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Abstract

We derive properties of latent variable models for networks, a broad class of models that

includes the widely used latent position models. We characterize several features of interest,

with particular focus on the degree distribution, clustering coefficient, average path length,

and degree correlations. We introduce the Gaussian latent position model, and derive analytic

expressions and asymptotic approximations for its network properties. We pay particular

attention to one special case, the Gaussian latent position model with random effects, and

show that it can represent the heavy-tailed degree distributions, positive asymptotic clustering

coefficients, and small-world behaviors that often occur in observed social networks. Finally,

we illustrate the ability of the models to capture important features of real networks through

several well-known datasets.

Keywords: fitness models, latent position models, latent variable models, random graphs, social

networks

1 Introduction

Networks are tools for representing relations between entities. Examples include

social networks, such as acquaintance networks (Amaral et al., 2000), collaboration

networks (Newman, 2001), and interaction networks (Perry & Wolfe, 2013), techno-

logical networks such as the World Wide Web (Albert et al., 1999), and biological

networks such as neural networks (Watts & Strogatz, 1998), food webs (Williams &

Martinez, 2000), and protein–protein interaction networks (Raftery et al., 2012).

Social networks, specifically, tend to exhibit transitivity (Newman, 2003a), cluster-

ing, homophily (Newman & Park, 2003), the scale-free property (Newman, 2003c)

and small-world behaviors (Watts & Strogatz, 1998).

Networks are typically modeled in terms of random graphs. The set of nodes is

fixed, and a probability distribution is defined over the space of all possible sets

of edges, thereby considering the observed network as a realization of a random

variable.

One way to study networks is to define a simple generative mechanism that

captures some important basic properties, such as the degree distribution (Newman

et al., 2001), or clustering (Newman, 2009) and small-world behavior (Watts &

Strogatz, 1998). These models are deliberately made simple so to be easily fitted
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and studied. Theoretical tractability can allow the asymptotic properties of the fitted

models to be assessed, and this can give help to determine how well the models

might fit real large networks. It can also allow the relationships between statistics

measuring clustering, power-law behavior and small-world behavior to be assessed

(Kiss & Green, 2008; Newman, 2009; Watts & Strogatz, 1998).

On the other hand, various statistical models have been proposed, including

Exponential Random Graph Models (Frank & Strauss, 1986; Caimo & Friel, 2011;

Krivitsky & Handcock, 2014), latent stochastic blockmodels (Nowicki & Snijders,

2001; Latouche et al., 2011; Airoldi et al., 2008), and latent position models (LPMs)

(Hoff et al., 2002; Raftery et al., 2012). These try to capture all the main features

of observed networks within a unified framework. However, due to their more

complicated structure, only limited research has been carried out to assess their

properties (Daudin et al., 2008; Channarond et al., 2012; Ambroise & Matias,

2012; Mariadassou & Matias, 2015). Moreover, recent developments (Chatterjee &

Diaconis, 2013; Shalizi & Rinaldo, 2013; Schweinberger & Handcock, 2015) have

shed light on some important limitations of ERGMs, questioning their suitability as

statistical models for networks.

In this paper, we attempt to fill this gap by deriving theoretical properties of a

wide family of network models, which we call latent variable models (LVMs). This

family includes one well-known class of statistical network models as a special case,

namely the LPM (Hoff et al., 2002; Handcock et al., 2007; Krivitsky et al., 2009).

These are defined by associating an observed latent position in Euclidean space with

each node, and postulating that nodes that are closer are more likely to be linked,

with the probability of connection depending on the distance, typically through a

logistic regression model. In the last decade, LPMs and their extensions have been

widely used for applications such as the analysis of international investment (Cao &

Ward, 2014), trophic food webs (Chiu & Westveld, 2011; Chiu & Westveld, 2014),

signal processing (Wang et al., 2014), and education research (Sweet et al., 2013).

Analytic expressions for the properties of this model in its original form are hard

to derive. Therefore, we propose a new but closely related model, the Gaussian

latent position model (Gaussian LPM). This yields tractable analytic expressions

or asymptotic approximations for several important properties, including a com-

plete characterization of the degree distribution, the clustering coefficient, and the

distribution of path lengths. The availability of analytic expressions facilitates the

analysis of large graphs, since the computational complexity required for simulations

is greatly reduced.

One result is that the Gaussian LPM can capture transitivity in large networks,

because its clustering coefficient is strictly positive for graphs of any size. This

contrasts with the Erdős–Rényi Model whose clustering coefficient converges to

zero when the number of nodes increases and the average degree is kept constant.

An implication of our results is that the LPM in its original form cannot

represent heavy-tailed degree distributions, such as power-law behavior, or small-

world behavior, as measured by the average path length (APL). Therefore, we

introduce the Gaussian latent position model with random effects (GLPMRE), and

show that it can overcome these limitations and capture important features of large-

size real networks. These results suggest that the GLPMRE may be a good model

for social networks.
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The main contributions of the paper are described in Sections 3 and 4, where

a thorough analysis of Gaussian LPMs is given; as well as in Section 5, where

the appealing properties of GLPMREs are shown through simulation studies and

examples.

2 Latent variable network models

2.1 Notation and model assumptions

Here, we introduce our notation and define the various LVMs for networks that we

consider.

We denote a binary graph by G = (V,E), where V is the set of node labels and

E is the set of edges. We focus on undirected graphs with no self-edges such that

∀(i, j) ∈ U := {(i, j) ∈ V × V : 1 � i < j � n} : yij = yji (1)

∀i ∈ V : yii = 0 (2)

We now propose a characterization of these network models using several modeling

assumptions.

A1. A latent variable Zi ∈ Z is associated to node i for every i ∈ V, for a continuous

or discrete set Z. The set M = {z1, . . . , zn} consists of realizations of independent and

identically distributed latent random variables, where each Z is distributed according

to the probability measure p( · ).

A2. Edges are assumed to be conditionally independent given the latent variables.

Hence, ∀(i, j) ∈ U, Yij is a Bernoulli random variable such that

Pr
(
Yij = 1|zi, zj) = 1 − Pr

(
Yij = 0|zi, zj) = r

(
zi, zj

)
(3)

Definition 1

An LVM is a network model satisfying A1 and A2.

Erdős–Rényi random graphs are a special case of LVMs where the connection

probability function of Equation (3) is constant with respect to the latent information.

The family of LVMs also includes the random connection models of Meester and

Roy (1996), the fitness models of Caldarelli et al. (2002) and Söderberg (2002), the

LPMs of Hoff et al. (2002), Handcock et al. (2007), and Krivitsky et al. (2009), and

the stochastic blockmodels of Nowicki and Snijders (2001).

We now define our proposed Gaussian LPMs, which form another special case of

the LVM:

A3. The realized latent variables M in A1 are points in the Euclidean space �d, for

a fixed d, and they are normally distributed:

p
(M|γ) =

n∏
i=1

fd (zi; 0, γ) =

n∏
i=1

(2πγ)− d
2 exp

{
− 1

2γ
ztizi

}
(4)

In Equation (4), γ is a positive real parameter and fd( · ; μ, γ) is the multivariate

Gaussian density function with mean vector μ and covariance matrix γ�d, where �d
is the d × d identity matrix and Xt denotes the transpose of the matrix or vector X.
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A4. Given ϕ > 0, τ ∈ [0, 1]:

r
(
zi, zj

)
= τ exp

{
−

(
zi − zj

)t (
zi − zj

)
2ϕ

}
(5)

Definition 2

A Gaussian LPM is a network model satisfying A1–A2–A3–A4.

The Gaussian LPM differs from the original LPM of Hoff et al. (2002), in that the

logistic connection function for the edges is replaced by a non-normalized Gaussian

density. From now on, we will refer to the original LPM as the Logistic LPM.

2.1.1 Extensions of latent position models

Two extensions of the Logistic LPM were proposed by Handcock et al. (2007) and

Krivitsky et al. (2009). In the former, clustering was introduced through a mixture

distribution of the latent nodal positions, while in the latter nodal random effects

were introduced to capture degree heterogeneity. In a similar fashion, we propose

the following two extensions to the Gaussian LPM:

Definition 3

A Gaussian latent position cluster model (GLPCM) is a network model satisfying

A1–A2–A4 and such that the latent positions are distributed according to a finite

mixture of Gaussian distributions, i.e.

p
(M|π, μ, γ, G)

=

n∏
i=1

⎡
⎣ G∑

g=1

πgfd
(
zi; μg, γg

)⎤⎦ (6)

where π are the mixture weights, μ and γ are the parameters for the components,

and G is the number of mixture components.

Definition 4

A GLPMRE is a network model satisfying A1–A2–A3 such that

Pr
(
Yij = 1|zi, zj , ϕi, ϕj , τ

)
= τ exp

{
− 1

2
(
ϕi + ϕj

)2
(zi − zj)

t(zi − zj)

}
(7)

where, for every node s ∈ V, ϕs > 0 is a random effect distributed according to an

Inverse Gamma distribution with parameters β0 and β1:

p
(
ϕs|β0, β1

)
=

β
β0

1

Γ (β0)
ϕ−β0−1 exp

{
−β1

ϕs

}
(8)

2.2 Motivation for the Gaussian likelihood assumption

The Logistic LPM has been widely used in network models. Assumption A4

introduces a new function to define the probability of edges, which is proportional

to a Gaussian density. Although variations of the likelihood function have been

proposed in the statistical community (Gollini & Murphy, 2016), the reasoning

behind the Gaussian function mainly comes from the physics literature (Deprez &
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Fig. 1. Comparison between the Logistic and Gaussian connection functions, with

τ = γ = 1. As a function of the Euclidean distance between the nodes, in both

cases, the likelihood of an edge reaches its maximum when the distance is null, and

decreases to zero as the distance increases. (Color online)

Wüthrich, 2013; Penrose, 1991; Meester & Roy, 1996). The main advantage of using

the Gaussian function is that it leads to tractable expressions for several theoretical

properties of interest.

In the Gaussian function, the model parameters τ and ϕ appear. The role of τ is

to control the sparsity of the network, and to allow for the fact that nodes having

the same latent position might not be connected.

The parameter ϕ relates the probability of there being an edge to the distance

between latent positions: The larger ϕ is, the more long range edges are supported.

Note that the Erdős–Rényi random graph with connection probability τ is recovered

as a special case for ϕ → ∞.

Essentially, the main difference between the Gaussian and logistic likelihoods lies

in the different behaviors as functions of the distance between nodes (Figure 1).

3 Theoretical results

3.1 Properties of the degrees

The degree of an arbitrary actor s is a discrete random variable defined by Ds =∑
j∈V Ysj . We denote by p = (p0, . . . , pn−1) the degree distribution of a node chosen

at random, i.e. pk = Pr(D = k), ∀k = 0, . . . , n− 1. To study the degree distribution of

LVMs (and hence LPMs, as a special case), we propose a framework resembling that

of Newman et al. (2001), which relies on Probability Generating Functions (PGFs).

The study will focus on the following quantities:

• Q1: θ(zs), defined as the probability that an actor chosen at random is a

neighbor of a node with latent information zs.

• Q2: The PGF of the degree of a randomly chosen actor, G(x) =
∑n−1

k=0 x
kpk .
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• Q3: The rth factorial moment, cr , of the degree of a randomly chosen actor.1

• Q4: The expectation of the degree of a random node: k̄, which is equal to the

first factorial moment, c1.

• Q5: The values of pk , for every k = 0, . . . , n − 1.

• Q6: k̄(zs), defined as the expected degree of a node with latent information zs.

• Q7: k̄nn(zs), defined as the expected degree of a random neighbor of a node

with latent information zs.

• Q8: k̄nn(k), defined as the expected degree of a random neighbor of a node

with degree k.

The following main result characterizes these quantities for a LVM:

Theorem 1

For an LVM, the following results hold:

Q1: θ(zs) =

∫
Z
p

(
zj

)
r
(
zs, zj

)
dzj (9)

Q2: G(x) =

∫
Z
p (zs) [xθ(zs) + 1 − θ(zs)]

n−1 dzs (10)

Q3: cr =
∂rG

∂xr
(1) =

(n − 1)!

(n − r − 1)!

∫
Z
p (zs) θ(zs)

rdzs (11)

Q4: k̄ = (n − 1)

∫
Z
p (zs) θ(zs)dzs (12)

Q5: pk =

∫
Z
p (zs)

(
n − 1

k

)
θ(zs)

k [1 − θ(zs)]
n−k−1 dzs (13)

Q6: k̄(zs) = (n − 1)θ(zs) (14)

Q7: k̄nn(zs) = 1 +
(n − 2)

θ (zs)

∫
Z
p

(
zj

)
r
(
zs, zj

)
θ

(
zj

)
dzj (15)

Q8: k̄nn(k) =
1

pk

∫
Z
p(zj)

(
n − 1

k

)
θ(zj)

k
[
1 − θ(zj)

]n−k−1
k̄nn(zj)dzj (16)

The proof of Theorem 1 is given in the Supplementary Material.

Remark 1

Equation (16) is a generalization of a result of Boguná and Pastor-Satorras (2003),

who introduced a general framework to study the degree correlations for the fitness

model of Caldarelli et al. (2002) and Söderberg (2002).

Remark 2

Particular instances of some of the results of Theorem 1 have been shown in Olhede

and Wolfe (n.d.) for fitness models and by Channarond et al. (2012) and Daudin

et al. (2008) for stochastic block models, without resorting to PGFs. Theorem 1

encompasses those as special cases and extends the range of results shown.

We now apply these results to Gaussian LPMs. Proofs are shown in the Supple-

mentary Material.

1 The rth factorial moment of a discrete random variable D is defined as � [D (D − 1) · · · (D − r + 1)].

https://doi.org/10.1017/nws.2016.23 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.23


Properties of latent variable network models 413

Corollary 1
In a Gaussian LPM, the following quantities have an explicit form:

Q1: θ(zs) = τ

(
ϕ

γ + ϕ

) d
2

exp

{
− 1

2(γ + ϕ)
ztszs

}
(17)

Q3: cr =
∂rG

∂xr
(1) =

(n − 1)!

(n − r − 1)!
τr

{
ϕr

(γ + ϕ)r−1 [(r + 1)γ + ϕ]

} d
2

(18)

Q4: k̄ = (n − 1)τ

{
ϕ

2γ + ϕ

} d
2

(19)

Q7: k̄nn(zs) = 1 + k̄

(
n − 2

n − 1

) fd

(
zs; 0, γ

2+3γϕ+ϕ2

2γ+ϕ

)
fd (zs; 0, γ + ϕ)

(20)

Note that θ ( · ) has an explicit expression, so evaluation of the quantities in Q2,

Q5, and Q8 boils down to an approximation of a single integral.

Corollary 2
In the GLPCM, the following results hold:

Q1: θ(zs) = τ (2πϕ)
d
2

G∑
g=1

πgfd
(
zs; μg, γg + ϕ

)
(21)

Q4: k̄ = (n − 1)τ (2πϕ)
d
2

G∑
g=1

G∑
h=1

πgπhfd
(
μg − μh; 0, γg + γh + ϕ

)
(22)

Also, the degree distribution is a continuous mixture of binomial distributions, where

the mixture weights are themselves distributed as mixtures of Gaussians:

Q5: pk =

∫
�d

⎡
⎣ G∑

g=1

πgfd
(
zs; μg, γg

)⎤⎦ (
n − 1

k

)
θ(zs)

k [1 − θ(zs)]
n−k−1 dzs (23)

In the GLPMRE, none of the equations can be written explicitly, since the

integrals over the random effects cannot be evaluated analytically. However, we will

use numerical approximations to evaluate the intractable integrals appearing in Q1

and Q3, thereby characterizing the properties of these models.

Remark 3
The advantage of using the Gaussian function rather than the Logistic function

of Hoff et al. (2002) is highlighted in Corollary 1. Under the Gaussian hypothesis,

several of the integrals of Equations (9)–(16) can be evaluated analytically since they

become convolutions of two Gaussian densities, which can be evaluated analytically

for any d. Also, quantities that do not have an exact expression, such as pk or k̄nn(k),

can be efficiently evaluated with numerical approximations, since the number of

integrals to evaluate is constant (i.e. it depends on d, but not on n).

Remark 4
In Gaussian LPMs, a non-identifiability issue arises between the parameters ϕ and

γ, since the factorial moments depend only on their ratio, ϕ/γ. We keep both

parameters, so to keep the model as close as possible to the original LPM of Hoff

et al. (2002), and to provide a proper basis for possible extensions, such as the

GLPCM and the GLPMRE.
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3.2 Clustering coefficient

We define the clustering coefficient as the probability that, if nodes i and j are

connected, and nodes j and k are connected, then nodes i and k are connected. In

the LVM, the clustering coefficient C can be written as

C =

∫
Z

∫
Z

∫
Z p(zi)p(zk)p(zj)r (zi, zk) r

(
zk, zj

)
r
(
zj , zi

)
dzidzkdzj∫

Z
∫

Z
∫

Z p(zi)p(zk)p(zj)r (zi, zk) r
(
zk, zj

)
dzidzkdzj

(24)

Our definition is not the same as some others, such as the global clustering coefficient

of Newman (2003a) or the local clustering coefficient of Watts and Strogatz (1998).

However, our definition does represent one idea of clustering in a network, and it

also allows theoretical evaluation. The following result characterizes the clustering

coefficient for Gaussian LPMs.

Proposition 1

The clustering coefficient of a Gaussian LPM is

C = τ

(
γ + ϕ

3γ + ϕ

) d
2

(25)

A proof of Proposition 1 is provided in the Supplementary Material. Equation (25)

gives an exact value of the clustering coefficient of Gaussian LPMs of any size. This

contrasts with many other network models, for which the clustering coefficient can

only be recovered asymptotically. Some interesting consequences of Equation (25)

will be illustrated in Section 4.3.

3.3 Connectivity properties

We now characterize the connectivity structure of networks drawn from the Gaussian

LPM. To do so, we first define the notion of a path for a random graph, and then

give a general result about the connection of two nodes in Gaussian LPMs, once

their latent positions are known.

Definition 5 (Path)

In a network model, a k-step path is a sequence of k + 1 distinct nodes {i0, i1, . . . , ik}
such that an edge is present between every two consecutive nodes, i.e. yi0i1 = yi1i2 =

· · · = yik−1ik = 1.

In an LVM, the probability of a k-step path appearing between two nodes with

latent information zi and zj can be written as

ξk(zi, zj) =

∫
Z

· · ·
∫

Z
p(z1) . . . p(zk−1)r (zi, z1) r (z1, z2) · · · r (

zk−1, zj
)
dz1 · · · dzk−1 (26)

For a Gaussian LPM, the integrals on the right-hand side of Equation (26) involve

Gaussian kernels only, and therefore can be evaluated exactly. The following

proposition gives a more explicit expression.
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Proposition 2

In a Gaussian LPM, let zi ∈ �d, zj ∈ �d, and ξk(zi, zj) be defined as in Equation

(26), for any k = 1, 2, . . . , n − 1,. Define the following recurrence relations:⎧⎪⎪⎨
⎪⎪⎩
hr+1 = hrα

−d
r τ (2πϕ)

d
2 fd

(
zi; 0, ωr+γ

α2
r

)
αr+1 = αrγ

ωr+γ

ωr+1 = ωrϕ+ωrγ+γϕ
ωr+γ

, where

⎧⎪⎪⎨
⎪⎪⎩
h1 = τ (2πϕ)

d
2

α1 = 1

ω1 = ϕ

(27)

Then,

ξk(zi, zj) = hkfd
(
zj − αkzi; 0, ωk

)
, for k = 1, 2, . . . , n − 1 (28)

The proof of Proposition 2 is in the Supplementary Material. Proposition 2 is useful

for studying the statistical properties of path lengths for Gaussian LPMs, which we

develop in Section 4.4.

4 Properties of realized networks

A drawback of all LPMs is that, given the complete set of latent positions, the

evaluation of the likelihood for the corresponding realized graph requires the

calculation of a distance matrix, with a computational and storage cost of O(n2). This

cost is the main obstacle to inference for large graphs, making estimation impractical

for networks larger than a few thousand nodes. This impasse is addressed in Raftery

et al. (2012), where a computational approximation is proposed to overcome this

difficulty. The computational issue extends also to the simulation of LPMs, which is

usually performed in two sequential steps: First, latent positions are sampled, and

then edges are created with the Gaussian probability. The evaluation of the distance

matrix is thus needed in between the two steps. This makes any simulation-based

study of the properties of LPMs rather inefficient and limited to small graphs, only.

By contrast, the results presented in Theorem 1 and Corollaries involve either

exact formulae, which have negligible computational cost, or integral approximations

whose computational cost is independent of n. Hence, the analysis that we propose

does not require any intensive calculation and can be performed on networks of any

size.

4.1 Characterization of the degree distribution for the Gaussian LPM

Empirical evaluations (Newman, 2003b) suggest that typically the proportion of

nodes with degree greater than k is expected to be proportional to k−α, for a positive

α which can be as small as 2. Networks exhibiting such behavior are usually referred

to as scale-free, and the corresponding degree distribution is said to follow a power-

law decay. The highly connected nodes, denoted hubs, fulfil a crucial role in defining

the structure of the network (Albert et al., 2000), and, as a result, the scale-free

property is a feature that is prioritized in the design of network models (Barabási

& Albert, 1999; Newman et al., 2001).

According to the results of the previous section, the theoretical degree distribution

of a Gaussian LPM has the form of a continuous mixture, and can be approximated

efficiently for any network size. Figure 2 shows approximate degree distributions for

various choices of model parameters.
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Fig. 2. Gaussian LPM: Approximate degree distribution for different sets of model

parameters τ, γ, ϕ. (Color online)

The shapes of the theoretical degree distribution of Gaussian LPMs shown in

Figure 2 suggest that left-skewed distributions are exhibited in denser networks. This

may not be a desirable feature, since it suggests that Gaussian LPMs would not

capture heavy tails and scale-free behaviors. Such left-skewed shapes do sometimes

arise in social networks; however, data are often collected through surveys, where

each actor is asked to specify up to a fixed number of preferences, so that the degree

distribution will exhibit an artificial truncation at the corresponding value. Popular

social datasets have been obtained using such a design, such as Sampson’s monks

data (Sampson, 1968) and the Adolescent Health data (Handcock et al., 2007).

Dunbar (1992) has argued that there is a theoretical cognitive limit on the number

of stable relationships that social actors can maintain. Hence, both power-law and

non-power-law behaviors are of interest in statistical modeling of networks.

We now propose a more rigorous analysis of the degree distribution using

the dispersion2 and skewness indices3, which can be evaluated through the exact

formulae for the factorial moments in Equation (18).

Corollary 3

In a Gaussian LPM, the dispersion index is given by

D = 1 + (n − 2)τ

(
ϕ(2γ + ϕ)

(γ + ϕ)(3γ + ϕ)

) d
2 − (n − 1)τ

(
ϕ

2γ + ϕ

) d
2

(29)

The proof is given in the Supplementary Material.

2 The dispersion index of a discrete random variable is equal to its variance divided by its mean.
The dispersion index can be used to assess how dispersed the distribution is when compared to a
Poisson, which has an index of 1. A value greater than 1 corresponds to an overdispersed distribution
while a value smaller than 1 corresponds to an underdispersed one. The Binomial distribution arising
from a finite Erdős–Rényi random graph has a dispersion index smaller than 1; hence, it qualifies as
underdispersed.

3 The skewness index of a random variable is equal to the third central moment divided by the cube
of the standard deviation. In the case of degree distributions for networks, a positive value of the
skewness index corresponds to shapes exhibiting a right tail heavier than the left one.
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Fig. 3. Gaussian LPM: Left: Dispersion index versus the ratio between ϕ and γ.

The vertical line is the threshold corresponding to a Poisson dispersion. For larger

values of ϕ, the distributions arising are not more dispersed than an Erdős–Rényi

random graph, asymptotically degenerating to this model as ϕ → ∞. Right: Unless

the graph is very sparse, the skewness index for Gaussian LPMs (red line) is smaller

than the skewness of a Erdős–Rényi random graph (blue line) with the same average

degree. (Color online)

Remark 5

The calculation of the skewness does not involve any simplification, and so it is

omitted here.

Corollary 3 allows us to study how the model parameters τ, γ, and ϕ affect the

dispersion of the distribution. For d = 2, our results can be summarized as follows:

• When ϕ = γ(
√
n − 1 − 2), the distribution has dispersion index 1, as a Poisson

distributed variable.

• When ϕ < γ(
√
n − 1 − 2), the distribution has dispersion index greater than 1,

yielding an overdispersed distribution.

• When ϕ > γ(
√
n − 1 − 2), the distribution has dispersion index smaller than 1,

typical of a Binomial distribution, and so is underdispersed.

Note that the characterization does not depend on τ.

The left panel of Figure 3 shows the dispersion as a function of the model

parameters. As ϕ increases, the model degenerates and the degree distribution

becomes binomial and thus underdispersed, regardless of how sparse the network

is. If ϕ is small enough, and below the threshold, then the model is not degenerate

and produces networks with an overdispersed degree distribution. Hence, Gaussian

LPMs are able to represent degree heterogeneity, since for many choices of the model

parameters the degree distribution is overdispersed. However, degree heterogeneity

does not imply heavy tails or power-law behavior.

We now analyze the skewness index, which is useful for identifying asymmetries

in overdispersed distributions. We expect a scale-free network to have a positive and

relatively large skewness index, but Gaussian LPMs do not produce this behavior,

as shown in the right panel of Figure 3. In Erdős–Rényi random graphs the degrees

exhibit approximately a Poisson distribution, so pk goes to zero at the rate 1/k!,
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as n remains fixed and k tends to n. Thus, power-laws are not represented. The

right panel in Figure 3 shows that, unless the graph is very sparse, Gaussian LPMs

exhibit degree distributions that are always more skewed to the left than those of the

Erdős–Rényi model with the same average degree. Even for very sparse networks,

the difference is not large enough to justify the presence of a low-order power-law

tail.

This shows that Gaussian LPMs cannot capture power-law behavior. They are

able to represent degree heterogeneity, but in the sense that degrees will not be

concentrated around the mean value, but will rather have a non-trivially dispersed

distribution between 0 and a maximum degree value, confirming the shapes already

shown in Figure 2.

4.2 Degree correlations

In the study of networks, one is often interested in the mixing properties of the

graph, where the mixing structure usually refers to the fact that nodes sharing

common features are more likely to be linked. In the context of social networks, this

behavior is called homophily.

A special case is mixing according to nodes’ degrees, often called degree corre-

lation. For example, one may be interested in whether the degrees of two random

nearest neighbors are positively or negatively correlated. Positive correlation, or

assortative mixing of the degrees, is a recurring feature in social networks (Newman

& Park, 2003; Newman, 2002), in contrast to many other kinds of networks (World

Wide Web, protein interactions, food webs; see Newman (2003b)), which typically

exhibit negative degree correlation or dissortative mixing.

Here, we illustrate the fact that Gaussian LPMs can represent assortative mixing

in the degrees, using the results of Theorem 1. Equation (20) shows that the Average

Nearest Neighbor Degree (ANND) of an arbitrary node i can be written explicitly

as a function of its latent position zi. The left panel of Figure 4 displays this function

in terms of the distance between zi and the center of the latent space.

It is not surprising that nodes located closer to the center have highly connected

neighbors. Instead, Equation (16) provides a less explicit formula for the ANND as

a function of the degree of node i, rather than its distance from the center. This

quantity can be efficiently approximated for every degree value. The right panel of

Figure 4 represents this case. The average degree of the neighbors of a node of

degree k, k̄nn(k), appears to be a non-decreasing function of the degree k, indicating

the presence of assortative mixing in the degrees, using the same criterion as Boguná

and Pastor-Satorras (2003). It follows that realized Gaussian LPM networks exhibit

assortative mixing of the degrees, suggesting them to be well suited for social

networks from this point of view (Newman & Park, 2003).

4.3 Asymptotics for the clustering coefficient

LPMs capture transitivity in a natural way. When two actors have a neighbor in

common, it is to be expected that the three corresponding nodes will be close in

the latent space, making triangles more likely. We will now show how Proposition 1

provides a more precise basis for this intuition.
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Fig. 4. Gaussian LPM: Left: Average degree of the nearest neighbors of a node as a

function of its distance from the center. Nodes located in the center will more likely

connect to high degree nodes. Right: Average degree of the closest neighbors as a

function of the degree of a node. The ANND is clearly a non-decreasing function,

verifying that Gaussian LPMs exhibit assortative mixing in the degrees of the nodes.

(Color online)

One drawback of the Erdős–Rényi model is that it cannot capture transitivity

when the network is large. To see this, let p be the connection probability and

k̄ = p(n − 1) be the expected average degree of the corresponding realized network.

We focus on the case where the size of the network increases (n tends to infinity),

while k̄ remains constant with respect to n. It follows that p must tend to zero as

n increases, as well as C → 0 since C = p. Hence, asymptotically, the clustering

coefficient for Erdős–Rényi random graphs is zero.

In contrast, Gaussian LPMs can represent transitivity, even asymptotically. To see

this, we again consider the situation where the average degree is kept fixed and n

increases. In Gaussian LPMs, the average degree can be kept fixed in a number of

ways as n increases. We choose to use the result in Equation (19) which allows us to

have the same average degree k̄0 for every n, by imposing the following constraint:

ϕ =
2k̄

2
d

0 γ

(n − 1)
2
d τ

2
d − k̄

2
d

0

(30)

As n tends to infinity, the corresponding clustering coefficient converges to

C =
τ

3
d
2

(31)

Hence, the limiting clustering coefficient has a non-zero value that can be as large

as 3− d
2 , suggesting that Gaussian LPMs are able to capture a persistent transitivity

for networks of any size.

The asymptotically non-null clustering coefficient classifies Gaussian LPMs as

highly clustered networks. Such models lack the loopless tree structure which

simplifies the study of component sizes and path lengths. Newman reviewed technical

difficulties in the analysis of highly clustered models.
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model. Left and center: Comparison between the theoretical values and average

values obtained through simulations for the distribution of geodesic distances. The

simulated networks are composed of 100 nodes. On the left panel, the graph is more

dense (average degree is approximately 42) while the one in the center is sparser

(average degree is approximately 11). Right: Comparison between average values

of simulated networks (lines) and theoretical (triangles) values for the APL. The

parameters τ and γ are set to 1. (Color online)

4.4 Path lengths

In this section, we study the distribution of shortest path lengths (geodesic distances)

and characterize the behavior of the APL for Gaussian LPMs. We refer to the

concept of small-world networks originally introduced in Watts and Strogatz (1998).

As a comparison tool, we use again the Erdős–Rényi model, for which the APL is

typically proportional to the log of the size of the network.

We denote by �k
(
zi, zj

)
the probability that k is the length of the shortest path

between nodes i and j, located in zi and zj , respectively, given that there exists at

least one path connecting them.

A characterization of the geodesic distance for fitness models (hence including

Erdős–Rényi models) appeared in Fronczak et al. (2004). Here, we follow the same

reasoning, extending the method to Gaussian LPMs. As a result, we argue that

for dense Gaussian LPM networks, the distribution of the geodesic distances is

characterized by

�k
(
zi, zj

) ≈ exp
{−nk−1ξk−1(zi, zj)

} − exp
{−nkξk(zi, zj)

}
(32)

A demonstration of the procedure used to obtain Equation (32) is shown in the

Supplementary Material.

In Figure 5, a comparison between the theoretical values and those obtained

through simulations is shown. The first two panels of Figure 5 give a representation

of how close the approximation of the path length distribution can be, for a dense

Gaussian LPM network and a less dense one.

Furthermore, once �k
(
zi, zj

)
is known for every k, a straightforward evaluation of

the APL can be obtained by averaging over all possible values of k, zi, and zj . The

agreement of the approximation with the results from a simulation study is shown

in the right panel of Figure 5. As expected, the approximation is more accurate for

graphs with a higher average degree. However, the results show that such an index
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with the corresponding Erdős–Rényi random graph. The two behaviors diverge

for sparse graphs, in which case Gaussian LPMs exhibit a larger APL. Right:

Asymptotic behavior for the APL is shown. Average degree of the network is kept

constant while the size n is on the horizontal axis. The continuous lines represent

the APL value for corresponding Erdős–Rényi random graphs with same average

degrees. APL is typically higher in the Gaussian LPM, and grows proportionally to

a function which dominates the logarithm. (Color online)

is more tolerant when assumptions tend to be violated, possibly because the bias is

limited when values are averaged.

Figure 6 shows that Gaussian LPMs typically have a higher APL than corre-

sponding Erdős–Rényi random graphs. In the left panel, the APL is plotted against

the average degree of the network. It appears that the sparser the network, the

more marked the difference with Erdős–Rényi random graphs is. Instead, as the

network gets denser, Gaussian LPMs tend to behave more and more similarly to

Erdős–Rényi random graphs. In the right panel of Figure 6, APL values are shown

for larger Gaussian LPMs networks. In this case, the average degree is kept constant,

highlighting the asymptotic behavior of the statistic.

APL values for the corresponding Erdős–Rényi random graphs are also shown in

Figure 6. The Gaussian LPM networks typically have a higher APL, which grows

faster than the logarithm of the size of the network.

Figure 7 illustrates a possible reason for this behavior. The Euclidean distance

from a node to the center of the latent space is plotted versus its geodesic distance

to a second node picked at random. There is clear heterogeneity, in contrast with

the behavior of Erdős–Rényi random graphs. Evidently, when averaging over all the

possible positions of the second randomly chosen node, important contributions are

given by distant isolated nodes, thereby increasing the APL value.

5 Advantages of random effects models

In the GLPMRE, the connectivity parameter ϕ becomes node dependent, and is

a realization of an Inverse Gamma distribution with parameters β0 and β1. An

increase in ϕ mainly affects how prone the corresponding actor is to creating
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Fig. 7. Average geodesic distance from a node as a function of its distance from the

center of the latent space. The network is composed of 10, 000 nodes, with τ = 1.

Clearly, nodes which are closer to the center will be better positioned to reach

easily many other nodes, thus having a smaller APL index. Such heterogeneity in

the connectivity structure characterizes Gaussian LPMs and separates them from

Erdős–Rényi random graphs, justifying the larger values for global APL. (Color

online)

long-range connections, rather than short-range ones. This behavior is in line with

typical scenarios in large social networks, where hubs differ from ordinary nodes in

that they entail connections between distant areas (or communities) of the graph,

decreasing the APL (Watts & Strogatz, 1998).

The results in Q1 and Q3 of Theorem 1 can be adapted to GLPMREs using

numerical approximations: The latent positions can be integrated out analytically,

and the random effects can then be integrated out numerically. Through such

approximated quantities, the factorial moments of the degree of a random node

can be characterized as a function of the model parameters τ, γ, β0, β1, allowing an

assessment of the extent to which such models can represent heavy tails. Since in

this framework τ does not play a crucial role, we fix it to 1.

Table 1 shows that the variance of random effects does not have much influence

on the average degree of the network. This is relevant for studying heavy tails, since

sparser networks will have a higher skewness index. Hence, if we keep the mean of

the random effect constant and change the variance, not much of the change in the

skewness index will be due to the network becoming sparser.

Figure 8 shows that an increase in the variance of the random effects does yield

an increase in the skewness index, corresponding to a right-skewed heavy-tailed

shape. Therefore, these two results indicate that the heaviness of the tails can be

controlled by changing the variance of the random effects, without changing the

average degree of the network by much. The smallest skewness index is obtained

with a null variance for random effects, which corresponds to the Gaussian LPM.

But how heavy are the tails corresponding to a given positive skewness? Figure 9

shows the degree frequencies obtained through simulations of GLPMREs. The two

panels on the left side of Figure 9 show the degree distribution for a Gaussian LPM
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Table 1. Average degree of a network of 100 actors for different values of mean and variance

of the nodal random effects. The variance does not have much impact on the average degree

of the network. This suggests that any increase of skewness is not due to the network getting

sparser.

Mean\Variance 0.0001 0.1 1 10 100 1,000 100,000

0.1 1.95 2.88 2.73 2.91 2.85 2.81 2.83

0.2 7.34 8.30 8.25 8.20 8.30 8.21 8.17

0.3 14.97 15.19 14.83 14.35 14.40 14.33 14.38

0.4 24.11 23.28 21.14 20.49 20.73 20.60 20.37
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Fig. 8. Skewness index versus variance of nodal random effects. An increase in

the variance of the random effects leads to an increase of the skewness index,

corresponding to heavier tails. (Color online)

(on both standard and log–log scale), where the variance of random effects is set to

a very small value. The right-hand panels are obtained with the same parameters,

except for the variance of the random effect, which is increased to 105. The average

degrees for the two cases are 0.151n and 0.144n, respectively and the skewness indices

are −0.07 and 2.53, respectively. The log–log scale plots are represented to show

that the decay switches from a high-order power-law (reasonably comparable to a

Poissonian tail) to a power-law with an exponent which falls between 2 and 3.

The results confirm that random effects can extend the family of networks

represented using Gaussian LPMs. However, other features of interest are non-

trivially influenced. Hence, we propose a simulation study to explore how random

effects affect the asymptotic behavior of LPMRE with respect to small-world

behavior and transitivity. Simulations of GLPMREs are inefficient, so the results

are somewhat limited. However, such a procedure is the only feasible one, since

theoretical results on the GLPMRE are not available.

In this experiment, we have selected a particular set of model parameters,

generated a sequence of IID networks and studied the average features exhibited.

Since we are interested in the asymptotic behavior of APL and C, we have held

the average degree approximately constant by imposing γ ∝ n, with n increasing.
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Fig. 9. Top: degree distributions for GLPMREs with null-variance random effects

(left) and large-variance random effects (right). Bottom: corresponding degree

distribution on the log–log scale. An increase in the variance of the random effects

results in a heavier power-law tailed degree distribution. The average degrees are:

0.151n and 0.144n for the case on left and right, respectively, while skewness indices

are −0.07 and 2.53, respectively. (Color online)

Figure 10 illustrates the results. The left panel shows that an increase in the variance

of the random effects results in a smaller APL. Furthermore, the APL growth

as a function of n becomes slower than the log function, suggesting small-world

behavior.

The right panel illustrates the asymptotic clustering coefficient estimated through

simulations, showing that C tends to stabilize to a non-zero limiting value, which

clearly depends on the variance of the random effects. Such an interaction between

the presence of hubs and the clustering coefficient is not unexpected, since for an

extreme case, the n-nodes star, C is equal to zero.

Considering the results shown in this section, random effects can be regarded as

a useful addition to Gaussian LPMs to capture several important features that arise

in large social networks.
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Fig. 10. APL (left) and clustering coefficient (right) as a function of n, holding an

approximately constant average degree. The remaining model parameters are τ = 1,

�[ϕ] = 0.6, and γ = 0.05(n − 1). The number of networks generated for each value

of n is 1, 000. The dashed black lines represent the log function and the asymptotic

value for C under the Gaussian LPM for the left and right panel, respectively. (Color

online)

6 Real data examples

We show in this section that several well-known real social networks have features

that can be captured by a Gaussian LPM. We focus on the following datasets:

• Dolphins: This is a social network of frequent associations between 62 dolphins

in a community living off Doubtful Sound, New Zealand (Lusseau et al., 2003).

• Monks: This describes the interpersonal relations among 18 monks in a

monastery (Sampson, 1968).

• Florentine: This describes the connections by marriage between 16 noble

families in Florence during the Renaissance (Padgett & Ansell, 1993).

• Prison: Data collected in the 1950s by John Gagnon from 67 prison inmates,

each one being asked to specify his preferences among other participants

(MacRae, 1960).

• High-tech: This network contains the friendship ties among 36 employees of a

hi-tech company, which were gathered by means of the question: Who do you

consider to be a personal friend? (Krackhardt, 1999).

• Math method: Thirty-eight school superintendents were asked to indicate their

friendship ties with other superintendents in the county with the following

question: Among the chief school administrators in Allegheny County (PA,

USA), who are your three best friends? (Carlson, 1965).

• Sawmill: Thirty-six employees of a sawmill were asked to quantify the time

they spent discussing work matters with each of their colleagues (Michael &

Massey, 1997).

• San Juan: Study carried out in a rural area in Costa Rica. Edges represent

visiting frequencies between 75 families living in farms in a neighborhood

called San Juan Sur (de Nooy et al., 2011).

• Network sciences: Coauthorship network of 1,589 scientists working on net-

work theory and experiment (Newman, 2006).
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Fig. 11. Comparison between the observed degree distributions (blue bars) and

the theoretical ones (red lines) for several small-size real social networks. Datasets

used (from top left by row): Dolphins, Monks, Florentine, Prison, High-tech, Math

method, Sawmill, San Juan. (Color online)

• Geometry: Coauthorship network of 7,343 scientists working on computational

geometry (Batagelj & Mrvar, 2006).

• Condensed Matter: Coauthorships between 16,726 scientists posting preprints

on the Condensed Matter E-Print Archive (Newman, 2001).

• High energy: Coauthorships between 27,770 scientists posting preprints on the

High-Energy Theory E-Print Archive (Newman, 2001).

Some of the mentioned datasets are not binary and undirected. These have been

transformed in order to conform to this requirement.

We have shown that a number of network statistics can be expressed through

analytical formulae for the Gaussian LPM. These include the average degree k̄,

the clustering coefficient C, the APL and the skewness index S . Here, we use an

ad-hoc method to calibrate the parameters of a Gaussian LPM in the first eight

datasets: Using numerical methods, the values of τ and ϕ that give the best match

between the observed and theoretical k̄ and C are obtained. In all of the cases, the

matching is perfect (non-uniqueness of the solution is not relevant in this context).

The parameter γ is fixed to 1. Then, for both the skewness and the APL indices,

observed values are compared to the theoretical values corresponding to the optimal

τ and ϕ, and to an interquantile range obtained from 1, 000 networks simulated

using the same parameters. Table 2 shows the results of this experiment.

It appears that the there is a good agreement between observed and theoretical

values, with the exception of the skewness index, which is too large to be captured by

the model in some of the networks. The observed and theoretical degree distributions

of the networks are also in good agreement, as shown in Figure 11.

A similar approach was used to calibrate the GLPMRE model to the four

larger datasets, to assess to what extent this model can capture the asymptotic

scale-free decay of the degree distribution. The datasets are collaboration networks

where nodes correspond to authors and two nodes are linked if the corresponding

scientists published a paper as coauthors. All of these networks exhibit a power-law

degree distribution, with different power orders, which can vary in the range 1 to
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Table 2. Statistics for small-sized social networks. The average degree and the clustering

coefficient are matched exactly in every case, while the observed skewness index and average

path length are fairly close to the theoretical counterparts. The observed indices are compared

with the theoretical values, and with the interval given by the 0.05 and 0.95 quantiles.

Dolphins: n = 62, τ = 0.810, ϕ/γ = 0.232, k̄ = 5.13, C = 0.31

Obs. Th. 0.05 q 0.95 q

Skewness 0.292 0.461 −0.105 0.656

APL 3.357 3.282 2.65 3.663

Monks: n = 18, τ = 0.763, ϕ/γ = 2.115, k̄ = 6.67, C = 0.47

Obs. Th. 0.05 q 0.95 q

Skewness 0.877 −0.05 −0.845 0.606

APL 1.68 1.724 1.51 1.922

Flomarriage: n = 16, τ = 0.302, ϕ/γ = 2.460, k̄ = 2.5, C = 0.19

Obs. Th. 0.05 q 0.95 q

Skewness 0.424 0.503 −0.458 1.097

APL 2.486 2.827 1.956 3.2

Prison: n = 67, τ = 0.776, ϕ/γ = 0.180, k̄ = 4.24, C = 0.29

Obs. Th. 0.05 q 0.95 q

Skewness 0.855 0.562 −0.004 0.747

APL 3.355 3.831 2.916 4.311

High tech: n = 36, τ = 0.913, ϕ/γ = 0.376, k̄ = 5.06, C = 0.37

Obs. Th. 0.05 q 0.95 q

Skewness 0.785 0.376 −0.306 0.615

APL 2.360 2.749 2.169 3.189

Math method: n = 38, τ = 0.616, ϕ/γ = 0.328, k̄ = 3.21, C = 0.25

Obs. Th. 0.05 q 0.95 q

Skewness 0.654 0.612 −0.064 0.927

APL 2.644 3.480 2.474 4.045

Sawmill: n = 36, τ = 0.550, ϕ/γ = 0.436, k̄ = 3.44, C = 0.23

Obs. Th. 0.05 q 0.95 q

Skewness 2.290 0.558 −0.119 0.919

APL 3.138 3.210 2.382 3.678

San Juan: n = 75, τ = 0.657, ϕ/γ = 0.186, k̄ = 4.13, C = 0.25

Obs. Th. 0.05 q 0.95 q

Skewness 1.622 0.579 0.066 0.816

APL 3.485 3.883 3.034 4.326
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Fig. 12. Empirical (dots) and theoretical (red line) degree distributions on the log–

log scale for four large citation networks. The datasets exhibit different asymptotic

power-law orders. In all of the cases, GLPMREs appear to capture the scale-free

behavior sufficiently well. Datasets used: Network sciences (top left), Geometry (top

right), Condensed matter (bottom left), High energy (bottom right). (Color online)

4. Figure 12 shows the theoretical and observed degree distributions on the log–log

scale, indicating that the asymptotic behavior is reasonably well captured by the

model in all of the cases.

7 Conclusions

We have derived several properties of LPMs for networks, including their degree

distribution, degree correlations, clustering coefficient, and the distribution of path

lengths. We have also introduced a new class of LPMs, the Gaussian LPMs, which

are more tractable analytically than other LPMs.

We have shown that Gaussian LPMs have an asymptotically strictly positive

clustering coefficient, in contrast to other well-known models, such as Erdős–Rényi,

whose clustering coefficient is asymptotically zero. This result suggests that Gaussian

LPMs can generate highly clustered networks and that they can capture the persistent

clustering behavior of large social networks.
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We have characterized the average degree of the nearest neighbors to a node,

showing that positive degree correlations arise in Gaussian LPM networks. This is

in line with observed social networks, where assortative mixing in the nodal degrees

does occur.

We have also shown how the distribution of geodesic distances can be efficiently

approximated, yielding an analysis of the asymptotic behavior of the APL.

In their basic form, Gaussian LPMs are not appropriate for modeling scale-free

networks, since their degree distribution has a left-skewed and truncated shape.

However, if they are modified by introducing node-specific random effects, yielding

the GLPMRE model, we have shown that they can represent power-law distributions

of different shapes in both simulated and real networks.

Although this work deals only with undirected graphs, the same results can be

extended in a similar fashion to directed graphs.
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