (f). �
We now turn our attention to another class of Borel graphs without Borel perfect
matchings. The line-and-point graph associated with a graphG onX is the graph on
the disjoint union of X with the set E = {{x, y} | x G y} of unordered edges of G,
in which two elements of X ∪ E are related if one of them is in X , one of them is
in E, and the former is an element of the latter.
Note that ifG is a Borel graphon a standardBorel space, then the set of unordered
edges ofG inherits a standardBorel structure fromG , thus the line-and-point graph
of G can also be viewed as a Borel graph on a standard Borel space.
Observe also that if a graph has an injective ray, then its line-and-point graph
has an injective ray of degree two on even indices. Together with the following
proposition, this is part of the motivation for focusing on graphs without such rays
in our later results.
Proposition 2.9. Suppose that X is a Polish space and G is an acyclic Borel
graph on X . Then G is generated by an aperiodic Borel function if and only if its
line-and-point graph has a Borel perfect matching.
Proof. If f : X → X is an aperiodic function generating G , then the fact that f
is fixed-point free ensures that {x,f(x)} is an unordered edge of G for all x ∈ X ,
and the fact that f2 is fixed-point free ensures that the involution � associating x
with {x,f(x)} is injective. As the fact thatf generatesG ensures that � is surjective,
it is necessarily a perfect matching of the line-and-point graph of G .
Conversely, if � is a perfect matching of the line-and-point graph of G , then the
function f, sending each point x to the unique point y with the property that
�(x) = {x, y}, generates G . The definition of f ensures that both f and f2 are
fixed-point free, and the acyclicity of G ensures that fn is fixed-point free for all
n > 2, thus f is aperiodic. �
Remark 2.10. One can drop the acyclicity of G in the statement of Proposition
2.9 by weakening the hypothesis thatG is generated by an aperiodic Borel function
to the hypothesis that G is generated by a Borel function for which both f and f2

are fixed-point free.

Remark 2.11. When G is an acyclic locally countable Borel graph of degree
at least two, the hypothesis that G is generated by an aperiodic Borel function
is equivalent to the apparently weaker hypothesis that G is generated by a Borel
function.

We next consider the combinatorially simplest examples of Borel graphs which
are not induced by Borel functions.
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Proposition 2.12. There is a Polish space X and an acyclic two-regular Borel
graph G on X which is not induced by a Borel function, thus there is such a graph
which does not have a Borel perfect matching.

Proof. The graph L0 of [5] yields an example of an acyclic two-regular Borel
graph on a Polish space which is not induced by a Borel function. Proposition 2.9
then ensures that the corresponding line-and-point graph has no Borel perfect
matching (and clearly it is not induced by a Borel function, since the restriction of
the square of an aperiodic such function to 2× 2N would generateL0). �
Remark 2.13. It is not difficult to verify that the fact we used in the parenthetical
remark above is far more general. Namely, a Borel graph on a Polish space is
generated by a Borel function if and only if its line-and-point graph is generated by
a Borel function.

Among graphs for which such combinatorially simple graphs can be isolated in a
Borel fashion, there are essentially no further examples without Borel matchings.

Proposition 2.14. Suppose thatX is a Polish space, G is an acyclic locally count-
able Borel graph on X of degree at least two, and there is a Borel set B ⊆ X such
that:

(1) The restriction of G to B is two-regular.
(2) Every connected component ofG contains exactly one connected component of
the restriction of G to B.

(3) Every connected component of G contains two points in B, with G-degree at
least three, having odd G-distance from one another.

Then there is a Borel perfect matching of G .

Proof. Let A denote the set of points of B of G-degree at least three, and let
A′ denote the set of initial points of injective G-paths whose initial and terminal
points are in A, whose other points are not in A, and along which there are an even
number of points. As Proposition 2.4 allows us to throw out a G-invariant Borel
set on which the equivalence relation generated byG is smooth, we can assume that
for all x ∈ B, there are points of A′ on either side of x, in the sense that for both
G-neighbors y of x in B, there is an injective G-path of the form (x, y, . . .) whose
terminal point is in A′. By Theorem 2.1, there is a Borel set A′′ ⊆ A′ consisting
of exactly one point from every pair of points in A′ between which there is an
injective G-path whose other points are not in A′ and along which there are an odd
number of points. Then there is a Borel perfect matching of the restriction of G to
A′′∪ (B \A′), and Proposition 2.4 yields an extension of the latter to a Borel perfect
matching of G . �
We can now establish the main result of this section.

Theorem 2.15. Suppose that X is a Polish space, G is an acyclic locally countable
Borel graph on X of degree at least two, and there is a Borel set selecting a finite
nonempty set of ends from every connected component of G . Then there is a Borel set
B ⊆ X such that:
(1) The restriction of G to B is two-regular.
(2) Every connected component of G contains at most one connected component
of the restriction of G to B.
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(3) No two points of B of G-degree at least three have odd G-distance from one
another.

(4) There is a Borel perfect matching of G off of B.

In particular, if there are no injective G-rays of G-degree two on even indices, then the
set B is empty, thus G has a Borel perfect matching.

Proof. Fix a Borel set B ⊆ [X ]N selecting a finite nonempty set of ends from
every connected component of G . By Theorem 2.1, we can assume that the set B
selects exactly n ends from every connected component of G , for some n > 0.
If n = 1, then G is generated by the Borel function f : X → X associating to
each point x its unique G-neighbor y for which there is an injective G-ray in B
of the form (x, y, . . .), in which case Proposition 2.8 allows us to take B to be the
injective part of f.
If n = 2, then let A denote the set of all points x with two distinct G-neighbors
y for which there are injective G-rays in B of the form (x, y, . . .). Proposition 2.14
allows us to takeB to be the set of x inA for which there do not exist y, z ∈ A∩ [x]G
of G-degree at least three having odd G-distance from one another.
If n > 2, then [6, Lemma 3.19] ensures that the equivalence relation generated by
G is smooth, in which case Proposition 2.4 allows us to takeB to be the empty set. �

§3. Measurablematchings. We begin this section with a fact which, despite being
quite well known, seems not to have previously appeared in the form we require.

Proposition 3.1 (Adams, Jackson–Kechris–Louveau). Suppose that X is a
Polish space, G is an acyclic locally countable Borel graph on X , and � is a Borel
probability measure on X for which the equivalence relation generated by G is
�-hyperfinite. Then there are G-invariant Borel sets A,B ⊆ X such that:
(1) The equivalence relation generated by G is smooth on A.
(2) There is a Borel set selecting a finite nonempty set of ends from every connected
component of the restriction of G to B.

(3) The set A ∪ B is �-conull.
Proof. This follows from the proof of [6, Lemma 3.21]. �
Remark 3.2. Although unnecessary for our arguments, it is worth noting that
[6, Lemma 3.19] allows us to strengthen condition (2) in Proposition 3.1 to the
existence of a Borel set selecting one or two ends from every connected component
of the restriction of G to B.

Remark 3.3. It is also worth noting that, using a fairly straightforward
metamathematical argument, Proposition 3.1 can also be established from
[6, Lemma 3.21] itself, as opposed to its proof. But this approach seems rather
needlessly roundabout.

As a corollary, we obtain the following.

Theorem 3.4. Suppose that X is a Polish space, G is an acyclic locally countable
Borel graph on X of degree at least two and with no injective G-rays of G-degree two
on even indices, and � is a Borel probability measure on X for which the equivalence
relation generated by G is �-hyperfinite. Then there is a �-conull G-invariant Borel
set on which G has a Borel perfect matching.
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Proof. LetA andB denote theG-invariant Borel sets whose existence is granted
by Proposition 3.1. Proposition 2.4 yields a Borel perfect matching of G on A, and
Proposition 2.15 yields a Borel perfect matching of G on B, thus there is a Borel
perfect matching of G on A ∪ B. �
In the context of Baire category, we obtain the analogous result for locally finite
graphs.

Theorem 3.5. Suppose that X is a Polish space and G is an acyclic locally finite
Borel graph on X of degree at least two and with no injective G-rays of G-degree
two on even indices. Then there is a comeager G-invariant Borel set on which G has a
Borel perfect matching.

Proof. Let X denote the set of pairs (S,T ) of finite subsets of X , where S ⊆ T
and both are contained in a connected component ofG . This set inherits a standard
Borel structure from X . Let G denote the graph on X given by

G = {((S,T ), (S′ , T ′)) ∈ X × X | (S,T ) �= (S′, T ′) and T ∩ T ′ �= ∅}.
By [2, Proposition 3], there is a Borel N-coloring c of G.
We will now define a decreasing sequence (Xs )s∈N<N of Borel subsets of X such
that the graph G � Xs has degree at least two and no injective (G � Xs)-ray has
(G � Xs )-degree two on even indices, for all s ∈ N

<N. We will simultaneously
produce an increasing sequence (�s )s∈N<N of Borel matchings of G such that the
domain of �s is X \ Xs , for all s ∈ N

<N.
Once we have constructed these, for each p ∈ N

N we will define Xp =
⋂
n∈N
Xp�n

and �p : X \ Xp → X \ Xp by �p(x) = �p�n(x), where n ∈ N is sufficiently large that
x ∈ X \Xp�n. As each �p is necessarily a Borel matching of G with domain X \Xp,
it will only remain to show that the details of our construction ensure the existence
of p ∈ N

N for which the saturation of Xp with respect to the equivalence relation
generated by G is meager.
We begin by setting X∅ = X and �∅ = ∅. Suppose now that we have already
defined Xs and �s . Let Xs denote the set of pairs (S,T ) ∈ X which satisfy the
following conditions:

(1) The inclusion ∂G�Xs (Xs \ S) ⊆ T ⊆ Xs holds.
(2) The graph G � (Xs \ S) has degree at least two.
(3) No injective (G � (Xs \S))-path passing throughboth a point in ∂G�Xs (Xs\S)
and a point in ∂G�Xs (T ) has (G � (Xs \ S))-degree two on even indices.

(4) There is a perfect matching of G � S.
Wewill extend �s by adding perfectmatchings of the graphsG � S in a Borel fashion,
using the fact that the sets T provide buffers preventing these new matchings from
interacting with one another, at least among pairs (S,T ) on which our coloring c
of G is constant.
For each i ∈ N, define Xs�(i) ⊆ Xs by

Xs�(i) = Xs \
⋃

{S | ∃T ((S,T ) ∈ Xs and c(S,T ) = i)}.
Theorem 2.1 ensures that these sets are Borel.

Lemma 3.6. Suppose that i ∈ N and s ∈ N
<N. Then G � Xs�(i) has degree at

least two.
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Proof. Suppose that x ∈ Xs�(i). If x is not in ∂G�Xs (Xs�(i)), then
degG�Xs�(i) (x) = degG�Xs (x) ≥ 2. If x is in ∂G�Xs (Xs�(i)), then there exists
(S,T ) ∈ Xs such that c(S,T ) = i and x is in ∂G�Xs (Xs \ S). Condition (1) ensures
thatx ∈ T , and since c is anN-coloring of G, it follows that (S,T ) is the unique such
pair. Condition (2) therefore implies that degG�Xs�(i) (x) = degG�(Xs\S)(x) ≥ 2. �
Lemma 3.7. Suppose that i ∈ N and s ∈ N

<N. Then there is no injective
(G � Xs�(i))-ray of (G � Xs�(i))-degree two on even indices.
Proof. If (xk)k∈N is an injective (G � Xs�(i))-ray of (G � Xs�(i))-degree two on
even indices, then condition (3) ensures that xk /∈ ∂G�Xs (Xs�(i)) for all k ∈ N, thus
(xk)k∈N is a (G � Xs )-ray of (G � Xs)-degree two on even indices, a contradiction. �
Condition (4) ensures that �s extends to a Borel matching �s�(i) ofG with domain
X \ Xs�(i).
As noted earlier, it only remains to show that there exists p ∈ N

N for which the
saturation of Xp with respect to the equivalence relation generated by G is meager.
We will establish the stronger fact that ∀∗p ∈ N

N∀∗x ∈ X [x]G ∩Xp = ∅. Note that
{(p, x) ∈ N

N × X | x ∈ Xp} is Borel. By the Kuratowski–Ulam Theorem (see, for
example, [7, Theorem 8.41]), it is enough to show that ∀x ∈ X∀∗p ∈ N

N x /∈ Xp.
For this, it is enough to show that ∀s ∈ N

<N∀x ∈ Xs∃i ∈ N x /∈ Xs�(i).
Towards this end, suppose that s ∈ N

<N and x ∈ Xs .
Lemma 3.8. There is a finite set S ⊆ Xs such that x ∈ S, G � (Xs \ S) has degree
at least two, and G � S has a perfect matching.
Proof. We say that a set Y ⊆ X is G-connected if the graph G � Y is connected.
We will recursively construct increasing sequences (�k)k∈N of matchings of G and
(Sk)k∈N of finiteG-connected subsets ofXs containing x such that the domain of �k
is Sk , for all k ∈ N.We begin by fixing y ∈ Xs forwhich xGy, and setting �0 = (x y)
and S0 = {x, y}. Given �k and Sk , observe that for each connected component C
of G � (Xs \ Sk), there is at most one point z ∈ C such that |C ∩ Gz | = 1. Let
�k+1 denote the minimal extension of �k to an involution which associates every
such z with the unique element of C ∩Gz , and let Sk+1 denote the domain of �k+1.
This completes the recursive construction.
Set � =

⋃
k∈N
�k and S =

⋃
k∈N
Sk . Clearly x is in S, the restriction ofG toXs \S

has degree at least two, and � is a perfect matching of G � S, so it only remains to
show thatS is finite. But if S is infinite, then we can recursively construct an injective
(G � Xs )-ray (x2k)k∈N with the property that S ∩ [x2k ]G�(Xs\Sk) is infinite and x2k+1
is the unique G-neighbor of x2k in Xs \ Sk , for all k ∈ N. But then (xk)k∈N has
(G � Xs )-degree two on even indices, a contradiction. �
Lemma 3.9. There is a finite set T ⊆ Xs , with S ∪ ∂G�Xs (Xs \ S) ⊆ T , such that
no injective (G � (Xs \ S))-path passing through both a point in ∂G�Xs (Xs \ S) and a
point in ∂G�Xs (T ) has (G � (Xs \ S))-degree two on even indices.
Proof. It is enough to show that for all z ∈ Xs \ S, there exists n ∈ N such that
there is no injective (G � (Xs \ S))-path beginning at z, having (G � (Xs \ S))-
degree two on even indices, and along which there are n points. Towards this
end, observe that if there are arbitrarily long injective (G � (Xs \ S))-paths of
(G � (Xs \ S))-degree two on even indices beginning at some point x0, then we can
recursively choose xn /∈ {xm | m < n} such that there are arbitrarily long injective
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(G � (Xs \S))-paths of (G � (Xs \S))-degree two on even indices extending (xk)k≤n ,
in which case (xk)k∈N is an injective (G � (Xs \ S))-ray of (G � (Xs \ S))-degree
two on even indices, a contradiction. �
As (S,T ) ∈ Xs , it follows that i = c(S,T ) is as desired. �
We close the paper by noting that the above result fails in the more general locally
countable setting.
Theorem 3.10. There is a Polish spaceX and an acyclic ℵ0-regular Borel graphG
on X which does not have a Borel perfect matching on a comeager Borel set.
Proof. We will find Polish spaces X and Y and a Borel set R ⊆ X × Y , whose
horizontal and vertical sections are countably infinite, such that for no comeager
Borel set C ⊆ X is there a Borel injection φ : C → Y whose graph is contained
in R. For such R, let GR denote the graph on the disjoint union of X and Y in
which two points are related if one of them is in X , one of them is in Y , and the
corresponding pair is in R. As long as we are able to simultaneously ensure thatGR
is acyclic, it will have the desired properties.
Towards this end, we will recursively define Rn ⊆ Sn ⊆ 2n × 2n. The sets Rn will
provide increasingly precise approximations to the set R we seek, whereas the sets
Sn will provide restrictions on the construction aimed at ruling out the existence
of injections whose graphs are contained in R. We will obtain Rn+1 and Sn+1 from
the sets

R′
n+1 = {(u � (i), v � (i)) | i < 2 and u Rn v}

and

S′n+1 = {(u � (i), v � (j)) | i, j < 2 and u Rn v}
by either adding a pair to the former or subtracting pairs from the latter, depending
on whether n is even or odd. Define a function proj0 : 2

<N × 2<N → 2<N by setting
proj0(u, v) = u. In order to ensure that the construction can continue, we will
proceed in such a fashion that for all n ∈ N, the following conditions hold:
(1) ∀u ∈ 2n∃v ∈ 2n u Sn v.
(2) ∀v ∈ 2n∃u ∈ 2n \ proj0(Rn) u Sn v.
We will describe the exact fashion in which this is accomplished in terms of
sequences un, vn ∈ 2n, for n ∈ N. We can already define the sequences of the
form u2n and v2n+1. In fact, these need only be chosen in such a fashion that the
corresponding sets {u2n | n ∈ N} and {v2n+1 | n ∈ N} are dense in 2<N, in the
sense that

∀t ∈ 2<N∃m, n ∈ N t � u2m, v2n+1.
The remaining sequences will be chosen during the construction.
We begin by setting R0 = ∅ and S0 = {(∅, ∅)}. Suppose now that n ∈ N and we
have already found R2n and S2n satisfying conditions (1) and (2). By the former,
there exists v2n ∈ 22n such that u2n S2n v2n. It then follows that the sets

R2n+1 = R′
2n+1 ∪ {(u2n � (0), v2n � (1))}

and S2n+1 = S′2n+1 satisfy conditions (1) and (2) as well. By the latter, there exists
u2n+1 ∈ 22n+1 \ proj0(R2n+1) such that u2n+1 S2n+1 v2n+1. It then follows that the
sets R2n+2 = R′

2n+2 and

S2n+2 = S′2n+2 \ {(u2n+1 � (0), v) | v �= v2n+1 � (1)}
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also satisfy conditions (1) and (2). This completes the recursive construction.Define
R ⊆ 2N × 2N by

R = {(u � x, v � x) | n ∈ N, u Rn v, and x ∈ 2N}.
A simple induction using the definition of Rn reveals that each of the graphsGRn
is acyclic, from which it follows that so too is GR.
Another simple induction utilizing the density of {u2n | n ∈ N} and

{v2n+1 | n ∈ N} along with the definition of Rn and Sn ensures that the sets
Un = {x ∈ 2N | |Rx | ≥ n} and Vn = {y ∈ 2N | |Ry | ≥ n} are dense and open. Fix
homeomorphisms φn of 2N with the property that E0 =

⋃
n∈N
graph(φn), and note

that the set Z =
⋂
m,n∈N

φ−1m (Un ∩ Vn) is a countable intersection of dense open
sets, so the subspace topology on Z is Polish (see, for example, [7, Theorem 3.11]),
and a subset of Z is comeager if and only if it is comeager when viewed as a subset
of 2N. Set X = Y = Z, and observe that when viewed as a subset of X × Y , every
horizontal and vertical section of R is countably infinite.
Suppose, towards a contradiction, that there is a comeager Borel set C ⊆ 2N for
which there is a Borel injection φ : C → 2N whose graph is contained in R. As the
definitions of Rn and G ensure that

graph(φ) ⊆ ⋃
n∈N

{(u2n � (0) � x, v2n � (1) � x) | x ∈ 2N},
there exists n ∈ N for which the set of x ∈ 2N with the property that φ(u2n �
(0) � x) = v2n � (1) � x is nonmeager. By localization (see, for example,
[7, Proposition 8.26]), there exists r ∈ 2<N such that φ(u2n � (0) � r � x) = v2n �
(1) � r � x, for comeagerly many x ∈ 2N. Fix m ≥ n with v2n � (1) � r � v2m+1,
noting that u2m+1 is incompatible with u2n � (0) and φ necessarily sends sequences
beginning with u2m+1 � (0) to sequences beginning with v2m+1 � (1). Again
appealing to the above restriction on the graph of φ imposed by the definitions
of Rn and G , there exists � > m for which u2m+1 � (0) � u2� and the set of
x ∈ 2N with the property that φ(u2� � (0) � x) = v2� � (1) � x is nonmea-
ger. By one more appeal to localization, there exists s ∈ 2<N with the property
that φ(u2� � (0) � s � x) = v2� � (1) � s � x, for comeagerly many
x ∈ 2N. As u2m+1 � (0) � u2� , it follows that v2m+1 � (1) � v2� . And since
v2n � (1) � r � v2m+1, it follows that v2n � (1) � r � v2� . Fix t ∈ 2<N such that
v2� � (1) � s = v2n � (1) � r � t, and observe that

φ(u2� � (0) � s � x) = v2� � (1) � s � x
= v2n � (1) � r � t � x
= φ(u2n � (0) � r � t � x),

for comeagerly many x ∈ 2N. As u2m+1 is incompatible with u2n � (0) and extended
by u2� , it follows that u2� is incompatible with u2n � (0), thus u2� � (0) � s � x
and u2n � (0) � r � t � x are distinct sequences with the same image under φ, a
contradiction. �
Remark 3.11. The same idea can, in fact, be used to rule out the existence of
a comeager Borel set C ⊆ 2N for which there is a finite-to-one Borel function
φ : C → Y whose graph is contained in R.
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Remark 3.12. It is tempting to try to strengthen the conclusion of Theorem 3.10
to show that any Borel matching of G has meager domain, but this is impossi-
ble. Indeed, any locally countable Borel graph has a countable Borel edge coloring
[10, Proposition 4.10], and at least one of these colors must use a nonmeager set of
vertices.
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