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SPATIAL SEMIPARAMETRIC MODEL
WITH ENDOGENOUS REGRESSORS

NAZGUL JENISH

This paper proposes a semiparametric generalized method of moments estimator
(GMM) estimator for a partially parametric spatial model with endogenous spa-
tially dependent regressors. The finite-dimensional estimator is shown to be consis-
tent and root-n asymptotically normal under some reasonable conditions. A spatial
heteroscedasticity and autocorrelation consistent covariance estimator is constructed
for the GMM estimator. The leading application is nonlinear spatial autoregressions,
which arise in a wide range of strategic interaction models. To derive the asymptotic
properties of the estimator, the paper also establishes a stochastic equicontinuity cri-
terion and functional central limit theorem for near-epoch dependent random fields.

1. INTRODUCTION

Strategic behavior of agents is one of the defining features of modern economic
models. Such behavior often involves interaction among economic agents and
thus leads to interdependence of their choices. For instance, a monopolistically
competitive firm takes into account prices charged by other neighboring firms
in its price-setting decision. From an econometric point of view, this implies a
model in which other observations on the response variable enter the regression
as endogenous regressors, i.e., a spatially autoregressive model.

The existing estimation theory of spatially dependent models has mainly fo-
cused on fully parametric or nonparametric specifications. Recent contributions
include Lee (2007), Robinson (2011), Jenish and Prucha (2012), and Jenish
(2012), among others. However, nonparametric estimation suffers from the curse
of dimensionality, while parametric estimation is susceptible to serious mis-
specification problems. Semiparametric estimation is the standard compromise
between the two approaches. Yet there have been few contributions to semipara-
metric estimation of spatially dependent models except for Gao, Lu and Tjøstheim
(2006), Su (2012), Robinson and Thawornkaiwong (2012).

In this paper, we propose a semiparametric GMM estimator of a spatial model
with endogenous regressors which may include spatial lags of the response vari-
able. This model can arise as an equilibrium of economic games, and thus
have a wide range of applications. It has two key characteristics: nonlinear spa-
tial interactions or spillovers in the dependent variable, and flexible functional
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forms for the effect of the exogenous variables. Given spatial dependence in the
response variable, the data-generating process is assumed to be spatially near-
epoch dependent (NED) on some mixing process. As shown in Jenish (2012), this
weak dependence condition is less restrictive than mixing and satisfied in many
important applications including nonlinear spatial autoregressive models. Under
this dependence condition, we prove consistency and root-n asymptotic normality
of the finite-dimensional estimator. To derive the asymptotic results, the paper also
establishes a stochastic equicontinuity criterion and functional central limit theo-
rem for near-epoch dependent random fields, which may be also useful in other
semiparametric and nonparametric settings. We also construct a heteroscedas-
ticity and autocorrelation consistent (HAC) covariance matrix estimator for our
semiparametric estimator.

To our knowledge, the proposed semiparametric GMM estimator has not been
considered in the existing literature. Gao, Lu and Tjc/stheim (2006) suggest a
two-step semiparametric estimator of a partially linear regression for station-
ary α-mixing random fields. The α-mixing concept was originally introduced by
Rosenblatt (1956). Rosenblatt (1985) further extends this dependence concept to
random fields, and establishes a number of important asymptotic results on the
parameter and spectral density estimation of α-mixing random fields. Our model
relies on a weaker dependence condition than mixing. It also generalizes Gao
et al. (2006) by allowing endogenous regressors and nonlinear parametric func-
tions. Su (2012) studies a linear spatial autoregressive model with independent
innovations, in which spatial dependence is modeled by means of a known spatial
weight matrix and an unknown scalar parameter, also known as a Cliff–Ord spatial
autoregressive model. Our model is different from Cliff–Ord type specifications
in important ways. First, it does not assume any known spatial weight matrix,
and hence allows for a more robust estimation of both the autoregressive param-
eters and the covariance matrix of their estimators. Second, the proposed asymp-
totic theory employs the machinery of random fields, while the limit theory of
Cliff–Ord type models often exploits a parametric dependence structure repre-
sented by a linear-quadratic form of the independent innovation process. How-
ever, neither of these asymptotic approaches dominates the other. In the version
of the Cliff–Ord model analyzed by Su (2012), the spatial lags enter the model
linearly. In contrast to Su (2012), our semiparametric estimator allows for non-
linear autoregressions. This feature renders the asymptotic theory more intricate,
and in particular requires establishing a stochastic equicontinuity property of the
empirical process, which is not needed in Su (2012). Recently, Robinson and Tha-
wornkaiwong (2012) have established root-n asymptotic normality of an IV esti-
mator of a partially linear regression. Their asymptotic theory exploits a specific
cross-sectional dependence structure in the error process generated as a linear pro-
cess of independent innovations, which precludes some of autoregressive random
fields considered in this paper.

The proposed estimator also differs from semiparametric GMM estimators
in the time series literature, which typically relies on the i.i.d. assumption. It
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generalizes the seminal contribution of Robinson (1988) on semiparametric es-
timation of a partially linear regression with exogenous regressors to the spatial
endogenous setting. Andrews (1994) provides a general framework for proving
consistency and root-n asymptotic normality of semiparametric estimators that
minimize a criterion function that depends on a preliminary infinite-dimensional
nuisance parameter estimator. Our GMM estimator fits this framework. However,
verification of the high-level assumption of that paper is nontrivial, and requires
a series of new results on stochastic equicontinuity, uniform convergence rates,
and asymptotic normality for weakly dependent spatial processes established in
this paper.

The structure of the paper is as follows. Section 2 describes the estimation pro-
cedure. Section 3 establishes rates of uniform consistency of the first-step non-
parametric estimator as well as consistency of the finite-dimensional parameter
estimator. Section 4 proves root-n asymptotic normality of the finite-dimensional
estimator and constructs a consistent estimator of its variance matrix. Section 5
gives a stochastic equicontinuity criterion and functional central limit theorem
for near-epoch dependent random fields. Section 6 contains a Monte Carlo study.
All proofs are collected in the appendices.

2. MODEL AND ESTIMATION PROCEDURE

We begin by introducing some basic notation. All random processes are defined
on a common probability space (�,F, P), and take their values in Rp, which
is equipped with the Euclidean norm denoted by | · |. Furthermore, let ‖X‖q =
[E |X |q ]1/q denote the Lq -norm of a random variable X , and |A| = trace(A′ A)1/2

denote the norm of a nonrandom matrix A.
We consider double arrays, {Win, i ∈Zd ,n ≥ 1}, of random fields, i.e., stochas-

tic processes indexed by i = (i1, . . . , id)∈Zd . In this paper, we are concerned with
estimation of the semiparametric model:

Y1in = h(Y2in,θ0)+ g(Xin)+Uin for Xin ∈ X , (1)

E(Uin|Xin) = 0 a.s. (2)

E (ZinUin) = 0, (3)

where Y1in is the scalar response variable, Y2in is the vector of (possibly) en-
dogenous variables, Xin is the vector of exogenous variables that takes values in
some set X ⊆ R

k , Zin is the vector of instruments, θ0 is the finite-dimensional
parameter vector, h(·, ·) is a known function, and g(·) is an unknown function.
Let Win = (X ′

in,Y1in,Y ′
2in, Z ′

in

)′ take values in the Euclidean space, Rpw .
In the absence of cross-sectional dependence, (1)–(3) reduces to some well-

known models in the econometrics literature. For example, if Y2in is exogenous
and h(Y2in ; θ) = Y ′

2inθ , then (1)–(3) is the partially linear regression studied by
Robinson (1988), and for nonlinear h(·, ·), the model is the partially parametric
regression analyzed by Andrews (1994).
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The vector of endogenous variables Y2in may contain spatial lags of Y1in .
This feature is critical for a broad array of applications ranging from IO and
international economics to social interactions and networks. For instance, con-
sider the following spatial autoregressive model:

Yi = h1

((
Yi− j

)
j∈Zd ,0<| j |≤r ,θ1

)
+h2 (X2i ,θ2)+ g(X1i )+Ui , (4)

where r > 0 is the fixed radius of interaction or neighborhood, Xi = (X ′
1i , X ′

2i

)′
are exogenous variables, h2(·) and g(·) are, respectively, known and unknown
functions, and h1 : R|N (r)| ×Rpθ → R is a known function of spatial lags with
N (r) = { j ∈ Zd : 0 < | j | ≤ r

}
. If {Xi } and {Ui } are independent, model (4) satis-

fies conditions (1)-(3) with the instruments Zi = (Xi− j
)

j∈N (r).
This model may arise in a number of applications. For example, in a model

of spatial price competition between firms, the dependent variable would be the
price charged by the firm at location i that depends on the prices of its neigh-
bors, see Pinkse et al. (2002). Another example is a housing demand model in
which the demand at location i is correlated with the demand at the neighboring
locations, see Ioannides and Zabel (2003).

The data-generating process {Win} in model (4) exhibits intrinsic spatial de-
pendence. For estimators to have desirable statistical properties, some restrictions
need to be placed on the dependence structure of {Win}. Specifically, {Win} has
to satisfy some weak dependence property, e.g., mixing. As discussed in Jenish
and Prucha (2012), the mixing property may fail in autoregressive models for a
number of reasons, including the discrete nature of the innovations, slow decay
of the coefficients etc. At the same time, many autoregressive processes satisfy
a less restrictive dependence condition called near-epoch-dependence (NED), for
examples see Jenish (2012).

In the following, we therefore assume that {Win} is spatially NED on some
α-mixing random field {Vin}. For the definition of α-mixing random fields, see,
e.g., Jenish (2012). As for the NED concept, we state its definition below:

DEFINITION 1. The random field
{
Win, i ∈ Zd ,n ≥ 1

}
, ‖Win‖q < ∞, q ≥ 1,

is Lq-NED on {Vin, i ∈ Zd ,n ≥ 1} iff

sup
n,i∈�n

‖Win − E(Win|Fin(s))‖q ≤ ψ(s)

for some sequence ψ(s) → 0 as s → ∞, where Fin(s) = σ(Vjn ; j ∈ Zd :
|i − j | ≤ s). {Win} is Lq-NED of size −η if ψ(s) = O(s−η−ε) for some ε > 0.

The NED concept was introduced by Ibragimov (1962) and Billingsley (1968),
and has since been used extensively in the time series literature.

For example, the NED condition is satisfied in model (4). Specifically, if for
some aj ≥ 0 and any y, y′ ∈ R|N (r)|∣∣h1(y)−h1(y

′)
∣∣≤ ∑

j∈N (r)

aj

∣∣∣yj − y′
j

∣∣∣ , 0 < a =
∑

j∈N (r)

aj < 1, (5)
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and ‖Vi‖2 <∞, Vi = h2 (X2i ,θ2)+ g(X1i )+Ui , then by Proposition 1 of Jenish
(2012), there exists a unique solution of (4) that is L2-NED on {Vi } with the NED
coefficients ψ(s) = 2‖Y0‖2 a−1a[s/r ], where ‖Y0‖2 = supi ‖Yi‖2 and [·] is the
integer part function.

To estimate model (1)–(3), we proceed as in Robinson (1988). Taking expecta-
tion of (1) conditional on Xin and subtracting it from (1) gives


(Y1in,Y2in, Xin,θ0) ≡ Uin = Y1in − E (Y1in|Xin)−h(Y2in,θ0)

+E (h(Y2in ; θ0)|Xin) .

Then, moment conditions imply

E
[
1X (Xin)(Zin − E (Zin|Xin))
 (Y1in,Y2in, Xin,θ0)

]= 0, (6)

where 1X (·) is the indicator of X . Thus, the parameter θ0 can be identified from
moment condition (6) provided that the latter has a unique solution θ = θ0. Define

τ10(x)= E (Zin|Xin = x) , τ20(x) = E (Y1in|Xin = x) ,

τ30(x,θ0)= E (h(Y2in ; θ0)|Xin = x) , τ0 = (τ10,τ20,τ30) ,

and re-write moment condition (6) as

E [m(Win,θ0,τ0)] = 0, (7)

where

m(Win,θ,τ )= 1X (Xin)m∗(Win,θ,τ ), (8)

m∗(Win,θ,τ )= (Zin − τ1(Xin))(Y1in − τ2(Xin)−h(Y2in,θ)+ τ3(Xin,θ)) . (9)

Clearly, the GMM estimator of θ based on (7) is infeasible since τ0 is unknown.
Nevertheless, we can replace τ0 by a consistent nonparametric estimator, τ̂ , and
obtain a feasible GMM estimator of θ, θ̂ , based on these approximate moment
conditions. Under some regularity conditions that guarantee asymptotic indepen-
dence of τ̂ and θ̂ , the feasible estimator θ̂ will be asymptotically equivalent to the
infeasible estimator. This observation suggests the following estimation strategy.
We first estimate τ0 by the Nadaraya–Watson kernel estimator:

τ̂1(x)=
(

nbk
1n

)−1 ∑
i∈�n

Zin K1 ((x − Xin)/b1n)/ f̂1 (x) , (10)

τ̂2(x)=
(

nbk
2n

)−1 ∑
i∈�n

Y1in K2 ((x − Xin)/b2n)/ f̂2 (x) ,

τ̂3 (x,θ)=
(

nbk
3n

)−1 ∑
i∈�n

h(Y2in,θ)K3 ((x − Xin)/b3n)/ f̂3 (x) ,

f̂l (x)=
(

nbk
ln

)−1 ∑
i∈�n

Kl

(
x − Xin

bln

)
, l = 1,2,3,
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where n = |�n| is the sample size, k =dimXin , and τ̂1(x) is the pz × 1 (pz =
dim Zin) vector-function whose components are element-by-element kernel esti-
mators of Zin . We then obtain a GMM estimator θ̂ by minimizing

Qn(θ) = m′
n(θ, τ̂ )�nmn(θ, τ̂ ),

where �n is some weighting matrix and mn(θ,τ ) = n−1∑
i∈�n

mεn (Win,θ,τ )
is the sample analog of moment function (7). The sample moment function is
constructed according to the formula

mε(Win,θ,τ ) = ζε (Xin)m∗(Win,θ,τ ),

where m∗ (·) is as in (9), and ζε (·) is the smoothed version of the indicator trim-
ming function, 1X (·), given by the formula:

ζε (x)=
∫
Rk

1Xε (x − εz)φ (z)dz = 1

εk

∫
Xε
φ

(
x − z

ε

)
dz, (11)

φ (x)=
{

ck exp
(
1/
(|x |2 −1

))
, |x | < 1

0, |x | ≥ 1

Xε = {u : |x −u| < ε, ε > 0, for some x ∈ X } ,
εn = n−1/2−εε∗/3, for some ε > 0 and ε∗ > 0.

In general, semiparametric estimators based on a first-step nonparametric kernel
estimator require trimming to guarantee that the denominator of the kernel estima-
tor is bounded away from zero on some bounded set. The latter is critical for uni-
form consistency of the kernel estimator, and consequently, for consistency of the
second-step estimator. The standard choice of the trimming function is the indica-
tor function of the set X on which the density of Xin is bounded away from zero.
For instance, X could be chosen as X ={x : infn≥1 infX n−1∑

i∈�n
fin(x) ≥ L

}
for some L > 0. In our case, we replace indicator function 1X (·)with its smoothed
version ζε (·) to ensure smoothness of the sample moment function. The latter is
needed to verify the NED property of the sample moment function from that
of Win .

Mathematically, the smoothed trimming function ζε (x) is the convolution of
the indicator function with a mollifier function φ (·). This operation transforms the
discontinuous indicator function into an infinitely differentiable function ζε (x).
When ε → 0, the smoothed trimming function, ζε (·) , converges in L1-norm to
1X (·). The constant ck is a normalizing constant such that

∫
φ(x)dx = 1. The

properties of ζε (·) are collected in Lemma B.2 of the Appendix.

3. CONSISTENCY

Throughout the sequel, we consider q-times continuously differentiable functions
with finite Sobolev norm:

‖ f ‖q,r,U =
∑

|μ|≤q

(∫
U

∣∣Dμ f (u)
∣∣r du

)1/r

, (12)
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where Dμ f (u) = ∂ |μ|
∂u

μ1
1 ...∂u

μp
p

f (u), u = (u1, . . . ,up) is a p-vector of nonnegative

integers with |μ| =∑p
j=1μj . Let Sq,r (U), 1 ≤ r < ∞, denote the Sobolev space

endowed with the above norm, and let Cω(U) denote the space of ω-times contin-
uously differentiable functions on U .

Consistency of the finite-dimensional parameter estimator relies heavily on uni-
form consistency of nonparametric estimators τ̂ . Uniform consistency of τ̂ is in
turn ensured by the following conditions:

Assumption 1.

(a) � ⊂ R
pθ is compact, θ0 ∈ �, X ⊂ R

k is open bounded. �∗ and X ∗
are open ε∗-neighborhoods of � and X , respectively, for small ε∗ > 0,
U = X ∗ ×�∗ is a Lipschitz domain 1.

(b) For some large B < ∞ and q1,q2,q3 > 0, τ0 = (τ10,τ20,τ30) ∈ T , where

T = {(τ1,τ2,τ3) : ‖τ1(·)‖q1,2,X ∗ ≤ B, ‖τ2(·)‖q2,2,X ∗

≤ B, ‖τ3(·, ·)‖q3,2,X ∗×�∗ ≤ B
}
.

Assumption 2.

(a) W=X ×Y1×Y2×Z is an open bounded subset of Rpw .

(b) {Win = (X ′
in,Y1in,Y ′

2in, Z ′
in

)′
, i ∈�n} is L2-NED on

{
Vin, i ∈ Zd

}
of size

−η, η > d .
(
Y1in,Y ′

2in, Z ′
in

)′ lie in Y1×Y2×Z .

(c) Mixing numbers of {Vin} satisfy α(k, l,r) ≤ (k + l)ς α̂(r), ς ≥ 0, α̂(r) s.t.∑∞
r=1 rd(ς+1)−1α̂ (r) < ∞.2

Assumption 3.

(a) Xin is continuous with the density fin(x) ∈ Cω(Rk) for ω ≥ max
{q1,q2,q3}+1.

(b) supn≥1 supRk

∣∣n−1∑
i∈�n

Dμ fin(x)
∣∣< ∞ for |μ| ≤ ω.

(c) infn≥1 infX ∗ n−1∑
i∈�n

fin(x) ≥ L > 0, where X ∗ is bounded.

Assumption 4. For ω defined in Assumption 3(a):

(a) τl0(x) fin(x)∈ Cω(Rk) and supn≥1 supRk

∣∣n−1∑
i∈�n

Dμ [τl0(x) fin(x)]
∣∣<

∞, l = 1,2, for |μ| ≤ ω.

(b) τ30(x,θ) fin(x)∈ Cω(Rk ×�∗) and supn≥1 supRk×�∗
∣∣n−1∑

i∈�n
Dμx Dμθ

[τ30(x,θ) fin(x)]
∣∣< ∞ for |μx |+ |μθ | ≤ ω.

(c) sup�∗ supY2
|Dμy Dμθ h(y; θ)| < ∞ for

∣∣μy
∣∣+|μθ | ≤ q3.

Assumption 5. The kernels Kl : Rk → R, l = 1,2,3 satisfy:

(a)
∫

Kl(x)dx=1,
∫

xμKl(x)dx=0 for 1 ≤ |μ| ≤ ω−1,
∫ |xμKl(x)|dx< ∞

for |μ| = ω.
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(b) For |μ| ≤ ql , l = 1,2,3, DμKl(x) → 0 as |x | → ∞, and DμKl(x) are
absolutely integrable and have Fourier transforms �l,μ(λ) = (2π)k∫

exp(iλ′x)DμKl(x)dx satisfying
∫
(1 + |λ|)|�l,μ(λ)|dλ < ∞, where

i =√−1.

Assumption 1 defines the set of nonparametric functions τ (·). This set needs to
be restricted to obtain stochastic equicontinuity of the moment functions in τ .
Assumption 2 specifies the dependence structure of the data-generating pro-
cess. Assumption 3 summarizes the properties of the density function of Xin .
Assumption 3(a) can be relaxed to allow for mixed discrete-continuous regres-
sors Xin as in Bierens (1983). Assumption 3(b) is a boundedness condition on the
density of Xin . Assumption 3(c) is critical as uniform consistency holds only over
bounded sets on which the densities are bounded away from zero. Assumption 4
contains standard smoothness and boundedness conditions required to quantify
the rates of convergence. Assumption 5(a) requires bias-reducing kernels, which
are needed to obtain faster rates of convergence. Assumption 5(b) is a technical
condition used in the proof of Theorem 1, which relies on the Fourier transform
of the kernel.

THEOREM 1. Let {�n} be a sequence of finite sets of Zd s.t. n=|�n| → ∞.
Under Assumptions 1-5,

A. supX ∗ |Dμx τ̂l (x)− Dμx τl0(x)| = Op(n−η/(2η+d)b−k−|μx |−d/(2η+d)
ln ) + Op(b

ω−|μx |
ln ),

|μx | ≤ ql , l = 1,2;

B. supX ∗×�∗ |Dμx Dμθ τ̂3(x,θ)− Dμx Dμθ τ30(x,θ)| = Op(n−η/(2η+d)b−k−|μx |−d/(2η+d)
3n )

+ Op(b
ω−|μθ |−|μx |
3n ), for |μθ |+ |μx | ≤ q3, provided that the right-hand sides

of both equalities are op(1).

Part A of Theorem 1 extends results of Bierens (1983) and Andrews (1995)
to NED random fields. For the case one-dimensional lattice (d = 1), the rates of
convergence reduce to those in Theorem 1(b) of Andrews (1995). Part B of the
theorem establishes uniform convergence rates over parameter θ , in addition to x ,
for functions that also depend on the finite-dimensional parameter.

The uniform convergence rates in Theorem 1 are suboptimal, see Stone (1982)
and Lu and Linton (2007). Relative to the i.i.d. case, there is a loss in the speed
of uniform convergence. The magnitude of this loss depends on the rate of decay
of the NED coefficients, η, and the dimension of lattice, d: convergence is slower,
the stronger the dependence and the higher the dimension of the lattice.

To ensure that the rates obtained in Theorem 1 are op(1), we use the following

Assumption 6. bln = cln−γl ,with cl > 0 and 0<γl <η/[(2η+d)(k +ql)+d],
l = 1,2,3.

This bandwidth condition is not restrictive for most applications. For instance,
it is automatically satisfied in model (4). In this and many other models (see
Jenish, 2012), the NED coefficients decay at an exponential rate, i.e., η = ∞,
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and Assumption 6 reduces to 0 < γ < 1/ [2(k +q)], where k is the dimension
of x and q is the degree of smoothness of τ (·). The latter condition is reason-
able for practical values of k and q, e.g., if k = 1 and q = 3, then γ must satisfy
0 < γ < 1/8.

Based on Theorem 1, we can now establish consistency of the parametric esti-
mator, which requires additionally the following assumption:

Assumption 7.

(a) E
[
m(Win,θ0,τ0)

]= 0. p limn→∞�n = �, � is positive definite, and
There exists a function f (x) such that limn→∞ supx∈X

∣∣n−1∑
i∈�n

fin(x)

− f (x)
∣∣= 0.

(b) τ40 (x,θ) = E [Zinh(Y2in,θ)|Xin = x] and τ50 (x) = E [ZinY1in|Xin = x]
do not depend on i or n, supX×� |τ40 (x,θ)|<∞ and supX |τ50 (x)|<∞.

(c) m(θ,τ0)
′�m(θ,τ0) is uniquely minimized on � at θ0, where m(θ,τ ) is a

nonrandom function defined:

m(θ,τ )=
∫
X

[ϒ(θ,τ (x))+ϒ1(θ, x)] f (x)dx , where:

ϒ(θ,τ (x))= [τ10(x)− τ1(x)] [τ20(x)− τ2(x)− τ30(x,θ)+ τ3(x,θ)] ,

ϒ1(θ, x)= τ10(x) [τ30(x,θ)− τ30(x,θ0)]+ τ40(x,θ0)− τ40(x,θ).

(d) εn = n−1/2−εε∗/3 for some ε > 0 and ε∗ defined in Assumption 1.

Assumption 7 is the identification condition: parts (a), (b), and (d) ensure con-
vergence of the objective function to a finite nonrandom function in part (c) that
is uniquely minimized at the true parameter. In particular, part (d) guarantees
convergence of the smooth trimming function to 1X (·). The parameter εn is cho-
sen such that the trimming set, X2εn , lies inside the set X ∗, and εn decays at
a rate faster than n−1/2, not to affect the asymptotic distribution of the finite-
dimensional estimator.

THEOREM 2. Let {�n} be a sequence of finite sets of Zd s.t. n=|�n| → ∞.

Under Assumptions 1–7, θ̂n
p→ θ0.

4. ASYMPTOTIC NORMALITY AND COVARIANCE MATRIX
ESTIMATION

In this section, we derive the limiting distribution of the parametric estimator and
construct its covariance matrix estimator. We maintain Assumptions 1–5 and 7,
which imply consistency. For asymptotic normality, we need to strengthen the
bandwidth condition as follows:

Assumption 8. bln = cln−γl , with cl > 0, l = 1,2,3

[4ω]−1 < γl < min{η/ [(2η+d)(k +ql)+d] , (2η−d)/ [4k(2η+d)+4d]} ,
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where ω is as in Assumption 3(a), q1,q2,q3 are defined in Assumption 1 and, in
addition, satisfy min(q1,q2,q3) > (pw +1)/2 for pw = dim Win .

These stronger bandwidth conditions are needed for asymptotic independence

of τ̂ and θ̂ . Assumption 8 ensures n1/4 supX×� |̂τ(x,θ)− τ0(x,θ)| p→ 0. This con-
dition is standard in the semiparametric literature, see, e.g., Andrews (1994). As-
sumption 8 is not void. For example, if q > 3k +2/3 and η > d, then η/[(2η+d)
(k +ql)+d]< (2η−d)/[4(2η+d)k +4d], and the set of γ satisfying [4ω]−1 <γ
< η/[(2η+d)(k +q)+d] is nonempty for any ω > q > k(2η+d)/(2η−d)−2.
For exponential decay rates of the NED coefficients, Assumption 8 reduces to
1/(4ω) < γ < min{1/(2k +2q), 1/(4k)}, which is compatible for all k ≤ q < ω.

Assumption 9.

(a) θ0 is in the interior of �, andW is an open bounded convex subset of Rpw .
Assumption 2(c) holds with α̂(r) s.t.

∑∞
r=1 rd(ς+1)−1α̂1/2 (r) < ∞.

(b) There exists a nonrandom matrix M(θ,τ ) such that M = M(θ0,τ0) is of
full column rank and

sup
�×T

∣∣∣∣∣∣n−1
∑
i∈�n

E

[
∂

∂θ ′ m(Win,θ,τ )

]
− M(θ,τ )

∣∣∣∣∣∣→ 0.

(c) S (θ0,τ0) = limn→∞ V ar
[
n1/2mn(θ0,τ0)

]
exists and is positive definite.

Convexity ofW in Assumption 9(a) is needed to verify the stochastic equicon-
tinuity criterion of Section 5. Assumptions 9(b)–(c) are standard conditions that
ensure convergence of the Jacobian and covariance matrices of the sample mo-
ments.

THEOREM 3. Let {�n} be a sequence of finite sets of Zd s.t. n=|�n| → ∞.
Under Assumptions 1–5 and 7–9, n1/2 (θ̂n − θ0

)=⇒ N (0,V ), where V = AS A′,
S = S (θ0,τ0) , A = (M ′�M

)−1
M ′�.

Let Ŝ be a consistent estimator of S. Then, the covariance matrix V is con-
sistently estimated by V̂ = ÂŜ Â′, where Â = (

M̂ ′�n M̂
)−1

M̂ ′�n and M̂ = 1
n∑

i∈�n
∂
∂θ ′ mεn (Win, θ̂ , τ̂ ).

To consistently estimate S = S (θ0,τ0), we construct the following spatial HAC
estimator:

Ŝ
(
θ̂ , τ̂
)= 1

n

∑
i∈�n

∑
j∈�n :|i− j |≤βn

K ((i − j)/βn)mεn

(
Win, θ̂ , τ̂

)
mεn

(
Wjn, θ̂ , τ̂

)′
, (13)

where K ((i − j)/βn)= K ((i1 − j1)/βn, ..., (id − jd)/βn) is a d-dimensional ker-
nel, and βn is a bandwidth parameter. For ease of exposition, we assume that the
sample grows at the same rate in all d-dimensions so that we can use the same
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bandwidth window βn . The consistency result below remains valid for bandwidths
varying with the direction. We maintain the following assumption on the kernel
function.

Assumption 10. K :Rd → [−1,1], K (0)= 1, K (x)= 0 for |x |> 1,
∫
Rd |K (x)|

dx < ∞, K (·) is symmetric and continuous at 0 and at all but finite number of
points.

This assumption is satisfied by many standard kernels including the rectangular,
Bartlett, Parzen, and Tuckey–Hanning kernels. Among these kernels, the Bartlett
and Parzen kernels produce a positive semidefinite covariance matrix estimator.
For instance, one can use the following product Bartlett kernel:

K ((i − j)/βn) =
{
�d

k=1(1−|ik − jk |/βn), if |ik − jk | < βn, 1 ≤ k ≤ d

0, else.

THEOREM 4. Let {�n} be a sequence of finite sets of �, where �⊂Rd ,d ≥ 1
is a discrete lattice satisfying the minimum distance assumption, such that n=
|�n| → ∞, and let βd

n = O(n1/4). Under Assumptions 1, 2-10, Ŝ
(
θ̂ , τ̂
) p→

S(θ0,τ0).

This covariance estimator extends that of Conley (1999) in two directions: (i)
from mixing to NED random fields, and (ii) from the parametric to semiparamet-
ric setting. In the fully parametric case, the bandwidth assumption can be relaxed
to βd

n = O(n1/3). In the semiparametric case, the bandwidth condition is more
restrictive: the bandwidth parameter must increase at a slower rate, βd

n = O(n1/4)
to account for the first-step nonparametric kernel estimator, which is op(n−1/4).

5. STOCHASTIC EQUICONTINUITY CRITERION AND
FUNCTIONAL CENTRAL LIMIT THEOREM (CLT)

To prove asymptotic normality of our semiparametric estimator, we will need
a stochastic equicontinuity criterion for empirical processes. To our knowledge,
no such results have been derived for NED random fields. Andrews (1991),
Theorems 2 and 4, obtains a stochastic equicontinuity criterion and empirical
CLT for time series NED processes. In this section, we extend these results to
NED random fields. The stochastic equicontinuity criterion and functional CLT
below can be also used to establish asymptotic properties of various semiparamet-
ric and seminonparametric estimators for heterogenous spatially dependent data,
and may therefore be interesting in their own right.

Let m (·, ·) : W×T → R be a real function indexed by infinite-dimensional
metric space T . We assume that for each τ ∈ T , m (w,τ ) is Borel measurable in
w and the family {m (·,τ )} belongs to the Sobolev space, Sq,2(W), equipped with
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norm (12). Following Andrews (1991), we take the pseudometric ρ on T to be

ρT (τ1,τ2) = ‖m (·,τ1)−m (·,τ2)‖W =
(∫
W

|m (w,τ1)−m (w,τ2)|2 dw

)1/2

and consider empirical processes νn(·) defined as

νn(τ ) = 1√|�n|
∑
i∈�n

[m (Win,τ )− Em (Win,τ )] .

DEFINITION 2. {νn(·),n ≥ 1} is uniformly stochastically equicontinuous
iff for every ε > 0 and ε > 0, there exists δ > 0 such that limsupn→∞ P∗
(supτ1,τ2∈T :ρT (τ1,τ2)<δ

|νn(τ1) − νn(τ2)| > ε) < ε, where P∗ denotes P-outer
probability.

Assumption 11.

(a) W is an open bounded subset of Rp with minimally smooth boundary.

(b) supτ∈T ‖m (·,τ )‖q,2,W < ∞ for some integer q > (p +1)/2.

(c) {Win} is a W-valued random field that is L2-NED of size −d on
{Vin, i ∈ �}, where � ⊂ R

d is a discrete lattice satisfying the minimum
distance assumption. The mixing coefficients of {Vin} satisfy α(k, l,r) ≤
(k + l)ς α̂(r), ς ≥ 0, and α̂(r) s.t.

∑∞
r=1 rd(ς+1)−1α̂1/2 (r) < ∞.

(d) m (w,τ ) satisfies for any w, w• ∈W: |m(w,τ)−m(w•,τ )| ≤ C |w−w•|
for some C < ∞.

(e) For any τ = (τ1, . . . ,τp)
′ ∈ T p and p ≥ 1, Sp(τ ) = limn→∞ E(νn(τ )

νn(τ )
′) exists and is positive definite, where νn(τ )= (νn(τ1), . . . ,νn(τp))

′.

Assumptions 11(a)–(b) are identical to Assumptions D(i)–(ii) of Andrews
(1991) who provides definition and examples of sets with minimally smooth
boundaries. Assumption 11(c) restricts the dependence structure of the random
field, and for d = 1, ς = 0, reduces to Assumption C(iii) of Andrews (1991).
Assumptions 11(a)–(c) jointly imply stochastic equicontinuity. To obtain a func-
tional central limit theorem (FCLT), one additionally needs convergence of
finite-dimensional distributions. The last two assumptions serve this purpose: As-
sumption 11(d) allows to establish the NED property of {m (Win)} from that of
{Win}, and Assumption 11(e) guarantees convergence of the covariance matrices.

THEOREM 5.

A. Under Assumptions 11(a)–(c), {νn(·),n ≥ 1} is uniformly stochastically
equicontinuous and (T ,ρ) is totally bounded.

B. Under Assumptions 11(a)–(e), νn(·) converges weakly to a zero-mean
Gaussian process with covariance function S(·, ·) whose sample paths are
uniformly continuous on (T ,ρ) a.s.
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6. NUMERICAL RESULTS

In this section, we examine the finite sample performance of our GMM and HAC
covariance estimators. We consider the following specification:

Yi, j = θarc tan
(
Yi−1, j +Yi, j−1 +Yi+1, j +Yi, j+1

)+ sin
(
Xi, j

)+Ui, j , (14)

where (i, j) ∈ Z2, Xi, j is a scalar random variable generated according to

Xi, j = 0.2495
(
Xi−1, j + Xi, j−1 + Xi+1, j + Xi, j+1

)+ ξi, j , (15)

{Ui, j } and {ξi, j } are independent and i.i.d. N (0,1). To check sensitivity of our
results to the degree of persistence, we furthermore consider two different values
of θ : θ = 0.15 and θ = 0.2.

Autoregressive processes (14)–(15) are defined implicitly as solutions to spatial
difference equations. Both equations satisfy contraction mapping conditions of
Jenish (2012), and consequently, there exist unique stationary solutions of these
equations. The data are simulated on a rectangular grid �n of (m1 +300)×(m2 +
300) locations. To control for boundary effects, we discard the 300 outer boundary
points along each of the axes and use the sample of size n = m1m2 for estimation.

By Proposition 1 of Jenish (2012), {Yi, j } is L2-NED on {Vi, j }, Vi, j = sin(Xi, j )
+ Ui, j , and {Xi, j } is L2-NED on {ξi, j }, and consequently, {(Yi, j , Xi, j )

′} is L2-
NED on {(Ui, j ,ξi, j )

′} with the NED coefficients decaying at a geometric rate.
To construct a trimmed GMM estimator in Model 2, we take X = {x ∈ R :

|x |< 30}, X ∗ = {x ∈R : |x |< 31}, ε∗ = 1, εn = 1
3 n−0.51. We use a bias-reducing

normal kernel of order 9 and bandwidth parameters γl = n−1/21, l = 1,2,3, con-
sistent with Assumption 8.

The instruments are Zi, j ≡ (Xi−1, j−1, Xi−1, j , Xi−1, j+1, Xi, j−1, Xi, j+1,
Xi+1, j−1, Xi+1, j , Xi+1, j+1). Finally, we use the Bartlett kernel given in Section 4
and the bandwidth βn = n1/8 to construct the HAC covariance estimator.

The results of simulations based on 1000 Monte-Carlo repetitions are reported
in Table 1.

The finite-sample biases are sizeable in smaller samples, e.g., for n = 200 the
bias is about 6% when θ = 0.2, and about 10% when θ = 0.15. Nevertheless,
the finite sample bias declines as the sample size increases, consistent with our
asymptotic theory. Specifically, for the sample size of 800 and larger, the reported
biases are in the range of 3–5%. Thus, the results suggest that a five-fold increase
of the sample size leads to a two-fold decrease in biases. The results are sensitive
to the autoregressive parameter θ : the larger θ , the smaller the finite sample bias.
This is not surprising since θ determines the strength of the signal relative to the
noise.

Generally, such finite-sample biases are not uncommon in the classical (non-
spatial) semiparametric literature. There are some Monte Carlo studies for semi-
parametric estimators that suggest quite large finite-sample biases for the sample
sizes used in our simulations. For example, Chen and Khan (2001) report biases
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TABLE 1. Simulation results for semiparametric model: Yi j = θ atan (Yi−1, j +Yi+1, j +Yi, j−1 +Yi, j+1)+ sin (Xi j )+Ui j

θ = 0.15

Sample Size Mean Bias (%) SD RMSE MAD 25th Pct. 50th Pct. 75th Pct. C.R. (95%) C.R. (90%)

N = 200 0.165 10.201 0.16 0.156 0.045 0.128 0.159 0.191 95.0 90.7
N = 400 0.162 7.711 0.06 0.065 0.040 0.129 0.161 0.187 96.3 92.2
N = 600 0.161 7.201 0.11 0.111 0.041 0.133 0.160 0.189 97.1 92.0
N = 800 0.158 5.238 0.05 0.051 0.036 0.131 0.158 0.184 96.7 92.0
N = 1000 0.157 4.639 0.05 0.055 0.036 0.131 0.160 0.184 97.6 93.2

θ = 0.20

N = 200 0.213 6.440 0.10 0.098 0.041 0.179 0.208 0.239 94.8 90.7
N = 400 0.211 5.334 0.06 0.061 0.038 0.180 0.210 0.235 96.3 91.8
N = 600 0.210 5.225 0.10 0.103 0.039 0.184 0.210 0.237 96.7 91.7
N = 800 0.207 3.742 0.05 0.047 0.034 0.182 0.208 0.234 96.9 92.0
N = 1000 0.207 3.261 0.05 0.053 0.034 0.183 0.208 0.233 97.2 92.6
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in the range of 7–15% for the sample sizes of 200–800 in their semiparametric
estimator of the partially linear censored model. In our paper, the problem is fur-
ther exacerbated by (i) presence of endogenous regressors (spatial lags) which
enter the regression in a highly nonlinear way; (ii) the Lipschitz condition which
shrinks the range (variability) of the dependent variable, thereby lowering the
signal-to-noise ratio, and (iii) dimensionality of the index space, which is now a
two-dimensional lattice.

Finally, we test the performance of the HAC covariance estimator by comput-
ing coverage rates for the 95% and 90% confidence intervals. The actual coverage
rates are within the range of 81–91% for the 90% nominal interval, and within
88–95% for the 95% nominal interval. Overall, the simulations results are consis-
tent with our asymptotic theory of the previous sections: the finite sample bias in
the GMM estimator decays and the coverage rates of the HAC estimator improve
as the sample size increases.

NOTES

1. For formal definition, see Dacorogna (2004). Loosely, a domain is Lipschitz, if its boundary is
Lipschitz-continuous.

2. For the definition, see Jenish (2012).
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APPENDIX A: Proof of Theorem 5

More detailed proofs are available in the working paper on the author’s webpage.
Throughout appendices, C denotes a generic constant that does not depend on n and may
vary from line to line.

To prove Theorem 5, we need the following lemma.

LEMMA A.1. If {Zin, i ∈ �,n ≥ 1} is L2-NED with the NED numbers {ψ(s)} on
{Vin, i ∈ �,n ≥ 1}, where � ⊂ R

d is a discrete lattice, which satisfies the minimum dis-
tance assumption. The α-mixing coefficients of {Vin} satisfy α(k, l,r) ≤ (k + l)ς α̂(r) for
ς ≥ 0, and ‖Z‖2+δ = supi,n ‖Zin‖2+δ <∞ for δ > 0. Then, for i �= j and ς∗ = ςδ/(2+δ)

∣∣Cov
(
Zin, Zjn

)∣∣≤ C
{
‖Z‖2

2+δ [|i − j |/3]dς∗ α̂δ/(2+δ) ([|i − j |/3])+‖Z‖2ψ ([|i − j |/3])
}
.

The proof of this lemma is given in the online version of the paper available on the
author’s website.

Proof of Theorem 5. Part A. We verify assumptions of Theorem 1 of Andrews (1991),
which provides a generic stochastic equicontinuity criterion for m(x,τ ) that has for each
τ ∈ T a pointwise convergent series expansion of the form m(w,τ) =∑∞

j=1 cj (τ )hj (w)

for all w ∈ W with respect to the orthonormal Fourier basis
{
hj (w) = (b − a)−p/2

e2π iκ( j)′(w−a1)/(b−a)}, where 1 is the p-vector of ones and κ( j) = (κ1, ...,κp) is a
p-vector of integers. Verification of Assumptions A(i)-(ii) and the first part of A(iii) of
Andrews (1991) does not rely on the spatial dependence structure of the process, and is the
same as in the proof of Theorem 4 of that paper, see pp. 199–200. There, Andrews in
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particular shows that Assumptions 11(a)–(b) imply supτ∈T
∑∞

j=J |cj (τ )|2/aj → 0 as

J → ∞ for aj = j−2q/p+ε, ε ∈ (0,−1+ (2q −1)/p) .
Thus, it remains only to verify the second part of Assumptions A(iii). Note that supi, j,n

|hj (Win)| ≤ B = (b − a)−p/2, and the functions hj (w) satisfy the Lipschitz condition

|hj (w)− hj (w
•)| ≤ Bj |w−w•| with the Lipschitz constants Bj = 2Cπ(b − a)−1−p/2

pj1/p. Then, by Proposition 1 of Jenish and Prucha,
{
hj (Win)

}
is L2-NED on {Vin} with

the NED numbers
{
2Bjψ(s)

}
. Furthermore, by Lemma A.1 of Jenish and Prucha (2009),

sup
i∈�

card{j ∈ � : r ≤ |i − j | < r +1} ≤ Crd−1. (A.1)

Using this inequality and Lemma A.1 with Zin = hj (Win) and δ = ∞ gives

γj = lim sup
n→∞

V ar

⎛⎝n−1/2
∑
i∈�n

h j (Win)

⎞⎠≤ 2B
2

+C lim sup
n→∞

n−1
∑
i∈�n

∞∑
r=1

∑
l∈�n :|i−l|∈[r,r+1)

{
[|i − l|/3]dς α̂ ([|i − l|/3])+ψ ([|i − l|/3])

}

≤ 2B
2 +C

{ ∞∑
r=1

rd−1rdς α̂ (r)+ Bj

∞∑
r=1

rd−1ψ (r)

}
= C1 +C2 Bj < ∞,

by Assumption 11(c) since α̂ (r) ≤ 1. Hence,

∞∑
j=1

ajγj = C1

∞∑
j=1

j−2q/p+ε +2C2Cπ(b −a)−1−p/2 p
∞∑

j=1

j1/p−2q/p+ε < ∞,

which verifies Assumptions A(iii) of Andrews (1991) and thus completes the proof of
part A.

Finally, part B, i.e., finite dimensional convergence, follows the CLT of Jenish and
Prucha (2012). n

APPENDIX B: Proofs for Section 3

In the following, w.p.1 denotes “with probability approaching 1”. Proof of Theorem 1
relies on the following lemma. Let τ(x,θ) ≡ E (ϕ (Yin,θ) |Xin = x) , and let τ̂ (x,θ) be
the kernel estimator of τ(x,θ) for the kernel K (·) and bandwidth bn .

LEMMA B.1. Let
{(

Yin, X ′
in

)′ } be a Y×Rk-valued random field that is L2-NED
with the NED coefficients ψ(m) = O(m−η) on {Vin}, whose α-mixing coefficients sat-
isfy α(k, l,r) ≤ (k + l)ς α̂(r) for ς ≥ 0 and α̂(r) s.t.

∑∞
r=1 rd(ς∗+1)−1α̂δ/(2+δ)(r) < ∞,

ς∗ = ςδ/(2+ δ), δ > 0. Suppose further that

(a) The function ϕ : Y×�∗→ R satisfies for any y, y• ∈ Y: |ϕ (y,θ)−ϕ (y•,θ)| ≤
L(θ) |y − y•| with supθ∈�∗ L(θ) < ∞, and supn,i supθ∈�∗ ‖ϕ (Yin,θ)‖2+δ < ∞
for the above δ.

(b) For some integer ω ≥ 1, τ (x,θ) fin(x) ∈ Cω(Rk) w.r.t. x, supn,X ∗×�∗∣∣n−1∑
i∈�n

Dμx [τ(x,θ) fin(x)]
∣∣< ∞ for |μx | ≤ ω, and Assumption 3 holds for

this ω.
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(c) Assumption 5(a) is satisfied, and Assumption 5(b) holds with ql = ω−1 and l = 1.
Then, for |μx | ≤ ω−1

sup
X ∗×�∗

∣∣Dμx τ̂ (x,θ)− Dμx τ(x,θ)
∣∣= Op

(
n−η/(2η+d)b−k−|μx |−d/(2η+d)

n

)
+ Op

(
bω−|μx |

n

)
,

provided that the right-hand side of this equality is op(1).

The proof of the lemma is similar to that of Theorem 1(b) in Andrews (1995), who give
similar results for NED time-series processes, and is therefore omitted.

Proof of Theorem 1. Since |Yin | < ∞ and |Zin | < ∞, we will use Lemma B.1 with
δ= ∞. Then, δ/(2+δ)→ 1 and ς∗ → ς as δ→ ∞, and hence the mixing coefficients must
satisfy

∑∞
r=1 rd(ς+1)−1α̂(r) < ∞, which holds by Assumption 2(c). Part A follows im-

mediately from Lemma B.1. To establish part B, observe that Dμθ τ̂3(x,θ) is the kernel
estimator of Dμθ h(Y2in,θ). By Assumption 4(c), supY2×�∗

∣∣Dμθ h(Y2in,θ)
∣∣<∞, which

is a domination condition that allows interchanging differentiation and integration in Dμθ

τ30(x,θ) = Dμθ E (h(Y2in ; θ)|Xin = x) = E
(
Dμθ h(Y2in ; θ)|Xin = x

)
. Assumption (a)

of Lemma B.1 holds by Assumption 4(c). Part B now follows Lemma B.1. n
The proof of Theorem 2 makes use of the following lemmata.

LEMMA B.2. Let ζε (x)= 1
εk

∫
Xε φ

( x−z
ε

)
dz, where Xε is the ε-neighborhood of X ⊂

R
k , 0 < ε < ε∗/2, ε∗ is as in Assumption 1 and φ (x) is defined as:

φ (x) =
{

ck exp
(

1/
(
|x |2 −1

))
, |x | < 1,

0, |x | ≥ 1,

where ck is a normalizing constant such that
∫
φ(x)dx = 1. Then,

(a) supp[ζε (x)] ⊂ X2ε , ζε (x) = 0 for x ∈ Rk\X2ε .

(b) Dμζε (x) exists and continuous on Rk for all |μ| ≥ 0.

(c)
∫
Rk

∣∣ζε (x)−1X (x)
∣∣dx → 0 as ε → 0.

LEMMA B.3.

(a) Under Assumptions 1, 2, 4(c), for 0 < εn < ε∗/2, {mεn (Win,θ,τ )} and
{ ∂
∂θ ′ mεn

(Win,θ,τ )
}

are L2-NED on {Vin} of size −η.

(b) Under Assumptions 1, 7(a)-(b), Em(Win,θ,τ ) = ∫
X [ϒ(θ,τ (x)) + ϒ1(θ, x)]

fin(x)dx, and

Emεn (Win,θ,τ ) =
∫
X2εn

ζεn (x)
[
ϒ(θ,τ (x))+ϒ1(θ, x)

]
fin(x)dx

+
∫
X2εn \X

ζεn (x)ϒ2(x) fin(x)dx,

where ϒ2(x) = τ50(x) − τ40(x,θ0) + τ10(x)(τ30(x,θ0) − τ20(x)), τ50(x),
τ40(x,θ0), ϒ(θ,τ(x)) and ϒ1(θ, x) are defined in Assumption 7(b)–(c).
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Proof of Lemma B.2. φ(x) is infinitely differentiable on R
k and supp[φ(x)] =

{x : |x | ≤ 1}. Thus, φ(x) is a test function in the terminology of Hörmander (1976), and the
lemma follows from Theorems 1.2.1 and 1.6.3 of this monograph with u(x) = 1Xε (x). n

Proof of Lemma B.3. Part (a). By Lemma B.2(c), Assumptions 1–2 and 4(c), mε(w,θ,
τ ) is continuously differentiable in w, and hence, satisfies a Lipschitz condition in w
with a bounded Lipschitz coefficient. Then, by Proposition 2 of Jenish and Prucha (2012),
{mε(Win,θ,τ )} is L2-NED of the same size as {Win}. Similarly, ∂

∂θ mε(Win,θ,τ ) is also
L2-NED of the same size as {Win}.

Part (b). Note that

Em(Win,θ,τ ) =
∫
X

1X (x) [τ10(x)− τ1(x)] [τ20(x)− τ2(x)− τ30(x,θ)+ τ3(x,θ)] fin(x)dx

+
∫
X

1X (x)E [(Zin − τ10(Xin))(Y1in − τ2(Xin)−h(Y2in,θ)

+ τ3(Xin,θ)) |Xin = x] fin(x)dx .

The second term in the last expression can be further written as

Q2 =
∫
X

E
[
(Zin − τ10(Xin))(Y1in − τ20(Xin)

− h(Y2in,θ0)+ τ30(Xin,θ0)) |Xin = x
]

fin(x)dx

+
∫
X

E
[
(Zin − τ10(Xin)) |Xin = x

]
(τ20(x)− τ2(x)+ τ3(x,θ)

− τ30(x,θ0)) fin(x)dx

+
∫
X

E
[
(Zin − τ10(Xin))(h(Y2in,θ0)−h(Y2in,θ)) |Xin = x

]
fin(x)dx

= 0+0+
∫
X

{
τ40(x,θ0)− τ40(x,θ)+ τ10(x)

[
τ30(x,θ)− τ30(x,θ0)

]}
fin(x)dx,

since the first term on the r.h.s. is the moment condition and is zero; the second term is
zero by definition of τ10. Similar arguments and Lemma B.2(b) yield the expression for
Emε(Win,θ,τ ). n

Proof of Theorem 2. To prove consistency of θ̂n , it suffices to verify Assumption C of
Theorem A-1 of Andrews (1994).

Step 1. Verification of Assumption C(a). By Lemma B.3(a),
{
mεn (Win,θ,τ )

}
is L2-NED

of size −η, η > d. By Theorem 1 of Jenish and Prucha (2012),
{
mεn (Win,θ,τ )

}
satisfies

an law of large numbers (LLN) for each (θ,τ ):∣∣∣∣n−1
∑

i∈�n

mεn (Win,θ,τ )− Emεn (Win,θ,τ )

∣∣∣∣ p→ 0.

Next, we show that this convergence holds uniformly over �× T . To this end, by
the uniform law of large numbers (ULLN) of Jenish and Prucha (2009), it suffices
to show that (i) {mεn (Win,θ,τ )} is stoch. equicontinuous on �×T w.r.t. pseudomet-
ric ρ1, and (ii) (�×T , ρ1) is totally bounded, where ρ1 ((θ,τ ), (θ

•,τ•)) = |θ − θ•| +
supX×� |τ(x,θ)− τ•(x,θ)|.

First, note that Assumptions 1, 2, 4(c) and 7(e), for any (θ,τ ), (θ•,τ•) ∈ �×T :∣∣mεn (Win,θ,τ )−mεn (Win,θ
•,τ•)

∣∣≤ Cρ1
(
(θ,τ ), (θ•,τ•)

)
(B.1)
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for some C < ∞, which proves stoch. ρ1-equicontinuity of
{
mεn (Win,θ,τ )

}
on

�×T . Moreover, T is uniformly ρu-equicontinuous on X × �, where ρu (τ,τ
•) =

supX×� |τ(t)− τ•(t)|, and T is equibounded on X ×�. Then, by the Arzela-Ascoli the-
orem, (T , ρu) is totally bounded, and hence, (�×T , ρ1) is also totally bounded. Thus, by
the ULLN of Jenish and Prucha (2009)

sup
�×T

∣∣∣∣∣∣n−1
∑

i∈�n

mεn (Win,θ,τ )− Emεn (Win,θ,τ )

∣∣∣∣∣∣ p→ 0. (B.2)

Next, by Lemmas B.2 and B.3(b), Assumptions 1, 3(b) and 7(b),(e)

sup
�×T

∣∣∣∣∣∣n−1
∑

i∈�n

E
[
mεn (Win,θ,τ )−m(Win,θ,τ )

]∣∣∣∣∣∣
≤ C1

∫
Rk

∣∣ζεn (x)−1X (x)
∣∣dx +C2Leb

(
X2εn \X )→ 0,

where Leb (A) denotes the Lebesgue measure of set A. Hence,
{
n−1∑

i∈�n
Em(Win,

θ,τ )
}
) is uniformly ρ1-equicontinuous on �×T . By Lemma B.3(b) and Assumptions 1,

7(b)–(c),

sup
�×T

∣∣∣∣∣∣n−1
∑

i∈�n

Em(Win,θ,τ )−m(θ,τ )

∣∣∣∣∣∣≤ C sup
x∈X

∣∣∣∣∣∣n−1
∑

i∈�n

fin(x)− f (x)

∣∣∣∣∣∣→ 0, (B.3)

for the m(θ,τ ) is defined in Assumption 7(d). Now, collecting (B.2)–(B.3) gives

sup
�×T

∣∣∣∣∣∣n−1
∑

i∈�n

mεn (Win,θ,τ )−m(θ,τ )

∣∣∣∣∣∣ p→ 0. (B.4)

It also follows that m(θ,τ ) is uniformly ρ1-continuous on �×T , and by total boundedness
of (�×T , ρ1), sup�×T |m(θ,τ )| < ∞.

Step 2. Verification of Assumption C(b). We need to show supθ∈� |m(θ, τ̂ )−m(θ,τ0)|p→ 0. Note that m(θ,τ0) = ∫
X ϒ1(θ, x) f (x)dx and hence m(θ, τ̂ ) − m(θ,τ0) =∫

X ϒ(θ, τ̂ ) f (x)dx . By Theorem 1,

sup
�

|m(θ, τ̂ )−m(θ,τ0)| ≤ C sup
X ∗

|τ10(x)− τ̂1(x)|

× sup
X ∗×�∗

[|τ20(x)− τ̂2(x)|+ |τ30(x,θ)− τ̂3(x,θ)|
] p→ 0.

We next show that P (̂τ ∈ T ) → 1. Observe that for l = 1,2

‖τ̂l − τl0‖ql ,X ∗ =
∑

|μ|≤ql

(∫
X ∗
∣∣Dμτ̂l (x)− Dμτl0(x)

∣∣2 dx

)1/2

≤ C
∑

|μ|≤ql

sup
X ∗

∣∣Dμτ̂l (x)− Dμτl0(x)
∣∣2 p→ 0,
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by part A of Theorem 1. It then follows ‖τ̂l‖ql ,X ∗ ≤ ‖τ̂l − τl0‖ql ,X ∗ + ‖τl0‖ql ,X ∗ ≤
op(1)+ B, l = 1,2. Similarly, part B of Theorem 1 implies ‖τ̂3‖

q2,X∗×�∗ ≤ op(1)+ B.

Hence, P
(‖τ̂1‖q1,X ∗ ≤ B,‖τ̂2‖q2,X ∗ ≤ B,‖τ̂3‖q3,X ∗×�∗ ≤ B

)→ 1, which verifies
P (̂τ ∈ T )→ 1. Finally, the last condition of Assumption C(b) of Andrews (1994) is satis-
fied with γ̂ = �−1

n in light of Assumption 7(a).
Step 3. Verification of Assumptions C(c) and C(d). Assumption C(b) is satisfied with

d(m,γ0) = m′�m and γ0 = � since sup�×T |m(θ,τ )| < ∞. Note that by uniform conti-
nuity of m(θ,τ ) in (θ,τ ), d(m(θ,τ0),γ0) is continuous on �. Assumption C(d) holds since
(i) � is compact, (ii) d(m(θ,τ0),γ0) is continuous on �, and (iii) m(θ,τ0)

′�−1m(θ,τ0)

is uniquely minimized at θ0. By Theorem A-1 of Andrews (1994), θ̂n
p→ θ0. n

APPENDIX C: Proofs for Section 4

Proof of Theorem 3.
Step 1. We first show that

sup
�×T

∣∣∣∣∣∣n−1
∑

i∈�n

∂

∂θ ′ mεn (Win,θ,τ )− M(θ,τ )

∣∣∣∣∣∣ p→ 0, (C.1)

for the M(θ,τ ) defined in Assumption 9(b). By Lemma B.3(a) and Theorem 1 of Jenish
and Prucha (2012),

{
mεn (Win,θ,τ )

}
satisfies an LLN for each (θ,τ ). Using arguments

analogous to those in Step 1 of the proof of Theorem 2, one can strengthen this LLN to
ULNN:

sup
(θ,τ )∈�×T

∣∣∣∣∣∣n−1
∑

i∈�n

∂

∂θ ′ mεn (Win,θ,τ )− E
∂

∂θ ′ m(Win,θ,τ )

∣∣∣∣∣∣ p→ 0. (C.2)

Step 2. The estimator θ̂ satisfies the following first order conditions:

∂

∂θ ′ mn
(
θ̂ , τ̂
)
�nmn

(
θ̂ , τ̂
)= op(1). (C.3)

Note that by assumption m(Win,θ,τ ) is continuously differentiable in the interior of �,
and θ0 is in the interior of �. Taking the mean value expansion of mn

(
θ̂ , τ̂
)

about θ0 yields

mn
(
θ̂ , τ̂
)= mn (θ0, τ̂ )+ ∂

∂θ ′ mn
(
θ̃ , τ̂
)(
θ̂ − θ0

)
, (C.4)

where θ̃ ∈ � is between θ̂ and θ0. By Theorem 2, θ̂
p→ θ0 and hence θ̃

p→ θ0.
Plugging (C.4) into (C.3) gives

n1/2(θ̂n − θ0) = −
[
∂

∂θ
mn
(
θ̂ , τ̂
)
�n

∂

∂θ ′ mn
(
θ̃ , τ̂
)]−1

× ∂

∂θ
mn
(
θ̂ , τ̂
)
�nn1/2mn (θ0, τ̂ )+op(1).
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By (C.1), ∂
∂θ ′ mn

(
θ̂ , τ̂
) p→ M = M(θ0,τ0) and ∂

∂θ ′ mn
(
θ̃ , τ̂
) p→ M = M(θ0,τ0). By As-

sumption 7(a), ∂
∂θ mn

(
θ̂ , τ̂
)
�n

∂
∂θ ′ mn

(
θ̃ , τ̂
) = M ′�M + op(1) and ∂

∂θ mn
(
θ̂ , τ̂
)
�n =

M ′�+op(1). Since M ′�M is nonsingular, and n1/2mn
(
θ0, τ̂

)= op(1) as shown in Step 3,
we have

n1/2 (θ̂n − θ0
)= An1/2mn (θ0, τ̂ )+op(1) (C.5)

with A = −(M ′�M
)−1 M ′�. Let

ν̃n(τ ) = n−1/2
∑

i∈�n

{
mεn (Win,θ0,τ )− Emεn (Win,θ0,τ )

}
, νn(τ )

= n−1/2
∑

i∈�n

{m(Win,θ0,τ )− Em(Win,θ0,τ )} .

Then, n1/2(θ̂n − θ0
)= Aν̃n (̂τ )+ An1/2 Emn

(
θ0, τ̂

)+op(1).

Step 3. We now show that n1/2 Emn(θ0, τ̂ ) = op(1). Note that

∣∣∣n1/2 Emn (θ0, τ̂ )
∣∣∣≤
∣∣∣∣∣∣n−1/2

∑
i∈�n

Emεn (Win,θ0, τ̂ )− Em (Win,θ0, τ̂ )

∣∣∣∣∣∣
+
∣∣∣∣∣∣n−1/2

∑
i∈�n

Em (Win,θ0, τ̂ )

∣∣∣∣∣∣ .
Using Lemma B.3(b),

∣∣n−1/2∑
i∈�n

E
[
mεn (Win,θ0, τ̂ )−m (Win,θ0, τ̂ )

] ∣∣ = op(1).

By the Cauchy–Schwartz inequality,
∣∣n−1/2∑

i∈�n
Em(Win,θ0, τ̂ )

∣∣ is less or equal to

n−1/2

⎛⎝∑
i∈�n

∫
X

|τ10(x)− τ̂1(x)|2 d Pin(x)

⎞⎠1/2

×
⎛⎝∑

i∈�n

∫
X

|τ20(x)− τ̂2(x)− τ30(x,θ0)+ τ̂3(x,θ0)|2 d Pin(x)

⎞⎠1/2

≤ n1/2 sup
X ∗

|τ10(x)− τ̂1(x)|sup
X ∗

|̂τ2(x)− τ20(x)+ τ̂3(x,θ0)− τ30(x,θ0)| p→ 0,

since supX ∗ |̂τ(x,θ0)− τ0(x,θ0)| = op(n−1/4) by Assumption 8. Thus, n1/2(θ̂n − θ0) =
Aν̃n (̂τ )+op(1).

Step 4. Using definitions of νn(·) and ν̃n(·) in Step 2 above, rewrite the last equality as

n1/2(θ̂n − θ0) = Aν̃n(τ0)+ A [̃νn (̂τ )−νn (̂τ )]+ A
[
νn (̂τ )−νn(τ0)

]
+ A

[
νn(τ0)− ν̃n(τ0)

]+op(1).
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We need to show that all terms in the squared brackets are op(1). Note that for all τ ∈ T ,
E |̃νn(τ )−νn(τ )| is less or equal to

2n−1/2
∑

i∈�n

E
∣∣ζεn (Xin)−1X (Xin)

∣∣
×|(Zin − τ1(Xin))(Y1in − τ2(Xin)−h(Y2in,θ0)+ τ3(Xin,θ0))|

≤ 2 sup
X ∗×Y1×Y2×Z

|z − τ1(x)| |y1 − τ2(x)−h(y2,θ0)+ τ3(x,θ0)|×

×
⎧⎨⎩sup
Rk

n−1
∑

i∈�n

fin(x)

⎫⎬⎭n1/2
∫
Rk

∣∣ζεn (x)−1X (x)
∣∣dx

≤ Cn1/2Leb(X2εn \X ) = o (1) ,

since Leb(X2εn \X ) = o
(
n−1/2). Thus, for all τ ∈ T , ν̃n(τ )− νn(τ ) = op(1), and in par-

ticular, νn(τ0)− ν̃n(τ0) = op(1). As established earlier, P (̂τ ∈ T ) → 1. By similar argu-
ments, ν̃n (̂τ )−νn (̂τ ) = op(1).

We next prove that νn (̂τ ) − νn(τ0) = op(1). To this end, it suffices to show:
(i) P (̂τ ∈ T ) → 1 (already proven), (ii) ρT (̂τ ,τ0)

p→ 0, and (iii) {νn(·),n ≥ 1} is stoch.
equicontinuous at τ0. Given (i)–(iii) and using standard arguments, we will then have

lim sup
n→∞

P (|νn (̂τ )−νn(τ0)| > ε)

≤ lim sup
n→∞

P∗
(

sup
τ∈T :ρT (τ,τ0)<δ

|νn(τ )−νn(τ0)| > ε

)
< ε,

where the last inequality is equivalent to (iii). To show (ii), observe that by Assumption 1,
m (·,θ0,τ ) belongs to the Sobolev space, Sq,2(W), with the norm order q > (pw +1)/2
and by Theorem 1, ρT (̂τ ,τ0) ≤ Leb1/2 (W)supw∈W |m (w,θ0, τ̂ )−m (w,θ0,τ0)| → 0.
To establish (iii), we verify assumptions of part A of Theorem 5. Assumption 11(a) and
11(c) hold by Assumption 2 and 9. Finally, by Assumption 1,

sup
τ∈T

‖m (·,θ0,τ )‖q,2,W = sup
τ∈T

∑
|μ|≤q

∥∥Dμwm(w,θ0,τ )
∥∥

L2(W) < ∞. (C.6)

Thus, {νn(·),n ≥ 1} is stoch. equicontinuous, and hence n1/2(θ̂n −θ0)= Aν̃n(τ0)+op(1).
Step 5. Finally, we show that ν̃n(τ0)⇒ N (0, S) by verifying assumptions of Theorem 5.

Assumptions 11(a)–(d) have been verified in Step 5 of this proof and also in Lemma B.3(a).
Assumptions 11(e) for p = 1 holds by Assumption 9(c). Thus, νn(τ0)⇒ N (0, S) and hence
n1/2 (θ̂n − θ0

)=⇒ N (0,V ). n

Proof of Theorem 4.
Let ϑ = (θ,τ ), min(ϑ) = mεn (Win,θ,τ ), and Sn (ϑ0) = n−1 E

∑
i∈�n

∑
j∈�n

min(ϑ0)m
′
in(ϑ0). Note that S (ϑ0)= limn→∞ Sn (ϑ0) . To prove the theorem, it suffices to

show that∣∣Ŝn
(
ϑ̂
)− Ŝn (ϑ0)

∣∣ p→ 0,
∣∣Ŝn (ϑ0)− E Ŝn (ϑ0)

∣∣ p→ 0, and
∣∣E Ŝn (ϑ0)− Sn (ϑ0)

∣∣→ 0.
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Step 1. Proof of
∣∣Ŝn (ϑ0)− E Ŝn (ϑ0)

∣∣ p→ 0. For any s > 0, let ms
in = E(min |Fin(s)),

ξ s
in = min −ms

in and Ki jn = K ((i − j)/βn), where for simplicity we suppress dependence
of min (ϑ0) on ϑ0. Using the decomposition minmjn = ms

inms
jn + ms

inξ
s
jn + ξ s

inms
jn +

ξ s
inξ

s
jn , write Ŝn (ϑ0)− E Ŝn (ϑ0) = H1n + H2n + H3n + H4n , where

H1n = n−1
∑

i, j∈�n ,|i− j |≤βn

Ki jn

(
ms

inms
jn − Ems

inms
jn

)
,

H2n = n−1
∑

i, j∈�n ,|i− j |≤βn

Ki jn

(
ms

inξ
s
jn − Ems

inξ
s
jn

)
,

H3n = n−1
∑

i, j∈�n ,|i− j |≤βn

Ki jn

(
ξ s
inms

jn − Eξ s
inms

jn

)
,

H4n = n−1
∑

i, j∈�n ,|i− j |≤βn

Ki jn

(
ξ s
inξ

s
jn − Eξ s

inξ
s
jn

)
.

Next, we show that Hkn , k = 1, . . . ,4, converge to zero.

Set s = βn , and let χ s
in =∑j∈�n :|i− j |≤βn

Ki jn

(
ms

inms
jn − Ems

inms
jn

)
. Then,

V ar (H1n) = n−2
∑

i∈�n

∑
j∈�n :|i− j |≤3βn

Eχ s
inχ

s
jn +n−2

∑
i∈�n

∑
j∈�n :|i− j |>3βn

Eχ s
inχ

s
jn .

(C.7)

By Lemma A.1 of Jenish and Prucha (2009),

∥∥χ s
in

∥∥
2 ≤ 2

∑
j∈�n :|i− j |≤βn

∣∣Ki jn
∣∣∥∥∥ms

inms
jn

∥∥∥
2

≤ Cβd
n sup

j∈�n

∥∥ms
in

∥∥
4

∥∥∥ms
jn

∥∥∥
4

≤ Cβd
n sup

n,i∈�n

‖min‖2
4 ,

since
∥∥ms

in

∥∥
p ≤ ‖min‖p for any p ≥ 1. Using the Cauchy–Schwartz inequality yields the

following bound on the first term in (C.7):

n−2
∑

i∈�n

∑
j∈�n :|i− j |≤3βn

∣∣∣Eχ s
inχ

s
jn

∣∣∣≤ Cn−1βd
n sup

n,i∈�n

∥∥χ s
in

∥∥2
2

≤ Cn−1βd
n sup

n,i∈�n

‖min‖4
4β

2d
n ≤ Cn−1β3d

n → 0,

since βd
n = O(n1/4). Using Lemma A.1 with Zin = χ s

in , ψ(h) = 0 and δ = ∞ im-

plies for i, j s.t.
∣∣i − j

∣∣ > 3βn that
∣∣Eχ s

inχ
s
jn

∣∣ ≤ Cβ2d
n sdς α̂ (|i − j |/3) , since

∥∥χ s
in

∥∥
p ≤

2
∑

j∈�n :|i− j |≤βn

∣∣Ki jn
∣∣∥∥ms

in

∥∥
2p

∥∥ms
jn

∥∥
2p ≤ Cβd

n for all p ≥ 1.
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Using the last inequality and inequality (A.1), we can now bound the second term in
(C.7) for s = βn

n−2
∑

i∈�n

∑
j∈�n :|i− j |>3βn

∣∣∣Eχ s
inχ

s
jn

∣∣∣≤ Cn−2β2d
n

∑
i∈�n

∑
j∈�n :|i− j |>3βn

sdς α̂ ([|i − j |/3])

≤ Cn−2β2d
n

∑
i∈�n

∞∑
r=[βn ]

∑
j∈�n :|i− j |∈[r,r+1)

sdς α̂ (r)

≤ Cn−1β2d
n

∞∑
r=[βn ]

rd(ς+1)−1α̂ (r) → 0,

by Assumption 9(c). Thus, |H1n | p→ 0. We now show that |H2n | p→ 0. By the Cauchy–
Schwartz inequality,

E |H2n | ≤ n−1
∑

i, j∈�n ,|i− j |≤βn

∣∣Ki jn
∣∣E ∣∣∣ms

inξ
s
jn − Ems

inξ
s
jn

∣∣∣
≤ 2n−1

∑
i, j∈�n ,|i− j |≤βn

∥∥ms
in

∥∥
2

∥∥∥ξ s
jn

∥∥∥
2

≤ Cψ(βn)β
d
n → 0,

since ψ(s)= o(s−d ). Similarly, |H3n | p→ 0 and |H4n | p→ 0. Thus,
∣∣Ŝn (ϑ0)− E Ŝn (ϑ0)

∣∣ p→
0, as required.

Step 2. Proof of
∣∣E Ŝn (ϑ0)− Sn (ϑ0)

∣∣ → 0. Write E Ŝn (ϑ0)− Sn (ϑ0) = J1n − J2n ,
where

J1n = n−1
∑

i∈�n

∑
j∈�n :|i− j |≤βn

[K ((i − j)/βn)−1] Eminmjn and J2n

= n−1
∑

i∈�n

∑
j∈�n :|i− j |>βn

Eminmjn .

We first show that J2n converges to zero. Using Lemma A.1 with Zin = min and δ = ∞
yields∣∣Eminmjn

∣∣≤ C
{

[h/3]dς α̂ ([h/3])+ψ ([h/3])
}
. (C.8)

Then, using the last inequality and (A.1) gives

|J2n | ≤ Cn−1
∑
i∈�n

∞∑
r=[βn ]

∑
j∈�n :|i− j |∈[r,r+1)

{
[|i − j |/3]dς α̂ ([|i − j |/3])+ψ ([|i − j |/3])

}

≤ C
∞∑

r=[βn/3]

rd−1
[
rdς α̂ (r)+ψ (r)

]
→ 0,

as the tail of a convergent series. Now, using (C.8) and similar arguments as for J2n gives

|J1n | ≤ C
∞∑

r=1

∣∣K (
∣∣ar,n

∣∣/βn)−1
∣∣rd−1

[
[r/3]dς α̂ ([r/3])+ψ ([r/3])

]
→ 0,
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where ar,n = argmaxr≤x≤r+1 |K (x/βn)−1|. Since
∑∞

r=1 rd−1[rdς α̂ (r)+ψ ([r ])
]
<

∞, K (x) is continuous in a neighborhood of x = 0 and supr,n
∣∣ar,n

∣∣ < ∞, the r.h.s
of the last inequality converges to zero by the Dominated Convergence Theorem. Thus,∣∣E Ŝn (ϑ0)− Sn (ϑ0)

∣∣→ 0, as required.

Step 3. Proof of
∣∣Ŝn
(
ϑ̂
)− Ŝn (ϑ0)

∣∣ p→ 0. Note that∣∣Ŝn
(
ϑ̂
)− Ŝn (ϑ0)

∣∣≤ n−1
∑

i∈�n

∑
j∈�n :|i− j |≤βn

{∣∣min(ϑ̂)
∣∣ ∣∣mjn(ϑ̂)−mjn(ϑ0)

∣∣
+ ∣∣mjn(ϑ0)

∣∣ ∣∣min(ϑ̂)−min(ϑ0)
∣∣} .

We need to show that each of the two terms on the r.h.s. of the last inequality is op (1).
Since P (̂τ ∈ T ) → 1, for all i and n∣∣min(ϑ̂)−min(ϑ0)

∣∣≤ C1
∣∣θ̂ − θ0

∣∣+C2 sup
X ∗×�∗

{|̂τ1(x)− τ10(x)|

+ |̂τ2(x,θ)− τ20(x,θ)|+ |̂τ3(x)− τ30(x)|} w.p.1.

Since βd
n = O(n1/4), supX ∗×�∗ |̂τ − τ0| = op(n−1/4),

∣∣θ̂ − θ0
∣∣ = Op(n−1/2), supn,i∣∣min(ϑ̂)

∣∣< ∞ w.p.1,

n−1
∑
i∈�n

∑
j∈�n :|i− j |≤βn

∣∣min(ϑ̂)
∣∣ ∣∣mjn(ϑ̂)−mjn(ϑ0)

∣∣≤ C sup
n,i∈�n

∣∣min(ϑ̂)
∣∣ ·

·βd
n

{∣∣θ̂ − θ0
∣∣+ sup
X ∗×�∗

{|̂τ1(x)− τ10(x)|+ |̂τ2(x,θ)− τ20(x,θ)|+ |̂τ3(x)− τ30(x)|}
}

p→ 0,

Similarly, n−1∑
i∈�n

∑
j∈�n :|i− j |≤βn

∣∣mjn(ϑ0)
∣∣ ∣∣min(ϑ̂)−min(ϑ0)

∣∣ p→ 0, which com-
pletes the proof. n
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